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Distributed Planning of Multi-Segment Soft Robotic Arms

Wenlong Zhang* and Panagiotis Polygerinos

Abstract— This paper presents a distributed kinematic plan-
ning algorithm for the end-effector of a multi-segment soft
robotic arm to reach the goal position in both 2D and 3D spaces.
The planning algorithm runs sequentially from the proximal to
the distal segments. For each segment, the planning algorithm
only requires the information about the position of itself, the
end-effector, and the goal. The 2D planning of each segment
is parameterized by a bending angle and an inflation ratio,
which are determined by checking the overall geometry of
the residual arm and the goal position. The same concept is
extended to 3D planning, where parameters include inflation
ratio, azimuth angle, and elevation angle for each segment.
It is demonstrated in this paper that physical limits of the
arm and challenging goal position could lead to failure in goal
reaching. To account for this, an iterative learning function is
proposed, which allows each segment to learn from past trials
and be proactive for goal reaching. The proposed distributed
planning algorithm, with iterative learning, demonstrates strong
scalability, low computation cost, and robust goal reaching
performance. Moreover, it does not need training data to pre-
learn the configuration of the arm, which makes the algorithm
highly applicable to a wide range of multi-segment soft and
continuum robots. Both 2D and 3D simulation results are
provided to illustrate the efficacy of the proposed algorithm.

I. INTRODUCTION

Over the past decade, soft robotics has become a popular
research area as it can offer a number of advantages over
rigid robotic systems, including low cost, versatile motion,
and safe interaction with human users. The recent intro-
duction of soft robotics began with simple soft actuators
capable of achieving complex motions from single inputs,
and then with their combinations soft continuum systems
are created, which are compliant and configurable. In that
regard, soft robotic actuators can be categorized as cable-
driven [1], electroactive polymers [2], shape memory al-
loys [3], pneumatic artificial muscles (PAMs, also called
McKibben actuators) [4], inflatable structures [5], [6], and
fluidic elastomeric actuators (FEAs) [7], with pneumatically
actuated soft systems leading the exploration.

Currently, the main challenge of soft robotics, which is
also the reason limiting its adaptation rates, is that the soft
structures are difficult to model and, therefore, to plan and
control for real-life applications [8]-[10]. In particular the
challenge in precisely modeling and controlling a soft robot
originates in its infinite degrees of freedom and complex
nonlinear material properties. Attempts have been made
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Fig. 1: Illustration of a soft robotic arm with modular fluidic
soft actuator bundles and embedded distributed sensors.

through analytical and computational models to describe the
behavior of such soft systems. Analytical modeling of soft
actuators can be further categorized based on the assump-
tions of piecewise constant curvature [11] and non-constant
curvature [6]. However, those analytical models all make
simplifications that inevitably exclude information about the
complex geometric shapes and volume deformations. As an
alternative approach, finite element modeling could provide
more accurately described kinematics and dynamics, as well
as provide information about the local stresses and strains
of soft actuators [12]. However, drawbacks of computational
modeling include: 1) it cannot provide explicit differential
equations to apply model-based control approaches, and 2) it
requires long computation time to predict the output motion
and force and thus cannot be used for real-time feedback
control in real-world applications.

Based on different types of models, control techniques of
soft robotics can also be categorized as model-based and
model-free control. For model-based control, sliding mode
control [13], optimal control [14], and model predictive con-
trol [6] have been applied to control various soft robots. For
model-free control, bang-bang control, finite-state machine,
and PID control have been popular approaches due to their
easy implementation [15], [16]. Despite the great advances
in the past decade, there are still many open problems in soft
actuator modeling and control, including improving tracking
accuracy and reducing algorithm complexity [8].

Besides modeling and low-level dynamic control of soft
robots, motion planning also poses a unique challenge be-
cause soft robots do not have rigid links and segments.
The most intuitive approach to tackle this challenge is to
approximate a soft robot as a rigid-link robot with high
number of segments, i.e., a continuum robot, and many
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continuum robot planning approaches can be then applied
to soft robots. Sample-based planning approaches are very
popular for continuum robots [17], and machine learning
approaches have been extensively studied for continuum
robot planning in recent years [18]. Bio-inspired planning
is another popular approach for soft robots as they are
usually designed to mimic different living mechanisms, such
as octopus arms [19] and elephant trunks [20]. However, the
limitations of the existing algorithms include: 1) it takes long
time to learn the robot configurations in order to complete
the tasks, 2) most planning algorithms do not consider the
physical limits of soft arms, and 3) many existing algorithms
are centralized and thus not scalable to large number of
segments in soft/continuum robots.

