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Abstract
Iterative linear solvers have gained recent popularity due to their computational
efficiency and low memory footprint for large-scale linear systems. The relaxation
method, or Motzkin’s method, can be viewed as an iterative method that projects the
current estimation onto the solution hyperplane corresponding to the most violated
constraint. Although this leads to an optimal selection strategy for consistent sys-
tems, for inconsistent least square problems, the strategy presents a tradeoff between
convergence rate and solution accuracy. We provide a theoretical analysis that shows
Motzkin’s method offers an initially accelerated convergence rate and this accelera-
tion depends on the dynamic range of the residual. We quantify this acceleration for
Gaussian systems as a concrete example. Lastly, we include experimental evidence on
real and synthetic systems that support the analysis.
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1 Introduction

We consider solving large-scale systems of linear equations represented by a matrix
A ∈ R

m×n and vector b ∈ R
m ; we use the convention that vectors are bold type, and

matrices and scalars are not. We are interested in the highly overdetermined setting,
where m � n, which means the system need not necessarily have a solution. Iterative
solvers like the Kaczmarz method [7,17], Motzkin’s method [1,4,10], and the Gauss-
Seidel method [8,9] have become re-popularized recently for such problems since they
are particularly efficient in terms of computation and storage.

The Kaczmarz method is a popular iterative solver for overdetermined systems of
linear equations and is especially preferred for large-scale systems since it need not
ever load the entire system into memory at once. The method consists of sequential
orthogonal projections toward the solution set of a single equation (or subsystem).
Given the system Ax = b, the method computes iterates by projecting onto the
hyperplane defined by the equation aT

i x = bi where aT
i is a selected row of the

matrix A and bi is the corresponding entry of b. The iterates are recursively defined
as

xk+1 = xk + bi − aT
i xk

‖ai‖2 ai (1.1)

where aT
i is selected from among the rows of A (and the initialization x0 is chosen

arbitrarily). The seminal work of Strohmer and Vershynin [17] proved exponential
convergence for the randomized Kaczmarz method where the i th row aT

i is chosen
with probability ‖ai‖2/‖A‖2F . Since then many variants of the method have been
proposed and analyzed for various types of systems, see e.g., [3,5,6,13–15,19] and
references therein.

It is known that the randomized Kaczmarz method converges for inconsistent sys-
tems (or equivalently those corrupted by noise) with an error threshold dependent on
A and the noise. In [11] it was shown that this method has iterates that satisfy:

E‖xk − xLS‖2 ≤
(
1 − σ 2

min(A)

‖A‖2F

)k

‖x0 − xLS‖2 + ‖A‖2F
σ 2
min(A)

‖e‖2∞, (1.2)

where here and throughout, the norm without subscript, ‖ · ‖, denotes the Euclidean
norm, σmin(A) denotes the minimum singular value of A, ‖A‖F its Frobenius norm,
xLS the least squares solution and e = b − AxLS denotes the error term. There are
variants of this method that converge to the least squares solution, e.g. [19] that utilizes
an additional projection step to project off the error term e.Additionally, it is known that
if a linear system of equations or inequalities is feasible then randomized Kaczmarz
will provide a proof or certificate of feasibility, and there are probabilistic guarantees
on how quickly it will do so [4].

A related but seemingly disjointedly studied work is an approach by Agmon [1],
and Motzkin and Schoenberg [10], re-imagined a few years later as the now famous
perceptron algorithm [16]. These approaches are most often used for feasibility prob-
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Fig. 1 An example of a series of projections using the Motzkin approach on an inconsistent system. Lines
represent the hyperplanes consisting of sets {x : aT

i x = bi } for rows aT
i of A, and x∗ denotes the desired

solution

lems, where one seeks a point that resides within some polyhedron described by a
system of inequalities; of course, linear systems of equations are one special instance.
Additionally, this so-called Motzkin method has been referred to as the Kaczmarz
method with the “most violated constraint” or “maximal-residual” control [2,13,14].
As these descriptors suggest, this method iterates in a similar fashion as the Kaczmarz
method, but rather than selecting a row of A in sequential or randomized order, it
selects the row corresponding to the most violated constraint, as described in Algo-
rithm 1. Starting from any initial point x0, the method proceeds as follows. If the
current point xk is a solution, the method terminates; otherwise there must be a con-
straint aT

i x = bi that is most violated. The constraint defines a hyperplane H . The
method then projects xk onto this hyperplane as in (1.1), or perhaps under/over projects
using an alternate step-size, see [4,10] for details. Selecting the most violated con-
straint is intuitive for feasibility problems or for solving consistent linear systems of
equations. In the inconsistent case, it may not always make sense to project onto the
most violated constraint; see Fig. 1 for a simple example of this situation. However,
following [4], we present experimental evidence that suggestsMotzkin’s method often
offers an initially accelerated convergence rate, both for consistent and inconsistent
systems of equations.

