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Abstract— This paper presents a distributed kinematic plan-
ning algorithm for the end-effector of a multi-segment soft
robotic arm to reach the goal position in both 2D and 3D spaces.
The planning algorithm runs sequentially from the proximal to
the distal segments. For each segment, the planning algorithm
only requires the information about the position of itself, the
end-effector, and the goal. The 2D planning of each segment
is parameterized by a bending angle and an inflation ratio,
which are determined by checking the overall geometry of
the residual arm and the goal position. The same concept is
extended to 3D planning, where parameters include inflation
ratio, azimuth angle, and elevation angle for each segment.
It is demonstrated in this paper that physical limits of the
arm and challenging goal position could lead to failure in goal
reaching. To account for this, an iterative learning function is
proposed, which allows each segment to learn from past trials
and be proactive for goal reaching. The proposed distributed
planning algorithm, with iterative learning, demonstrates strong
scalability, low computation cost, and robust goal reaching
performance. Moreover, it does not need training data to pre-
learn the configuration of the arm, which makes the algorithm
highly applicable to a wide range of multi-segment soft and
continuum robots. Both 2D and 3D simulation results are
provided to illustrate the efficacy of the proposed algorithm.

I. INTRODUCTION

Over the past decade, soft robotics has become a popular

research area as it can offer a number of advantages over

rigid robotic systems, including low cost, versatile motion,

and safe interaction with human users. The recent intro-

duction of soft robotics began with simple soft actuators

capable of achieving complex motions from single inputs,

and then with their combinations soft continuum systems

are created, which are compliant and configurable. In that

regard, soft robotic actuators can be categorized as cable-

driven [1], electroactive polymers [2], shape memory al-

loys [3], pneumatic artificial muscles (PAMs, also called

McKibben actuators) [4], inflatable structures [5], [6], and

fluidic elastomeric actuators (FEAs) [7], with pneumatically

actuated soft systems leading the exploration.

Currently, the main challenge of soft robotics, which is

also the reason limiting its adaptation rates, is that the soft

structures are difficult to model and, therefore, to plan and

control for real-life applications [8]–[10]. In particular the

challenge in precisely modeling and controlling a soft robot

originates in its infinite degrees of freedom and complex

nonlinear material properties. Attempts have been made
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Fig. 1: Illustration of a soft robotic arm with modular fluidic

soft actuator bundles and embedded distributed sensors.

through analytical and computational models to describe the

behavior of such soft systems. Analytical modeling of soft

actuators can be further categorized based on the assump-

tions of piecewise constant curvature [11] and non-constant

curvature [6]. However, those analytical models all make

simplifications that inevitably exclude information about the

complex geometric shapes and volume deformations. As an

alternative approach, finite element modeling could provide

more accurately described kinematics and dynamics, as well

as provide information about the local stresses and strains

of soft actuators [12]. However, drawbacks of computational

modeling include: 1) it cannot provide explicit differential

equations to apply model-based control approaches, and 2) it

requires long computation time to predict the output motion

and force and thus cannot be used for real-time feedback

control in real-world applications.

Based on different types of models, control techniques of

soft robotics can also be categorized as model-based and

model-free control. For model-based control, sliding mode

control [13], optimal control [14], and model predictive con-

trol [6] have been applied to control various soft robots. For

model-free control, bang-bang control, finite-state machine,

and PID control have been popular approaches due to their

easy implementation [15], [16]. Despite the great advances

in the past decade, there are still many open problems in soft

actuator modeling and control, including improving tracking

accuracy and reducing algorithm complexity [8].

Besides modeling and low-level dynamic control of soft

robots, motion planning also poses a unique challenge be-

cause soft robots do not have rigid links and segments.

The most intuitive approach to tackle this challenge is to

approximate a soft robot as a rigid-link robot with high

number of segments, i.e., a continuum robot, and many

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 2096



continuum robot planning approaches can be then applied

to soft robots. Sample-based planning approaches are very

popular for continuum robots [17], and machine learning

approaches have been extensively studied for continuum

robot planning in recent years [18]. Bio-inspired planning

is another popular approach for soft robots as they are

usually designed to mimic different living mechanisms, such

as octopus arms [19] and elephant trunks [20]. However, the

limitations of the existing algorithms include: 1) it takes long

time to learn the robot configurations in order to complete

the tasks, 2) most planning algorithms do not consider the

physical limits of soft arms, and 3) many existing algorithms

are centralized and thus not scalable to large number of

segments in soft/continuum robots.

