Multiple Granularity Online Control of Cloudlet
Networks for Edge Computing

Lei Jiao!, Lingjun Pu?3, Lin Wang4, Xiaojun Lin®, Jun Li!
'University of Oregon, USA 2?Nankai University, China
3Guangdong Key Laboratory of Big Data Analysis and Processing, China
4Technische Universitit Darmstadt, Germany 5Purdue University, USA

Abstract—Operating distributed cloudlets at optimal cost is
nontrivial when facing not only the dynamic and unpredictable
resource prices and user requests, but also the low efficiency
of today’s immature cloudlet infrastructures. We propose to
control cloudlet networks at multiple granularities—fine-grained
control of servers inside cloudlets and coarse-grained control
of cloudlets themselves. We model this problem as a mixed-
integer nonlinear program with the switching cost over time.
To solve this problem online, we firstly linearize, “regularize”,
and decouple it into a series of one-shot subproblems that
we solve at each corresponding time slot, and afterwards we
design an iterative, dependent rounding framework using our
proposed randomized pairwise rounding algorithm to convert the
fractional control decisions into the integral ones at each time
slot. Via rigorous theoretical analysis, we exhibit our approach’s
performance guarantee in terms of the competitive ratio and the
multiplicative integrality gap towards the offline optimal integral
decisions. Extensive evaluations with real-world data confirm the
empirical superiority of our approach over the single granularity
server control and the state-of-the-art algorithms.

I. INTRODUCTION

Provisioning services at the network edge in close proximity
to end users with ultra low latency is becoming one of the most
essential goals pursued by many service providers today. The
key enablers towards this goal are cloudlets, i.e., small data
centers, machine rooms, and server clusters at diverse locations
such as WiFi neighborhoods, enterprise premises, and telecom
central offices [1], [2]. A local cloudlet network can be shown
as Figure 1, where users access the service through the WiFi
networks, and cloudlets are co-located with the WiFi access
points and are connected via wireline backhaul networks.

Similar to large data centers, in order to save the operational
expense while serving the time-varying workload (e.g., user
requests), it is often essential to dynamically switch on and off
the servers [3], [4] in the cloudlets; however, only switching
on/off the servers in a cloudlet is often insufficient, and it is
necessary to switch on/off the entire cloudlet as well. This is
because cloudlets are usually resource-inefficient and can incur
a considerable amount of operational expense via the non-IT
equipments. For example, the cooling equipment in small data
centers is usually dedicated, atomic, and cannot be turned off
partially to match the number of servers or the amount of
heat [5]. Consider the Power Usage Effectiveness (PUE), the
ratio of a data center’s total energy consumption, such as IT,
cooling, and lightning, over its IT energy consumption. It is
recently reported that small (1~25 servers) and media (26~500

Cloudlet

Fig. 1: An example cloudlet network structure

servers) data centers typically have PUEs of 1.5~ 2.1 [6];
even the better modular and container-based micro data centers
can have PUEs up to 1.4. This is in stark contrast to large
data centers, such as Google’s, with PUEs as low as 1.1 [7].
Therefore, controlling servers in cloudlets but leaving cloudlets
themselves always on can consume significant non-IT energy.
In this paper, we refer to this problem of jointly controlling
the on/off status of the cloudlets and the servers as the “mul-
tiple granularity” cloudlet control problem. What complicates
this problem is the “switching cost” incurred every time when
turning on/off the cloudlets and the servers. For example, when
booting additional servers to provide more service instances,
the switching cost is embodied in the time needed for server
initialization, the bandwidth needed for state migration, or any
cost related to system oscillation, reliability risk, and hardware
wear and tear [3], [4]. For cloudlets in continuous time slots, a
control decision at one time slot not only incurs the operational
cost at that time slot, based on the number of running cloudlets
and servers at that time slot and the resource price at that time
slot, but also affects the switching cost to be incurred between
that time slot and the next time slot, depending on the number
of the additional cloudlets and servers that will be turned on at
the next time slot. In an “online” setting as is often the case,
with no knowledge about the control decision at the next time
slot, as it has not been made until the next time slot, it is
nontrivial to make a good decision at the current time slot.
Another important differentiating factor of this multiple
granularity cloudlet control problem lies in the intrinsically
intertwined control decisions that also need to be made for the
workload distribution across cloudlets with distance-dependent
cost (e.g., delay). Unlike large data centers connected via wide
area networks, local cloudlets are often highly distributed and
connected by high-speed (e.g., optical) backhaul networks [1],
making it flexible to distribute and serve workloads from

different locations. For example, workloads can be moved
from one cloudlet to another to overcome the capacity limit
or leverage the cheaper resources, while introducing moderate
additional delay. Note this is different from the traditional data
center load balancing or request distribution problem, as the
workload distribution decision in this case affects not only the
total delay and the total operational cost per time slot, but also
the total switching cost of cloudlets and servers across time
slots. Typical data center request distribution algorithms do not
consider the switching cost [8], and are indeed not optimal in
the cloudlet networks scenario.

Research to date has never investigated the cloudlet con-
trol problem from a multi-granularity perspective. Those that
switch on/off servers [3], [4], [9], [10] do not shut down
clouds and data centers, while those on resource allocation
and job scheduling in edge clouds [2], [11]-[13] do not
toggle servers. Existing online algorithmic techniques also fall
insufficient for our multi-granularity control problem. They
focus on either fractional control decisions only [3], [10] or
fixed/bounded resource prices [4], [9], and cannot make multi-
granularity decisions intertwined with distance-dependent cost
simultaneously. It is unclear how to apply them to our problem
while preserving or adapting their performance guarantees.

We model the multi-granularity control problem for cloudlet
networks, controlling the servers inside cloudlets, the cloudlets
themselves, and the workload distribution across cloudlets. We
make no assumption on workload and resource price dynam-
ics, so our models are general and can capture the workload
variations due to user arrivals, departures, mobilities, and flash
crowds [14], and the time-varying prices such as those of
wholesale electricity [15] and spot virtual machines [16]. We
model the switching costs of servers and cloudlets, accounting
for increasing their numbers while capturing the fact that shut-
ting them down is fast and incurs negligible cost [3]. With a
simple yet general affine model for the delay, we minimize the
total cost and enforce the constraints for workload distribution
and processing, and also for cloudlet-server association.