Algorithm 1Motzkin method (for normalized A)
1: procedure Motzkin(A,b, x0, k,)
2: for j = 1, 2, ..., k do
3: x j = x j−1 + (bi j − aT

i j
x j−1)ai j where i j = argmax

i∈[m]
(aT

i x j−1 − bi )
2.

4: end for
5: return xk
6: end procedure
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1.1 Contribution

We show that Motzkin’s method for systems of linear equations features an initially
accelerated convergence rate when the residual has a large dynamic range.We provide
bounds for the iterate error which depend on the dynamic range of the residual. These
bounds can potentially be used when designing stopping criteria or hybrid approaches.
Next, for a concrete example we show that Gaussian systems of linear equations have
large dynamic range and provide bounds on this value. We extend this to a corollary
which shows that the initial convergence rate is highly accelerated and our theoretical
bound closely matches experimental evidence.

2 Accelerated convergence of Motzkin’s method

The advantage of the Motzkin method is that by greedily selecting the most violated
constraint, the method makes large moves at each iteration, thereby accelerating con-
vergence. One drawback of course, is that it is computationally expensive to compute
which constraint is most violated. For this reason, De Loera et al. [4] proposed a hybrid
batched variant of the method that randomly selects a batch of rows and then com-
putes the most violated from that batch. This method is quite fast when using parallel
computation, but the method often offers accelerated convergence that outweighs the
increased computational cost even without parallelization techniques. When the sys-
tem is inconsistent, however, there is an additional drawback to the Motzkin method
because projecting onto the most violated constraint need not move the iterate closer
to the desired solution, as already mentioned and shown in Fig. 1. Our first lemma
provides a rule for deciding if a greedy projection offers desirable improvement. Here
and throughout, we assume that the matrix A has been normalized to have unit row
norm, ‖ai‖2 = 1, and that the matrix has full column rank, n.

Lemma 2.1 Let x denote any desired solution of the system given by matrix A and
right hand side b. If e = Ax − b and ‖Axk − b‖∞ > 4‖e‖∞ then the next iterate,
xk+1 defined by Algorithm 1 satisfies

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞.

Proof By definition of xk+1, we have

‖xk+1 − x‖2 = ‖xk − x‖2 − 2(aT
ik+1

xk − bik+1)(a
T
ik+1

xk − bik+1 − eik+1)

+ (aT
ik+1

xk − bik+1)
2

= ‖xk − x‖2 − (aT
ik+1

xk − bik+1)
2 + 2(aT

ik+1
xk − bik+1)eik+1

≤ ‖xk − x‖2 − (aT
ik+1

xk − bik+1)
2 + 2|aT

ik+1
xk − bik+1 | · |eik+1 |

= ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞|eik+1 |
≤ ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞
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≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞. (2.1)

�	
Note that this tells us that while our residual is still large relative to the error,

Motzkin’s method can offer good progress in each iteration. Also, this progress is
better than the expected progress offered by Randomized Kaczmarz (RK) when the
residual has good dynamic range, in particular when:

1

2
‖Axk − b‖2∞ >

1

m
‖Axk − b‖2.

We can use Lemma 2.1 to easily obtain the following corollary.

Corollary 2.1 Let x denote any desired solution of the system given by matrix A and
right hand side b and write e = Ax−b as the error term. Then for any given iteration
k, the iterate defined by Algorithm 1 satisfies either (i) or both (ii) and (iii), where

(i) ‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞

(ii) ‖xk − x‖2 ≤ 25mσ−2
min(A)‖e‖2∞

(iii) ‖xk+1 − x‖2 ≤
(
25mσ−2

min(A) + 8
)

‖e‖2∞.