This paper aims at addressing the challenges in soft robot
planning and control, and a distributed planning algorithm is
proposed with iterative learning. The approach is illustrated
with a multi-segment soft robot arm, and it will allow the
soft arm to generate their own motion rules in order to reach
a desired goal. The contributions of this paper include: 1) a
distributed soft arm planning algorithm is proposed to reduce
the computation load and make the algorithm highly scalable.
2) An iterative learning function is introduced to allow the
arm to learn from past trials and overcome its physical limits
by optimizing its configuration. The algorithm is applicable
in both 2D and 3D planning, and simulation results verify
that it can allow the soft arm to reach the goal position after
a few trials without large amount of training data.

The remainder of this paper is organized as follows.
Section II provides a detailed problem statement. In Section
III, the distributed planning algorithm is explained for goal
reaching and the iterative learning algorithm is introduced
to improve the articulation performance in 2D space. The
algorithm is extended to 3D space in Section IV. Section V
presents simulation results to demonstrate the ability of the
soft robotic arm to reach goal locations in 2D and 3D spaces.
Section VI concludes this paper and discusses future work.

II. PROBLEM STATEMENT

In Fig. 1, the chosen fluidic driven soft robotic arm design
for this study is illustrated. This arm is comprised of soft
linear actuators that are grouped in a parallel formation. This
allows the individual actuators to work together and achieve
bending motions. In 2D case, each soft actuator is capable of
achieving a maximum bending angle (¢,,) and a maximum
inflation ratio (L,,). In 3D case, each soft actuator is capable
of achieving a maximum azimuth angle (¢,), a maximum
elevation angle (;,), and a maximum inflation ratio (Ly,).
Furthermore, serial stacking of an N number of these bundled
actuators creates a soft robotic arm capable of performing
highly complex articulation motion in space. As stated in the
introduction, the difficulty that the soft robotics community
has faced in the past with similar types of soft arms is how
to achieve effective control to reach a desired goal location.

In this paper, we set each segment of the arm to only know
its own location, the location of the goal that the end-effector
needs to be reached, and the current end-effector location.

We aim at designing a decentralized planning algorithm for
each segment of the soft arm so that the end-effector of the
arm can reach the goal position. It should be noted that no
prior information about the physical limits will be given and
used in the algorithm, and no training data are collected about
the arm. It is expected that the distributed planning algorithm
will be highly scalable and can be applied in a wide range
of multi-segment soft robot planning applications. However,
the physical constraints as well as challenging locations of
the goal can hinder the ability of the algorithm to reach the
desired goal. Accounting for this, we further introduce an
iterative learning function that allows the arm to investigate
alternative actuation rules for each segment by learning from
previous unsuccessful attempts.
In this paper, the following assumptions are made:

¢ Goal location is accurately known and not changing.

¢ Only kinematic planning is considered, without dynamic
modeling or control of the arm.

o The algorithm cares only the base and tip locations of
each segment, and it does not consider arm curvatures.

o The algorithm deals with position planning, and it does
not consider orientation of the end-effector surface.

o Without loss of generality, the original length of each
segment is assumed to be 1.

o Each segment can be bent, extended, and compressed.

o The soft arm is assumed to be with zero gravity.

ITII. DISTRIBUTED PLANNING IN 2D SPACE

In this paper, a distributed planning algorithm is proposed
to plan each segment of the soft arm for goal reaching. Each
segment will only need to sense position of itself and the last
segment of the arm. The algorithm is first illustrated using
an arm with four series-connected soft actuators in 2D space.