Inspired by two separate techniques of regularization [17]
and pipage rounding [18], [19], we propose a novel online
algorithmic framework to solve our multi-granularity cloudlet
control problem which turns out to be a mixed-integer non-
linear program. First, we make fractional control decisions
online. We design an online algorithm that uses a carefully-
designed logarithmic function to replace the nonlinear switch-
ing cost and decouples our problem into a series of one-shot
subproblems solvable at each corresponding time slot by only
taking the dynamic inputs at that time slot and the solution of
the previous time slot. Next, we convert our fractional control
decisions into integral ones. We design a randomized, pairwise
rounding algorithm, where a pair of fractions are rounded
together every time without violating any constraint of our
problem, and plug this rounding algorithm into an iterative
“rounding and re-solving” process to accommodate the multi-
granularity control decisions at each time slot. Via rigorous
formal proofs, we exhibit our approach’s worst-case perfor-
mance guarantee as a parameterized constant, which is also a

product of the competitive ratio for our fractional online step
and the multiplicative integrity gap for our rounding step, i.e.,
for arbitrary dynamic inputs, the total cost incurred over time
by the integral control decisions produced by our approach
on the fly without knowing future inputs is guaranteed not to
exceed this constant times the total cost incurred over time by
the offline optimal integral control decisions with the complete
knowledge about all the future inputs in advance.

We conduct extensive evaluations using London’s under-
ground network of all its 268 stations [20] to simulate the
cloudlet network and the real-world dynamic passenger num-
bers at each station [21] to simulate the workload, for a one-
week period in November 2016, assuming all cloudlets are
powered by an European wholesale electricity market [15].
We find the following results. For a typical cloudlet PUE of
1.4, our proposed multiple granularity online control algorithm
achieves 15% ~ 40%, 30%~50%, and 40%~60% less total
cost over time than a state-of-the-art online algorithm, a very
advanced optimization solver, and the single granularity server
control strategy, respectively. As the PUE grows to 2, our
algorithm can achieve up to 65% less total cost than the single
granularity control algorithm, and up to 25% less total cost
than the next best algorithm in a pool of multiple different
combinations of fractional online algorithms and rounding
algorithms. Our algorithm saves the cloudlets usage signifi-
cantly, and scales very well as the problem size increases.

II. MODELS AND PROBLEM FORMULATION

A. System Models

Cloudlets, Capacity, and Delay. We consider a network of
multiple distributed cloudlets or small data centers, represented
by the set Z, and multiple network access points, represented
by the set 7. Cloudlets connect to one another via wireline
backhaul networks, and every cloudlet is reachable from every
network access point. A user connects to one of the access
points, e.g., the closest one, to access the cloudlets. We have
7 C J if all the cloudlets under consideration are co-located
with the network access points. The cloudlet ¢ € 7 has its
integral capacity C;, referring to its number of servers or server
clusters, depending on how the servers inside the cloudlets are
managed. We use d;;, Vi € Z, V¥j € J to denote the delay
between the cloudlet ¢ and the network access point j.

Workload and Processing. We consider the entire system
over |T| continuous time slots, where 7~ &t {1,2,...,T}. The
network access point j has the aggregated workload) ;; at the
time slot ¢. This may represent the number of user requests
to be processed, or the number of jobs to be offloaded. Aj¢
can be served by any one cloudlet or multiple cloudlets in Z,
within each cloudlet’s capacity limit. If served from a remote
cloudlet, the corresponding access delay will be incurred. Aj¢
often changes dynamically, i.e., users arrive, leave, move, or
generate different amounts of workload over time. We make no
assumption on how \;; varies across locations and over time.
Workload is processed by servers. We allow all the cloudlets to
be heterogenous, and use R;, Vi as a coefficient to convert the

amount of workload to the number of servers or server clusters.
Without loss of generality, we require % to be a positive
integer, i.e., the number of requests that can be handled by a
single server or server cluster at the cloudlet <.

Unit Operational Cost. The unit operational cost (or the
resource price), modeled for servers and cloudlets respectively,
is the operational expense when running or using one server
or one cloudlet per time slot. Such operational expense can
include the electricity cost, the carbon footprint, the hard-
ware/software maintenance/license fee, and the human labor
cost. Note that, for cloudlet, we use the unit operational cost
to refer to the cost for running its non-IT equipments, such
as cooling, lightning, power distribution/conversion facilities.
We denote the unit operation cost of servers and cloudlets as
p5, and pb,, Vi, Vt, respectively. We make no assumption on
how they vary across locations and over time.

Unit Switching Cost. As we propose the multi-granularity
control, both the servers inside the cloudlets and the cloudlets
themselves can be switched on and off dynamically. Toggling
servers and cloudlets indeed incurs the “switching cost”, which
can capture the hardware wear and tear, system risk associated
with the toggling operations, or the service performance degra-
dation due to the lead or the initialization time of booting new
software resources, loading profiles, migrating states, and so
on. We denote the switching cost for switching on one server
and one cloudlet as ¢j and ci-’, Vi, respectively.

Control Variables. We have three types of control variables:
xi5¢ > 0, Vi, Vj, Vt, referring to the amount of the workload
distributed to the cloudlet ¢ from the network access point j
at the time slot ¢; y;;» € {0,1,2,3,...}, Vi, Vj, V¢, referring
to the integral number of servers or server clusters activated
at the cloudlet ¢ to process the workload originating from the
network access point j at the time slot ¢; z;; € {0,1}, Vi, V¢,
denoting whether to activate cloudlet 7 at the time slot .

B. Problem Formulation
We formulate the multi-granularity control problem:

min Zt Zz Zj dijmijt + Zt Z'L PiYit + Zt ZL p?tzit
+> 006 (yie — yit—1)++zt Do & (zi — Zit—1)+

S. t. ZL Tijt > >‘jt7 VJ, Vt, (1a)
Yir > Ry Zj Tijt, Vi, Vt, (1b)
C’,;zit Z Yit,s W,Vt, (1C)
Tijt Z 0, V], Vi,Vt, (1d)
zit <1, Vi, Vi, (le)

yi € {0,1,2,3,...}, 2 € {0, 1}, Vi, Vt. (1)

The total cost consists of multiple components, as in the
objective: the total delay of distributing or migrating the
workload, the total operational cost and switching cost in-
curred by the cloudlets, and the total operational cost and
switching cost incurred by the servers. We adopt a special
function, (z)* & max{z, 0}, to calculate the switching cost of
increasing the resources. Constraint (1a) ensures that all of the
workload are distributed and served. Constraint (1b) ensures
that a sufficient number of servers are switched on to serve

the corresponding workload. Constraint (1c) ensures that the
server activation can only be performed within the capacity of
the corresponding cloudlet, if the cloudlet itself is switched on.
Constraint (1d), together with Constraints (1a) ~ (1c), ensures
that all the control variables are non-negative. Constraint (le)
sets the upper limit for the cloudlet control variables. With
Constraint (1f), the problem formulation does not actually need
Constraint (1e); however, we keep it to facilitate our algorithm
design and performance analysis. Also note there can exist
weights associated to the five terms in the objective, but we
remove them for the ease of presentation.

