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ABSTRACT

This paper gives new results for synchronization strings, a po-
werful combinatorial object introduced by [Haeupler, Shahrasbi;
STOC’17] that allows to efficiently deal with insertions and deleti-
ons in various communication problems: (1) We give a determinis-
tic, linear time synchronization string construction, impro-
ving over an O(n®) time randomized construction. Independently
of this work, a deterministic O(n log? log n) time construction was
proposed by Cheng, Li, and Wu. (2) We give a deterministic con-
struction of an infinite synchronization string which outputs
the first n symbols in O(n) time. Previously it was not known whet-
her such a string was computable. (3) Both synchronization string
constructions are highly explicit, i.e., the i’ h symbol can be deter-
ministically computed in O(log i) time. (4) This paper also introdu-
ces a generalized notion we call long-distance synchronization
strings. Such strings allow for local and very fast decoding. In
particular only O(log® n) time and access to logarithmically many
symbols is required to decode any index.

The paper also provides several applications for these improved
synchronization strings: (1) For any § < 1 and ¢ > 0 we pro-
vide an insdel error correcting block code with rate 1 — § — ¢
which can correct any §/3 fraction of insertion and deletion errors
in O(nlog® n) time. This near linear computational efficiency
is surprising given that we do not even know how to compute
the (edit) distance between the decoding input and output in sub-
quadratic time. (2) We show that local decodability implies that
error correcting codes constructed with long-distance synchroni-
zation strings can not only efficiently recover from ¢ fraction of
insdel errors but, similar to [Schulman, Zuckerman; TransInf’99],
also from any O(6/log n) fraction of block transpositions and
block replications. These block corruptions allow arbitrarily long
substrings to be swapped or replicated anywhere. (3) We show that
highly explicitness and local decoding allow for infinite channel
simulations with exponentially smaller memory and deco-
ding time requirements. These simulations can then be used to
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give the first near linear time interactive coding scheme for
insdel errors, similar to the result of [Brakerski, Naor; SODA’13]
for Hamming errors.
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1 INTRODUCTION

This paper gives new results for e-synchronization strings, a
powerful combinatorial object that can be used to effectively deal
with insertions and deletions in various communication problems.

Synchronization strings are pseudo-random non-self-similar se-
quences of symbols over some finite alphabet that can be used to
index a finite or infinite sequence of elements similar to the trivial
indexing sequence 1,2,3,4, ..., n. In particular, if one first indexes
a sequence of n elements with the trivial indexing sequence and
then applies some k insertions or deletions of indexed elements
one can still easily recover the original sequence of elements up
to k half-errors, i.e., erasures or substitutions (where substitutions
count twice). An e-synchronization strings allows essentially the
same up to an arbitrarily small error of e¢n half-errors but instead
of having indexing symbols from a large alphabet of size n, which
grows with the length of the sequence, a finite alphabet size of
¢~90 suffices for ¢-synchronization strings. Often this allows to
efficiently transform insertion and deletion errors into ordinary
Hamming errors which are much better understood and easier to
handle.

One powerful application of synchronization strings is the de-
sign of efficient insdel error correcting codes (ECC), i.e., codes that
can efficiently correct insertions and deletions. While codes for
Hamming errors have been well understood making progress on
insdel codes has been difficult [13, 16, 18, 26, 27, 33]. Synchroniza-
tion strings solve this problem by transforming any regular error
correcting block code C with a sufficiently large finite alphabet into
an essentially equally efficient insdel code by simply indexing the
symbols of C. This leads to the first insdel codes that approach the
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Singleton bound, i.e., for any § < 1 and ¢ > 0 one can get an insdel
code with rate 1 — § — ¢ which, in quadratic time, recovers from
any 9 fraction of insertions or deletions. Further applications are
given in [22, 23]. Most importantly, [23] introduces the notion of a
channel simulation which allows one to use any insertion deletion
channel like a black-box regular symbol corruption channel with
a slightly increased error rate. This can be used to give the first
computationally efficient interactive coding schemes for insdel er-
rors and the first interactive coding scheme for insdel errors whose
communication rate goes to one as the amount of noise goes to
Z€ro.

This paper provides drastically improved constructions of finite
and infinite synchronization strings and a stronger synchroniza-
tion string property which allows for decoding algorithms that are
local and significantly faster. We furthermore give several applica-
tions for these results, including near linear time insertion-deletion
codes, a near linear time coding scheme for interactive communica-
tion over insertion-deletion channels, exponentially better channel
simulations in terms of time and memory, infinite channel simu-
lations, and codes that can correct block transposition and block
replication corruptions.

2 OUR RESULTS, STRUCTURE OF THIS
PAPER, AND RELATED WORK

Next we give an overview of the main results and the overall struc-
ture of this paper. We also put our result in relation to related prior
works.

2.1 Deterministic, Linear Time, Highly Explicit
Construction of Infinite Synchronization
Strings

In [20] the authors introduced synchronization strings and gave a

O(n°) time randomized synchronization string construction. This

construction could not be easily derandomized. In order to provide

deterministic explicit constructions of insertion deletion block co-
des, [20] introduced a strictly weaker notion called self-matching
strings, showed that these strings could be used for code constructi-
ons as well, and gave a deterministic nOW time self-matching string
construction. Obtaining a deterministic construction for synchro-
nization strings, however, was left open. [20] also showed the ex-
istence of infinite synchronization strings. This existence proof

however is highly non-constructive. In fact, even the existence of a

computable infinite synchronization string was left open; i.e., up

to this paper there was no algorithm that would compute the i* h

symbol of some infinite synchronization string in finite time.

