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Abstract

Widely used convolution and deconvolution techniques traditionally rely on inde-
pendence assumptions, often criticized as being strong. We observe that the convolu-
tion theorem actually holds under a weaker assumption, known as subindependence.
We show that this notion is arguably as weak as a conditional mean assumption. We
report various simple characterizations of subindependence and devise constructive
methods to generate subindependent random variables. We extend subindependence
to multivariate settings and propose the new concepts of conditional and mean subinde-
pendence, relevant to measurement error problems. We nally introduce three tests
of subindependence based on characteristic functions, generalized method of moments
and randomization, respectively.
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1 Introduction

Convolutions and deconvolutions play a central role in the identi cation and estimation of
measurement error models (Fan (1991), Fan and Truong (1993), Li (2002), Li and Vuong
(1998), Wang and Hsiao (2011), Taupin (2001), Hu and Ridder (2012), Hu and Ridder
(2010), Bonhomme and Robin (2010), Carrasco and Florens (2011), Wilhelm (2010), Schen-
nach (2004), Schennach (2007), Schennach (2008), Schennach (2013), Schennach (2016))
and, more generally, in any problem involving sums of independent random variables. The
use of convolution techniques in this context yields very computationally and conceptually
convenient methods. However, the requirement that the variables (e.g. the true quantity of
interest and its measurement error) be independent is often criticized as being too strong
(Bound, Brown, and Mathiowetz (2001), Hu and Schennach (2008)). In this note, we observe
that independence is, in fact, not necessary for the convolution theorem to hold. Instead, a
much weaker notion, known as subindependence, is the appropriate necessary and su cient
condition.
Although the concept of subindependence and its relation to convolutions is known (e.g.,

Hamedani and Volkmer (2009), Ebrahimi, Hamedani, Soo , and Volkmer (2010), Hamedani
(2013), and references therein), it has received surprisingly little attention. This paper con-
tributes to this literature (i) by motivating the usefulness of this concept by showing that
it is as weak as a conditional mean assumption in a well-de ned sense, (ii) by providing a
number of equivalent characterizations, (iii) by introducing generalizations of this concept
in multivariate settings, (iv) by devising a simple and general method to generate pairs
of subindependent random variables and (v) by introducing three simple tests of subinde-
pendence: One based on characteristic functions, one expressed as a generalized method of
moment and one based on a permutation test. All proofs can be found in the appendix.

2 Scalar variables

Let and denote two scalar real-valued random variables and let = + . Let the
characteristic functions (c.f.) of some random variable be denoted by ( )

£ ¤
and let the joint c.f. of two variables and be denoted by ( ) =

£ ¤
. We

denote the density of a random variable (with respect the Lebesgue measure) by while
its cdf is denoted by , and similarly for joint densities and cdf.
The convolution theorem (Loève (1977), Lukacs (1970)) states that, under independence

of and , we have the convenient factorization ( ) = + ( ) =
£

+
¤
=£ ¤ £ ¤

= ( ) ( ). Such a result does not actually require full independence,
because full independence is equivalent to the following assumption (by Theorem 16-B in
Loève (1977)):
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De nition 1 Two random variables and are independent (denoted ) i£
( + )

¤
=

£ ¤ £ ¤
for any R and R.

Note that independence requires the factorization to hold for any and any when the
convolution theorem only needs the factorization to hold for = . This observation leads
to the following weaker assumption:

De nition 2 Two random variables and are subindependent (denoted >> ) i£
( + )

¤
=

£ ¤ £ ¤
for all R.

Note that the number of restrictions imposed by subindependence is considerably less
than for independence: Only a one-dimensional subset of the domain of the joint c.f. of
and is constrained, instead of its whole two-dimensional domain. For comparison, this is
as few constraints on the joint c.f. as a conditional mean assumption [ | = ] = 0,1

which can also be expressed as a constraint on the c.f. on a one-dimensional subset (see
Proposition 2 in Schennach (2014)):

De nition 3 Two random variables and satisfy a conditional mean restriction (de-
noted [ | ] = 0) i [ ( ) ] =0 =

£ ¤
= 0 for all R.