III. ALGORITHM DESIGN
A. Challenges and Idea

Algorithmic Challenges. The major challenges for solving
our optimization problem online stem from two aspects.

The first aspect is the online uncertainty. The switching cost
couples the decision of the current time slot with that of the
next time slot, i.e., any decision made for the current time slot
will influence the switching cost between it and the possible
decisions that can be made for the next time slot for the inputs
not revealed yet. We would want an online algorithm that has
“competitive” guarantees, i.e., the total cost over time of our
online decisions made without future knowledge should not
exceed a constant (i.e., the competitive ratio) times that of the
offline optimal algorithm which knows all inputs in prior.

The second aspect is the nonconvexity and intractability. We
highlight that our problem is a mixed-integer program, and we
need to make integer decisions to dictate servers and cloudlets
to switch on and off. A mixed-integer program is inherently
nonconvex and NP-hard. It is already hard to find the optimal
solution offline, not to mention we want it online. Instead of a
heuristic that comes with no optimality guarantee, we would
want an algorithm that provides integer solutions which incur
the total cost no greater than a constant (i.e., the multiplicative
integrality gap) times the total cost of the optimal solutions.

Algorithmic Idea. We remove the integral constraints to re-
lax our problem to a linear program. For this linear relaxation,
we design an online algorithm based on the regularization
technique [17], i.e., by replacing the nonlinear switching cost
in the objective with a carefully-designed logarithmic function,
so that with zero knowledge about the future we can make
control and workload distribution decisions with a competitive
ratio r; by solving a series of the “regularized” one-shot
problems at the corresponding time slots in an online fashion.
Afterwards, based on the pipage rounding technique [18], [19],
we design a randomized pairwise rounding algorithm running
at each time slot to round the fractional decisions of servers
and cloudlets into integers with a multiplicative integrality
gap 7o, while maintaining feasible workload distributions.
r = riro is the overall approximation ratio of our approach.

B. Proposed Algorithms

Notations and Formulations. To describe our algorithms
formally, we introduce additional notations used throughout
the rest of this paper: P is the relaxed problem of our original

problem over time; Py is the one-shot problem at ¢ for the
relaxed problem P; Py is the regularized problem of Pg. P, Py,
and P; denote the objective functions of their corresponding
problems. We use D to refer to the Lagrange dual problem
of P, and use D to refer to the objective function of this dual
problem. x¢, y¢, z¢ are shorthand for x;;¢, yst, 24, Vi, Vj, Vt,
respectively. We use different diacritical marks together with
such variable symbols to represent the solutions obtained by
solving the different problems, e.g., zy denotes the (fractional)
solution by solving the regularized problem and Z denotes the
(integral) solution after applying the rounding algorithm. We
have more notations as such in Algorithm 1 and Figure 2. We
also have some ad-hoc, auxiliary notations in Algorithm 2.

The linear relaxation of our problem is P = Zt Py, with
P; as below. We remove (1f), and afterwards, we introduce
the additional variables w;;, v, Vi, Vi and the additional con-
straints (2b) ~ (2d), without changing the optimal fractional
solutions of xt, y¢, and z¢.

min Py =375 dijmiie + D0, phvie + D, Pzt
+ 3, w0, v

s.t. Wit > Yit — Yit—1, Vi, (2a)
Vi > Zi — Zit—1, V1, (2b)
w;e > 0, Vi, (2¢)
vie > 0, Vi, (2d)

(1a) ~ (le), without “Vt”.

The regularized one-shot slice f’t is as below, which uses
special logarithmic terms to replace the original switching cost.
Note P uses the optimal solution of Py_4 as the input. Also,
we have o; = In (1 + %), Vi and o’ = In (1+ 1), where
€ > 0 is a configurable parameter of our algorithm.

Po=Y, > dijTijt
+ 2 PRy o ((yit +¢)n
1
b
+ 2 Phzie + 2 o ((Zip +€)In

s.t. (la) ~ (le), without “V¢”.

min

Yyitt+e
Yit—1+e ytt)

Algorithms. We design our online algorithm as Algorithm 1,
based on the definitions of Py and Py. It iteratively invokes
our randomized pairwise dependent rounding algorithm, i.e.,
Algorithm 2, to convert the fractional solutions to the integral
solutions in an online manner. The name “dependent rounding”
is due to the fact that in our case y; and z¢ cannot be rounded
independently, as they are connected via the constraints, and
they always need to be rounded altogether in order to keep the
integral solutions still satisfying the constraints after rounding.

Algorithm 1 runs at ¢, takes the optimal fractional solution
(X¢—1,¥t-1,%¢—1) from ¢t — 1 as the input, and solves Py
to obtain the optimal fractional solution (Xt,Yyt,z¢) for t.
Afterwards, it invokes Algorithm 2 to round the fractional
Z¢ to the integral Zy. Next, it takes Zi_; as input, fixes Zi,
and solves Py to obtain the solution (xf,y;,Z¢). It then
invokes Algorithm 2 again but to round the fractional y; into
the integral y¢. Finally, it takes (yt—1,Z¢—1) as input, fixes

Algorithm 1: Online algorithm, V¢

Solve Py to obtain its solution (Xt,yt,2t);

Invoke Algorithm 2 to round (X¢,¥t,%¢) t0 (X¢, ¥e, Zt);
Fix (Z¢), solve Py to obtain its solution (x{,y¢,Zt);
Invoke Algorithm 2 to round (x{,yt,Z¢) to (Xt,¥¢,Z¢);
Fix (¥+,Zt¢), solve Py to obtain its solution (x{*,¥¢,Zt).