In addition, if the method is run for K iterations with the stopping criterion ‖AxK −
b‖∞ ≤ 4‖e‖∞, then the method exhibits the (possibly highly accelerated) convergence
rate

‖xK − x‖2 ≤
K−1∏
k=0

(
1 − σ 2

min(A)

4γk

)
· ‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞, (2.2)

≤
(
1 − σ 2

min(A)

4m

)K

‖x0 − x‖2 + 2mσ−2
min(A)‖e‖2∞, (2.3)

with final error satisfying (ii). Here γk bounds the dynamic range of the kth residual,

γk := ‖Axk−Ax‖2
‖Axk−Ax‖2∞ .

Proof Weconsider two cases, depending onwhether ‖Axk −b‖∞ > 4‖e‖∞ or ‖Axk −
b‖∞ ≤ 4‖e‖∞. If the former holds, then (i) is valid by Lemma 2.1. If instead the latter
holds, then we first obtain (ii) by the simple argument

‖xk − x‖2 ≤ σ−2
min(A)‖Axk − Ax‖2

≤ σ−2
min(A)m‖Axk − Ax‖2∞

≤ σ−2
min(A)m

(
‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞ + ‖e‖2∞

)
≤ σ−2

min(A)m
(
16‖e‖2∞ + 8‖e‖2∞ + ‖e‖2∞

)
= 25mσ−2

min(A)‖e‖2∞.
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To obtain (iii) still in this latter case, we continue from (2.1) showing

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞
≤ 25mσ−2

min(A)‖e‖2∞ − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞
≤ 25mσ−2

min(A)‖e‖2∞ + 2‖Axk − b‖∞‖e‖∞
≤ 25mσ−2

min(A)‖e‖2∞ + 8‖e‖2∞
=

(
25mσ−2

min(A) + 8
)

‖e‖2∞.

To prove (2.2) and (2.3), we first note that by choice of stopping criterion, (i) holds
for all 0 ≤ k ≤ K . Thus for all such k, we have

‖xk − x‖2 ≤ ‖xk−1 − x‖2 − 1

2
‖Axk−1 − b‖2∞

= ‖xk−1 − x‖2 − 1

2
‖(Axk−1 − Ax) − e‖2∞

≤ ‖xk−1 − x‖2 − 1

4
‖Axk−1 − Ax‖2∞ + 1

2
‖e‖2∞ (2.4)

= ‖xk−1 − x‖2 − 1

4γk−1
‖Axk−1 − Ax‖2 + 1

2
‖e‖2∞

≤ ‖xk−1 − x‖2 − σ 2
min(A)

4γk−1
‖xk−1 − x‖2 + 1

2
‖e‖2∞

=
(
1 − σ 2

min(A)

4γk−1

)
‖xk−1 − x‖2 + 1

2
‖e‖2∞, (2.5)

where the first line follows from (i), the third from Jensen’s inequality, and the fifth
from properties of singular values.

Iterating the relation given by (2.5) recursively yields1

‖xK − x‖2 ≤
K−1∏
k=0

(
1 − σ 2

min(A)

4γk

)
· ‖x0 − x‖2 +

K−1∑
j=0

j−1∏
k=0

(
1 − σ 2

min(A)

γk

)
1

2
‖e‖2∞

≤
K−1∏
k=0

(
1 − σ 2

min(A)

4γk

)
· ‖x0 − x‖2 +

K−1∑
j=0

(
1 − σ 2

min(A)

4m

) j
1

2
‖e‖2∞

≤
K−1∏
k=0

(
1 − σ 2

min(A)

4γk

)
· ‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞

≤
(
1 − σ 2

min(A)

4m

)K

‖x0 − x‖2 + 2mσ−2
min(A)‖e‖2∞,

1 We use the convention that an empty sum or product equates to one.
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Fig. 2 Convergence of Motzkin’s method and RK on correlated system with corresponding theoretical
bounds

where the second and fourth inequalities follow from the simple bound γk ≤ m and
the third by bounding above by the infinite sum. The last two inequalities complete
the proof of (2.2) and (2.3). �	

Note that Lemma 2.1 and Corollary 2.1 are true for any desired solution, x. Here
the desired solution could be the least squares solution or generally any other point.
However, the residual of the desired solution, Ax − b, determines the error e and the
final error of Motzkin’s method.