Informally, one could interpret these observations as follows. If one were to select a
generating process for at “random”, the chances that it satis es subindependence are
of the same order as the chances that it satis es a conditional mean assumption, while the
chances of satisfying independence are considerably smaller. Another interpretation is that,
in a case where the convolution theorem does not hold, the error made in using it anyway is
related to the “distance” to the nearest generating process satisfying subindependence, which
is much “closer” than the nearest model satisfying independence. A third interpretation
would be that a model that assumes subindependence is as robust to deviations from this
assumption as a model that relies on a conditional mean assumption, while being far more
robust to deviations than a model assuming independence.
One could argue that, regardless of favorable dimensionality arguments, the notion of

subindependence is less intuitive than the one of conditional mean, because the former is ap-
parently tied to a Fourier representation. To address this concern, we now state simple ways
to characterize and generate subindependent pairs of random variables that do not involve
Fourier transforms. First, here is an equivalent real-space characterization of subindepen-
dence:

Lemma 1 Two scalar real-valued random variables and are subindependent i

+ ( ) =

Z Z
1 ( + ) ( ) ( ) (1)

1For almost every R, and assuming that [| | | = ] and [| |] .
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Note that the left-hand side of (1) is the distribution of the sum + (accounting for
possible dependence between and ), while the right-hand side is the convolution of the
marginal distributions of and , expressed in a form that allows for general probability
measures. The two expressions are obviously equal under independence, but this lemma
shows that it holds under the weaker conditions of subindependence. Property (1) is given
the name summable uncorrelated marginals by Ebrahimi, Hamedani, Soo , and Volkmer
(2010). As the equivalence of this notion to subindependence may not be obvious to many
readers, we provide a proof of this fact in the Appendix, for completeness.
For densities (instead of general probability measures), one can give a lengthier, but more

transparent, characterization of subindependence:

Lemma 2 (Adapted from Lemma 2 in Ebrahimi, Hamedani, Soo , and Volkmer (2010))
Two scalar real-valued random variables and with continuous joint density ( )
(and marginals ( ) and ( ), respectively) are subindependent i

( ) ( ) ( ) ( ) (2)

satis es Z
( ) = 0 for any R (3)Z
( ) = 0 for any R (4)Z

( ) = 0 for any R. (5)

Although it is straightforward to nd functions ( ) satisfying (3) and (4), it is
more di cult to do so while at the same time satisfying (5). For this reason, we provide a
simple construction to generate pairs of subindependent random variables.

Theorem 4 Let and be scalar real-valued random variables with marginal density
( ) and ( ), respectively, and satisfying [| |] and [| |] . Any joint

density ( ) such that and are subindependent can be written in the form

( ) = ( ) ( ) +

μ ¶
( ) (6)

for some function : R2 7 R such thatZ
( ) = 0 and

Z
( ) = 0 (7)

for any R and
lim
| |

( ) = 0 (8)

for any R
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Figure 1: Function ( ) from Example 1.

Remark 1 This theorem does not guarantee that, for any choice of ( ), the resulting
( ) is a valid probability density. However, it does guarantee that if one considered

every possible ( ) satisfying the restrictions and such that (6) is a well-de ned density,
one would have covered all possible joint densities that satisfy subindependence. There are
essentially two ways in which ( ) could fail to be a valid density: (i) if ( ) is not
su ciently di erentiable, which is easy to avoid and (ii) if the resulting function ( )
reaches negative values, in which case one can merely rescale ( ) so that ( ) 0
everywhere.