In this paper, we give deterministic constructions of finite and
infinite synchronization strings. Instead of going to a weaker no-
tion, as done in [20], Section 4.1 introduces a stronger notion called
long-distance synchronization strings. Interestingly, while the exis-
tence of these generalized synchronization strings can be shown
with a similar Lovasz local lemma based proof as for plain syn-
chronization strings, this proof allows for an easier derandomi-
zation, which leads to a deterministic polynomial time con-
struction of (long-distance) synchronization strings. Beyond
this derandomization, the notion of long-distance synchronization
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strings turns out to be very useful and interesting in its own right,
as will be shown later.

Next, two different boosting procedures, which make synchro-
nization string constructions faster and more explicit, are given.
The first boosting procedure, given in Section 4.4, leads to a de-
terministic linear time synchronization string construction.
We remark that concurrently and independently Cheng, Li, and
Wu obtained a deterministic O(n log? log n) time synchronization
string construction [9].

Our second boosting step, which is introduced in Section 4.3,
makes our synchronization string construction highly-explicit,
i.e., allows to compute any position of an n long synchronization
string in time O (log n). This highly-explicitness is a property of
crucial importance in most of our new applications.

Lastly, in Section 4.5 we give a simple transformation which
allows us to use any construction for finite length synchronization
strings and utilize it to give an construction of an infinite synchro-
nization string. This transformation preserves highly-explicitness.
Infinite synchronization strings are important for applications in
which one has no a priori bound on the running time of a system,
such as, streaming codes, channel simulations, and some interactive
coding schemes. Overall we get the following simple to state theo-
rem:

THEOREM 2.1. For any 0 < ¢ < 1, there exists an infinite ¢-
synchronization string S over an alphabet of size 90 and a de-
terministic algorithm which for any i takes O(log i) time to compute
Sli,i+logi), ie. thei" symbol of S (as well as the nextlog i symbols).

Since any substring of an e-synchronization string is also an
e-synchronization string itself this infinite synchronization string
construction also implies a deterministic linear time construction
of finite synchronization strings which is fully parallelizable. In
particular, for any n there is a linear work parallel NC! algorithm
with depth O(log n) and O(n/log n) processors which computes the
e-synchronization string S[1, n].

2.2 Long Distance Synchronization Strings and
Fast Local Decoding

Section 5 shows that the long-distance property we introduced in
Section 4.1, together with our highly explicit constructions from
Section 4.3, allows the design of a much faster and highly local
decoding procedure. In particular, to decode the index of an element
in a stream that was indexed with a synchronization string it suffices
to look at only O(log n) previously received symbols. The decoding
of the index itself furthermore takes only O(log® n) time and can
be done in a streaming fashion. This is significantly faster than the
O(n?) streaming decoder or the O(n?) global decoder given in [20].

The paper furthermore gives several applications which demon-
strate the power of these improved synchronization string con-
structions and the local decoding procedure.
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2.3 Application: Codes Against Insdels, Block
Transpositions and Replications

2.3.1 Near Linear Time Decodable Error Correcting Codes. Fast
encoding and decoding procedures for error correcting codes have
been important and influencial in both theory and practice. For
regular error correcting block codes, the celebrated expander code
framework given by Sipser and Spielman [32] and in Spielman’s
thesis [34] as well as later refinements by Alon, Edmonds, and
Luby [1] as well as Guruswami and Indyk [14, 15] gave good ECCs
with linear time encoding and decoding procedures. Very recently,
a beautiful work by Hemenway, Ron-Zewi, and Wooters [24] achie-
ved linear time decoding also for capacity achieving list decodable
and locally list recoverable codes.

The synchronization string based insdel codes in [20] have linear
encoding times but quadratic decoding times. As pointed out in
[20], the latter seemed almost inherent to the harsher setting of
insdel errors because “in contrast to Hamming codes, even computing
the distance between the received and the sent/decoded string is an
edit distance computation. Edit distance computations in general do
usually not run in sub-quadratic time, which is not surprising given
the recent SETH-conditional lower bounds [2]”. Very surprisingly to
us, our fast decoding procedure allows us to construct insdel codes
with near linear decoding complexity:

THEOREM 2.2. For any § < 1 and ¢ > 0 there exists an insdel
error correcting block code with rate 1 — § — ¢ that can correct from
any §/3 fraction of insertions and deletions in O(nlog® n) time. The
encoding time is linear and the alphabet bit size is near linear in ﬁ

Note that for any input string the decoder finds the codeword
that is closest to it in edit distance, if a codeword with edit distance
of at most O(8n) exists. However, computing the distance between
the input string and the codeword output by the decoder is an edit
distance computation. Shockingly, even now, we do not know of any
sub-quadratic algorithm that can compute or even crudely approxi-
mate this distance between input and output of our decoder, even
though intuitively this seems to be much easier almost prerequisite
step for the distance minimizing decoding problem itself. After all,
decoding asks to find the closest (or a close) codeword to the input
from an exponentially large set of codewords, which seems hard to
do if one cannot even approximate the distance between the input
and any particular codeword.

