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Abstract—Operating distributed cloudlets at optimal cost is
nontrivial when facing not only the dynamic and unpredictable
resource prices and user requests, but also the low efficiency
of today’s immature cloudlet infrastructures. We propose to
control cloudlet networks at multiple granularities—fine-grained
control of servers inside cloudlets and coarse-grained control
of cloudlets themselves. We model this problem as a mixed-
integer nonlinear program with the switching cost over time.
To solve this problem online, we firstly linearize, “regularize”,
and decouple it into a series of one-shot subproblems that
we solve at each corresponding time slot, and afterwards we
design an iterative, dependent rounding framework using our
proposed randomized pairwise rounding algorithm to convert the
fractional control decisions into the integral ones at each time
slot. Via rigorous theoretical analysis, we exhibit our approach’s
performance guarantee in terms of the competitive ratio and the
multiplicative integrality gap towards the offline optimal integral
decisions. Extensive evaluations with real-world data confirm the
empirical superiority of our approach over the single granularity
server control and the state-of-the-art algorithms.

I. INTRODUCTION

Provisioning services at the network edge in close proximity

to end users with ultra low latency is becoming one of the most

essential goals pursued by many service providers today. The

key enablers towards this goal are cloudlets, i.e., small data

centers, machine rooms, and server clusters at diverse locations

such as WiFi neighborhoods, enterprise premises, and telecom

central offices [1], [2]. A local cloudlet network can be shown

as Figure 1, where users access the service through the WiFi

networks, and cloudlets are co-located with the WiFi access

points and are connected via wireline backhaul networks.

Similar to large data centers, in order to save the operational

expense while serving the time-varying workload (e.g., user

requests), it is often essential to dynamically switch on and off

the servers [3], [4] in the cloudlets; however, only switching

on/off the servers in a cloudlet is often insufficient, and it is

necessary to switch on/off the entire cloudlet as well. This is

because cloudlets are usually resource-inefficient and can incur

a considerable amount of operational expense via the non-IT

equipments. For example, the cooling equipment in small data

centers is usually dedicated, atomic, and cannot be turned off

partially to match the number of servers or the amount of

heat [5]. Consider the Power Usage Effectiveness (PUE), the

ratio of a data center’s total energy consumption, such as IT,

cooling, and lightning, over its IT energy consumption. It is

recently reported that small (1∼25 servers) and media (26∼500

Fig. 1: An example cloudlet network structure

servers) data centers typically have PUEs of 1.5∼ 2.1 [6];

even the better modular and container-based micro data centers

can have PUEs up to 1.4. This is in stark contrast to large

data centers, such as Google’s, with PUEs as low as 1.1 [7].

Therefore, controlling servers in cloudlets but leaving cloudlets

themselves always on can consume significant non-IT energy.

In this paper, we refer to this problem of jointly controlling

the on/off status of the cloudlets and the servers as the “mul-

tiple granularity” cloudlet control problem. What complicates

this problem is the “switching cost” incurred every time when

turning on/off the cloudlets and the servers. For example, when

booting additional servers to provide more service instances,

the switching cost is embodied in the time needed for server

initialization, the bandwidth needed for state migration, or any

cost related to system oscillation, reliability risk, and hardware

wear and tear [3], [4]. For cloudlets in continuous time slots, a

control decision at one time slot not only incurs the operational

cost at that time slot, based on the number of running cloudlets

and servers at that time slot and the resource price at that time

slot, but also affects the switching cost to be incurred between

that time slot and the next time slot, depending on the number

of the additional cloudlets and servers that will be turned on at

the next time slot. In an “online” setting as is often the case,

with no knowledge about the control decision at the next time

slot, as it has not been made until the next time slot, it is

nontrivial to make a good decision at the current time slot.

Another important differentiating factor of this multiple

granularity cloudlet control problem lies in the intrinsically

intertwined control decisions that also need to be made for the

workload distribution across cloudlets with distance-dependent

cost (e.g., delay). Unlike large data centers connected via wide

area networks, local cloudlets are often highly distributed and

connected by high-speed (e.g., optical) backhaul networks [1],

making it flexible to distribute and serve workloads from



different locations. For example, workloads can be moved

from one cloudlet to another to overcome the capacity limit

or leverage the cheaper resources, while introducing moderate

additional delay. Note this is different from the traditional data

center load balancing or request distribution problem, as the

workload distribution decision in this case affects not only the

total delay and the total operational cost per time slot, but also

the total switching cost of cloudlets and servers across time

slots. Typical data center request distribution algorithms do not

consider the switching cost [8], and are indeed not optimal in

the cloudlet networks scenario.

Research to date has never investigated the cloudlet con-

trol problem from a multi-granularity perspective. Those that

switch on/off servers [3], [4], [9], [10] do not shut down

clouds and data centers, while those on resource allocation

and job scheduling in edge clouds [2], [11]–[13] do not

toggle servers. Existing online algorithmic techniques also fall

insufficient for our multi-granularity control problem. They

focus on either fractional control decisions only [3], [10] or

fixed/bounded resource prices [4], [9], and cannot make multi-

granularity decisions intertwined with distance-dependent cost

simultaneously. It is unclear how to apply them to our problem

while preserving or adapting their performance guarantees.

We model the multi-granularity control problem for cloudlet

networks, controlling the servers inside cloudlets, the cloudlets

themselves, and the workload distribution across cloudlets. We

make no assumption on workload and resource price dynam-

ics, so our models are general and can capture the workload

variations due to user arrivals, departures, mobilities, and flash

crowds [14], and the time-varying prices such as those of

wholesale electricity [15] and spot virtual machines [16]. We

model the switching costs of servers and cloudlets, accounting

for increasing their numbers while capturing the fact that shut-

ting them down is fast and incurs negligible cost [3]. With a

simple yet general affine model for the delay, we minimize the

total cost and enforce the constraints for workload distribution

and processing, and also for cloudlet-server association.

Inspired by two separate techniques of regularization [17]

and pipage rounding [18], [19], we propose a novel online

algorithmic framework to solve our multi-granularity cloudlet

control problem which turns out to be a mixed-integer non-

linear program. First, we make fractional control decisions

online. We design an online algorithm that uses a carefully-

designed logarithmic function to replace the nonlinear switch-

ing cost and decouples our problem into a series of one-shot

subproblems solvable at each corresponding time slot by only

taking the dynamic inputs at that time slot and the solution of

the previous time slot. Next, we convert our fractional control

decisions into integral ones. We design a randomized, pairwise

rounding algorithm, where a pair of fractions are rounded

together every time without violating any constraint of our

problem, and plug this rounding algorithm into an iterative

“rounding and re-solving” process to accommodate the multi-

granularity control decisions at each time slot. Via rigorous

formal proofs, we exhibit our approach’s worst-case perfor-

mance guarantee as a parameterized constant, which is also a

product of the competitive ratio for our fractional online step

and the multiplicative integrity gap for our rounding step, i.e.,

for arbitrary dynamic inputs, the total cost incurred over time

by the integral control decisions produced by our approach

on the fly without knowing future inputs is guaranteed not to

exceed this constant times the total cost incurred over time by

the offline optimal integral control decisions with the complete

knowledge about all the future inputs in advance.