This paper aims at addressing the challenges in soft robot

planning and control, and a distributed planning algorithm is

proposed with iterative learning. The approach is illustrated

with a multi-segment soft robot arm, and it will allow the

soft arm to generate their own motion rules in order to reach

a desired goal. The contributions of this paper include: 1) a

distributed soft arm planning algorithm is proposed to reduce

the computation load and make the algorithm highly scalable.

2) An iterative learning function is introduced to allow the

arm to learn from past trials and overcome its physical limits

by optimizing its configuration. The algorithm is applicable

in both 2D and 3D planning, and simulation results verify

that it can allow the soft arm to reach the goal position after

a few trials without large amount of training data.

The remainder of this paper is organized as follows.

Section II provides a detailed problem statement. In Section

III, the distributed planning algorithm is explained for goal

reaching and the iterative learning algorithm is introduced

to improve the articulation performance in 2D space. The

algorithm is extended to 3D space in Section IV. Section V

presents simulation results to demonstrate the ability of the

soft robotic arm to reach goal locations in 2D and 3D spaces.

Section VI concludes this paper and discusses future work.

II. PROBLEM STATEMENT

In Fig. 1, the chosen fluidic driven soft robotic arm design

for this study is illustrated. This arm is comprised of soft

linear actuators that are grouped in a parallel formation. This

allows the individual actuators to work together and achieve

bending motions. In 2D case, each soft actuator is capable of

achieving a maximum bending angle (αm) and a maximum

inflation ratio (Lm). In 3D case, each soft actuator is capable

of achieving a maximum azimuth angle (φm), a maximum

elevation angle (γm), and a maximum inflation ratio (Lm).

Furthermore, serial stacking of an N number of these bundled

actuators creates a soft robotic arm capable of performing

highly complex articulation motion in space. As stated in the

introduction, the difficulty that the soft robotics community

has faced in the past with similar types of soft arms is how

to achieve effective control to reach a desired goal location.

In this paper, we set each segment of the arm to only know

its own location, the location of the goal that the end-effector

needs to be reached, and the current end-effector location.

We aim at designing a decentralized planning algorithm for

each segment of the soft arm so that the end-effector of the

arm can reach the goal position. It should be noted that no

prior information about the physical limits will be given and

used in the algorithm, and no training data are collected about

the arm. It is expected that the distributed planning algorithm

will be highly scalable and can be applied in a wide range

of multi-segment soft robot planning applications. However,

the physical constraints as well as challenging locations of

the goal can hinder the ability of the algorithm to reach the

desired goal. Accounting for this, we further introduce an

iterative learning function that allows the arm to investigate

alternative actuation rules for each segment by learning from

previous unsuccessful attempts.

In this paper, the following assumptions are made:

• Goal location is accurately known and not changing.

• Only kinematic planning is considered, without dynamic

modeling or control of the arm.

• The algorithm cares only the base and tip locations of

each segment, and it does not consider arm curvatures.

• The algorithm deals with position planning, and it does

not consider orientation of the end-effector surface.

• Without loss of generality, the original length of each

segment is assumed to be 1.

• Each segment can be bent, extended, and compressed.

• The soft arm is assumed to be with zero gravity.

III. DISTRIBUTED PLANNING IN 2D SPACE

In this paper, a distributed planning algorithm is proposed

to plan each segment of the soft arm for goal reaching. Each

segment will only need to sense position of itself and the last

segment of the arm. The algorithm is first illustrated using

an arm with four series-connected soft actuators in 2D space.

A. Distributed Planning for Goal Reaching

As mentioned in the problem statement, the goal of

kinematic planning for the soft arm is to allow the tip to

reach an arbitrary goal position in 2D space. The proposed

algorithm will start from the base segment, and the next

segments will be planned in series till the last segment. For

each segment, the planning algorithm is to design its bending

angle and inflation ratio. The algorithm is illustrated in Fig. 2.