Drawing random variables from a density of the form (6), can be straightforwardly ac-
complished: For instance, one can draw trial pairs and of independent random variables
from the densities ( ) and ( ), respectively, and then accept those trial pairs with a
probability ( ), where

( ) = 1 +

³ ´
( )

( ) ( )
(9)

and where is a constant chosen such that ( ) 1 for all ( ) R2. This approach
o ers the advantage that it can be entirely expressed in terms of univariate random number
generators.
We can also use Theorem 4 to construct simple examples that provide graphical intuition

into the concept of subindependence.

Example 1 Taking ( ) = ( 2+ 2) 2 yields ( ) = ( ) ( ) + ( )

with ( ) = ( + 2 2)
1
2

2 1
2

2
.
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Figure 2: Function ( ) from Example 2.

The deviation ( ) is shown in Figure 1 and illustrates perhaps the simplest
general shape of a deviation from independence that will preserve subindependence. One
can also easily construct an example (illustrated in Figure 2) where independence is violated
but subindependence and conditional mean [ | ] = 0 hold. This is useful to see that
subindependence is not incompatible with the natural conditional mean assumption.

Example 2 Taking ( ) = ( 2 1) ( 2+ 2) 2 yields ( ) = ( ) ( )+ ( )

with ( ) = ( 1 + 2 + 2 3 + 3 2 2)
1
2

2 1
2

2
. Note that

R
( ) =

0 in this case (if
R

( ) = 0).

We conclude this section by providing a few convenient results for transformed variables.
It is well-known that nonlinear transformations preserve independence, i.e. =
( ) ( ) for two measurable functions and . For subindependence, this only holds

for speci c linear transformations. There is also some interesting relation between indepen-
dence and subindependence: a family of subindependence restrictions implies independence.
These results are summarized below.

Theorem 5 Let and be scalar real-valued random variables. Then,

1. >> ( + ) >> ( + ) for any R. (However, >> 6
( + ) >> ( + ) for any R if 6= ).

2. >> for any R .
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3 Multivariate extensions

The concept of subindependence in multivariate settings leads to a broader array of related
concepts, which we now discuss.

De nition 6 Conformable random vectors 1 are said to mutually subindepen-
dent (denoted >> ( 1 )) if either (i) [exp ( 0P

=1 )] =
Q

=1

£ 0 ¤
or

(ii) 1+···+ ( ) =
R · · · R 1 (P =1 ) 1 ( 1) · · · ( ) (with holding for all

elements).

Theorem 7 Let 1 2 3 be random vectors of the same dimension. The following hold:

1. 1 >> 2 and ( 1 + 2) >> 3 >> ( 1 2 3).

2. 1 >> 2 and 2 >> 3 and 3 >> 1 6 >> ( 1 2 3).

These results parallel analogue implications for independence. The second result is in-
teresting in the sense that one would have expected that it should hold, as subindependence
looks like a fundamentally pairwise property. The concept of conditional independence also
admits a subindependence analogue that is useful in measurement error problems.

De nition 8 Let , and be random vectors (where and have the same dimension).
Then, and are said to be subindependent conditional on (denoted >> | ) i
either (i)

£ 0( + ) | ¤
=

£ 0 | ¤ £ 0 | ¤
for any R or, equivalently, (ii)

+ | ( | ) =
R R

1 ( + ) | ( | ) | ( | ).

The following result is useful to deconvolve a joint distribution involving other variables
not measured with error.

Theorem 9 If >> | and , then£
( + )

¤
=

£ ¤ £ ¤
(10)

for any R and

+ | ( | ) =
Z Z

1 ( + ) | ( | ) ( ) (11)

If densities exist, then

+ ( ) =

Z
( ) ( ) (12)
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Corollary 10 If >> | and =
£
( ) ( + )

¤
=

£
( )

¤ £ ¤
for any R and for any measurable function .

We can also introduce an analogue of the concept of mean independence [ | ] = [ ]
in a subindependence context. Observe that mean independence of ( ) from implies
that

£
( )

¤
= [ ( )]

£ ¤
for any measurable function . This suggest the

following de nition:

De nition 11 Random variable is said to be mean subindependent from i
£

( + )
¤
=£ ¤ £ ¤

for any R.