2.3.2  Application: High-Rate InsDel Codes that Efficiently Cor-
rect Block Transpositions and Replications. Section 6.2 gives another
interesting application of our local decoding procedure. In parti-
cular, we show that local decodability directly implies that insdel
ECCs constructed with our highly-explicit long-distance synchro-
nization strings can not just efficiently recover from § fraction of
insdel errors but also from any O(8/log n) fraction of block trans-
positions and block replications. Block transpositions allow for
arbitrarily long substrings to be swapped while a block replication
allows for an arbitrarily long substring to be duplicated and inserted
anywhere else. A similar result, albeit for block transpositions only,
was shown by Schulman, Zuckerman [30] for the efficient constant
distance constant rate insdel codes given by them. They also show
that the O(8/log n) resilience against block errors is optimal up to
constants.
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2.4 Application: Exponentially More Efficient
Infinite Channel Simulations

[23] introduced the powerful notion of a channel simulation. In
particular, [23] showed that for any adversarial one-way or two-way
insdel channel one can put a simple black-box at both ends such that
to any two parties interacting with these black-boxes the behavior
is indistinguishable from a much nicer Hamming channel which
only introduces (a slightly larger fraction of) erasures and symbol
corruptions. To achieve this these black-boxes were required to
know a prior for how many steps T the channel would be used and
required an amount of memory size that is linear in T. Furthermore,
for each transmission at a time step ¢ the receiving black-box would
perform a O(t®) time computation. We show that using our locally
decodable highly explicit long-distance synchronization strings
can reduce both the memory requirement and the computation
complexity exponentially. In particular each box is only required
to have O(log t) bits of memory (which is optimal because at the
very least it needs to store the current time) and any computation
can be done in O(log? t) rounds. Furthermore due to our infinite
synchronization string constructions the channel simulations black-
boxes are not required to know anymore for how much time overall
the channel will be used. These drastic improvements make channel
simulations significantly more useful and indeed potentially quite
practical.

2.5 Application: Near-Linear Time Interactive
Coding Schemes for InsDel Errors

Interactive coding schemes, as introduced by Schulman [28, 29],
allow to add redundancy to any interactive protocol between two
parties in such a way that the resulting protocol becomes robust
to noise in the communication. Interactive coding schemes that
are robust to symbol corruptions have been intensely studied over
the last few years [4, 5, 7, 10-12, 19, 25]. Similar to error correcting
codes the main parameters for an interactive coding scheme is the
fraction of errors it can tolerate[7, 10, 28, 29] its communication
rate[19, 25] and its computational efficiency [4, 5, 11, 12]. In particu-
lar, Brakerski and Kalai [4] gave the first computationally efficient
polynomial time interactive coding scheme. Brakerski and Naor [5]
improved the complexity to near linear. Lastly, Ghaffari and Haeu-
pler [12] gave a near-linear time interactive coding scheme that also
achieved the optimal maximal robustness. More recently interactive
coding schemes that are robust to insertions and deletions have
been introduced by Braverman, Gelles, Mao, and Ostrovsky [6] sub-
sequently Sherstov and Wu [31] gave a scheme with optimal error
tolerance and Haeupler, Shahrasbi, and Vitercik [23] used channel
simulations to give the first computationally efficient polynomial
time interactive coding scheme for insdel errors. Our improved
channel simulation can be used together with the coding scheme
from [12] to directly get the first interactive coding scheme for in-
sertions and deletions with a near linear time complexity - i.e., the
equivalent of the result of Brakerski and Naor [5] but for insertions
and deletions.
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3 DEFINITIONS AND PRELIMINARIES

In this section, we provide the notation and definitions we will
use throughout the rest of the paper. We also briefly review key
definitions and techniques from [20, 23].

3.1 String Notation

String Notation. Let S € " and §’ € 3" be two strings over
alphabet 3. We define S - S’ € 3"*" to be their concatenation.
For any positive integer k we define sk to equal k copies of S
concatenated together. For i, j € {1, ..., n}, we denote the substring
of S from the i index through and including the j* h index as S[i, j].
Such a consecutive substring is also called a factor of S. For i < 1
we define S[i, j] = L™*1 . §[1, j] where L is a special symbol not
contained in ¥. We refer to the substring from the i’ h index through,
but not including, the j*" index as S[i, j). The substrings S(i, j] and
S(i, j) are similarly defined. S[i] denotes the ith symbol of S and
|S| = n is the length of S. Occasionally, the alphabets we use are
the cross-product of several alphabets,ie. X = %1 X --- X2, . If T
is a string over X, then we write T[i] = [ay, ..., an], where a; € Z;.
Finally, symbol by symbol concatenation of two strings S and T of
similar length is [(S1, T1), (S2, T2), - - - |-

Edit Distance. Throughout this work, we rely on the well-known
edit distance metric defined as follows.

Definition 3.1 (Edit distance). The edit distance ED(c, ¢’) between
two strings ¢,¢’ € £* is the minimum number of insertions and
deletions required to transform ¢ into ¢’.

It is easy to see that edit distance is a metric on any set of strings
and in particular is symmetric and satisfies the triangle inequality
property. Furthermore, ED (c,¢’) = |¢| + |¢’| = 2- LCS (¢, ¢’), where
LCS(c, ¢’) is the longest common substring of ¢ and ¢’.

Definition 3.2 (Relative Suffix Distance). For any two strings
S,S” € * we define their relative suffix distance RSD as follows:
 EDGSUSI =K. ISI1. S"(1S"] = K. 1S"1D

RSD(S, ") =
(5,5") = ma ok

k>0

LEmMA 3.3. For any strings S1, S2, S3 we have

Symmetry: RSD(S1, S2) = RSD(Sz, S1),

Non-Negativity and Normalization: 0 < RSD(S1,S2) < 1,
Identity of Indiscernibles: RSD(S1, S2) = 0 & S = Sy, and

In particular, RSD defines a metric on any set of strings.

3.2 Synchronization Strings

We now recall synchronization string based techniques and rele-
vant lemmas from [20, 23] which we will be of use here. In short,
synchronization strings allow communicating parties to protect
against synchronization errors by indexing their messages without
blowing up the communication rate. The general idea of coding
schemes introduced and utilized in [20, 23], is to index any commu-
nicated symbol in the sender side and then guess the actual position
of received symbols on the other end using the attached indices.
A straightforward candidate for such technique is to attach
1,---,nto communicated symbols where n indicates the rounds of
communication. However, this trivial indexing scheme would not

Triangle Inequality:RSD(S1, S3) < RSD(S1, S2)+RSD(S2, S3).
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lead to an efficient solution as it requires assigning a log n-sized
space to indexing symbols. This shortcoming accentuates a natural
trade-off between the size of the alphabet among which indexing
symbols are chosen and the accuracy of the guessing procedure on
the receiver side.