The node 0 indicates the base of the soft arm, and the node i
indicates the end of the ith segment. Fig. 2(a) shows the initial

location of the soft arm without any actuation. Fig. 2(b)

shows the planning of the first segment. The upper figure

shows the bending angle planning. First, a line is drawn

between node 0 and the goal, and the angle θ between this

line and the current first segment is calculated. Given θ is

the total bending angle that the arm should have in order

to reach the goal, the bending angle of the first segment is

determined as α1 = θ/4 assuming the other three segments

have the bending angle. The lower figure shows the inflation

ratio planning. Since the goal is to let node 4 reach the goal,

the inflation ratio is calculated by comparing the distance

from the base to the goal (dg1) and the distance from the base

to the tip of the arm (dt1), i.e., L1 = dg1/dt1. Till now both
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the bending angle and inflation ratio have been determined,

and the first segment of the arm will be actuated, as shown

in Fig. 2(c). Fig. 2(d) demonstrates the planning for the

second segment, which shares the same concept as the first

segment except that now the new base is node 1. This process

continues till the 4th segment. Its bending angle is just the

remaining angle is needs to bend to to point to the goal, and

the inflation is determined such that the distance form node

3 to node 4 is the same as that from node 3 to the goal. This

concludes the actuation of all segments, and the final arm

kinematic configuration is shown in Fig. 2(f).

Let us revisit the algorithm, and it is clear that for the plan-

ning of each segment, only information about the locations

of the current base and goal position is needed, which can be

measured using either a motion capture system or embedded

soft sensors. The location of the soft arm end-effector can

be either broadcast or transmitted to the segment that needs

it for its planning, which makes the algorithm distributed as

it does not need information of any other segments in the

soft arm. The computation load for the planning is very low

with simple algebraic calculations, which makes the algo-

rithm scalable for many real-world soft robotics applications.

Algorithm 1 summarizes the distributed planning idea for a

general n-segment soft robot arm.

B. Iterative Learning for Improved Performance

The distributed planning algorithm will work well if the

goal position is not in a challenging position which requires

very large extension/compression or bending angles. How-

ever, for safety concerns and protection of the soft actuators,

physical limits of bending angles and inflation ratios will

be applied in actual soft robot control systems. It should be

noted the inflation ratio and bending angle for each segment

are planned assuming the remaining segments will be the

same, but it will not be the same as the segment is actuated

and new observation of the actuation tip location is observed.

This could result in extreme bending angles and inflation

ratios for the last several segments, which results in failure of

reaching the goal. To solve this problem, an iterative learning

algorithm is proposed in this paper.

Algorithm 1 Distributed planning of a n-segment soft robotic

arm for goal reaching in 2D space

Input: (xg,yg),(x0,y0),(xn,yn)

Output: L{1:n},α{1:n}

1: i = 1

2: while i ≤ n do
3: // Determine the bending angle αi.

4: overall bending angle θi ← ∠(−−−→vi−1,n,
−−−→vi−1,g)

5: αi = θi/(n− i+1)

6: // Determine the inflation ratio Li.

7: Li =
∥
∥−−−→vi−1,g

∥
∥/‖−−−→vi−1,n‖

8: Actuate the ith segment based on αi and Li.

9: Measure the tip location of the ith segment (xi,yi) and

the last segment of the arm (xn,yn)
10: i ← i+1

11: end while

The key idea of the iterative learning algorithm is to allow

the soft arm to learn from the errors of the last trial, which

is similar to iterative learning control. As the number of

iteration increases, the arm will be proactive and actuate all

segments towards the goal, rather than relying heavily on

the last several segments. The iterative learning algorithm is

summarized using a four-segment arm in Fig. 3. Besides the

2D space for the arm, the iteration domain is added so that

the arm can learn from past experience. For each iteration,

the following information is recorded for each segment: 1)

calculated bending angle αi, 2) actual bending angle α∗
i , 3)

calculated inflation ratio Li, and 4) actual inflation ratio L∗
i .
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Fig. 2: Illustration of the distributed planning algorithm in a four-segment soft arm for goal reaching.
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Fig. 3: Conceptual diagram of the distributed iterative learn-

ing algorithm of a four-segment soft arm for goal reaching.

For a given segment i at iteration k, the following learning

law is proposed for bending angle

αi(k) = α p
i (k)+Kn1 [α∗

i (k−1)−αi(k−1)]+Kf 1αi(k−1),
(1)

where α p
i (k) represents the bending angle calculated using

Algorithm 1 and it could change across iterations. It can be

seen that the learning algorithm adds two additional terms.