Note that had we de ned mean subindependent from as
£ ¤

= [ ]
£ ¤

,
it would actually have coincided with the usual concept of mean independence. Also, if we
had de ned it as

£ | ¤
=

£ ¤
, then it would have reduced to the usual notion

of independence. The need for factorizations of the form
£

( + )
¤
=

£ ¤ £ ¤
often arise in the derivation of results similar to Kotlarski’s identity (Kotlarski (1967)).
We conclude this section with a simple su cient condition for subindependence of sums.

Theorem 12 If ( 1 1) ( 2 2) and 1 >> 1 and 2 >> 2 = ( 1 + 2) >> ( 1 + 2).

4 Testing

It is useful to develop empirical tests of the assumption of subindependence. Of course,
as would be the case for testing independence, the methods proposed here assume that all
variables are observed. In measurement error contexts, this would typically be veri ed with
validation data.
The most obvious approach, conceptually, is to directly test the De nition 2 in terms of

characteristic functions. One can proceed in analogy with characteristic function based tests
of independence and consider test statistics of the form

ˆ =

Z ¯̄̄
ˆ ( ) ˆ ( ) ˆ

+ ( )
¯̄̄2

( ) (13)

where ˆ ( ) 1
P

=1 for any random variable (and an associated iid sample
( 1 ) drawn from the same marginal distribution) and where ( ) is a user-speci ed
weighting function satisfying:

Assumption 1 ( ) is strictly positive for all R and ( ) (1 + | |) for some
2 and some 0.

We also need a few basic assumptions.
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Assumption 2 [| |] , [| |] .

Assumption 3 and take values in R and ( ) forms an iid sequence.

Theorem 13 Under Assumptions 1, 2 and 3, if >> , we have ˆ
¡
0

£
( ( ))2

¤¢
where

( ) = 2

Z ¡
( ) ( ) + ( )

¢
( ) ( ) + (14)

2

Z ¡
( ) ( ) + ( )

¢
( ) ( ) +

2

Z ¡
( ) ( ) + ( )

¢
( ) ( + )

A consistent asymptotic variance estimator can be obtained by replacing, in (14), the char-
acteristic function ( ), etc., by their empirical counterparts ˆ ( ) = 1

P
=1 , etc.

This test o ers the advantage that it has power against any deviations from subinde-
pendence. The user-speci ed weighting function ( ) is necessary to ensure that the test
statistic has a nite asymptotic variance.
If one wishes to avoid using Fourier transforms, a continuum of restrictions or complex

numbers, one can formulate a polynomial test of subindependence, based on the following
result.

Theorem 14 If
h
| |

i
and

h
| |

i
for = 1 and >> , then

h
( + )

i
=
X
=0

μ ¶ £ ¤ £ ¤
(15)

Conversely, if the moment generating function of ( ) exists in an open neighborhood of
the origin and if (15) holds for any N, then >> .

Drawbacks of this formulation are (i) the strong moment existence requirements and (ii)
the di culty in practically implementing a test that has power against all deviations from
subindependence, since this would require considering all N. On the other hand, a nite
dimensional version of this test (with moments up to ) is very simple to implement via the
Generalized Method of Moment (GMM) (Hansen (1982)) with the moment vector:

h
( + )

i X
=0

μ ¶ £ ¤
= 0 for = 1 (16)£ ¤
= 0 for = 1 (17)
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where we rephrased the moment conditions in an equivalent form by introducing the pa-
rameter vector to obtain moment conditions that are linear in the generating process, as
required by standard GMM.
One can also exploit the equivalent de nition provided by Lemma 1 to devise a resam-

pling/randomization test of subindependence. Given an iid sample of two variables ( )
with = 1 one can proceed as follows:

Theorem 15 Under assumption 3, a valid statistical test of subindependence of and
can be obtained as follows from a sample ( ) =1 :