Haeupler and Shahrasbi [20] introduce e-synchronization strings
as well-fitting candidates for this matter. This family of strings, pa-
rametrized by ¢, are over alphabets of constant size in terms of
communication length n and dependent merely on parameter ¢.
e-synchronization strings can convert any adversarial k synchro-
nization errors into hamming-type errors. The extent of disparity
between the number translated hamming-type errors and k can be
controlled by parameter «.

Imagine Alice and Bob as two parties communicating over a
channel suffering from up to §-fraction of adversarial insertions
and deletions. Suppose Alice sends a string S of length n to Bob. On
the other end of the communication, Bob will receive a distorted
version of S as adversary might have inserted or deleted a number
of symbols. A symbol which is sent by Alice and is received by
Bob without being deleted by the adversary is called a successfully
transmitted symbol.

Assume that Alice and Bob both know string S a priori. Bob
runs an algorithm to determine the actual index of each of the
symbols he receives, in other words, to guess which element of S
they correspond to. Such algorithm has to return an number in [1, n]
or “I don’t know” for any symbol of S;. We call such an algorithm
an (n, )-indexing algorithm.

Ideally, a indexing algorithm is supposed to correctly figure
out the indices of as many successfully transmitted symbols as
possible. The measure of misdecodings has been introduced in [20]
to evaluate the quality of a (n, §)-indexing algorithm as the number
of successfully transmitted symbols that an algorithm might not
decoded correctly. An indexing algorithm is called to be streaming
if its output for a particular received symbol depends only on the
symbols that have been received before it.

Haeupler and Shahrasbi [20] discuss e-synchronization strings
along with several decoding techniques for them.

Definition 3.4 (e-Synchronization String). String S € 2" is an
e-synchronization string if for every 1 < i < j < k < n+ 1 we have
that ED (S[i, j), S[j, k)) > (1 — €)(k — i). We call the set of prefixes
of such a string an e-synchronization code.

We will make use of the global decoding algorithm from [20]
described as follows.

THEOREM 3.5 (THEOREMS AND 6.14 FROM [20]). There is a de-
coding algorithm for an e-synchronization string of length n which
guarantees decoding with up to O(nv) misdecodings and runs in

O(n?/Ve) time.

THEOREM 3.6 (THEOREM 4.1 FROM [20]). Given a synchroniza-
tion string S over alphabet g with an (efficient) decoding algorithm
Ds guaranteeing at most k misdecodings and decoding complexity
Tp(n) and an (efficient) ECC C over alphabet ¢ with rate R,
encoding complexity Tg ., and decoding complexity Tq, that corrects
up to nd + 2k half-errors, one obtains an insdel code that can be (effi-
ciently) decoded from up toné insertions and deletions. The rate of this

code is at least The encoding complexity remains

R
1+log [Es|/log [Zc|
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Lemma 4.6 Lemma 4.10
Theorem 4.5 Theorem 4.7 Theorem 4.15

_—

Guruswami and Indyk ['05)

Lemma 4.13
Lemma 4.12

Figure 1: Schematic flow of Theorems and Lemmas of
Section 4

Theorem 4.14

Theorem 4.16
Haeupler and
Shahrasbi ['17)

Tg,» the decoding complexity is Ty, + Tpg(n) and the preprocessing
complexity of constructing the code is the complexity of constructing
C andS.

4 HIGHLY EXPLICIT CONSTRUCTIONS OF
LONG-DISTANCE AND INFINITE
e-SYNCHRONIZATION STRINGS

We start this section by introducing a generalized notion of syn-
chronization strings in Section 4.1 and then provide a deterministic
efficient construction for them in Section 4.2. In Section 4.3, we
provide a boosting step which speeds up the construction to li-
near time in Theorem 4.7. In Section 4.4, we use the linear time
construction to obtain a linear-time high-distance insdel code (The-
orem 4.14) and then use another boosting step to obtain a highly-
explicit linear-time construction for long-distance synchronization
strings in Theorem 4.15. We provide similar construction for infinite
synchronization strings in Section 4.5. A pictorial representation of
the flow of theorems and lemmas in this section can be found in
Figure 1.

4.1 Long-Distance Synchronization Strings

The existence of synchronization strings is proven in [20] using an
argument based on Lovasz local lemma. This lead to an efficient
randomized construction for synchronization strings which can-
not be easily derandomized. Instead, the authors introduced the
weaker notion of self-matching strings and gave a deterministic
construction for them. Interestingly, in this paper we introduce a
revised notion, denoted by f(I)-distance e-synchronization strings,
which generalizes e-synchronization strings and allows for a deter-
ministic construction.

Note that the synchronization string property poses a require-
ment on the edit distance of neighboring substrings. f(I)-distance
e-synchronization string property extends this requirement to any
pair of intervals that are nearby. More formally, any two intervals
of aggregated length [ that are of distance f(I) or less have to satisfy
the edit distance property in this generalized notion.

Definition 4.1 (f (I)-distance e-synchronization string). String S €
3™ is an f(I)-distance e-synchronization string if for every 1 < i <
j < i’ <j <n+1wehave that ED (S[i,}),S[i’,j") > (1 — ¢)l if
i"—j< f()wherel=j+j —i-1i.

It is noteworthy to mention that the constant function f(I) = 0 gi-

ves the original e-synchronization strings. Haeupler and Shahrasbi [20]

have studied the existence and construction of synchronization
strings for this case. In particular, they have shown that arbitrarily
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long e-synchronization strings exist over an alphabet that is poly-
nomially large in terms of ¢~ Besides f(I) = 0, there are several
other functions that might be of interest in this context.