We conduct extensive evaluations using London’s under-

ground network of all its 268 stations [20] to simulate the

cloudlet network and the real-world dynamic passenger num-

bers at each station [21] to simulate the workload, for a one-

week period in November 2016, assuming all cloudlets are

powered by an European wholesale electricity market [15].

We find the following results. For a typical cloudlet PUE of

1.4, our proposed multiple granularity online control algorithm

achieves 15% ∼ 40%, 30%∼50%, and 40%∼60% less total

cost over time than a state-of-the-art online algorithm, a very

advanced optimization solver, and the single granularity server

control strategy, respectively. As the PUE grows to 2, our

algorithm can achieve up to 65% less total cost than the single

granularity control algorithm, and up to 25% less total cost

than the next best algorithm in a pool of multiple different

combinations of fractional online algorithms and rounding

algorithms. Our algorithm saves the cloudlets usage signifi-

cantly, and scales very well as the problem size increases.

II. MODELS AND PROBLEM FORMULATION

A. System Models

Cloudlets, Capacity, and Delay. We consider a network of

multiple distributed cloudlets or small data centers, represented

by the set I, and multiple network access points, represented

by the set J . Cloudlets connect to one another via wireline

backhaul networks, and every cloudlet is reachable from every

network access point. A user connects to one of the access

points, e.g., the closest one, to access the cloudlets. We have

I ⊆ J if all the cloudlets under consideration are co-located

with the network access points. The cloudlet i ∈ I has its

integral capacity Ci, referring to its number of servers or server

clusters, depending on how the servers inside the cloudlets are

managed. We use dij , ∀i ∈ I , ∀j ∈ J to denote the delay

between the cloudlet i and the network access point j.

Workload and Processing. We consider the entire system

over |T | continuous time slots, where T
def
= {1, 2, ..., T}. The

network access point j has the aggregated workload λjt at the

time slot t. This may represent the number of user requests

to be processed, or the number of jobs to be offloaded. λjt

can be served by any one cloudlet or multiple cloudlets in I,

within each cloudlet’s capacity limit. If served from a remote

cloudlet, the corresponding access delay will be incurred. λjt

often changes dynamically, i.e., users arrive, leave, move, or

generate different amounts of workload over time. We make no

assumption on how λjt varies across locations and over time.

Workload is processed by servers. We allow all the cloudlets to

be heterogenous, and use Ri, ∀i as a coefficient to convert the



amount of workload to the number of servers or server clusters.

Without loss of generality, we require 1
Ri

to be a positive

integer, i.e., the number of requests that can be handled by a

single server or server cluster at the cloudlet i.

Unit Operational Cost. The unit operational cost (or the

resource price), modeled for servers and cloudlets respectively,

is the operational expense when running or using one server

or one cloudlet per time slot. Such operational expense can

include the electricity cost, the carbon footprint, the hard-

ware/software maintenance/license fee, and the human labor

cost. Note that, for cloudlet, we use the unit operational cost

to refer to the cost for running its non-IT equipments, such

as cooling, lightning, power distribution/conversion facilities.

We denote the unit operation cost of servers and cloudlets as

psit and pbit, ∀i, ∀t, respectively. We make no assumption on

how they vary across locations and over time.

Unit Switching Cost. As we propose the multi-granularity

control, both the servers inside the cloudlets and the cloudlets

themselves can be switched on and off dynamically. Toggling

servers and cloudlets indeed incurs the “switching cost”, which

can capture the hardware wear and tear, system risk associated

with the toggling operations, or the service performance degra-

dation due to the lead or the initialization time of booting new

software resources, loading profiles, migrating states, and so

on. We denote the switching cost for switching on one server

and one cloudlet as csi and cbi , ∀i, respectively.

Control Variables. We have three types of control variables:

xijt ≥ 0, ∀i, ∀j, ∀t, referring to the amount of the workload

distributed to the cloudlet i from the network access point j

at the time slot t; yijt ∈ {0, 1, 2, 3, ...}, ∀i, ∀j, ∀t, referring

to the integral number of servers or server clusters activated

at the cloudlet i to process the workload originating from the

network access point j at the time slot t; zit ∈ {0, 1}, ∀i, ∀t,
denoting whether to activate cloudlet i at the time slot t.

B. Problem Formulation

We formulate the multi-granularity control problem:

min
∑

t

∑
i

∑
j dijxijt +

∑
t

∑
i p

s
ityit +

∑
t

∑
i p

b
itzit

+
∑

t

∑
i c

s
i (yit − yit−1)

+
+
∑

t

∑
i c

b
i (zit − zit−1)

+

s. t.
∑

i xijt ≥ λjt, ∀j, ∀t, (1a)

yit ≥ Ri

∑
j xijt, ∀i, ∀t, (1b)

Cizit ≥ yit, ∀i, ∀t, (1c)

xijt ≥ 0, ∀j, ∀i, ∀t, (1d)

zit ≤ 1, ∀i, ∀t, (1e)

yit ∈ {0, 1, 2, 3, ...}, zit ∈ {0, 1}, ∀i, ∀t. (1f)

The total cost consists of multiple components, as in the

objective: the total delay of distributing or migrating the

workload, the total operational cost and switching cost in-

curred by the cloudlets, and the total operational cost and

switching cost incurred by the servers. We adopt a special

function, (x)+
def
= max{x, 0}, to calculate the switching cost of

increasing the resources. Constraint (1a) ensures that all of the

workload are distributed and served. Constraint (1b) ensures

that a sufficient number of servers are switched on to serve

the corresponding workload. Constraint (1c) ensures that the

server activation can only be performed within the capacity of

the corresponding cloudlet, if the cloudlet itself is switched on.

Constraint (1d), together with Constraints (1a)∼ (1c), ensures

that all the control variables are non-negative. Constraint (1e)

sets the upper limit for the cloudlet control variables. With

Constraint (1f), the problem formulation does not actually need

Constraint (1e); however, we keep it to facilitate our algorithm

design and performance analysis. Also note there can exist

weights associated to the five terms in the objective, but we

remove them for the ease of presentation.

III. ALGORITHM DESIGN

A. Challenges and Idea

Algorithmic Challenges. The major challenges for solving

our optimization problem online stem from two aspects.

The first aspect is the online uncertainty. The switching cost

couples the decision of the current time slot with that of the

next time slot, i.e., any decision made for the current time slot

will influence the switching cost between it and the possible

decisions that can be made for the next time slot for the inputs

not revealed yet. We would want an online algorithm that has

“competitive” guarantees, i.e., the total cost over time of our

online decisions made without future knowledge should not

exceed a constant (i.e., the competitive ratio) times that of the

offline optimal algorithm which knows all inputs in prior.