1. For each = 1 , draw the at random uniformly from {1 } (with replace-
ment), independently from all and .

2. Let = + and = +

3. Test equality of the distributions of and using a two-sample Kolmogorov-Smirnov
test (Conover (1971)).

The principle underlying this test is that the distribution of is the true distribu-
tion of the sum of and (accounting for possible dependence between them) while the
distribution of is the convolution of the ones of and , since any dependence has
been essentially removed through the randomization of via and by relying on the iid
assumption on .
Which test is preferable depends on the situation. The test based on Theorem 14 (for

nite ) is perhaps the simplest to implement but it is blind to some deviations from subinde-
pendence and thus tends to be dominated by the other two tests in terms of power. The
test based on Theorems 13 and 15 are both able, asymptoticallly, to detect any types of
deviations from the subindependence but one test does not uniformly dominate the other.
The test based on Theorem 13 will tend to perform better (in term of power) for smooth
distributions (since the weighting function ( ) e ectively performs smoothing) while the
test based on Theorem 15 will tend to perform better for nonsmooth ones. As is often the
case in nonparametric tests, it is di cult to establish some form of power optimality property
for any of the proposed tests.
Of course, in practice, one often does not have access to the true, correctly measured,

variables that would be necessary to perform the above direct tests in measurement error
models. In such cases, indirect tests could be devised by exploiting, for instance, the fact
that two di erent choices of valid instruments or of repeated measurements should yield
estimates that are not statistically signi cantly di erent. Such test, however, jointly test all
the assumptions of the estimation method and not just subindependence.
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5 Conclusion

This paper’s aim is not to try to argue that economic models should be stated in terms
of subindependence, which would admittedly be an unnatural assumption. Rather, we are
arguing that inferences made under the assumption of independence are robust to large
deviations from independence that maintain subindependence. This considerably expands
the scope of validity of the wide range of methods developed under independence, because
subindependence is arguably just as weak an assumption as conditional mean. Indeed, both
conditions, when phrased in terms of c.f., impose constraints on a subset of its domain
that is of the same dimension. We provide explicit examples that illustrate that deviations
from independence that maintain subindependence have quite simple and plausible shapes.
We also propose extensions of the subindependence concept to multivariate settings and
introduce simple tests of subindependence.
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A Proofs

Proof of Lemma 1. To show the equivalence of Equation (1) and De nition 2, we ob-
serve that the equality of the cdf + ( ) and ˜ ( )

R R
1 ( + ) ( ) ( ) is

equivalent to the equality of the corresponding probability measures + ( ) and ˜ ( ).
By the well-known uniqueness of c.f. (Loève (1977), Lukacs (1970)), this is equivalent to the
equality between the corresponding Fourier transforms:Z

+ ( ) =

Z
˜ ( ) (18)

The left-hand side of (18) is obviouslyZ
+ ( ) =

£
( + )

¤
(19)

by construction. Evaluating the right-hand-side yields:Z
˜ ( ) =

Z μZ Z
+ ( ) ( ) ( )

¶
=

Z Z Z
+ ( ) ( ) ( ) (20)
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where
0
( ) 1 ( 0 ) and where the second equality follows from Fubini’s theorem for

nite measures (see Chapter 5 in Bhattacharya and Rao (2010)). Since + ( ) represents
a unit point mass at = + , we haveZ

˜ ( ) =

Z Z
( + ) ( ) ( )

=

Z Z
( ) ( )

=

Z
( )

Z
( )

=
£ ¤ £ ¤

(21)

where we have again used Fubini’s theorem for nite (complex) measures. Equating (19) and
(21) for any R yields Assumption 2.
Proof of Theorem 4. Subindependence of and requires that ( ) = ( ) ( ) =

( 0) (0 ). Therefore, ( ) can be written as:

( ) = ( ) ( ) + ( ) (22)

where ( ) = 0 if either = 0, = 0 or = . Since ( ) is a di erence
of c.f., which are always bounded, it is also bounded. Since [| |] and [| |] are nite,
( ), ( ) and ( ) are everywhere continuously di erentiable and, therefore, so

is ( ). In particular, this implies that near the line = (where ( )

vanishes), ( ) behaves linearly and the ratio ( )
( )

does not diverge ( = 1

is a constant introduced for convenience). Away from this line, ( ) is nonzero, so the
ratio does not diverge either and ( ) can be written in the form:

( ) = ( ) ( ) (23)

where ( ) is nite at each ( ) R2 and such that ( 0) = 0 and (0 ) = 0. Since
( ) is nonzero along the lines = 0 and = 0 (except at = = 0) the constraints

( 0) = 0 and (0 ) = 0 translate directly into the constraint that ( 0) = 0
and (0 ) = 0. The inverse Fourier transform of these constraints yield (7). (The value at
(0 0) is irrelevant since it is nite and multiplied by ( ) = 0.) Since ( ) and
( ) are bounded, they are a special case of tempered distributions and admit an inverse

Fourier transform, given by (Lighthill (1962)):

( ) =

μ ¶
( ) (24)

where ( ) and ( ) denote the inverse Fourier transforms of ( ) and
( ), respectively. Combining (24) with the inverse Fourier transform of (22) yields (6).
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We can further restrict the behavior of ( ) by invoking Equation (5) from Lemma 2 with
( ) given by (24):Z μ ¶

( )

¸
=

= 0 (25)

for any R. Letting superscripts denote orders of derivatives with respect to each argu-
ment, we can write this expression in terms of a total di erential and integrate it:

0 =

Z ¡
(10) ( ) (01) ( )

¢
=

Z
( )

= lim ( ) lim ( ) (26)

Hence lim ( ) = lim ( ). These limits must also be zero because
otherwise the constraints (7) would diverge, thus implying (8).

Proof of Theorem 5. To show the rst implication we observe that, for any constant
R and letting ˜ , we have£

( + + + )
¤
=

£
( + )

¤
=

h
˜( + )

i
=

h
˜
i h

˜
i

=
£ ¤ £ ¤

=
£

( + )
¤ £

( + )
¤

(27)

where we have used the fact that >> to write
h

˜( + )
i
=

h
˜
i h

˜
i
. Note

that this result relies crutially on and having the same prefactor , hence the impli-
cation fails to hold if the prefactors are di erent, i.e., one cannot generally conclude that
( + ) >> ( + ) if 6= .
To show the second implication, we note that

£
+

¤
=

£
( + )

¤
for = ,

next, by >> for any R, we have£
( + )

¤
=

£ ¤ £ ¤
=

£ ¤ £ ¤
(28)

Proof of Theorem 7. To show the rst implication we rst write
£

1 2 3
¤
=£

( 1+ 2) 3
¤
=

£
( 1+ 2)

¤ £
3
¤
since ( 1 + 2) >> 3. Then

£
( 1+ 2)

¤
=£

1
¤ £

2
¤
by 1 >> 2 and the result follows.

To shows the failure of the second implication, consider the characteristic function
1 2 3

( 1 2 3) =£
1 1+ 2 2+ 3 3

¤
and note that 1 >> 2 and 2 >> 3 imply constraints on 1 2 3

( 1 2 3)
over the set {( 0) : R} {(0 ) : R} while >> ( 1 2 3) implies constraints
on

1 2 3
( 1 2 3) over the set {( ) : R}. Since these set are always di erent, the

implication cannot hold.
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Proof of Theorem 9. To show the rst result, we use, in turn, (i) iterated expectations,
(ii) >> | , (iii) (iv) iterated expectations again:£

( + )
¤
=

£ £
( + )| ¤¤ = £ £ | ¤ £ | ¤¤

=
£ £ | ¤ £ ¤¤

=
£ ¤ £ £ | ¤¤

=
£ ¤ £ ¤

(29)

Similarly, in terms of cdf, using in turn (i) >> | and (ii) , we have:

+ | ( | ) =

Z Z
1 ( + ) | ( | )

=

Z Z
1 ( + ) | ( | ) | ( | )

=

Z Z
1 ( + ) | ( | ) ( ) (30)

If densities exist, the corresponding steps become:

+ ( ) = + ( | ) ( ) =

Z
| ( | ) ( )

=

Z
| ( | ) | ( | ) ( ) =

Z
| ( | ) ( ) ( )

=

Z
( ) ( ) (31)

Proof of Corollary 10. As in the proof of Theorem 9, we have:£
( ) ( + )

¤
=

£
( )

£
( + )| ¤¤ = £

( )
£ | ¤ £ | ¤¤

=
£
( )

£ | ¤ £ ¤¤
=

£
( )

£ | ¤¤ £ ¤
=

£
( )

¤ £ ¤
(32)

Proof of Theorem 12. We can write:£
( 1+ 2+ 1+ 2)

¤
=

£
( 1+ 1)

¤ £
( 2+ 2)

¤
=

£
1
¤ £

1
¤ £

2
¤ £

2
¤

=
£

1
¤ £

2
¤ £

1
¤ £

2
¤

=
£

( 1+ 2)
¤ £

( 1+ 2)
¤

(33)
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which implies that ( 1 1) >> ( 2 2).

Proof of Theorem 13. The calculation of the limiting distribution can be performed
by calculating the in uence function and showing negligibility of suitable remainder terms.
Let us de ne ( ) ˆ ( ) ( ) = 1

P
=1

£ ¤
and thus write ˆ ( ) =

( ) + ( ), and similarly for all other quantities. An expansion of2

ˆ =

Z ³
ˆ ( ) ˆ ( ) ˆ

+ ( )
´³
ˆ ( ) ˆ ( ) ˆ

+ ( )
´

( ) (34)

in ( ), ( ) and + ( ) to linear order yields:

ˆ = 2

Z ¡
( ) ( ) + ( )

¢
( ) ( ) ( )

+2

Z ¡
( ) ( ) + ( )

¢
( ) ( ) ( ) +

2

Z ¡
( ) ( ) + ( )

¢
( ) + ( ) + (35)

where includes all higher order terms (and will be bounded below). After substituting in
the fact that ( ) = 1

P
=1

£ ¤
(and similarly for ( ) and + ( ))

and evaluating the integral over we obtain:

ˆ =
1X

=1

( ) [ ( )] + (36)

for ( ) given in the statement of the theorem. Provided is negligible, asymptotic
normality and the form of the asymptotic variance then follows from Assumption 3 and the
Lindeberg—Lévy central limit theorem.
To bound we observe that it consists of a nite linear combination of terms of the form

=

Z
( ( )) ( ( )) ( ) (37)

where ( ) denotes a product of (potentially di erent) terms ( ) each taken from©
( ) ( ) + ( )

ª
and ( ) denotes a product of (potentially di erent) terms

( ) each taken from
©

( ) ( ) + ( )
ª
and denotes one of

©
( + )

ª
.

Note that 2 3 and 0 3.
Since ( ) is a characteristic function, it satis es | ( )| 1. We also have that

| ( )| 2 since it is a di erence of two characteristic functions (even empirical charac-
teristic function are bounded by 1). We use Lemma 6 in Schennach (2004) (with = 1

2Note that the complex conjugate of ˆ ( ) is equal to ˆ ( ).
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and = ) to establish that, for any 0, sup| | | ( )| = ¡
1 2+

¢
for

arbitrarily small 0 (and similarly for ( ), + ( ). By Assumption 1, ( )
(1 + | |) for = 2 + with 0. Breaking up the integral in (37) into two

domains, and exploiting the above bounds, we can write:

| |
Z
| |

| ( )| | ( )| ( ) +

Z
| |

| ( )| | ( )| ( )Z
| |

1
¡

1 2+
¢

+

Z
| |

1 2 (1 + | |)