L R

Algorithm 2: Randomized pairwise rounding, V¢

1 To round Z¢, replace it by Zit, Wit by Zit, and U; by CZ, Vi,
2 To round Y, replace @;: by ¥it, Ui by yiy, and U; by o Vz
3 0 & Ty — [Tie), Vi;

+ YT\ {i]6i € {0,1}};
5 whlle |Z{| > 1 do

6 Select 41, ia € Z', where i1 # i2;

7 w1 cléfmin{l — 0i,¢, U 205t}

8 wﬁﬁmmwhhﬁy1—iﬁ»;

9 With the probability 2, set

10 9;1,5 =0i¢ + w1 ,9;2t =iyt — %wl;

11 With the probability set

wi
w1 4w’
2 0L, =0, —ws, 0, =0, + g wa;
B Setig = [T+, T =T\ i) i 0, € (0.1):
14 Set Uigt = |Wint| + 0iye, It = I\ {ia}, if 07, € {0,1};
15 end
16 if |Z;| = 1 then
17 Set 4;; = [| for the only i € Z7;
18 end

(¥t,%t), and solves Py to obtain the solution (xi*,¥¢,Zt).
Figure 2 illustrates the online execution of our algorithms.
Algorithm 2 is used to round z, and y; to Z, and y¢, respec-
tively, and thus needs to be invoked twice in Algorithm 1. Let
us take Zz¢ as an example to interpret this algorithm. The main
loop is Line 5 through 15, where in each specific iteration
either Line 10 or 12 is executed. This main loop ensures three
things. Firstly, either z;,¢, Z;,¢, or both are rounded into the
integer(s) after every iteration of the loop. Secondly, we have
C¢19§1t+0i2 9§2t = C;,0;,:+C;,0,,, after every iteration. This
is the key for keeping the integral solutions after rounding still
satisfying the constraints of Py. Thirdly, we have E(Z;¢) = Z;1,
Vi € T\ Z, after the loop, where E denotes the expected value.
This is useful for deriving the integrality gap, as shown next.

\ldunthm 1 Alounthm 1 Algorithm 1
Time t+1
@ - & [
|Xt 1 YL 1.8 1 (X6, Yo, 2t) |
Algorithm 2 g >
| (Z-1) | | (2¢) |
Dt—l (Pt (
_)] | v]
Algorithm 2 = »
| Ft1,21) | | (Ft, 2) |
Py P

(X:ilﬁt 1% 1D| | (:thv |
Fig. 2: Online execution of Algorithms 1 and 2

IV. PERFORMANCE ANALYSIS

To derive the performance bounds provided by our proposed
algorithms, we establish a chain of inequalities, where r; and
79 are constants:

E(P({xt", ¥t, 2, Vi})) (4a)
< roP({X¢, ¥, 2, Vi}) (4b)
< riroD({7 (X, ¥t 2¢), V}) (40)
S 7“17“2P0pt. (4d)

Having introduced randomized rounding in our algorithms, we
bound the expectation of the total cost over time of our online,
integral decisions, i.e., E(P({x{*,¥t, %, Vt})) in (4a), by the
total cost over time of the offline, optimal fractional decisions,
i.e., PPt in (4d). P°P! is an intrinsic lower bound of the opti-
mum of our original problem with integral variables, because
the problem P is a relaxation of our original problem. Thus,
r172 also applies to the optimum of our original problem.

We further divide the derivation chain into two parts. The
competitiveness refers to (4b) < (4d), i.e., we bound “frac-
tional online” by rq times “fractional offline”. The integrality
gap refers to (4a) < (4b), i.e., we bound “integral online” by
ro times “fractional online”. To prove (4b) < (4d), we use the
Lagrange dual problem D as a bridge [17], and we only need
to prove that (4b) < (4c), because (4c) < (4d) holds naturally
due to weak duality. 7 is a mapping that we need to construct
in order to convert a primal solution to a feasible dual solution
so that it can be evaluated in the objective function D.

A. Competitive Ratio

We establish P({it, yt,’it, Vt}) <r D({Tl'(it, ?t;,it)a Vt})
and derive 71 in this section. We derive and write the Lagrange
dual problem D, the optimality conditions of P, the mapping
7,and based on all of these, we show Theorem 1 to derive 7.

Deriving the Lagrange Dual Problem. We derive P’s dual
problem D, where o, Bit, pit, Vijts Mit> Pir, and T;; are the
corresponding dual variables:

max D=5, Zj NjeQuie 4+ D, D, (Z] Ajt — %)uit
S. t. di_j — Qj + Bit — Yijt = 0,Vj, Vi, Vt, (52)
Pit — %; + % + @it — Gir+1 = 0,Vi, Ve, (5b)
LA R i
Vi, Vt, (5¢)
Cf - (bit > O,VLVt, (Sd)
) — i > 0, Vi, Vi, (S¢)
all dual variables > 0. (5)

Characterizing the Regularized Solution. In the meantime,
we note P¢’s optimal (primal) solution (X¢, ¥+, z¢) satisfies its
Karush-Kuhn-Tucker (KKT) conditions. Here, we transform
P, to an equivalent form [22], as below:'

min P,

n fact, this transformation introduces a number of constraints, all of which
are analogous to (6a). Due to the redundancy, we do not write all of them.
Our analytic technique here indeed applies, if one desires to work with all the
constraints—new dual variables, KKT conditions, and corresponding terms in
the derivations just need to be added. This transformation is required for our
performance analysis, but not required for solving P in our algorithms.

S. t. (1a) ~ (1d), without “Vt”,
ZZ gL Zit — Zzlt > Z])\jt - %,VZ
With this new form, using «;, i, Pis Vijs and p; to denote
the optimal dual solution, we have P’s KKT conditions:

(6a)

dij — % +Bi =iy = 0.V, ¥4, (Ta)
A o A =l I 7?’1’1*; = 0 Vi, (7b)
pzt “:1 - R Z Hi + R t i+ hlzzt”ijf_e =0,V:, (7c)
a;j (32 Tije — Aj) = 0,5, (7d)
Bi(¥t — 37, Fije) = 0,4, (7e)
pi(GZ — %) = 0, (76)
YijTijt =0 Vj,Vi (7g)
(Y G Z — % — (3, M — §4)) = 0,4, (7h)
primal and dual solutlons > 0. (71)

__ Construct the Mapping. We use a mapping 7 to jointly map
P¢’s optimal primal solution and optimal dual solution to a
feasible solution of D at ¢, denoted by 7 (X, yt,Zt). We do
not write the optimal dual solution in the notation 7 (-) for the
ease of presentation. We construct 7 as below, and it can be
verified that the constructed solution satisfies (5a) ~ (5f):

ajr = aij‘ﬁit = Bi, Vi pit = pis Vi3 Vit = Yij, V7, Vi3
(bit = o o n gltl+i6’ Eitlj_lira’

Bounding. Using the KKT conditions (7a) ~ (7i) and the
mapping 7w, we bound the operational cost and the switching
cost in P({X¢,¥t, zt, Vt}), respectively.