One can show that, as we do in the full version of this paper,
that for any polynomial function f(I), arbitrarily long f(I)-distance
e-synchronization strings exist over alphabet sizes that are polyno-
mially large in terms of &1, Also, for exponential functions, these
strings exist over exponentially large alphabets in terms of ¢! but
not over sub-exponential alphabet sizes. Finally, if function f is
super-exponential, f(I)-distance e-synchronization strings do not
exist over any constant size alphabet. The similar question of con-
structing infinite binary strings that avoid identical substrings of
length n with exponential distance in terms of n have been studied
by Beck [3].

While studying existence, construction, and alphabet sizes of
f(I)-distance e-synchronization strings might be of interest by its
own, we will show that having synchronization string edit distance
guarantee for pairs of intervals that are exponentially far in terms
of their aggregated length is of significant interest as it leads to im-
provements over applications of ordinary synchronization strings
described in [20, 23] from several aspects. Even though distance
function f(I) = ¢! provides such property, throughout the rest of
this paper, we will focus on a variant of it, i.e, f(I) =n- 15 c10gn
which allows polynomial-sized alphabet. 1,5 ¢ 10g , is the indicator
function for I > clogn, i.e., one if | > clogn and zero otherwise

To compare distance functions f(I) = ¢! and f(I) = n- 15 clogns
note that the first one allows intervals to be exponentially far away
in their total length. In particular, intervals of length [ > clogn or
larger can be arbitrarily far away. The second function only asks
for the guarantee over large intervals and does not strengthen the
e-synchronization property for smaller intervals. We refer to the
later as c-long-distance e-synchronization string property.

Definition 4.2 (c-long-distance e-synchronization strings). We call
n - 1y 10 n-distance e-synchronization strings c-long-distance e-
synchronization strings.

4.2 Polynomial Time Construction of
Long-Distance Synchronization Strings

An LLL-based proof for existence of ordinary synchronization
strings has been provided by [20]. Here we provide a similar techni-
que along with the deterministic algorithm for Lovész local lemma
from Chandrasekaran et al.[8] to prove the existence and give a
deterministic polynomial-time construction of strings that satisfy
this quality over an alphabet of size e~ O,

Before giving this proof right away, we first show a property of
these strings which allows us to simplify the proof and, more impor-
tantly, get a deterministic algorithm using deterministic algorithms
for Lovasz local lemma from Chandrasekaran et al.[8].

LeEMMA 4.3. IfS is a string and there are two intervals iy < j1 <
ig < j2 of total lengthl = j; — i1 + jo — iz and ED(S[i1, j1), S[i2, j2)) <
(1—¢)l then there also exists intervalsiy < i] < j; < i} < j; < jo of to-
tallengthl’ € {[1/21-1,[1/2], [1/2]+1} withED(S[i1, j1), S[i3. J3))
<@1-el.

Proor. As ED(S[i1, j1), [iz,j2)) < (1 — ¢)l, there has to be a com-

mon subsequence of length m > & between S[i1, j1) and S[iz, j2)
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locating at indices a; < az < -+ < apandb; < by < --- < by
respectively. We call M = {(a1,b1),- - - , (am, bm)} @a monotone mat-
ching from S[iy, j1) to S[iz, j2). Let 1 < i < m be the largest number
such that |S[i1, a;]| + [S[i2, b;i]| < [I/2]. It is easy to verify that
there are integers a; < k1 < aj4+1 and b; < kg < bj41 such that
S[iv, ko)l + S[iz, k2)l € {[1/21 - 1,[1/21}.

Therefore, we can split the pair of intervals (S[i1, j1), S[i2, j2))
into two pairs of intervals (S[i1, k1), S[iz, k2)) and (S[k1, j1), S[k2, j2))
such that each pair of the matching M falls into exactly one of these
pairs. Hence, in at least one of those pairs, the size of the matching
is larger than £ times the total length. This gives that the edit
distance of those pairs is less than 1 — ¢ and finishes the proof. O

Lemma 4.3 shows that if there is a pair of intervals of total
length [ that have small relative edit distance, we can find a pair
of intervals of size {[1/2] — 1,[1/2],[l/2] + 1} which have small
relative edit distance as well. Now, let us consider a string S with a
pair of intervals that violate the c-long distance e-synchronization
property. If the total length of the intervals exceed 2c log n, using
Lemma 4.3 we can find another pair of intervals of almost half the
total length which still violate the c-long distance e-synchronization
property. Note that as their total length is longer than clog n, we
do not worry about the distance of those intervals. Repeating this
procedure, we can eventually find a pair of intervals of a total
length between clog n and 2c log n that violate the c-long distance
e-synchronization property. More formally, we can derive the follo-
wing statement by Lemma 4.3.

COROLLARY 4.4. IfS is a string which satisfies the c-long-distance
e-synchronization property for any two non-adjacent intervals of total
length 2clogn or less, then it satisfies the property for all pairs of
non-adjacent intervals.

ProOF. Suppose, for the sake of contradiction, that there exist
two intervals of total length 2log . n or more that violate the c-long-
distance e-synchronization property. Let [i1, j1) and [i2, j2) where
i1 < j1 < iz < jo be two intervals of the smallest total length
I = j1 =iy +ja — iy larger than 2log . n (breaking ties arbitrarely) for
which ED(S[i1, j1), [i2,j2)) < (1—¢)l. By Lemma 4.3 there exists two
intervals [i7, 1) and [i}, j;) where i] < j; < i} < j; of total length
1" € [1/2,1) with ED(S[if, j1), [i5.J3)) < (1 = )L If I < 2log, n, the
assumption of c-long-distance e-synchronization property holding
for intervals of length 2log, n or less is contradicted. Unless, I’ >
2log, n that contradicts the minimality of our choice of [. O

THEOREM 4.5. For any 0 < ¢ < 1 and every n there is a determi-
nisticn®W time algorithm for computing a c = O(1/¢)-long-distance
e-synchronization string over an alphabet of size O(e™%).