We note that the convergence rate given by (2.2) yields a significant improvement
over that given by (1.2) when the dynamic range of many residuals is large, i.e. when
γk 
 m for many iterations k. In Fig. 2, we present the convergence of Motzkin
and RK on a random system which before normalization is defined by matrix A ∈
R
5000×100 with ai j ∼ N (1, 0.5) and b = A1 + ε where 1 denotes the all ones

vector and ε is a Gaussian vector, and the corresponding theoretical bounds. Figure 3
presents plots providing the convergence of Motzkin and RK, and the corresponding
theoretical bounds on systems of equations defined by problems from the Netlib
linear programming benchmark set [12]. These problems contain naturally under-
determined systems, which we transform into overdetermined, inconsistent systems
with nearly the same least-squares solution.We transform the problem, originally given
by the underdetermined systems of equations Ax = b by adding equations to form

[
A
I

]
x =

[
b

xL S + ε

]

where xL S is the least-norm solution of Ax = b and ε is a Gaussian vector with small
variance, and normalizing the resulting system. Each problem has very small error
which is distributed relatively uniformly, thus there are many iterations in which the
theoretical bounds hold. The resulting matrix for problem agg is of size 1103× 615,
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Fig. 3 Convergence ofMotzkin’smethod andRK, and corresponding theoretical bounds for Netlib linear
programming problems. Upper left: agg; upper right: agg2; lower left: agg3; lower right: bandm

the resulting matrix for problem agg2 is of size 1274 × 758, the resulting matrix
for problem agg3 is also of size 1274 × 758, and the resulting matrix for problem
bandm is of size 777×472. These plots are only for the iterations before the stopping
criterion is met.

In Table 1, we include the CPU computation time (computed with the Matlab func-
tioncputime) required to reach residual norm,‖Axk−b‖∞, less than 4‖AxLS−b‖∞;
that is to compute xk with ‖Axk − b‖∞ ≤ 4‖AxLS − b‖∞. We include computation
times averaged over 10 trials for Motzkin’s method and the Randomized Kaczmarz
method on the Netlib problems agg, agg2, agg3, and bandm. Note that this
computation is performed with no parallelization implemented for Motzkin’s method,
which means that each iteration of Motzkin’s method is much more costly than that
of RK. Nevertheless, Motzkin’s method outperforms RK on some of the selected
Netlib problems. However, this is not the focus of this paper, as the acceleration
described in Lemma 2.1 does not necessarily guarantee Motzkin’s method a compu-
tational advantage if the iterations are significantly more costly than those of RK.

This acceleration is in force until the stopping criterion given in the corollary. This
bound therefore, can be used to design such stopping criteria; one could design an
approach for example that utilizes the Motzkin method until reaching this threshold,
and then switching to the traditional RK selection strategy to reduce the convergence
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Table 1 Average CPU
computation times (s) required
to compute iterate xk with
‖Axk − b‖∞ ≤ 4‖AxLS − b‖∞
for the four Netlib problems,
agg, agg2, agg3, and bandm.
These values are averaged over
10 trials

Problem 4‖AxLS − b‖∞ Motzkin (s) RK (s)

agg 2.16 × 10−8 0.723 0.836

agg2 2.77 × 10−9 1.610 1.178

agg3 5.85 × 10−9 2.121 1.195

bandm 2.98 × 10−13 0.191 0.474
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Fig. 4 Left: Motzkin’s method versus RK distance from least-squares solution for a Gaussian system with
Gaussian noise. Right: Motzkin’s method versus RK distance from least-squares solution for a Gaussian
system with sparse, ‘spiky’ noise

horizon. In Fig. 4, we see that Motzkin outperforms RK for the initial iterations (while
‖Axk −b‖∞ � ‖e‖∞) on a system with Gaussian noise. Here, before normalization,
the system consists ofGaussianmatrix A ∈ R

50000×100 and right-hand sideb = A1+e
where 1 is the vector of all ones and e is a Gaussian vector. However, for a system
with sparse, large magnitude error, Motzkin does not perform as well in the long run,
as it suffers from a worse convergence horizon than RK. Here, before normalization,
the system consists of Gaussian matrix A ∈ R

50,000×100 and right-hand side b =
A1 + 15

∑
j∈S e j where e j denotes the j th coordinate vector and S is a uniform

random sample of 50 indices.
To capitalize on this accelerated convergence, one needs knowledge of an upper

bound‖e‖∞ ≤ β, inwhich case the stopping criterion of ‖Axk−b‖∞ ≤ 4β guarantees
the accelerated convergence of (2.2) and a final error of ‖xk − x‖2 ≤ 25mσ−2

min(A)β2.
Indeed, one quickly verifies that when ‖Axk − b‖∞ ≤ 4β, we have

‖xk − x‖ ≤ σ−1
min(A)‖Axk − Ax‖

≤ √
mσ−1

min(A)‖Axk − Ax‖∞
≤ √

mσ−1
min(A) (‖Axk − b‖∞ + ‖e‖∞)

≤ √
mσ−1

min(A) (4β + β).