Theorem 1. P({X,¥t,2¢,Vt}) < rD{{n(Xt,¥t,2t), VE}),
v(\;here r1 =1 1+ (14+e)In(1+ 1), %—i—maxi{(C'i—Fe) In(1+
1D
Proof. Step 1: Bounding the operational cost
Do D 2y digTije + 30y D Pt + 2y > i
<X Zj(ajt — Bit + ’Yz]t)iljt
* DG - S

b
. & . .
Vi;Tie = o5 In Vs phit = i, Vi

3 (G + G — G — & In B)E,
(9a)
<020 2y = Bie + it) Tuje
+2 20 (B” - p”)yzt
+ Et Z (R Pit + Z Hit — Ri ,Uz't)git (9b)
=220 O‘thwt"‘zt ZZ(Ri > Mit — %/ffit)git 9c)
9d)

= Zj Ajeouit + 324 > (Z; Ajt — %)Hzt
=D

(9a) is due to (7a)~(7c). (9¢) is due to (7e)~(7g). (9d) follows

from (7d) and (7h). (9b) follows from), ¥ In gyt”jfrs >0

and), Zit In % > (. We show the latter, and the former
can be shown analogously. We rewrite its left-hand side as

Zt ZigIn 5 Zi ;tirjs Zt (glt + 5) In Zi tltjie Zt eln Zi tLtjis

and then we have the following, Vi:

> (Zit +e)In = —>,cln Zztu-ls-js

zzt +e
—1+e

(Z Z’Lt + E)) % + (Zzo + E) In £ Z10+8 (103)
E (Zzt + 6) Zt (Zzt 1 + 5) + ZzO - ZzT (IOb)
0.

v v

(10a) follows from (11a) below, and (10b) follows from (11b)
below. We also leverage z;o = 0, Vi, by our definition. (11a)
and (11b) are the two facts:

(X, pn)In L2 <30 pyIn2e Wp,g >0,
p— q<pln Vp,q>0

(11a)

(11b)

Step 2: Bounding the switching cost

Firstly, we have 1" = (1 +¢)o’ and define Z; , & {i]Zi >
, def

Zoa b T T 0 (i pi > 0}, T € T, 0 {i | Bie > O}
We bound the sw1tch1ng cost incurred by zg:

th (Zzt Zit— 1)+
=2 Zlez/ &} (Zir — Zir—1) (12a)
<Y Yier G +e) In Fike (12b)
S
<0 Dier; . lnﬁ (12¢)
<03 Yier (%pn + 5557 par) (12d)
S S (O J;- n B LGS) (120)
< S Siery (S m + ey, un) (12f)
SO et)+ R p) - (29)
=n > Hw< oy + G Mz’t) (12h)
< zez”’(Ajeaut + R D (0 A — %)Nu)
(12i)
<(1+e)n(1+ 1)y, 5D (12j)

(12a) is by the definition of Igyz. (12b) follows from (11Db).
(12¢) follows, because of z;; < 1. (12d) follows from (7¢).
(12e) follows from (7b). (12f) follows, due to ¥;; > Yit—1,
which is further because of the following: in (12e), we have
pit > 0; due to (7f), we have y;; = CiZiy > CiZig—1 = Yir—1.
(12g) follows from (7a). (12h) follows, because of ~;;; = 0.
This is further because of the following. Due to Z , piz > 0
and (7f), we get 5 = C;Z; > 0. Using 3;; > 0 and (7e), we
reach ; Tyj = % > 0, and thus there exists at least one j
such that z;;; > 0. With this Z;;;, we reach -;;; = 0 following
(7g). (12i) follows, due to A\j; > 1 and Z)\jtf—' > 1 Note
that this is because we have required Aj;, V7, Vt and , Vi
to be integral; also note that even if Z Ajt — ﬁ < 0 is the
case, then D changes correspondingly and we still reach (12),
following the definition of the new D.

Secondly, we have Nyax = max;{(C; + €)o;}, and define

def .| ~ ~ df .
Ig,y = {Z|yit > yitfl} and If{{ £ N {’L‘,Bit > 0} We

= I/
bound the switching cost incurred by y yt

o2 ¢ (Ui — git:1)+ B
< hmax Yy Dier; | o g (13a)
< max ¢ iezy, Bt (13b)
< max;{(C; + ¢) ln(l + 9y, A = (13¢)

(13a) ~(13c) omit the details, as they follow highly analogous
derivations as (12c) ~ (12j). In particular, the involved KKT
conditions are (7a), (7b), (7e), and (7g).]

B. Integrality Gap

We establish E(P({x{*, ¥t,Z¢, Vt})) <r2P({X¢, ¥, 2¢,Vt})
and derive 75 in this section. We firstly exhibit the existence of
{x{*, ¥+, Zt, Vt} via Lemmas 1 and 2. Afterwards, we present
Lemma 3, following which we show Theorem 2 to derive rs.

Lemma 1. Py is feasible, i.e., (x},yi) exists, given Zy.

Proof. As z exists, Zy always exists as a result of executing
Algorithm 2. In Algorithm 2, in each iteration, no matter
Line 10 or 12 is actually executed, the sum of C;, Z;, 1 +C}, Zint
stays constant. For example, in the case of Line 10, we have
Ci, (Ziyt +w1) + Cy (Zint — w1 CT;) = Cy, Ziyt + Ciy Zine. That
is, we have ZiEI\I{ Cizyy = Zz‘ez\zg C;Zy, after the loop of
Line 5 through 15. Executing Line 16 through 18 can only lead
0 7 Cizit = ZzeI\I/ CiZit + 3 €T} Ci 2 > iez CiZit.
Consequently, the constraints (1a) ~ (le) remain feasible. The
constraints (2a) ~ (2d) are always feasible. L]

Lemma 2. Py is feasible, i.e., x;* exists, given (Jt,Zt).