A. Distributed Planning for Goal Reaching

As mentioned in the problem statement, the goal of
kinematic planning for the soft arm is to allow the tip to
reach an arbitrary goal position in 2D space. The proposed
algorithm will start from the base segment, and the next
segments will be planned in series till the last segment. For
each segment, the planning algorithm is to design its bending
angle and inflation ratio. The algorithm is illustrated in Fig. 2.
The node 0 indicates the base of the soft arm, and the node i
indicates the end of the i segment. Fig. 2(a) shows the initial
location of the soft arm without any actuation. Fig. 2(b)
shows the planning of the first segment. The upper figure
shows the bending angle planning. First, a line is drawn
between node 0 and the goal, and the angle 6 between this
line and the current first segment is calculated. Given 6 is
the total bending angle that the arm should have in order
to reach the goal, the bending angle of the first segment is
determined as o = 0 /4 assuming the other three segments
have the bending angle. The lower figure shows the inflation
ratio planning. Since the goal is to let node 4 reach the goal,
the inflation ratio is calculated by comparing the distance
from the base to the goal (d,1) and the distance from the base
to the tip of the arm (dy), i.e., L1 = dgl/dtl. Till now both
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the bending angle and inflation ratio have been determined,
and the first segment of the arm will be actuated, as shown
in Fig. 2(c). Fig. 2(d) demonstrates the planning for the
second segment, which shares the same concept as the first
segment except that now the new base is node 1. This process
continues till the 4" segment. Its bending angle is just the
remaining angle is needs to bend to to point to the goal, and
the inflation is determined such that the distance form node
3 to node 4 is the same as that from node 3 to the goal. This
concludes the actuation of all segments, and the final arm
kinematic configuration is shown in Fig. 2(f).

Let us revisit the algorithm, and it is clear that for the plan-
ning of each segment, only information about the locations
of the current base and goal position is needed, which can be
measured using either a motion capture system or embedded
soft sensors. The location of the soft arm end-effector can
be either broadcast or transmitted to the segment that needs
it for its planning, which makes the algorithm distributed as
it does not need information of any other segments in the
soft arm. The computation load for the planning is very low
with simple algebraic calculations, which makes the algo-
rithm scalable for many real-world soft robotics applications.
Algorithm 1 summarizes the distributed planning idea for a
general n-segment soft robot arm.

B. Iterative Learning for Improved Performance

The distributed planning algorithm will work well if the
goal position is not in a challenging position which requires
very large extension/compression or bending angles. How-
ever, for safety concerns and protection of the soft actuators,
physical limits of bending angles and inflation ratios will
be applied in actual soft robot control systems. It should be
noted the inflation ratio and bending angle for each segment
are planned assuming the remaining segments will be the
same, but it will not be the same as the segment is actuated
and new observation of the actuation tip location is observed.
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This could result in extreme bending angles and inflation
ratios for the last several segments, which results in failure of
reaching the goal. To solve this problem, an iterative learning
algorithm is proposed in this paper.

Algorithm 1 Distributed planning of a n-segment soft robotic
arm for goal reaching in 2D space

IHPUt: (xgayg)v (XanO)a (xmyn)
Output: L{l:n}a O 10}

i=1

- while i <n do

/I Determine the bending angle o;.
overall bending angle 6; < L(m ,m)
o = Gi/(n—i—f—l)

// Determine the inflation ratio L;.

Li = |||/ vl

Actuate the i segment based on ; and L;.

Measure the tip location of the i’ segment (x;,y;) and
the last segment of the arm (x,,y,)

10: i«i+1

11: end while

R A

The key idea of the iterative learning algorithm is to allow
the soft arm to learn from the errors of the last trial, which
is similar to iterative learning control. As the number of
iteration increases, the arm will be proactive and actuate all
segments towards the goal, rather than relying heavily on
the last several segments. The iterative learning algorithm is
summarized using a four-segment arm in Fig. 3. Besides the
2D space for the arm, the iteration domain is added so that
the arm can learn from past experience. For each iteration,
the following information is recorded for each segment: 1)
calculated bending angle ¢, 2) actual bending angle ¢, 3)
calculated inflation ratio L;, and 4) actual inflation ratio L;.
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Fig. 2: Tllustration of the distributed planning algorithm in a four-segment soft arm for goal reaching.
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Fig. 3: Conceptual diagram of the distributed iterative learn-
ing algorithm of a four-segment soft arm for goal reaching.