Proor. To prove this, we will make use of the Lovasz local
lemma and deterministic algorithms proposed for it in [8]. We ge-
nerate a random string R over an alphabet of size |%| = O(¢72) and
define bad event By, j, ;, 1, as the event of intervals [i1, i1 +[1) and
[i2, i2+12) violating the O(1/¢)-long-distance synchronization string
property over intervals of total length 2/e? or more. In other words,
Bj, 1,.i,.1, occurs if and only if ED(R[i1,i1 + l1), R[iz, iz + I2)) <
(1 = &)(l4 + I2). Note that by the definition of c-long-distance e-
synchronization strings, B; 1, ;, 1, is defined for (i1, I1, iz, [2)s where
either y + I, > clognand iy +I; < ipor2/e2 < 1 +1 <
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clogn and iy i1 + 1. We aim to show that for large enough
n, with non-zero probability, none of these bad events happen.
This will prove the existence of a string that satisfies ¢ = O(1/¢)-
long-distance e-synchronization strings for all pairs of intervals
that are of total length 2/e? or more. To turn this string into a
¢ = O(1/¢)-long-distance e-synchronization strings, we simply con-
catenate it with a string consisting of repetitions of 1, - -, 2672,
ie,1,2,---,2¢72 1,2, ,2¢72 ... This string will take care of
the edit distance requirement for neighboring intervals with total
length smaller than 2672,

Note that using Lemma 4.3, by a similar argument as in Claim 4.4,
we only need to consider bad events where [; +I; < 2clogn. As the
first step, note that B;, j, ;, 1, happens only if there is a common
subsequence of length e(l; + I2)/2 or more between R[i1, i1 + I1)
and R[ig, iz + I2). Hence, the union bound gives that

_elli+h)
ym :
L+l I
e
e(ly + L)VIX| -

where | = I +I. In order to apply LLL, we need to find real numbers
Xi 1y, ip, 1, € [0,1] such that for any B;, 1 ;, 1,

Iy

Iy
Pr Bt} tm+vaLm+bwz

e
eVI2|

Pr{Bil,llsiz,lz} < Xyl b

(I =xy ) (1)
[Slir, i +1)USiz, ia+12)IN[S[i], iy +1))US[i, in +1)]#0
We eventually want to show that our LLL argument satisfies
the conditions required for polynomial-time deterministic algo-
rithmic LLL specified in [8]. Namely, it suffices to certify two other
properties in addition to (1). The first additional requirement is to
have each bad event in LLL depend on up to logarithmically many
variables and the second is to have (1) hold with a constant expo-
nential slack. The former is clearly true as our bad events consist
of pairs of intervals each of which is of a length between clogn
and 2c log n. To have the second requirement, instead of (1) we find
Xi 1, iy, 1, € [0,1] that satisfy the following stronger property.

Pr{Bihll,iz,lz} < |:xi1,llyi2,12.

1.01
(U =xi,1i,17)
[S[i1, i1 +1)US[iz, iz +1)IN[S[i1, iy +1))US[ i, 15 +15)[#0

()
Any small constant can be used as slack. We pick 1.01 for the sake
of simplicity. We propose x;, 1, i, 1, = 27¢(li+k) Tt can be shown
that for sufficiently small ¢, ¢ = 2/¢, and some |%| = O(¢72), this
choice of x satisfies (2) and, therefore, completes the proof. The
details of this proof are available in the extended version of this
paper [21]. O

4.3 Boosting I: Linear Time Construction of
Synchronization Strings

Next, we provide a simple boosting step which allows us to po-
lynomially speed up any e-synchronization string construction.
Essentially, we propose a way to construct an O(¢)-synchronization
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string of length O, (n?) having an e-synchronization string of length
n.

LEMMA 4.6. Fix an evenn € N andy > 0 such that yn € N.
Suppose S € " is an e-synchronization string. The string S’ € sryn’
with %’ = %3 and

S'[i] = | S[i mod n], S[(i + n/2) mod n], S ”LH)
yn

is an (¢ + 6y)-synchronization string of length yn?.

ProoF. Intervals of length at most n/2 lay completely within a
copy of S and thus have the e-synchronization property. For inter-
vals of size [ larger than n/2 we look at the synchronization string
which is blown up by repeating each symbol yn times. Ensuring
that both sub-intervals contain complete blocks changes the edit
distance by at most 3yn and thus by at most 6yl. Once only com-
plete blocks are contained we use the observation that the longest
common subsequence of any two strings becomes exactly a factor
k larger if each symbols is repeated k times in each string. This
means that the relative edit distance does not change and is thus at
least €. Overall this results in the (¢ + 6y)-synchronization string
property to hold for large intervals in S’. o

We use this step to speed up the polynomial time deterministic
e-synchronization string construction in Theorem 4.5 to linear time.

THEOREM 4.7. There exists an algorithm that, for any 0 < ¢ < 1,
constructs an e-synchronization string of length n over an alphabet
of size e 9W in O(n) time.

ProoF. Note that if one takes an ¢’-synchronization strings of
length n’ and applies the boosting step in Theorem 4.6 k times with
parameter y, he would obtain a (¢’ + 6ky)-synchronization string

2k—1 2k
of length y ne .