Proof. As y; exists due to the previous lemma, y¢ always
exists as a result of executing Algorithm 2. Firstly, let us see
¥+ and Z; satisty (1c). Note y;, < C;Z;, because yy{ is solved
from Py given Z; then, note no matter how y; is rounded,
Uit < C;Z;; always holds because C;, Vi and Zy are integral.
Secondly, let us see (la) and (1b) are feasible due to Algo-
rithm 2. For example, for Line 10, we have iﬂ’ﬂ—&— Rl 0., =
R%l(ﬁilt+w1)+}{,%2(9i2t7w1 glf) = 11 011t+ R, 922t- There-
fore, we have ;.7\ 7, 1% Yir = ZzEI\I’ ka (Lyth +0;) =

ZlEI\I’ 7 (i) +0i) = Zlez\f 7 Y5 Then, executmg
Line 16 through 18, we have), H{', Uit = ZlGI\I’ 7 Uit +

Sier; w1 Y] = Yier 7 Yin i€ (1a) and (1b) are feasible.
The constraints (2a) ~ (2d) are always feasible. O

Bounding. The objective of our relaxed problem P is the
sum of five terms. When putting (x{*, ¥+, Z¢) into P, we bound
the expectation of each of the five terms. We connect each of
them to the one term in particular, i.e., >, >, p%Z;, which
is part of, and no greater than, P({X¢, ¥+, Zt, Vt}).

Lemma 3. For the random variable Z;, Vi, V't and for every
specific value it takes, we have

Zt Zv Cizit < (1+ k) Zt Zv CiZit,

max; C; Vi

where Kk = maxy K¢, and Rt = m,
J

Proof.
2222 Cizin
=2 (ZieI\I{ Cizit + ZieI; Ci) (14a)
<Y (Xier CiZin + maxiez Ci) (14b)
=2 (El Cizi + ke min; B >\jt> (14c)

<D (Zz Ciziv + KD 2, Rifijt) (14d)
<3 (O CiZin + Ky Y, Uit) (14e)
<3, 00 Cizi + ke >, Cizir) (14f)
< (1 + k) Zt Zz CiZit

(14a) uses the index set Z!, which contains no more than one
element after executing Algorithm 2, to expand the derivation.
If 7, = o, then we will not have Zz‘eI{ C; in (14a), but
have), CiZ;y = >, C;Z;; due to Algorithm 2. We can reach
(14b). If Z; # @, we will have ZieIt’ C; < max;e7 C; due to
|Z{] = 1, and also we will have Ziez\zg CiZit <3 ez CiZit
due to Z\ Z; € 7 and Algorithm 2. We can then still reach
(14b). (14c) simply uses the definition of «. (14d), (14e), and
(14f) use the constraints (1a), (1b), and (1c), respectively. [

Theorem 2. E(({Xt 7yt,Zt,Vt})> grgP({it,yt,'thVt}),
where 19 = 0y + 0y + 0, + O + 0o, and
G = (U) s v .

&
0y = (1 + k) max; ; pj, max; ; o
it

0, = (1 4+ k) max; th max; ¢ p%,
0w = (1 4 K) max; ¢} max; ¢ p%’
0y = (1 + k) max; é—i max; ¢ pc—b’
Proof. We exhibit d,, d,, 05, d,, and d,,, respectively. Firstly,
consider >, 3. p?, Zis:

2ot Zipli)tzit
=, X, Ciz e (16a)
< max; 2 Y, 5 Oz (16b)
< (14 k)max;, p” £ 22 CiZun (16¢)
= (1+ k) max; a_ Do (16d)

<4, Zt Zi p?tzit

(16c¢) follows from Lemma 3. The above holds for any possible
value that the random variable z;; takes, so we can directly
add the expectation to the left-hand side:

E (Zt Zip?tzit) <6 p?tzit'

Next, we consider the expectation of), > p, ¥

E(Zt Zipftgit)

= %0 Sienyg P mitr O Firen) + 58 (Gt frwn))

+2 ZieI\I; Pir i) + 22, ZieI{ Piclyi] (17a)
=2 ZieI\I; Py + 2 Zz‘ezg Pie [y] (17b)
< max; ¢ Py (Zt Ziez\zg Y+ 2 Ziezg (%ﬂ) (170

< max; ¢ p, (Zt Yienng CiZie+22 D ier Ciiit) (174)
< (L+r)max; ¢ pj, >, > CiZie (17¢)
S0y Pl Zit (175)

(17a) shows the case of ¢5 in Lines 10 and 12 of Algorithm 2,
and it can lead to the same (17b) if 4y is used. (17b) is the

result of (17a) following Algorithm 2. (17¢) and (17d) use the
constraint (1c), and use [y};,] < C;Zi, Vi, Vt. (17e) follows
from Lemma 3. (17f) follows analogously from (16¢)~(16d).

Afterwards, we consider Zt Do d”xm below. Because
x;* is not randomized, its expectatlon is itself.

th Z dwngt

< LS, S Ui (18a)
< L 7RL ZtZ CiZit (18b)
< 0w D pz‘tzzt (18¢)

(18a) and (18b) leverage the constraints (1b) and (1c), respec-
tively. (18c) uses Lemma 3, and follows from an analogous
derivation to (17d) ~ (17f).

Finally, let us prove 4, and §,,:

(th ? (Zit — Ziu— 1)+>

<E(X, X tza) (19a)

< (1+ k) max;]% max; é— DD DY AN (19b)
(Zt > ¢ (Ui — @it—1)+)

<EQC 22 i) (20a)

< (14 k) max; ¢ max; ¢ b Et Do Y i (20b)

(19a) and (20a) follow analogously from (12a). (19b) and
(20b) omit all the details, and follow analogously from (16a)~
(16d) and (17a) ~ (17f). We embed v};* = (Z;y — Z;j1—1)" and
wi = (i — git,l)ﬂ Vi, Vt into the above derivations. [

V. EXPERIMENTAL STUDY
A. Data and Settings

Cloudlets and Delay. We envisage the cloudlets deployment
at London’s underground stations. We assume all passengers
can connect to the underground cloudlet network via their local
WiFi. A passenger’s requests may be served by any cloudlet,
and if served by a remote one in the network, the service delay
is approximated as the geographical distance between the local
station and that remote station [20]. Out of London’s 268
underground stations [21], we assume the cloudlets are located
at the largest 100 stations based on the annual passenger count.

Workload and Processing. We use the dynamic passenger
numbers at a station to represent the workload originated from
that station. From Transport for London [21], we acquire such
passenger data for every underground station, measured for
every quarter (15 minutes) for a weekday, a Saturday, and a
Sunday around Nov. 16, 2016. We consider a 1-week period
of 672 quarters or time slots. As an example, Figure 3 depicts
the workloads of the largest 3 stations, where we repeat the
weekday data for 5 days to mimic Monday through Friday.
Without loss of generality, we assume servers are homogenous
and a server can process 1000 requests at a time slot.