The second aspect is the nonconvexity and intractability. We

highlight that our problem is a mixed-integer program, and we

need to make integer decisions to dictate servers and cloudlets

to switch on and off. A mixed-integer program is inherently

nonconvex and NP-hard. It is already hard to find the optimal

solution offline, not to mention we want it online. Instead of a

heuristic that comes with no optimality guarantee, we would

want an algorithm that provides integer solutions which incur

the total cost no greater than a constant (i.e., the multiplicative

integrality gap) times the total cost of the optimal solutions.

Algorithmic Idea. We remove the integral constraints to re-

lax our problem to a linear program. For this linear relaxation,

we design an online algorithm based on the regularization

technique [17], i.e., by replacing the nonlinear switching cost

in the objective with a carefully-designed logarithmic function,

so that with zero knowledge about the future we can make

control and workload distribution decisions with a competitive

ratio r1 by solving a series of the “regularized” one-shot

problems at the corresponding time slots in an online fashion.

Afterwards, based on the pipage rounding technique [18], [19],

we design a randomized pairwise rounding algorithm running

at each time slot to round the fractional decisions of servers

and cloudlets into integers with a multiplicative integrality

gap r2, while maintaining feasible workload distributions.

r = r1r2 is the overall approximation ratio of our approach.

B. Proposed Algorithms

Notations and Formulations. To describe our algorithms

formally, we introduce additional notations used throughout

the rest of this paper: P is the relaxed problem of our original



problem over time; Pt is the one-shot problem at t for the

relaxed problem P; P̃t is the regularized problem of Pt. P, Pt,

and P̃t denote the objective functions of their corresponding

problems. We use D to refer to the Lagrange dual problem

of P, and use D to refer to the objective function of this dual

problem. xt, yt, zt are shorthand for xijt, yit, zit, ∀i, ∀j, ∀t,
respectively. We use different diacritical marks together with

such variable symbols to represent the solutions obtained by

solving the different problems, e.g., z̃t denotes the (fractional)

solution by solving the regularized problem and z̄t denotes the

(integral) solution after applying the rounding algorithm. We

have more notations as such in Algorithm 1 and Figure 2. We

also have some ad-hoc, auxiliary notations in Algorithm 2.

The linear relaxation of our problem is P =
∑

t Pt, with

Pt as below. We remove (1f), and afterwards, we introduce

the additional variables wit, vit, ∀i, ∀t and the additional con-

straints (2b) ∼ (2d), without changing the optimal fractional

solutions of xt, yt, and zt.

min Pt =
∑

i

∑
j dijxijt +

∑
i p

s
ityit +

∑
i p

b
itzit

+
∑

i c
s
iwit +

∑
i c

b
ivit

s. t. wit ≥ yit − yit−1, ∀i, (2a)

vit ≥ zit − zit−1, ∀i, (2b)

wit ≥ 0, ∀i, (2c)

vit ≥ 0, ∀i, (2d)

(1a) ∼ (1e),without “∀t”.

The regularized one-shot slice P̃t is as below, which uses

special logarithmic terms to replace the original switching cost.

Note P̃t uses the optimal solution of P̃t−1 as the input. Also,

we have σi = ln
(
1 + Ci

ε

)
, ∀i and σ′ = ln

(
1 + 1

ε

)
, where

ε > 0 is a configurable parameter of our algorithm.

min P̃t =
∑

i

∑
j dijxijt

+
∑

i p
s
ityit +

∑
i

csi
σi

(
(yit + ε) ln yit+ε

yit−1+ε
− yit

)

+
∑

i p
b
itzit +

∑
i

cbi
σ′

(
(zit + ε) ln zit+ε

zit−1+ε
− zit

)

s. t. (1a) ∼ (1e),without “∀t”.

Algorithms. We design our online algorithm as Algorithm 1,

based on the definitions of Pt and P̃t. It iteratively invokes

our randomized pairwise dependent rounding algorithm, i.e.,

Algorithm 2, to convert the fractional solutions to the integral

solutions in an online manner. The name “dependent rounding”

is due to the fact that in our case ỹt and z̃t cannot be rounded

independently, as they are connected via the constraints, and

they always need to be rounded altogether in order to keep the

integral solutions still satisfying the constraints after rounding.

Algorithm 1 runs at t, takes the optimal fractional solution

(x̃t−1, ỹt−1, z̃t−1) from t − 1 as the input, and solves P̃t

to obtain the optimal fractional solution (x̃t, ỹt, z̃t) for t.

Afterwards, it invokes Algorithm 2 to round the fractional

z̃t to the integral z̄t. Next, it takes z̄t−1 as input, fixes z̄t,

and solves Pt to obtain the solution (x∗
t
,y∗

t
, z̄t). It then

invokes Algorithm 2 again but to round the fractional y∗
t

into

the integral ȳt. Finally, it takes (ȳt−1, z̄t−1) as input, fixes

Algorithm 1: Online algorithm, ∀t

1 Solve P̃t to obtain its solution (x̃t, ỹt, z̃t);
2 Invoke Algorithm 2 to round (x̃t, ỹt, z̃t) to (x̃t, ỹt, z̄t);
3 Fix (z̄t), solve Pt to obtain its solution (x∗

t ,y
∗

t , z̄t);
4 Invoke Algorithm 2 to round (x∗

t ,y
∗

t , z̄t) to (x∗

t , ȳt, z̄t);
5 Fix (ȳt, z̄t), solve Pt to obtain its solution (x∗∗

t , ȳt, z̄t).

Algorithm 2: Randomized pairwise rounding, ∀t

1 To round z̃t, replace ūit by z̄it, ûit by z̃it, and Ui by Ci, ∀i;
2 To round y∗

t, replace ūit by ȳit, ûit by y∗

it, and Ui by 1

Ri
, ∀i;

3 θit
def
= ûit − ⌊ûit⌋, ∀i;

4 I′

t

def
= I \ {i | θit ∈ {0, 1}};

5 while |I′

t| > 1 do

6 Select i1, i2 ∈ I′, where i1 ̸= i2;

7 ω1

def
= min{1− θi1t,

Ui2

Ui1

θi2t},

8 ω2

def
= min{θi1t,

Ui2

Ui1

(1− θi2t)};

9 With the probability ω2

ω1+ω2
, set

10 θ′i1t = θi1t + ω1 , θ
′

i2t
= θi2t −

Ui1

Ui2

ω1;

11 With the probability ω1

ω1+ω2
, set

12 θ′i1t = θi1t − ω2 , θ
′

i2t
= θi2t +

Ui1

Ui2

ω2;

13 Set ūi1t
= ⌊ûi1t

⌋+ θ′i1t, I
′

t = I′

t \ {i1}, if θ′i1t ∈ {0, 1};
14 Set ūi2t

= ⌊ûi2t
⌋+ θ′i2t, I

′

t = I′

t \ {i2}, if θ′i2t ∈ {0, 1};
15 end

16 if |I′

t| = 1 then

17 Set ūit = ⌈ûit⌉ for the only i ∈ I′

t;
18 end

(ȳt, z̄t), and solves Pt to obtain the solution (x∗∗
t
, ȳt, z̄t).