For a given segment i at iteration k, the following learning
law is proposed for bending angle

(X,'(k) = (le(k) + K1 [(Xi*(k— 1) — ai(k— 1)] + Ky (Xi(k— 1)7

where o (k) represents the bending angle calculated using
Algorithm 1 and it could change across iterations. It can be
seen that the learning algorithm adds two additional terms.
The second term learns the bending angle constraint, which
means if o (k—1) < o;(k—1) (the segment is not bent as
much as we want), it will reduce the bending angle setpoint
for this iteration to avoid saturation. The third term serves
as goal learning, which can be understood as a feedforward
term to make the arm reach the goal faster. The second and
third terms demonstrate a trade-off between the hardware
constraints and goal reaching performance, which can be
tuned by the two gain values Kj; and Ky;. Similarly, the
planning for inflation ratio can be achieved by

Li(k) = LV (k) + K [L; (k— 1) — Li(k— 1)] + KpoLi(k — 1),
2
where LY (k) is the inflation ratio calculated using Algorithm
1. Similarly, the second and third terms are for constraint and
goal learning, respectively. It should be noted the iterative
learning laws only use information from the last iteration,
and the algorithm is still distributed.

IV. DISTRIBUTED PLANNING IN 3D SPACE

The proposed distributed soft arm planning algorithm with
iterative learning can be extended to 3D space. For 3D
planning, the spherical coordinate system is employed and
three elements (p, ¥, ¢) are used to uniquely represent the 3D
location of any node on the soft arm. Similar to the 2D case,
emphasis will be given to the connecting node between two
segments. Therefore, the planning for the i/ segment needs
to solve for the radial distance p;, elevation angle ¥, and
azimuth angle ¢;. The 3D planning approach with iterative
learning is summarized in Algorithm 2. The idea is similar
to the 2D case, and there are two loops: the outer loop is
for iterations, and the inner loop is for different segments in

Fig. 4: A soft robot arm in 3D space represented using the
spherical coordinate system.

one iteration. Now in 3D space, the angle between two nodes
are described using the overall azimuth (I') and elevation (P)
angles, so }/lp and ¢/ are determined by averaging the overall
angles between remaining segments. Similarly, the inflation
ratio is determined by comparing the distances from the base
to goal (Hv,_—lgH) and from the base to tip (||m\|) The
iterative learning follows similar procedures, and now there
are six gains to be determined, two for each element in the
spherical coordinate system.

V. SIMULATION RESULTS
A. Distributed Planning in 2D Space

In this subsection, two simulation results are presented
to validate the efficacy of the distributed learning algorithm
and also demonstrate influence of physical limits on the goal
reaching performance, A soft arm with 100 segments are
simulated, each segment is assumed to be with a length of
1 when it is not actuated, and the end-effector position is
set as (0,100) initially. It is assumed that for the segments
that have not been actuated yet, they will just keep the
original length and point to the same direction as the current
actuated segment. Fig. 5 shows the soft arm location after
the planning of each segment. The bold black line shows the
final configuration of the soft arm. The goal location is set as
(15,55), the limit of inflation ratio is L; € [0.5,1.5], and the
limit of the bending angle is |o;| < 90°. The end-effector of
the soft arm stops at (15.03,55.00), so the soft arm can reach
the goal position accurately with in one trial because the arm
is allowed to compress to half of its original length. However,
when we keep the same goal position but change the physical
limit to L; € [0.85,1.15] and || < 60°, the soft arm cannot
reach the goal position with only the distributed planning
and the end-effector stops at (18.96,52.29), as is shown in
Fig. 6a. The reason is that the planning algorithm does not
know the physical limits, and only the last few segments can
be planned when the algorithm realizes the constraints. Since
the last segment cannot be extended as much as we want, the
end-effector cannot reach the goal position. Similarly, when
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Algorithm 2 Distributed planning with iterative learning of
a n-segment soft robotic arm for goal reaching in 3D space

Input: (xgaygazg)v (X(),y(),Z())7 (xnvynvzn),
Output: L{ln}(k)7Y{1n}(k)ﬂ¢{ln}(k)

1 k=1

2: while kK <N do

3 i=1

4:  while i <n do

5: /I Determine the azimuth and elevation angles
(7 (). 67 (k).

6: overall elevation and azimuth angles
(LK), Di(K) 4 2 (i1 (K, vie1 £ (0))

7: planning without learning
W (k) =Ti(k)/(n—i+1),9/ (k) = Di(k) /(n—i+1)

8: distributed planning with iterative learning
1) = 7 () + K1 [17(k— 1) = %k — 1)) + Kg2n(k— 1)
¢i(k) = oF (k) + Kp1 [9] (k—1) — 9i(k—1)] + Ko ¢i(k —
1)

9: /I Determine the inflation ratio L;(k).