Resource Price. We assume that all London’s underground
cloudlets are powered by the same wholesale electricity mar-
ket. We use the hourly electricity price of European Electricity
Index (ELIX) reported by EPEX SPOT [15] for Monday, Nov.
14 through Sunday, Nov. 20, 2016, also shown in Figure 3.

1.2 Watorco 100 — 2.5 = - 1.5 -reg+r - 25 ==
~ T Kinge - @ reg+r [@ ipt+
King's Cross St. Pancr
<r‘o_ 10 Vlc‘g;a oss St. Pancras 80§ 8 20 -Icp+r 8 -Icp+r 8 20 -reg+d
c —— ELIX electricity g = |:|grb = 10 l:lgl’b = l:liptﬂ'
§0.8 eo% 9O 1.5 grb (s) S T |grb (s) S 1.5 Jreg+r
80.6 2 3 B 3
g 40z N10 Nos 210
204§ £ s < O =
3 w05 EO5 £ £05
202 g 8 2 g
ol 1 W M @ U % 0 0 0
1 100 200 300 400 500 600 12 14 16 18 20 0 1 2 3 4

quarter (15 min.)

weight on switching

Fig. 3: Dynamic inputs Fig. 4: Impact of switching cost

Cloudlet Capacity. We sum up the peak values of all the
workloads from all the underground stations, divide that sum
by the total number of cloudlets, translate that quotient into
the number of servers, and use it as the cloudlet capacity. We
use the workload to estimate the data center capacity [8].

Algorithms. We implement multiple algorithms. We also
compose a deterministic, best-effort rounding algorithm below.
Given the fractional solution (x¢,yt, 2t), for each cloudlet ¢,
we use |y;:] as the number of servers if it is a sufficient
number for the workload R; > ; Tijt; otherwise, we use [yit]-
If the number of servers is zero, we use | z;: |, and the cloudlet
is off; otherwise, we use [z;], and the cloudlet is on.

We adopt the two state-of-the-art solvers in our evaluations:
IPOPT [23], for solving convex programs via barrier methods,
and Gurobi [24], for solving mixed-integer linear programs
via simplex, branch-and-bound, and other heuristics. We use
“grb” to refer to using Gurobi to solve P with (1f), i.e., the
integer constraint, at every ¢, “ipt” to refer to using IPOPT to
solve Py at every ¢, and “reg” to refer to using our regularized
online algorithm that solves Py at every ¢, with € = 0.001.

To highlight the benefit of the multi-granularity control, we
compare our algorithm “reg+r” to multiple others as follows,
including the single granularity control “grb (s) ™

e reg+r: regularization, randomized pairwise rounding;

e lcp+r: the Lazy Capacity Provisioning algorithm [3],

randomized pairwise rounding;

e grb: Gurobi;

e grb (s): Gurobi for server control only—an cloudlet is

on if servers are non-zero, and is off otherwise.
To compare different combinations of fractional online algo-
rithms and rounding algorithms, we further have the following:
¢ ipt+d: IPOPT, deterministic rounding as above;

e reg+d: regularization, deterministic rounding as above;

e ipt+r: IPOPT, randomized pairwise rounding.

We do not consider the offline optimal integral solution. It is
not practical, as it takes an unacceptably long time for Gurobi
to find it for the (even small) problem instances in our case.

Weights and PUE. We vary the weight of the switching cost
to obtain a spectrum of results, so that we avoid interpreting
the concrete metric represented by the switching cost, as it
can capture a range of metrics as stated earlier. Given the
weight y, we vary log x as an integer in [0, 4]; we abuse the
term “weight” and use it to refer to log x in our results. For
the weight of the delay, we set it less than the weight of the
switching cost, as cloudlets are close to users and connected

PUE
Fig. 5: Impact of the PUE

weight on switching

Fig. 6: Algorithm combinations

via high-speed networks. We vary the PUE in [1,2], which
contributes to the weight of the operational cost of the cloudlet;
we fix the weight of the operational cost of the server as 1.

B. Evaluation Results

Figure 4 contrasts reg+r with the multi-granularity 1cp+r
and grb, and the single granularity grb (s), as the weight of
the switching cost increases. reg+r incurs about 15% ~40%,
30% ~50%, and 40% ~ 60% less total cost than 1cp+r, grb,
and grb (s), respectively. As the weight increases, the gap
between reg+r and others expands, since the former handles
the switching cost well; the gap between grb (s) and others
shrinks, since it is more inclined to leave the servers always
on and the cloudlet on, and whether to control the cloudlets
separately becomes less influential. 1cp+r does not do well,
as its lazy capacity principle, designed for server control only,
cannot suit well when controlling both servers and cloudlets.

Figure 5 compares the same group of algorithms as the PUE
grows. reg+r incurs about 15% ~ 65% less total cost than
all other algorithms. The cost incurred by grb (s) increases,
and goes further away from other algorithms. This is because it
does not control cloudlets and leaves more cloudlets on, and
thus incurs more cost as the PUE grows. The cost incurred
by reg+r increases as well, and gets closer to those of
lcp+r and grb. This is because, despite reg+r handles
the switching cost well, the operational cost becomes more
important as the PUE grows, and thus its advantage decreases.

Figure 6 checks the performance of different combinations
of the fractional online algorithms and the rounding algo-
rithms. reg+r is the best, and has about 5% ~25% less total
cost than the next best algorithm in each case. As the weight of
the switching cost grows, for all rounding algorithms, our reg
is better and the gap between it and ipt becomes larger; for
all fractional online algorithms, our randomized rounding r is
better and the gap between it and the deterministic rounding
d becomes smaller. Regularization handles the switching cost
better, but the randomized rounding tends to sacrifice that
advantage due to its random selection of fractional decisions.

Figures 7 visualizes the number of the active cloudlets as
time goes. Single granularity grb (s) tends to involve more
cloudlets. Multi-granularity reg+r controls the cloudlets as
well and uses our iterative, randomized rounding process to
aggregate the workloads to a fewer number of cloudlets.