Figure 2 illustrates the online execution of our algorithms.

Algorithm 2 is used to round z̃t and y∗
t

to z̄t and ȳt, respec-

tively, and thus needs to be invoked twice in Algorithm 1. Let

us take z̃t as an example to interpret this algorithm. The main

loop is Line 5 through 15, where in each specific iteration

either Line 10 or 12 is executed. This main loop ensures three

things. Firstly, either z̃i1t, z̃i2t, or both are rounded into the

integer(s) after every iteration of the loop. Secondly, we have

Ci1θ
′
i1t

+Ci2θ
′
i2t

= Ci1θi1t+Ci2θi2t after every iteration. This

is the key for keeping the integral solutions after rounding still

satisfying the constraints of Pt. Thirdly, we have E(z̄it) = z̃it,

∀i ∈ I \I ′
t after the loop, where E denotes the expected value.

This is useful for deriving the integrality gap, as shown next.

Fig. 2: Online execution of Algorithms 1 and 2



IV. PERFORMANCE ANALYSIS

To derive the performance bounds provided by our proposed

algorithms, we establish a chain of inequalities, where r1 and

r2 are constants:
E(P({x∗∗

t
, ȳt, z̄t, ∀t})) (4a)

≤ r2P({x̃t, ỹt, z̃t, ∀t}) (4b)

≤ r1r2D({π(x̃t, ỹt, z̃t), ∀t}) (4c)

≤ r1r2P
opt. (4d)

Having introduced randomized rounding in our algorithms, we

bound the expectation of the total cost over time of our online,

integral decisions, i.e., E(P({x∗∗
t
, ȳt, z̄t, ∀t})) in (4a), by the

total cost over time of the offline, optimal fractional decisions,

i.e., Popt in (4d). Popt is an intrinsic lower bound of the opti-

mum of our original problem with integral variables, because

the problem P is a relaxation of our original problem. Thus,

r1r2 also applies to the optimum of our original problem.

We further divide the derivation chain into two parts. The

competitiveness refers to (4b) ≤ (4d), i.e., we bound “frac-

tional online” by r1 times “fractional offline”. The integrality

gap refers to (4a) ≤ (4b), i.e., we bound “integral online” by

r2 times “fractional online”. To prove (4b) ≤ (4d), we use the

Lagrange dual problem D as a bridge [17], and we only need

to prove that (4b) ≤ (4c), because (4c) ≤ (4d) holds naturally

due to weak duality. π is a mapping that we need to construct

in order to convert a primal solution to a feasible dual solution

so that it can be evaluated in the objective function D.

A. Competitive Ratio

We establish P({x̃t, ỹt, z̃t, ∀t})≤r1D({π(x̃t, ỹt, z̃t), ∀t})
and derive r1 in this section. We derive and write the Lagrange

dual problem D, the optimality conditions of P̃t, the mapping

π, and based on all of these, we show Theorem 1 to derive r1.

Deriving the Lagrange Dual Problem. We derive P’s dual

problem D, where αjt, βit, ρit, γijt, µit, φit, and τit are the

corresponding dual variables:

max D =
∑

t

∑
j λjtαjt +

∑
t

∑
i (
∑

j λjt −
Ci

Ri
)µit

s. t. dij − αjt + βit − γijt = 0, ∀j, ∀i, ∀t, (5a)

psit −
βit

Ri
+ ρit

Ri
+ φit − φit+1 = 0, ∀i, ∀t, (5b)

pbit −
Ciρit

Ri
+ Ciµit

Ri
− Ci

Ri

∑
i µit + τit − τit+1 = 0,

∀i, ∀t, (5c)

csi − φit ≥ 0, ∀i, ∀t, (5d)

cbi − τit ≥ 0, ∀i, ∀t, (5e)

all dual variables ≥ 0. (5f)

Characterizing the Regularized Solution. In the meantime,

we note P̃t’s optimal (primal) solution (x̃t, ỹt, z̃t) satisfies its

Karush-Kuhn-Tucker (KKT) conditions. Here, we transform

P̃t to an equivalent form [22], as below:1

min P̃t

1In fact, this transformation introduces a number of constraints, all of which
are analogous to (6a). Due to the redundancy, we do not write all of them.
Our analytic technique here indeed applies, if one desires to work with all the
constraints—new dual variables, KKT conditions, and corresponding terms in
the derivations just need to be added. This transformation is required for our

performance analysis, but not required for solving P̃t in our algorithms.

s. t. (1a)∼ (1d),without “∀t”,∑
i
Ci

Ri
zit −

Ci

Ri
zit ≥

∑
j λjt −

Ci

Ri
, ∀i. (6a)

With this new form, using αj , βi, ρi, γij , and µi to denote

the optimal dual solution, we have P̃t’s KKT conditions:

dij − αj + βi − γij = 0, ∀j, ∀i, (7a)

psit −
βi

Ri
+ ρi

Ri
+

csi
σi

ln ỹit+ε
ỹit−1+ε

= 0, ∀i, (7b)

pbit −
Ciρi

Ri
− Ci

Ri

∑
i µi +

Ci

Ri
µi +

cbi
σ′

ln z̃it+ε
z̃it−1+ε

= 0, ∀i, (7c)

αj(
∑

i x̃ijt − λj) = 0, ∀j, (7d)

βi(
ỹit

Ri
−
∑

j x̃ijt) = 0, ∀i, (7e)

ρi(
Ci

Ri
z̃it −

ỹit

Ri
) = 0, ∀i, (7f)

γij x̃ijt = 0, ∀j, ∀i, (7g)

µi(
∑

i
Ci

Ri
z̃it −

Ci

Ri
z̃it − (

∑
j λjt −

Ci

Ri
)) = 0, ∀i, (7h)

primal and dual solutions ≥ 0. (7i)

Construct the Mapping. We use a mapping π to jointly map

P̃t’s optimal primal solution and optimal dual solution to a

feasible solution of D at t, denoted by π(x̃t, ỹt, z̃t). We do

not write the optimal dual solution in the notation π(·) for the

ease of presentation. We construct π as below, and it can be

verified that the constructed solution satisfies (5a)∼ (5f):

αjt = αj , ∀j ;βit = βi, ∀i ; ρit = ρi, ∀i ; γijt = γij , ∀j, ∀i ;

φit =
csi
σi

ln Ci+ε
ỹit−1+ε

, ∀i ; τit =
cbi
σ′

ln 1+ε
z̃it−1+ε

, ∀i ;µit = µi, ∀i.

Bounding. Using the KKT conditions (7a) ∼ (7i) and the

mapping π, we bound the operational cost and the switching

cost in P ({x̃t, ỹt, z̃t, ∀t}), respectively.

Theorem 1. P({x̃t, ỹt, z̃t, ∀t}) ≤ r1D({π(x̃t, ỹt, z̃t), ∀t}),
where r1 = 1+(1+ε) ln(1+ 1

ε
)
∑

i
Ci

Ri
+maxi{(Ci+ε) ln(1+

Ci

ε
)}

∑
i

1
Ri

.