10: L? (k) :i‘vi—l,g(ij / Hvi—l,n(kﬁu

11: distributed planning with iterative learning
Li(k) = L] (k) + Ky [L} (k—1) = Li(k—1)] + KppLi(k— 1)
12: Actuate the i’* segment based on ¥:(k), ¢;(k), and
Li(k).
13: Measure the tip location of the " segment (x;, y;,z;)

and the last segment of the arm (x,,y,,z,)
14: i+—i+1
15:  end while
16: k< k+1
17: end while

the goal position is very challenging, more segments will hit
the physical limits, resulting failure in goal reaching.

B. Distributed Planning with Iterative Learning in 2D Space

Given the challenge of unknown physical limits, the itera-
tive learning function is added into the distributed planning,
as Egs. (1) and (2) suggest. The same soft arm with 100
segments is employed in this case. Fig. 6b shows the results
after 3 iterations, and the arm is closer to the goal position
and it stops at (15.65,53.68). Fig. 6¢c demonstrates the
distributed planning results at the 10" iteration, and the end-
effector of the arm stops at (15.15,54.41). It can be seen
that the algorithm enables more proactive segment behaviors
and the end-effector can successfully reach the goal position.
Moreover, compared to Fig. 5, the soft arm shows interesting
morphology in this case, which is learned all by itself.
This highlights the efficacy of the proposed algorithm under
unknown constraints, and it is also computationally friendly
without the need of collecting prior training data.

C. Distributed Planning with Iterative Learning in 3D Space

Given the space limit, only simulation results with Al-
gorithm 3 are given with a 40-segment arm. In this case,

Fig. 5: Simulation results with distributed planning only and
less challenging physical limits.

the end-effector is assumed to be at (0,0,40) initially and
the goal of the arm is (45,5,5) in 3D space. The physical
limits of the arm are set as L; € [0.85,1.15], |y| < 60°,
and |¢;] < 60°. Fig. 7 shows the simulation results after 30
iterations, and it can be seen that the arm can reach the goal
locations given the physical limits. The end-effector stops at
(45.47,4.89,4.83), which is very close to the goal position.
It is clear that 3D planning is more challenging given more
coupled effects between the configuration variables, but the
algorithm can still yield satisfactory planning results, which
further demonstrates its efficacy for 3D distributed planning.

D. Discussions

The simulation results demonstrated the good performance
of the distributed planning algorithm with iterative learning
in both 2D and 3D cases. Specifically, 1) the algorithm allows
the soft arm to learn its own configuration and physical
constraints given the goal position, 2) the planning algorithm
is computationally friendly and can yield good goal tracking
performance after a short time of iterative learning, and 3)
planning in 3D space is more challenging as the configuration
space becomes more complex and the decision variables are
strongly coupled. Future work will include understanding the
effect of the learning functions and optimizing the iterative
learning gains, especially for the 3D case.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a distributed planning algorithm
with iterative learning for a multi-segment soft robot arm.
The algorithm planned each segment sequentially from the
proximal to distal segments to let the soft arm plan its
configuration. For each segment only local information, end-
effector location, and goal position were needed, which made
the algorithm decentralized and highly scalable. Given the
challenge of unknown physical limits, an iterative learning
function was added to help each segment learn from the
previous trial errors and be more proactive at the beginning
segments. Simulation results were presented for both 2D and
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(a) Results after 1% iteration

(b) Results after 3™ iteration

(c) Results after 10™ iteration

Fig. 6: Simulation results of distributed planning with iterative learning with challenging physical limits
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Fig. 7: Simulation results of 3D distributed planning with
iterative learning and challenging physical limits.

3D planning, which demonstrated the performance of the
proposed algorithm for goal reaching without prior training.
As future work, the proposed algorithm will be integrated
with dynamic modeling and control techniques for soft arm
control. As suggested in the discussion section, the fine
tuning of the learning gains will be studied so the learning
effect can be optimized given different soft robot arms and
goal locations. Obstacle avoidance and gravity compensation
will be integrated into the planning framework for real-world
applications. A multi-segment soft arm has been designed
and fabricated, and the proposed algorithm will be imple-
mented to verify this algorithm framework experimentally.

REFERENCES

[1] W. McMahan, B. A. Jones, and I. D. Walker, “Design and implemen-
tation of a multi-section continuum robot: Air-octor,” in IEEE/RSJ Int.
Conf. Intell. Robots and Syst., 2005, pp. 2578-2585.