The second term learns the bending angle constraint, which

means if α∗
i (k− 1) < αi(k− 1) (the segment is not bent as

much as we want), it will reduce the bending angle setpoint

for this iteration to avoid saturation. The third term serves

as goal learning, which can be understood as a feedforward

term to make the arm reach the goal faster. The second and

third terms demonstrate a trade-off between the hardware

constraints and goal reaching performance, which can be

tuned by the two gain values Kn1 and Kf 1. Similarly, the

planning for inflation ratio can be achieved by

Li(k) = Lp
i (k)+Kn2 [L∗

i (k−1)−Li(k−1)]+Kf 2Li(k−1),
(2)

where Lp
i (k) is the inflation ratio calculated using Algorithm

1. Similarly, the second and third terms are for constraint and

goal learning, respectively. It should be noted the iterative

learning laws only use information from the last iteration,

and the algorithm is still distributed.

IV. DISTRIBUTED PLANNING IN 3D SPACE

The proposed distributed soft arm planning algorithm with

iterative learning can be extended to 3D space. For 3D

planning, the spherical coordinate system is employed and

three elements (ρ,γ,φ) are used to uniquely represent the 3D

location of any node on the soft arm. Similar to the 2D case,

emphasis will be given to the connecting node between two

segments. Therefore, the planning for the ith segment needs

to solve for the radial distance ρi, elevation angle γi, and

azimuth angle φi. The 3D planning approach with iterative

learning is summarized in Algorithm 2. The idea is similar

to the 2D case, and there are two loops: the outer loop is

for iterations, and the inner loop is for different segments in

Fig. 4: A soft robot arm in 3D space represented using the

spherical coordinate system.

one iteration. Now in 3D space, the angle between two nodes

are described using the overall azimuth (Γ) and elevation (Φ)

angles, so γ p
i and φ p

i are determined by averaging the overall

angles between remaining segments. Similarly, the inflation

ratio is determined by comparing the distances from the base

to goal (
∥
∥−−−→vi−1,g

∥
∥) and from the base to tip (‖−−−→vi−1,n‖). The

iterative learning follows similar procedures, and now there

are six gains to be determined, two for each element in the

spherical coordinate system.

V. SIMULATION RESULTS

A. Distributed Planning in 2D Space

In this subsection, two simulation results are presented

to validate the efficacy of the distributed learning algorithm

and also demonstrate influence of physical limits on the goal

reaching performance, A soft arm with 100 segments are

simulated, each segment is assumed to be with a length of

1 when it is not actuated, and the end-effector position is

set as (0,100) initially. It is assumed that for the segments

that have not been actuated yet, they will just keep the

original length and point to the same direction as the current

actuated segment. Fig. 5 shows the soft arm location after

the planning of each segment. The bold black line shows the

final configuration of the soft arm. The goal location is set as

(15,55), the limit of inflation ratio is Li ∈ [0.5,1.5], and the

limit of the bending angle is |αi| ≤ 90◦. The end-effector of

the soft arm stops at (15.03,55.00), so the soft arm can reach

the goal position accurately with in one trial because the arm

is allowed to compress to half of its original length. However,

when we keep the same goal position but change the physical

limit to Li ∈ [0.85,1.15] and |αi| ≤ 60◦, the soft arm cannot

reach the goal position with only the distributed planning

and the end-effector stops at (18.96,52.29), as is shown in

Fig. 6a. The reason is that the planning algorithm does not

know the physical limits, and only the last few segments can

be planned when the algorithm realizes the constraints. Since

the last segment cannot be extended as much as we want, the

end-effector cannot reach the goal position. Similarly, when
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Algorithm 2 Distributed planning with iterative learning of

a n-segment soft robotic arm for goal reaching in 3D space

Input: (xg,yg,zg),(x0,y0,z0),(xn,yn,zn),

Output: L{1:n}(k),γ{1:n}(k),φ{1:n}(k)

1: k = 1

2: while k ≤ N do
3: i = 1

4: while i ≤ n do
5: // Determine the azimuth and elevation angles

(γ p
i (k),φ

p
i (k)).