Proof. Step 1: Bounding the operational cost
∑

t

∑
i

∑
j dij x̃ijt +

∑
t

∑
i p

s
itỹit +

∑
t

∑
i p

b
itz̃it

≤
∑

t

∑
i

∑
j(αjt − βit + γijt)x̃ijt

+
∑

t

∑
i(

βit

Ri
− ρit

Ri
−

csi
σi

ln ỹit+ε
ỹit−1+ε

)ỹit

+
∑

t

∑
i(

Ci

Ri
ρit +

Ci

Ri

∑
i µit −

Ci

Ri
µit −

cbi
σ′

ln z̃it+ε
z̃it−1+ε

)z̃it
(9a)

≤
∑

t

∑
i

∑
j(αjt − βit + γijt)x̃ijt

+
∑

t

∑
i(

βit

Ri
− ρit

Ri
)ỹit

+
∑

t

∑
i(

Ci

Ri
ρit +

Ci

Ri

∑
i µit −

Ci

Ri
µit)z̃it (9b)

=
∑

t

∑
i

∑
j αjtx̃ijt+

∑
t

∑
i(

Ci

Ri

∑
i µit −

Ci

Ri
µit)z̃it (9c)

=
∑

t

∑
j λjtαjt +

∑
t

∑
i (
∑

j λjt −
Ci

Ri
)µit (9d)

= D

(9a) is due to (7a)∼(7c). (9c) is due to (7e)∼(7g). (9d) follows

from (7d) and (7h). (9b) follows from
∑

t ỹit ln
ỹit+ε

ỹit−1+ε
≥ 0

and
∑

t z̃it ln
z̃it+ε

z̃it−1+ε
≥ 0. We show the latter, and the former

can be shown analogously. We rewrite its left-hand side as∑
t z̃it ln

z̃it+ε
z̃it−1+ε

=
∑

t (z̃it + ε) ln z̃it+ε
z̃it−1+ε

−
∑

t ε ln
z̃it+ε

z̃it−1+ε

and then we have the following, ∀i:
∑

t (z̃it + ε) ln z̃it+ε
z̃it−1+ε

−
∑

t ε ln
z̃it+ε

z̃it−1+ε



≥ (
∑

t (z̃it + ε)) ln
∑

t
(z̃it+ε)∑

t
(z̃it−1+ε) + (z̃i0 + ε) ln z̃i0+ε

z̃iT+ε
(10a)

≥
∑

t (z̃it + ε)−
∑

t (z̃it−1 + ε) + z̃i0 − z̃iT (10b)

= 0.

(10a) follows from (11a) below, and (10b) follows from (11b)

below. We also leverage z̃i0 = 0, ∀i, by our definition. (11a)

and (11b) are the two facts:

(
∑

n pn) ln
∑

n
pn∑

n
qn

≤
∑

n pn ln
pn

qn
, ∀p, q > 0 , (11a)

p− q ≤ p ln p
q
, ∀p, q > 0 . (11b)

Step 2: Bounding the switching cost

Firstly, we have η′ = (1+ ε)σ′ and define I ′
t,z

def
= {i | z̃it >

z̃it−1}, I ′′
t,z

def
= I ′

t,z ∩ {i | ρit > 0}, I ′′′
t,z

def
= I ′′

t,z ∩ {i |βit > 0}.

We bound the switching cost incurred by z̃t:
∑

t

∑
i c

b
i (z̃it − z̃it−1)

+

=
∑

t

∑
i∈I′

t,z
cbi (z̃it − z̃it−1) (12a)

≤
∑

t

∑
i∈I′

t,z
cbi (z̃it + ε) ln z̃it+ε

z̃it−1+ε
(12b)

≤ η′
∑

t

∑
i∈I′

t,z

cbi
σ′

ln z̃it+ε
z̃it−1+ε

(12c)

≤ η′
∑

t

∑
i∈I′

t,z
(Ci

Ri
ρit +

Ci

Ri

∑
i µit) (12d)

≤ η′
∑

t

∑
i∈I′′

t,z

(
Ci

(
βit

Ri
−

csi
σi

ln ỹit+ε
ỹit−1+ε

)
+ Ci

Ri

∑
i µit

)
(12e)

≤ η′
∑

t

∑
i∈I′′

t,z

(
Ciβit

Ri
+ Ci

Ri

∑
i µit

)
(12f)

≤ η′
∑

t

∑
i∈I′′′

t,z

(
Ci

Ri
(αjt + γijt) +

Ci

Ri

∑
i µit

)
(12g)

= η′
∑

t

∑
i∈I′′′

t,z

(
Ci

Ri
αjt +

Ci

Ri

∑
i µit

)
(12h)

≤ η′
∑

t

∑
i∈I′′′

t,z

(
Ci

Ri
λjtαjt +

Ci

Ri

∑
i(
∑

j λjt −
Ci

Ri
)µit

)

(12i)

≤ (1 + ε) ln(1 + 1
ε
)
∑

i
Ci

Ri
D (12j)

(12a) is by the definition of I ′
t,z . (12b) follows from (11b).

(12c) follows, because of z̃it ≤ 1. (12d) follows from (7c).

(12e) follows from (7b). (12f) follows, due to ỹit > ỹit−1,

which is further because of the following: in (12e), we have

ρit > 0; due to (7f), we have ỹit = Ciz̃it > Ciz̃it−1 = ỹit−1.

(12g) follows from (7a). (12h) follows, because of γijt = 0.

This is further because of the following. Due to I ′
t,z , ρit > 0

and (7f), we get ỹit = Ciz̃it > 0. Using βit > 0 and (7e), we

reach
∑

j x̃ijt =
ỹit

R
> 0, and thus there exists at least one j

such that x̃ijt > 0. With this x̃ijt, we reach γijt = 0 following

(7g). (12i) follows, due to λjt ≥ 1 and
∑

j λjt−
Ci

Ri
≥ 1. Note

that this is because we have required λjt, ∀j, ∀t and Ci

Ri
, ∀i

to be integral; also note that even if
∑

j λjt −
Ci

Ri
≤ 0 is the

case, then D changes correspondingly and we still reach (12j),

following the definition of the new D.

Secondly, we have ηmax = maxi{(Ci + ε)σi}, and define

I ′
t,y

def
= {i | ỹit > ỹit−1} and I ′′

t,y

def
= I ′

t,y ∩ {i |βit > 0}. We

bound the switching cost incurred by ỹt:
∑

t

∑
i c

s
i (ỹit − ỹit−1)

+

≤ ηmax

∑
t

∑
i∈I′

t,y

csi
σi

ln ỹit+ε
ỹit−1+ε

(13a)

≤ ηmax

∑
t

∑
i∈I′′

t,y

βit

Ri
(13b)

≤ maxi{(Ci + ε) ln(1 + Ci

ε
)}

∑
i

1
Ri

D (13c)

(13a)∼ (13c) omit the details, as they follow highly analogous

derivations as (12c) ∼ (12j). In particular, the involved KKT

conditions are (7a), (7b), (7e), and (7g).