Since the acceleration of the method occurs when many of the terms γk are small,
we plot an example in Fig. 5. As expected, many terms are bounded away from m. We
will analyze this in the Gaussian case further below.
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Fig. 5 Left: Average γk values for various choices of row dimension, m, of normalized Gaussian A ∈
R

m×100. Right: An example of the values γk for a single run of Motzkin’s method and the corresponding
ratio for RK, the matrix is a 50,000 × 100 Gaussian. The index ik denotes the index chosen in the kth
iteration of each method. The horizontal lines denote the values m and m/ log(m). We see acceleration
when γk < m

Wealso only expect this acceleration to be presentwhile the condition of Lemma2.1
is in force (i.e. prior to the stopping condition given in the corollary).Once the condition
of Lemma 2.1 is no longer satisfied, selecting greedily will select those entries of the
residual which have large contribution from the error, moving the estimation far from
the desired solution. While the difference between greedy selection and randomized
selection is not so drastic for Gaussian noise, it will be drastically different for a sparse
error.We include an example system in Fig. 6 to assist with intuition. Again, one could
of course implement the Kaczmarz approach after an initial use of theMotzkinmethod
as a strategy to gain accelerationwithout sacrificing convergence horizon. In Fig. 7, we
present the convergence of Motzkin’s method, the RK method, and a hybrid method
which consists of Motzkin iterations until ‖Axk − b‖∞ ≤ 4‖e‖∞, followed by RK
iterations. Again we include results on both a systemwith Gaussian error and a system
with a sparse, ‘spiky’ error, with the systems generated as in Fig. 4.

2.1 Heuristics for the Gaussian case

Here, we study heuristics for our convergence results for the Gaussian matrix case.
Note that our results hold for matrices with normalized rows. For simplicity however,
we will consider an m × n matrix whose entries are i.i.d. Gaussian with mean 0
and variance 1/n. We will then assume we are in the asymptotic regime where this
distribution approximates a Gaussian matrix with normalized unit-norm rows2 To that
end, we assume m and n both grow linearly with respect to one another, and that they
are both substantially large.

2 This can be readily verified by observing that the distribution of ai is rotationally invariant and thus(
aT

i
x

‖x‖
)2

has the same distribution as
(
aT

i e1
)2

, where e1 is the first coordinate vector. Thus it has the

same distribution as the ratio of chi-square random variables g21/
∑n

i=1 g2i , for i.i.d. standard normal gi .
One then applies Slutsky’s theorem to obtain the asymptotic result.
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Fig. 6 An example of three iterations of Motzkin’s method (x M
k ) and three iterations of RK (x RK

k ) on a
Gaussian system with sparse, ‘spiky’ error. More of the RK iterations are near the least squares solution
while Motzkin consistently selects the corrupted equation
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Fig. 7 Left: Motzkin’s method, RK, and hybrid distance from least-squares solution for a Gaussian system
with Gaussian noise. Right: Motzkin’s method, RK, and hybrid distance from least-squares solution for a
Gaussian system with sparse, ‘spiky’ noise

Define Ik to be the rows of A that are independent from xk and note that Ik ⊆
Ik−1 ⊆ ... ⊆ I1 ⊆ I0 = [m]. Fix iteration k and define m′ = m − |Ik |. Note that
m − k ≤ m′ ≤ m is the dimension of the sub-matrix whose rows are independent of
the iterates up to iteration k. Throughout this section P and E refer to probability and
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expectation taken with respect to the random and unsampled portion of the matrix A,
AIk , which has m′ rows.

Our first lemma gives a bound on the expected dynamic range for aGaussianmatrix.

Lemma 2.2 If A ∈ R
m×n is a Gaussian matrix with ai j ∼ N (0, 1/n) and x is inde-

pendent of at least m′ rows of A (e.g. constructed via k iterations of Motzkin’s method)
then

E‖Ax‖2
E‖Ax‖2∞

�
n(m′ + ∑

i /∈Ik
‖ai‖2)

log(m′)
.

Proof First note that

E(

m∑
i=1

(aT
i x)

2) =
m∑

i=1

E(aT
i x)

2

≤
m∑

i=1

E(‖ai‖2‖x‖2) by Cauchy-Schwartz

≤
∑
i∈Ik

E(‖ai‖2‖x‖2) +
∑
i /∈Ik

‖ai‖2‖x‖2

= (m′ +
∑
i /∈Ik

‖ai‖2)‖x‖2.