Figure 8 focuses on the execution time of the algorithms on
a MacBook Pro laptop with a 2.6 GHz CPU. Passengers from
the 100 largest stations issue requests, and the 10~ 50 largest

@100 |—reg+r ® 30 Il time of ipt/reg/grb
o ——grb (s) o [Jtimeof r
T80 ~— 2.5 [|=—trend for ipt+r
o 2 5 o ||[—trend for reg+r
; 60 g 1'5 ——trend for grb
5 40 s
o] 20 ‘g‘ 1.0
g o 0.5

0 o 9

1 100 200 300 400 500 600 10 20 30 40 50

quarter (15 min.)

number of cloudlets

Fig. 7: Cloudlets usage Fig. 8: Execution time

stations host cloudlets. grb is rather unscalable; ipt+r and
reg+r scale much better and the execution time grows more
slowly. Our randomized rounding r occupies about 30% ~
55% of the total time of ipt+r and reg+r.

VI. RELATED WORK

Previous works have studied the online control of servers
in cloud data centers. Lin et al. [3] proposed the lazy capacity
provisioning algorithm and proved its competitiveness. Lu et
al. [4] controlled multiple resources such as on-site electricity
generators and servers via online algorithms based on the “ski-
rental” idea. Tu et al. [9] investigated the joint server control
and job scheduling, and designed online algorithms also based
on “ski-rental”. Jiao et al. [10] studied the multi-tier clouds
and devised regularization-based online algorithms to control
the servers in clouds and the networks across clouds.

Such works either make assumptions that do not hold for
our case (e.g., fractional server numbers, fixed or bounded
prices), or lack of considerations of the challenges in our case
(e.g., workload distribution, joint server and cloudlet control).
Their algorithms are not directly adaptable to our problem.

There also exists research on edge cloud resource allocation
and control. Hou et al. [11] worked on a cloudlet-cloud joint
architecture and developed online algorithms to download ser-
vices to cloudlets to handle the varying user requests. Chen et
al. [2] focused on computation offloading for edge computing,
and made both job offloading and resource allocation deci-
sions. Wang et al. allocated resources and migrated workloads
to accommodate user mobilities [12] and also allocated social-
network-based service entities [13] at edge clouds.

Such works have not explored the potential of the multi-
granularity control for cloudlets and are thus complementary
to our work. Their solutions fall insufficient for our scenario.

VII. CONCLUSION

We propose and study the multiple granularity control
of cloudlet networks to push the limits of edge computing
beyond the current single granularity server control paradigm.
We design an online algorithmic framework to make control
decisions for servers, cloudlets, and workload distribution on
the fly, with theoretically provable performance guarantees
towards the offline optimum. We also conduct extensive ex-
periments using large-scale real-world data to demonstrate and
validate the practical advantages of our proposed approach.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CNS 1564348 and

CNS 1703014, by the National Natural Science Foundation of
China (NSFC) under Grant No. 61702287 and 61761136014,
by the German Research Foundation (DFG) under Grant No.
392046569, and also by the DFG Collaborative Research
Center 1053 MAKI. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF,
NSFC, or DFG.

REFERENCES

[1] B. P. Rimal, D. P. Van, and M. Maier, “Cloudlet enhanced fiber-wireless
access networks for mobile-edge computing,” IEEE Transactions on
Wireless Communications, vol. 16, no. 6, pp. 3601-3618, 2017.

[2] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in /[EEE INFOCOM, 2017.

[3] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions on
Networking, vol. 21, no. 5, pp. 1378-1391, 2013.

[4] L. Lu, J. Tu, C.-K. Chau, M. Chen, and X. Lin, “Online energy
generation scheduling for microgrids with intermittent energy sources
and co-generation,” in ACM SIGMETRICS, 2013.

[5] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, and J. Kim,
“Thermal-aware Scheduling in Green Data Centers,” ACM Computing
Surveys, vol. 47, no. 3, 2015.

[6] M. Ganeshalingam, A. Shehabi, and L.-B. Desroches, “Shining a Light
on Small Data Centers in the US,” in EEDAL, 2017.

[7]1 “Efficiency: How we do it - Data Centers - Google,” https://www.google.
com/about/datacenters/efficiency/internal.

[8] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Greening
Geographical Load Balancing,” in ACM SIGMETRICS, 2011.

[9] J. Tu, L. Lu, M. Chen, and R. K. Sitaraman, “Dynamic provisioning

in next-generation data centers with on-site power production,” in ACM

e-Energy, 2013.

L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed Online Re-

source Allocation in Multi-tier Distributed Cloud Networks,” IEEE/ACM

Transactions on Networking, vol. 25, no. 4, pp. 2556-2570, 2017.

I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal al-

gorithm for online reconfiguration of edge-clouds,” in ACM MOBIHOC,

2016.

L. Wang, L. Jiao, J. Li, and M. Miihlhduser, “Online resource allocation

for arbitrary user mobility in distributed edge clouds,” in IEEE ICDCS,

2017.

L. Wang, L. Jiao, T. He, J. Li, and M. Miihlhduser, “Service entity

placement for social virtual reality applications in edge computing,” in

IEEE INFOCOM, 2018.

M. C. Calzarossa, L. Massari, and D. Tessera, “Workload Characteri-

zation: A Survey Revisited,” ACM Computing Surveys, vol. 48, no. 3,

2016.

“EPEX SPOT SE: European Electricity Index (ELIX),” https://www.

epexspot.com/en/market-data/elix.

“Amazon EC2 Spot Instances Pricing,” https://aws.amazon.com/ec2/

spot/pricing/.

N. Buchbinder, S. Chen, and J. S. Naor, “Competitive Analysis via

Regularization,” in ACM-SIAM SODA, 2014.

A. A. Ageev and M. 1. Sviridenko, “Pipage Rounding: A New Method of

Constructing Algorithms with Proven Performance Guarantee,” Journal

of Combinatorial Optimization, vol. 8, no. 3, pp. 307-328, 2004.

R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Dependent

Rounding and Its Applications to Approximation Algorithms,” Journal

of the ACM, vol. 53, no. 3, pp. 324-360, 2006.

“List of London Underground Stations - OpenStreetMap Wiki,” http://

wiki.openstreetmap.org/wiki/List_of_London_Underground_stations.

“Our open data - Transport for London,” https://tfl.gov.uk/info-for/

open-data-users/our-open-data.

R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips, “Strength-

ening Integrality Gaps for Capacitated Network Design and Covering

Problems,” in ACM-SIAM SODA, 2000.

“Interior Point Optimizer,” https://projects.coin-or.org/Ipopt.

“Gurobi Optimization - The State-of-the-Art Mathematical Programming

Solver,” http://www.gurobi.com.

[10]

(11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]
[21]
[22]

(23]
[24]