B. Integrality Gap

We establish E(P({x∗∗
t
, ȳt, z̄t, ∀t}))≤r2P({x̃t, ỹt, z̃t,∀t})

and derive r2 in this section. We firstly exhibit the existence of

{x∗∗
t
, ȳt, z̄t, ∀t} via Lemmas 1 and 2. Afterwards, we present

Lemma 3, following which we show Theorem 2 to derive r2.

Lemma 1. Pt is feasible, i.e., (x∗
t
,y∗

t
) exists, given z̄t.

Proof. As z̃t exists, z̄t always exists as a result of executing

Algorithm 2. In Algorithm 2, in each iteration, no matter

Line 10 or 12 is actually executed, the sum of Ci1 z̃i1t+Ci2 z̃i2t
stays constant. For example, in the case of Line 10, we have

Ci1(z̃i1t +ω1) +Ci2(z̃i2t −ω1
Ci1

Ci2

) = Ci1 z̃i1t +Ci2 z̃i2t. That

is, we have
∑

i∈I\I′

t
Ciz̄it =

∑
i∈I\I′

t
Ciz̃it, after the loop of

Line 5 through 15. Executing Line 16 through 18 can only lead

to
∑

i∈I Ciz̄it =
∑

i∈I\I′

t
Ciz̄it +

∑
i∈I′

t
Ci ≥

∑
i∈I Ciz̃it.

Consequently, the constraints (1a)∼ (1e) remain feasible. The

constraints (2a)∼ (2d) are always feasible.

Lemma 2. Pt is feasible, i.e., x∗∗
t

exists, given (ȳt, z̄t).

Proof. As y∗
t

exists due to the previous lemma, ȳt always

exists as a result of executing Algorithm 2. Firstly, let us see

ȳt and z̄t satisfy (1c). Note y∗it ≤ Ciz̄it, because y∗
t

is solved

from Pt given z̄t; then, note no matter how y∗
t

is rounded,

ȳit ≤ Ciz̄it always holds because Ci, ∀i and z̄t are integral.

Secondly, let us see (1a) and (1b) are feasible due to Algo-

rithm 2. For example, for Line 10, we have 1
Ri1

θ′i1t+
1

Ri2

θ′i2t =
1

Ri1

(θi1t+ω1)+
1

Ri2

(θi2t−ω1
Ri2

Ri1

) = 1
Ri1

θi1t+
1

Ri2

θi2t. There-

fore, we have
∑

i∈I\I′

t

1
Ri

ȳit =
∑

i∈I\I′

t

1
Ri

(⌊y∗it⌋+ θ′it) =∑
i∈I\I′

t

1
Ri

(⌊y∗it⌋+ θit) =
∑

i∈I\I′

t

1
Ri

y∗it. Then, executing

Line 16 through 18, we have
∑

i∈I
1
Ri

ȳit =
∑

i∈I\I′

t

1
Ri

ȳit+∑
i∈I′

t

1
Ri

⌈y∗it⌉ ≥
∑

i∈I
1
Ri

y∗it, i.e., (1a) and (1b) are feasible.

The constraints (2a)∼ (2d) are always feasible.

Bounding. The objective of our relaxed problem P is the

sum of five terms. When putting (x∗∗
t
, ȳt, z̄t) into P, we bound

the expectation of each of the five terms. We connect each of

them to the one term in particular, i.e.,
∑

t

∑
i p

b
itz̃it, which

is part of, and no greater than, P({x̃t, ỹt, z̃t, ∀t}).

Lemma 3. For the random variable z̄it, ∀i, ∀t and for every

specific value it takes, we have

∑
t

∑
i Ciz̄it ≤ (1 + κ)

∑
t

∑
i Ciz̃it,

where κ = maxt κt, and κt =
maxi Ci

mini Ri

∑
j
λjt

, ∀t.

Proof.

∑
t

∑
i Ciz̄it

=
∑

t

(∑
i∈I\I′

t
Ciz̄it +

∑
i∈I′

t
Ci

)
(14a)

≤
∑

t

(∑
i∈I Ciz̃it +maxi∈I Ci

)
(14b)

=
∑

t

(∑
i Ciz̃it + κt mini Ri

∑
j λjt

)
(14c)



≤
∑

t

(∑
i Ciz̃it + κt

∑
i

∑
j Rix̃ijt

)
(14d)

≤
∑

t (
∑

i Ciz̃it + κt

∑
i ỹit) (14e)

≤
∑

t (
∑

i Ciz̃it + κt

∑
i Ciz̃it) (14f)

≤ (1 + κ)
∑

t

∑
i Ciz̃it

(14a) uses the index set I ′
t, which contains no more than one

element after executing Algorithm 2, to expand the derivation.

If I ′
t = ∅, then we will not have

∑
i∈I′

t
Ci in (14a), but

have
∑

i Ciz̄it =
∑

i Ciz̃it due to Algorithm 2. We can reach

(14b). If I ′
t ̸= ∅, we will have

∑
i∈I′

t
Ci ≤ maxi∈I Ci due to

|I ′
t| = 1, and also we will have

∑
i∈I\I′

t
Ciz̄it ≤

∑
i∈I Ciz̃it

due to I \ I ′
t ∈ I and Algorithm 2. We can then still reach

(14b). (14c) simply uses the definition of κ. (14d), (14e), and

(14f) use the constraints (1a), (1b), and (1c), respectively.

Theorem 2. E(P({x∗∗
t
, ȳt, z̄t, ∀t}))≤ r2P({x̃t, ỹt, z̃t, ∀t}),

where r2 = δx + δy + δz + δw + δv , and

δx = (1 + κ)
maxi,j dij

mini Ri
maxi,t

Ci

pb
it

,

δy = (1 + κ)maxi,t p
s
it maxi,t

Ci

pb
it

,

δz = (1 + κ)maxi,t
pb
it

Ci
maxi,t

Ci

pb
it

,

δw = (1 + κ)maxi c
s
i maxi,t

Ci

pb
it

,

δv = (1 + κ)maxi
cbi
Ci

maxi,t
Ci

pb
it

.

Proof. We exhibit δz , δy , δx, δv , and δw, respectively. Firstly,

consider
∑

t

∑
i p

b
itz̄it:

∑
t

∑
i p

b
itz̄it

=
∑

t

∑
i Ciz̄it

pb
it

Ci
(16a)

≤ maxi,t
pb
it

Ci

∑
t

∑
i Ciz̄it (16b)

≤ (1 + κ)maxi,t
pb
it

Ci

∑
t

∑
i Ciz̃it (16c)

= (1 + κ)maxi,t
pb
it

Ci

∑
t

∑
i p

b
itz̃it

Ci

pb
it

(16d)

≤ δz
∑

t

∑
i p

b
itz̃it

(16c) follows from Lemma 3. The above holds for any possible

value that the random variable z̄it takes, so we can directly

add the expectation to the left-hand side:

E
(∑

t

∑
i p

b
itz̄it

)
≤ δz

∑
t

∑
i p

b
itz̃it.