[2] K. J. Kim and S. Tadokoro, “Electroactive polymers for robotic
applications,” Artificial Muscles and Sensors, 2007.

[3] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and
P. Dario, “Soft robot arm inspired by the octopus,” Advanced Robotics,
vol. 26, no. 7, pp. 709-727, 2012.

[4] 1. D. Walker, D. M. Dawson, T. Flash, F. W. Grasso, R. T. Hanlon,
B. Hochner, W. M. Kier, C. C. Pagano, C. D. Rahn, and Q. M. Zhang,
“Continuum robot arms inspired by cephalopods,” in Proc. SPIE, vol.
5804, 2005, pp. 303-314.

[5]1 E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura,
“A soft robot that navigates its environment through growth,” Science
Robotics, vol. 2, no. 8, p. eaan3028, 2017.

[6] C.M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D.
Killpack, “A new soft robot control method: Using model predictive
control for a pneumatically actuated humanoid,” IEEE Robot. Autom.
Mag., vol. 23, no. 3, pp. 75-84, 2016.

[7]1 P. H. Nguyen, S. Sridar, W. Zhang, and P. Polygerinos, “Design and
control of a 3-chambered fiber reinforced soft actuator with off-the-
shelf stretch sensors,” Int. J. Intelligent Robotics and Applications,
vol. 1, no. 3, pp. 342-351, 2017.

[8] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, p. 467, 2015.

[9] F. Iida and C. Laschi, “Soft robotics: challenges and perspectives,”
Procedia Computer Science, vol. 7, pp. 99-102, 2011.

[10] P. Polygerinos, Z. Wang, J. T. Overvelde, K. C. Galloway, R. J.
Wood, K. Bertoldi, and C. J. Walsh, “Modeling of soft fiber-reinforced
bending actuators,” IEEE Trans. Robot, vol. 31, no. 3, pp. 778-789,
2015.

[11] H. Wang, W. Chen, X. Yu, T. Deng, X. Wang, and R. Pfeifer, “Visual
servo control of cable-driven soft robotic manipulator,” in IEEE/RSJ
Int. Conf. Intell. Robots and Syst., 2013, pp. 57-62.

[12] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shep-
herd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. White-
sides, “Pneumatic networks for soft robotics that actuate rapidly,”
Advanced Functional Materials, vol. 24, no. 15, pp. 2163-2170, 2014.

[13] S. Ogzel, E. H. Skorina, M. Luo, W. Tao, F. Chen, Y. Pan, and C. D.
Onal, “A composite soft bending actuation module with integrated
curvature sensing,” in /EEE Int. Conf. Robotics and Autom., 2016, pp.
4963-4968.

[14] A. D. Marchese, R. Tedrake, and D. Rus, “Dynamics and trajectory
optimization for a soft spatial fluidic elastomer manipulator,” Int. J.
Robotics Res., vol. 35, no. 8, pp. 10001019, 2016.

[15] H. Zhao, J. Jalving, R. Huang, R. Knepper, A. Ruina, and R. Shepherd,
“A helping hand: Soft orthosis with integrated optical strain sensors
and emg control,” IEEE Robot. Autom. Mag., vol. 23, no. 3, pp. 55-64,
2016.

[16] A.D. Marchese and D. Rus, “Design, kinematics, and control of a soft
spatial fluidic elastomer manipulator,” Int. J. Robotics Res., vol. 35,
no. 7, pp. 840-869, 2016.

[17] K. Wu, L. Wu, and H. Ren, “Motion planning of continuum tubu-
lar robots based on centerlines extracted from statistical atlas,” in
IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2015, pp. 5512-5517.

[18] A. Melingui, O. Lakhal, B. Daachi, J. B. Mbede, and R. Merzouki,
“Adaptive neural network control of a compact bionic handling arm,”
IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2862-2875, 2015.

[19] L. Margheri, C. Laschi, and B. Mazzolai, “Soft robotic arm inspired
by the octopus: I. from biological functions to artificial requirements,”
Bioinspiration & Biomimetics, vol. 7, no. 2, p. 025004, 2012.

[20] R. Kang, D. T. Branson, T. Zheng, E. Guglielmino, and D. G.
Caldwell, “Design, modeling and control of a pneumatically actuated
manipulator inspired by biological continuum structures,” Bioinspira-
tion & Biomimetics, vol. 8, no. 3, p. 036008, 2013.

2101