= ( 1 2+ ) 2 + 2 2 (1 + ) +1¡
( 1 2+ ) +

¢
+

¡
( +1)

¢¡
( 1 2+ )2+

¢
+

¡
( 2 +1)

¢
=

¡
( 1 2+ )2+

¢
+

¡
( 1 )

¢
(38)

Both terms can be made
¡

1 2
¢
by picking such that (1 + ) 1 2 1 2 and a

positive 1 4 2 (note that a 0 is possible since 1 2). Hence =
¡

1 2
¢

and the linear terms (that are asymptotically normal) dominate.
To show consistency of the asymptotic variance estimate obtained by replacing charac-

teristic functions by their empirical counterparts, we observe that the di erence

˜ ( ) =

Z ³
ˆ ( ) ˆ ( ) ˆ

+ ( )
´
ˆ ( ) ( )Z ¡

( ) ( ) + ( )
¢

( ) ( ) (39)

can also be written as a linear combination of terms of the form of in Equation (37)
with 1 3 and 0 3 and we can show through a similar reasoning that
sup R

¯̄̄
˜ ( )

¯̄̄
= (1). (Note that the order is reduced from

¡
1 2
¢
to (1), relative

to the earlier derivation, because now can take the value 1. Also note that the bound is
uniform in and because all terms involving or are complex exponential with unit
modulus.)

Proof of Theorem 14. To show that subindependence implies Equation (15), we write:

¡ £ ¤ £ ¤ £
( + )

¤¢
=

X
=0

μ ¶ h
( )

i h
( )

i h
( ( + )) ( + )

i
(40)
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Evaluating this at = 0 yields:

X
=0

μ ¶ h
( )

i h
( )

i h
( ( + ))

i
=

X
=0

μ ¶ £ ¤ £ ¤ h
( + )

i
(41)

To show the converse implication, we use the well-known fact that, if the joint moment gen-
erating function of ( ) exists in an open neighborhood of the origin, the knowledge of all
derivatives of their joint characteristic function ( ) at the origin uniquely determines

( ) for all ( ) R2 (through a convergent Taylor expansion and an analytic contin-
uation scheme). Then, consider the function ( ) = ( 0) (0 ) ( ). By the
same reasoning, the knowledge of all derivatives of ( ) at the origin uniquely determines its
value at all R. But the -th derivative of ( ) at the origin is simply given by Equation
(15), as was shown above. Thus, if Equation (15) holds for all ,

£
( )

¤
=0
= 0 for

all and a Taylor expansion, implies that ( ) must vanish for all R. Subindependence
thus holds.
Proof of Theorem 15. By construction, the distribution of is the true distribution of
the sum of and , i.e. the left-hand side of Equation (1). The distribution of = +
can be shown to be the convolution of the marginal distributions of and of (i.e. the
right-hand side of (1)) up to a negligible remainder. If 6= , then clearly and
are independent by Assumption.3. There is a probability 1 that = in which case
and are not independent, however this only “misplaces” of the order of one point of

the empirical cdf and thus introduces an error of order 1 in the empirical cdf, which is
negligible relative to the statistical noise of the Kolmogorov-Smirnov statistic. Since and

are independent up to a negligible remainder, the distribution of = + is the
convolution of the marginal of and of up to a negligible error, as desired.
The two-sample Kolmogorov-Smirnov test requires the two samples ( ) =1 and ( ) =1to

be independent. This is not the case here because these variables have in common. This
potential problem can be avoided by simply drawing at random another permutation vector
, with each element drawn uniformly from {1 } (without replacement) and de ning
˜ = + . The new ˜ satis es the required independence from ( ) =1 (up to a
1 remainder). However, the two-sample Kolmogorov-Smirnov statistic is invariant under

permutation of the sample, so the statistics obtained with
³

˜
´
and with ( ) are

numerically identical. This additional randomization trick is thus unnecessary and ( )
can be directly used for testing.
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