Next, we consider the expectation of
∑

t

∑
i p

s
itȳit:

E(
∑

t

∑
i p

s
itȳit)

=
∑

t

∑
i∈I\I′

t
psit

(
ω2

ω1+ω2

(θit−
Ri

Ri′
ω1)+

ω1

ω1+ω2

(θit+
Ri

Ri′
ω2)

)

+
∑

t

∑
i∈I\I′

t
psit⌊y

∗
it⌋+

∑
t

∑
i∈I′

t
psit⌈y

∗
it⌉ (17a)

=
∑

t

∑
i∈I\I′

t
psity

∗
it +

∑
t

∑
i∈I′

t
psit⌈y

∗
it⌉ (17b)

≤ maxi,t p
s
it

(∑
t

∑
i∈I\I′

t
y∗it +

∑
t

∑
i∈I′

t
⌈y∗it⌉

)
(17c)

≤ maxi,t p
s
it

(∑
t

∑
i∈I\I′

t
Ciz̄it+

∑
t

∑
i∈I′

t
Ciz̄it

)
(17d)

≤ (1 + κ)maxi,t p
s
it

∑
t

∑
i Ciz̃it (17e)

≤ δy
∑

t

∑
i p

b
itz̃it (17f)

(17a) shows the case of i2 in Lines 10 and 12 of Algorithm 2,

and it can lead to the same (17b) if i1 is used. (17b) is the

result of (17a) following Algorithm 2. (17c) and (17d) use the

constraint (1c), and use ⌈y∗it⌉ ≤ Ciz̄it, ∀i, ∀t. (17e) follows

from Lemma 3. (17f) follows analogously from (16c)∼(16d).

Afterwards, we consider
∑

t

∑
i

∑
j dijx

∗∗
ijt below. Because

x∗∗
t

is not randomized, its “expectation” is itself.
∑

t

∑
i

∑
j dijx

∗∗
ijt

≤
maxi,j dij

mini Ri

∑
t

∑
i ȳit (18a)

≤
maxi,j dij

mini Ri

∑
t

∑
i Ciz̄it (18b)

≤ δx
∑

t

∑
i p

b
itz̃it (18c)

(18a) and (18b) leverage the constraints (1b) and (1c), respec-

tively. (18c) uses Lemma 3, and follows from an analogous

derivation to (17d) ∼ (17f).

Finally, let us prove δv and δw:

E

(∑
t

∑
i c

b
i (z̄it − z̄it−1)

+
)

≤ E
(∑

t

∑
i c

b
i z̄it

)
(19a)

≤ (1 + κ)maxi,t
Ci

pb
it

maxi
cbi
Ci

∑
t

∑
i p

b
itz̃it (19b)

E

(∑
t

∑
i c

s
i (ȳit − ȳit−1)

+
)

≤ E (
∑

t

∑
i c

s
i ȳit) (20a)

≤ (1 + κ)maxi c
s
i maxi,t

Ci

pb
it

∑
t

∑
i p

b
itz̃it (20b)

(19a) and (20a) follow analogously from (12a). (19b) and

(20b) omit all the details, and follow analogously from (16a)∼
(16d) and (17a)∼ (17f). We embed v∗∗it = (z̄it − z̄ijt−1)

+
and

w∗∗
it = (ȳit − ȳit−1)

+
, ∀i, ∀t into the above derivations.

V. EXPERIMENTAL STUDY

A. Data and Settings

Cloudlets and Delay. We envisage the cloudlets deployment

at London’s underground stations. We assume all passengers

can connect to the underground cloudlet network via their local

WiFi. A passenger’s requests may be served by any cloudlet,

and if served by a remote one in the network, the service delay

is approximated as the geographical distance between the local

station and that remote station [20]. Out of London’s 268

underground stations [21], we assume the cloudlets are located

at the largest 100 stations based on the annual passenger count.

Workload and Processing. We use the dynamic passenger

numbers at a station to represent the workload originated from

that station. From Transport for London [21], we acquire such

passenger data for every underground station, measured for

every quarter (15 minutes) for a weekday, a Saturday, and a

Sunday around Nov. 16, 2016. We consider a 1-week period

of 672 quarters or time slots. As an example, Figure 3 depicts

the workloads of the largest 3 stations, where we repeat the

weekday data for 5 days to mimic Monday through Friday.

Without loss of generality, we assume servers are homogenous

and a server can process 1000 requests at a time slot.

Resource Price. We assume that all London’s underground

cloudlets are powered by the same wholesale electricity mar-

ket. We use the hourly electricity price of European Electricity

Index (ELIX) reported by EPEX SPOT [15] for Monday, Nov.

14 through Sunday, Nov. 20, 2016, also shown in Figure 3.
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Fig. 5: Impact of the PUE
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Fig. 6: Algorithm combinations

Cloudlet Capacity. We sum up the peak values of all the

workloads from all the underground stations, divide that sum

by the total number of cloudlets, translate that quotient into

the number of servers, and use it as the cloudlet capacity. We

use the workload to estimate the data center capacity [8].

Algorithms. We implement multiple algorithms. We also

compose a deterministic, best-effort rounding algorithm below.

Given the fractional solution (xt,yt, zt), for each cloudlet i,

we use ⌊yit⌋ as the number of servers if it is a sufficient

number for the workload Ri

∑
j xijt; otherwise, we use ⌈yit⌉.

If the number of servers is zero, we use ⌊zit⌋, and the cloudlet

is off; otherwise, we use ⌈zit⌉, and the cloudlet is on.

We adopt the two state-of-the-art solvers in our evaluations:

IPOPT [23], for solving convex programs via barrier methods,

and Gurobi [24], for solving mixed-integer linear programs

via simplex, branch-and-bound, and other heuristics. We use

“grb” to refer to using Gurobi to solve Pt with (1f), i.e., the

integer constraint, at every t, “ipt” to refer to using IPOPT to

solve Pt at every t, and “reg” to refer to using our regularized

online algorithm that solves P̃t at every t, with ε = 0.001.

To highlight the benefit of the multi-granularity control, we

compare our algorithm “reg+r” to multiple others as follows,

including the single granularity control “grb(s)”:

• reg+r: regularization, randomized pairwise rounding;

• lcp+r: the Lazy Capacity Provisioning algorithm [3],

randomized pairwise rounding;

• grb: Gurobi;

• grb(s): Gurobi for server control only—an cloudlet is

on if servers are non-zero, and is off otherwise.

To compare different combinations of fractional online algo-

rithms and rounding algorithms, we further have the following:

• ipt+d: IPOPT, deterministic rounding as above;

• reg+d: regularization, deterministic rounding as above;

• ipt+r: IPOPT, randomized pairwise rounding.

We do not consider the offline optimal integral solution. It is

not practical, as it takes an unacceptably long time for Gurobi

to find it for the (even small) problem instances in our case.