For any 0 < ¢ < 1, Theorem 4.5 gives a deterministic algo-
rithm for constructing an e-synchronization string over an alpha-
bet O(¢™4) that takes O(nT) time for some constant T independent

of ¢ and n. We use the algorithm in Theorem 4.5 to construct an
o= £ nt/T £
-2 Y 12log T
over an alphabet of size O(¢7*) in O(n’T) = O(n) time. Then, we
apply boosting step I k = log T times with y = to get an

synchronization string of length n’ = fory =

£
12log T
(¢/ + 6ylog T = ¢)-synchronization string of length y7~1n'T > n.
As boosting step have been employed constant times, the eventual
o) o

alphabet size will be e~ and the run time is O(n).

4.4 Boosting II: Explicit Constructions for
Long-Distance Synchronization Strings

We start this section by a discussion of explicitness quality of syn-
chronization string constructions. In addition to the time complexity
of synchronization strings’ constructions, an important quality of
a construction that we take into consideration for applications that
we will discuss later is explicitness or, in other words, how fast one
can calculate a particular symbol of a synchronization string.

Definition 4.8 (T(n)-explicit construction). If a synchronization
string construction algorithm can compute ith index of the string
it is supposed to find, i.e., S[i], in T(n) we call it an T(n)-explicit
algorithm.
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We are particularly interested in cases where T(n) is polylo-
garithmically large in terms of n. For such T(n), a T(n)-explicit
construction implies a near-linear construction of the entire string
as one can simply compute the string by finding out symbols one
by one in n - T(n) overall time. We use the term highly-explicit to
refer to O(log n)-explicit constructions.

We now introduce a boosting step in Lemma 4.10 that will lead
to explicit constructions of (long-distance) synchronization strings.
Lemma 4.10 shows that, using a high-distance insertion-deletion
code, one can construct strings that satisfy the requirement of long-
distance synchronization strings for every pair of substrings that
are of total length Q. (log n) or more. Having such a string, one can
construct a O (1)-long-distance e-synchronization string by simply
concatenating the outcome of Lemma 4.10 with repetitions of an
O, (log n)-long e-synchronization string.

This boosting step is deeply connected to our new definition of
long-distance e-synchronization strings. In particular, we observe
the following interesting connection between insertion-deletion
codes and long-distance e-synchronization strings.

LEmMMA 4.9. If'S is a c-long-distance e-synchronization string over
an alphabet of size g where c = ©(1) then C = {S(i - clogn, (i + 1) -
clogn]lo <i < cl(:lgn — 1} is an insdel error correcting code with
minimum distance at least 1 — ¢ and constant rate Qq(1). Further, if
any substring S[i, i + log n] is computable in O(log n) time, C has a
linear encoding time.

Proor. The distance follows from the definition of long-distance
e-synchronization strings. The rate follows because the rate R
log|C|  _ o8 cngn
clognlogg ~ Og(logn)
|S(i - clogn, (i + 1) - clogn]| = clog n, one can compute S(i-clog n,
(i+ 1) - clogn] in linear time in terms of its length. O

is equal to R = = Qg(1). Finally, since

Our boosting step is mainly built on the converse of this obser-
vation.

LEmMA 4.10. Suppose C is a block insdel code over alphabet of
size g, block length N, distance 1 — ¢ and rate R and let S be a string
obtained by attaching all codewords back to back in any order. Then,
fore’ = 4¢, S is a string of length n = gR'N . N which satisfies the
long-distance ¢’-synchronization property for any pair of intervals of
aggregated length %N < —%_(logn — log R) or more. Further, ifC

elogq
is linear-time encodable, S has a highly explicit construction.

Proor. The length of S follows from the definition of rate. Mo-
reover, the highly explicitness follows from the fact that every
substring of S of length log n may include parts of m + 1 co-
dewords each of which can be computed in linear time in terms

of their length. Therefore, any substring S[i, i + log n] can be con-

structed in O (max {loﬁ,
elogq

distance property, we have to show that for every four indices
i1 <j1 < iy < jo whereji +j2 — i1 — iy > %,
ED(S[i1, j1), Sliz, j2)) = (1 — 4€)(j1 + j2 — i1 — i2). ®3)
Assume that S[i1, j1) contains a total of p complete blocks of

C and Sliz, j2) contains g complete blocks of C. Let S[i], j;) and

S[i3, j5) be the strings obtained be throwing the partial blocks away
from S[i1, j1) and S[iz, j2). Note that the overall length of the partial

log n}) = Og,¢(log n). To prove the long

we have



STOC’18, June 25-29, 2018, Los Angeles, CA, USA

blocks in S[i1, j1) and S[iz, j2) is less than 4N, which is at most an
e-fraction of S[iy, j1) U Sliz, j2), since ﬁ <e.

Assume by contradiction that ED(S[i1, j1), S[i2, j2)) < (1—4€)(j1+
J2 — i1 — ig). Since edit distance preserves the triangle inequality,

we have that

ED (S[i7.j;). Sliz.j3)) < ED(S[ir,j1), Sliz.j2) + IS[in, ip)] +
ISLj, j)l + ISliz ig)] + 1SLjg )|
< (1—-4de+e)(i+jo—i1—i2)

3¢

1- ’ 7 - v
(1_6)(01_’1)+(12_’2))-

This means that the longest common subsequence of S[i], j{)

and S[is, j;) has length of at least

1 g o 1-3¢

3 |osutr st (1- 22|
which means that there exists a monotonically increasing matching
between S[if, j;) and S[is, j;) of the same size. Since the matching
is monotone, there can be at most p + g pairs of error-correcting
code blocks having edges to each other. The Pigeonhole Principle

implies that there are two error-correcting code blocks B and By
such that the number of edges between them is at least

A ((QESAEARUNADIER =31

pt+q
(p+ N (1 _ 11—_3:)
2(p+q)

1 1-3¢
21 —=2|.N
2 1-¢
Notice that this is also a lower bound on the longest common
subsequence of B; and Bj. This means that