6: overall elevation and azimuth angles

(Γi(k),Φi(k))← ∠(
−−−−−→
vi−1,n(k),

−−−−−→
vi−1,g(k))

7: planning without learning

γ p
i (k) = Γi(k)/(n− i+1),φ p

i (k) = Φi(k)/(n− i+1)
8: distributed planning with iterative learning

γi(k) = γ p
i (k)+Kg1

[
γ∗i (k−1)− γi(k−1)

]
+Kg2γi(k−1)

φi(k) = φ p
i (k) +Kp1

[
φ∗

i (k−1)−φi(k−1)
]
+Kp2φi(k −

1)

9: // Determine the inflation ratio Li(k).
10: Lp

i (k) =
∥
∥
∥
−−−−−→
vi−1,g(k)

∥
∥
∥/

∥
∥
∥
−−−−−→
vi−1,n(k)

∥
∥
∥

11: distributed planning with iterative learning

Li(k) = Lp
i (k)+Kl1

[
L∗

i (k−1)−Li(k−1)
]
+Kl2Li(k−1)

12: Actuate the ith segment based on γi(k), φi(k), and

Li(k).
13: Measure the tip location of the ith segment (xi,yi,zi)

and the last segment of the arm (xn,yn,zn)
14: i ← i+1

15: end while
16: k ← k+1

17: end while

the goal position is very challenging, more segments will hit

the physical limits, resulting failure in goal reaching.

B. Distributed Planning with Iterative Learning in 2D Space

Given the challenge of unknown physical limits, the itera-

tive learning function is added into the distributed planning,

as Eqs. (1) and (2) suggest. The same soft arm with 100

segments is employed in this case. Fig. 6b shows the results

after 3 iterations, and the arm is closer to the goal position

and it stops at (15.65,53.68). Fig. 6c demonstrates the

distributed planning results at the 10th iteration, and the end-

effector of the arm stops at (15.15,54.41). It can be seen

that the algorithm enables more proactive segment behaviors

and the end-effector can successfully reach the goal position.

Moreover, compared to Fig. 5, the soft arm shows interesting

morphology in this case, which is learned all by itself.

This highlights the efficacy of the proposed algorithm under

unknown constraints, and it is also computationally friendly

without the need of collecting prior training data.

C. Distributed Planning with Iterative Learning in 3D Space

Given the space limit, only simulation results with Al-

gorithm 3 are given with a 40-segment arm. In this case,

x
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Fig. 5: Simulation results with distributed planning only and

less challenging physical limits.

the end-effector is assumed to be at (0,0,40) initially and

the goal of the arm is (45,5,5) in 3D space. The physical

limits of the arm are set as Li ∈ [0.85,1.15], |γi| ≤ 60◦,

and |φi| ≤ 60◦. Fig. 7 shows the simulation results after 30

iterations, and it can be seen that the arm can reach the goal

locations given the physical limits. The end-effector stops at

(45.47,4.89,4.83), which is very close to the goal position.

It is clear that 3D planning is more challenging given more

coupled effects between the configuration variables, but the

algorithm can still yield satisfactory planning results, which

further demonstrates its efficacy for 3D distributed planning.

D. Discussions

The simulation results demonstrated the good performance

of the distributed planning algorithm with iterative learning

in both 2D and 3D cases. Specifically, 1) the algorithm allows

the soft arm to learn its own configuration and physical

constraints given the goal position, 2) the planning algorithm

is computationally friendly and can yield good goal tracking

performance after a short time of iterative learning, and 3)

planning in 3D space is more challenging as the configuration

space becomes more complex and the decision variables are

strongly coupled. Future work will include understanding the

effect of the learning functions and optimizing the iterative

learning gains, especially for the 3D case.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a distributed planning algorithm

with iterative learning for a multi-segment soft robot arm.

The algorithm planned each segment sequentially from the

proximal to distal segments to let the soft arm plan its

configuration. For each segment only local information, end-

effector location, and goal position were needed, which made

the algorithm decentralized and highly scalable. Given the

challenge of unknown physical limits, an iterative learning

function was added to help each segment learn from the

previous trial errors and be more proactive at the beginning

segments. Simulation results were presented for both 2D and
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(c) Results after 10th iteration

Fig. 6: Simulation results of distributed planning with iterative learning with challenging physical limits
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Fig. 7: Simulation results of 3D distributed planning with

iterative learning and challenging physical limits.

3D planning, which demonstrated the performance of the

proposed algorithm for goal reaching without prior training.

As future work, the proposed algorithm will be integrated

with dynamic modeling and control techniques for soft arm

control. As suggested in the discussion section, the fine

tuning of the learning gains will be studied so the learning

effect can be optimized given different soft robot arms and

goal locations. Obstacle avoidance and gravity compensation

will be integrated into the planning framework for real-world

applications. A multi-segment soft arm has been designed

and fabricated, and the proposed algorithm will be imple-

mented to verify this algorithm framework experimentally.
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