Next, note that if ai and x are independent then aT
i x ∼ N (0, ‖x‖2/n). Then

E(max
i∈[m](a

T
i x)

2) ≥ E(max
i∈Ik

(aT
i x)

2)

≥ E(max
i∈Ik

aT
i x)

2

≥ (Emax
i∈Ik

aT
i x)

2 by Jensen’s inequality

≥ c‖x‖2 log(m′)
n

,

as it is commonly known thatE(maxi∈[N ] Xi ) ≥ cσ
√

logN for Xi ∼ N (0, σ 2). Thus,
we have

E‖Ax‖2∞ ≥ c‖x‖2 log(m′)
n

≥ c
log(m′)

n(m′ + ∑
i /∈Ik

‖ai‖2)E‖Ax‖2.

�	
We can use this lemma along with our main result to obtain the following.

Corollary 2.2 Let A ∈ R
m×n be a normalized Gaussian matrix as described previously,

x denote the desired solution of the system given by matrix A and right hand side
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2 (A)/m)||xk-1 - x||2

Fig. 8 Convergence of Motzkin’s method and RK on Gaussian system with corresponding theoretical rate
for RK and conjectured rate for Motzkin’s method

b, write e = Ax − b as the error term and assume x0 is chosen so that x0 − x
is independent of the rows of A, aT

i . If Algorithm 1 is run with stopping criterion
‖Axk−b‖∞ ≤ 4‖e‖∞, in expectation the method exhibits the accelerated convergence
rate

E‖xk+1 − x‖2 � E

[(
1 − log(m′)σ 2

min(A)

4nm

)
‖xk − x‖2 + 1

2
‖e‖2∞

]
. (2.6)

Proof Beginning from line (2.4) of the proof of Corollary 2.1 and taking expectation
of both sides, we have

E‖xk+1 − x‖2 ≤ E‖xk − x‖2 − 1

4
E‖A(xk − x)‖2∞ + 1

2
E‖e‖2∞

� E‖xk − x‖2 − log(m′)
4n(m′ + ∑

i /∈Ik
‖ai‖2)E‖A(xk − x)‖2 + 1

2
E‖e‖2∞

= E

[
‖xk − x‖2 − log(m′)

4nm
‖Axk − Ax‖2 + 1

2
‖e‖2∞

]

≤ E

[(
1 − log(m′)σ 2

min(A)

4nm

)
‖xk − x‖2 + 1

2
‖e‖2∞

]

where the second inequality follows from Lemma 2.2 and the fourth from properties
of singular values. �	

This corollary implies a logarithmic improvement in the convergence rate if
n << log(m′), at least initially. Of course, we conjecture that the log(m′) term
in (2.6) is an artifact of the proof and could actually be replaced with log(m).
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Additionally, we conjecture that the n in (2.6) is an artifact of the proof. This is
supported by the experiments shown in Figs. 5 and 8. Before normalization, the sys-
tem for the experiment plotted in Fig. 8 is defined by Gaussian A ∈ R

50000×100 and
b = e where e is a Gaussian vector. Furthermore, Corollary 5.35 of [18] provides
a lower bound for the size of the smallest singular value of A with high probabil-
ity, P

(
σmin(A) ≤ √

m/n − 1 − t/
√

n
) ≤ 2e−t2/2. That is, asymptotically σmin(A) is

tightly centered around
√

m/n − 1.

3 Conclusion

We have provided a theoretical analysis for Motzkin’s method for inconsistent sys-
tems. We show that by using such a greedy selection strategy, the method exhibits
an accelerated convergence rate until a particular threshold is reached. This threshold
depends on the dynamic range of the residual, and could be estimated to employ a
strategy that yields acceleration without sacrificing convergence accuracy. We pro-
vide experiments and concrete analysis for Gaussian systems that support our claims.
Future work includes a detailed analysis for other types of relevant systems, theoreti-
cal guarantees when estimating the residual, and the study of computational tradeoffs
as in the framework of [4]. While Motzkin’s method can be more computationally
expensive than RK, understanding the accelerated convergence per iteration will aid
in an analysis of computational tradeoffs for the methods in [4]; in addition, it may
offer significant advantages in parallel architectures. These are important directions
for future work.
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