Weights and PUE. We vary the weight of the switching cost

to obtain a spectrum of results, so that we avoid interpreting

the concrete metric represented by the switching cost, as it

can capture a range of metrics as stated earlier. Given the

weight χ, we vary logχ as an integer in [0, 4]; we abuse the

term “weight” and use it to refer to logχ in our results. For

the weight of the delay, we set it less than the weight of the

switching cost, as cloudlets are close to users and connected

via high-speed networks. We vary the PUE in [1, 2], which

contributes to the weight of the operational cost of the cloudlet;

we fix the weight of the operational cost of the server as 1.

B. Evaluation Results

Figure 4 contrasts reg+r with the multi-granularity lcp+r

and grb, and the single granularity grb(s), as the weight of

the switching cost increases. reg+r incurs about 15%∼40%,

30%∼50%, and 40%∼60% less total cost than lcp+r, grb,

and grb(s), respectively. As the weight increases, the gap

between reg+r and others expands, since the former handles

the switching cost well; the gap between grb(s) and others

shrinks, since it is more inclined to leave the servers always

on and the cloudlet on, and whether to control the cloudlets

separately becomes less influential. lcp+r does not do well,

as its lazy capacity principle, designed for server control only,

cannot suit well when controlling both servers and cloudlets.

Figure 5 compares the same group of algorithms as the PUE

grows. reg+r incurs about 15% ∼ 65% less total cost than

all other algorithms. The cost incurred by grb(s) increases,

and goes further away from other algorithms. This is because it

does not control cloudlets and leaves more cloudlets on, and

thus incurs more cost as the PUE grows. The cost incurred

by reg+r increases as well, and gets closer to those of

lcp+r and grb. This is because, despite reg+r handles

the switching cost well, the operational cost becomes more

important as the PUE grows, and thus its advantage decreases.

Figure 6 checks the performance of different combinations

of the fractional online algorithms and the rounding algo-

rithms. reg+r is the best, and has about 5%∼25% less total

cost than the next best algorithm in each case. As the weight of

the switching cost grows, for all rounding algorithms, our reg

is better and the gap between it and ipt becomes larger; for

all fractional online algorithms, our randomized rounding r is

better and the gap between it and the deterministic rounding

d becomes smaller. Regularization handles the switching cost

better, but the randomized rounding tends to sacrifice that

advantage due to its random selection of fractional decisions.

Figures 7 visualizes the number of the active cloudlets as

time goes. Single granularity grb(s) tends to involve more

cloudlets. Multi-granularity reg+r controls the cloudlets as

well and uses our iterative, randomized rounding process to

aggregate the workloads to a fewer number of cloudlets.

Figure 8 focuses on the execution time of the algorithms on

a MacBook Pro laptop with a 2.6 GHz CPU. Passengers from

the 100 largest stations issue requests, and the 10∼50 largest
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stations host cloudlets. grb is rather unscalable; ipt+r and

reg+r scale much better and the execution time grows more

slowly. Our randomized rounding r occupies about 30% ∼
55% of the total time of ipt+r and reg+r.

VI. RELATED WORK

Previous works have studied the online control of servers

in cloud data centers. Lin et al. [3] proposed the lazy capacity

provisioning algorithm and proved its competitiveness. Lu et

al. [4] controlled multiple resources such as on-site electricity

generators and servers via online algorithms based on the “ski-

rental” idea. Tu et al. [9] investigated the joint server control

and job scheduling, and designed online algorithms also based

on “ski-rental”. Jiao et al. [10] studied the multi-tier clouds

and devised regularization-based online algorithms to control

the servers in clouds and the networks across clouds.

Such works either make assumptions that do not hold for

our case (e.g., fractional server numbers, fixed or bounded

prices), or lack of considerations of the challenges in our case

(e.g., workload distribution, joint server and cloudlet control).

Their algorithms are not directly adaptable to our problem.

There also exists research on edge cloud resource allocation

and control. Hou et al. [11] worked on a cloudlet-cloud joint

architecture and developed online algorithms to download ser-

vices to cloudlets to handle the varying user requests. Chen et

al. [2] focused on computation offloading for edge computing,

and made both job offloading and resource allocation deci-

sions. Wang et al. allocated resources and migrated workloads

to accommodate user mobilities [12] and also allocated social-

network-based service entities [13] at edge clouds.

Such works have not explored the potential of the multi-

granularity control for cloudlets and are thus complementary

to our work. Their solutions fall insufficient for our scenario.

VII. CONCLUSION

We propose and study the multiple granularity control

of cloudlet networks to push the limits of edge computing

beyond the current single granularity server control paradigm.

We design an online algorithmic framework to make control

decisions for servers, cloudlets, and workload distribution on

the fly, with theoretically provable performance guarantees

towards the offline optimum. We also conduct extensive ex-

periments using large-scale real-world data to demonstrate and

validate the practical advantages of our proposed approach.

ACKNOWLEDGEMENT

This material is based upon work supported by the National

Science Foundation (NSF) under Grant No. CNS 1564348 and

CNS 1703014, by the National Natural Science Foundation of

China (NSFC) under Grant No. 61702287 and 61761136014,

by the German Research Foundation (DFG) under Grant No.

392046569, and also by the DFG Collaborative Research

Center 1053 MAKI. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of NSF,

NSFC, or DFG.

REFERENCES

[1] B. P. Rimal, D. P. Van, and M. Maier, “Cloudlet enhanced fiber-wireless
access networks for mobile-edge computing,” IEEE Transactions on

Wireless Communications, vol. 16, no. 6, pp. 3601–3618, 2017.
[2] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource

allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM, 2017.

[3] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions on

Networking, vol. 21, no. 5, pp. 1378–1391, 2013.
[4] L. Lu, J. Tu, C.-K. Chau, M. Chen, and X. Lin, “Online energy

generation scheduling for microgrids with intermittent energy sources
and co-generation,” in ACM SIGMETRICS, 2013.

[5] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, and J. Kim,
“Thermal-aware Scheduling in Green Data Centers,” ACM Computing

Surveys, vol. 47, no. 3, 2015.
[6] M. Ganeshalingam, A. Shehabi, and L.-B. Desroches, “Shining a Light

on Small Data Centers in the US,” in EEDAL, 2017.
[7] “Efficiency: How we do it - Data Centers - Google,” https://www.google.

com/about/datacenters/efficiency/internal.
[8] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Greening

Geographical Load Balancing,” in ACM SIGMETRICS, 2011.
[9] J. Tu, L. Lu, M. Chen, and R. K. Sitaraman, “Dynamic provisioning

in next-generation data centers with on-site power production,” in ACM

e-Energy, 2013.
[10] L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed Online Re-

source Allocation in Multi-tier Distributed Cloud Networks,” IEEE/ACM

Transactions on Networking, vol. 25, no. 4, pp. 2556–2570, 2017.
[11] I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal al-

gorithm for online reconfiguration of edge-clouds,” in ACM MOBIHOC,
2016.

[12] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
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