1-3¢/4 2-4
A N < 222N C21-oN.
1-¢/4 1-¢

This contradicts the error-correcting code’s distance property,
which we assumed to be larger than 2(1—¢)N, and therefore we may
conclude that for all indices i1 < j; < iz < jp where j1+jy—i1—iz >
N (3) holds. o

>

ED(B1, By) < 2N — (1 -

We point out that even a brute force enumeration of a good insdel
code could be used to find a string that satisfies e-synchronization
property for pairs of intervals with large total length. All needed to
get an e-synchronization string is to concatenate that with a string
which satisfies e-synchronization property for small intervals. This
one could be brute forced as well. Overall, this gives an alternative
polynomial time construction (still using the inspiration of long-
distance strings, though). More importantly, if we use a linear time
construction for short intervals and a linear time encodable insdel
code for long ones, we get a simple O, (log n)-explicit long-distance
e-synchronization string construction for which any interval [i, i +
O¢(logn)] is computable in O,(log n).

In the rest of this section, as depicted in Figure 1, we first in-
troduce a high distance, small alphabet error correcting code that
is encodable in linear time in Lemma 4.13 using a high-distance
linear-time code introduced in [15]. We then turn this code into a
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high distance insertion deletion code using the indexing technique
from [20]. Finally, we will employ this insertion-deletion code in
the setup of Lemma 4.10 to obtain a highly-explicit linear-time
long-distance synchronization strings.

Our codes are based on the following code from Guruswami and
Indyk [15].

THEOREM 4.11 (THEOREM 3 FROM [15]). Foreveryr,0 <r <1,
and all sufficiently small € > 0, there exists a family of codes of rate
r and relative distance at least (1 — r — €) over an alphabet of size
20(e7*rHog(1/€)) gych that codes from the family can be encoded in
linear time and can also be (uniquely) decoded in linear time from
(1 = r — €) fraction of half-errors, i.e., a fraction e of errors and s of
erasures provided 2e + s < (1 —r — €).

One major downside of constructing e-synchronization strings
based on the code from Theorem 4.11 is the exponentially large
alphabet size in terms of ¢. We concatenate this code with an ap-
propriate small alphabet code to obtain a high-distance code over a
smaller alphabet size.

LEMMA 4.12. For sufficiently small e and A,R > 1, and any set 3;
of size |2 = 207 log(1/€)) there exists a code C : £; — Zf,\] with
distance 1 — ¢ and rate e® where |So| = O(e™4).

Proor. To prove the existence of such code, we show that a
random code with distance § = 1 — ¢, rate r = &4, alphabet size
|| = e74, and block length

.0 ( E—S—R)

-0 e log(1/e) 1 1
Alog(1/e) ¢R

exists with non-zero probability. The probability of two randomly

selected codewords of length N out of 2, being closer than § = 1—¢

can be bounded above by the following term.

I

Hence, the probability of the random code with ZoIN7 = |34
codewords having a minimum distance smaller than § = 1 — ¢ is at
most the following.

N\ (1N (1l
Nel \[Zo] 2
Ne\NVe |z;12
Ne |20|N€

3 e\Ne 20(5_5 log(1/¢))
- (_) (E—A)Ng

_loglZi] 1

B log|Zo| r

£
20((1—A) log(1/&)Ne+e7>log(1/¢))
2(1—A)O(£’4’R log(1/¢€))+O0(7° log(1/¢))

For A > 1, 1 — A is negative and for R > 1, g4k log(1/e) is
asymptotically larger than £~ log(1/¢). Therefore, for sufficiently
small ¢, the exponent is negative and the desired code exists. O

Concatenating the code from Theorem 4.11 (as the outer code)
and the code from Lemma 4.12 (as inner code) gives the following
code.
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LEmMMA 4.13. For sufficiently small ¢ and any constant 0 < y, there
exists an error correcting code of rate O(e2-°1) and distance 1 — & over
an alphabet of size O(e~1*V)) which is encodable in linear time and
also uniquely decodable from an e fraction of erasures and s fraction
of symbol substitutions when s + 2e < 1 — ¢ in linear time.

Proor. To construct such code, we simply concatenate codes
from Theorem 4.11 and Lemma 4.12 as outer and inner code re-
spectively. Let C; be an instantiation of the code from Theorem 4.11
with parameters r = ¢/4 and € = ¢/4. Code C; is a code of rate
r1 = ¢/4 and distance §; = 1—¢/4—¢/4 = 1—¢/2 over an alphabet
>1 of size 20(e™*r log(1/€)) — 90(¢7°log(1/9)) which is encodable
and decodable in linear time.

Further, according to Lemma 4.12, one can find a code Cy : 1 —
212\]2 for £5 = e~(1Y) with distance 8, = 1 — £/2 rate rp = O(e!-01)
by performing a brute-force search. Note that block length and
alphabet size of C» is constant in terms of n. Therefore, such code
can be found in O, (1) and by forming a look-up table can be encoded
and decoded from § half-errors in O(1). Hence, concatenating codes
C1 and C; gives a code of distance § = &1 - §2 = (1 — g2 >1-¢
and rate r = r1 - r; = O(¢2-%1) over an alphabet of size |Z3| =
) (s_(lﬂ’)) which can be encoded in linear time in terms of block

length and decoded from e fraction of erasures and s fraction of
symbol substitutions when s + 2e < 1 — ¢ in linear time as well. O

Indexing the codewords of a code from Lemma 4.13 with linear-
time constructible synchronization strings of Theorem 4.7 using
the technique from [20] summarized in Theorem 3.6 gives Theo-
rem 4.14.

THEOREM 4.14. For sufficiently small ¢, there exists a family of
insertion-deletion codes with rate €1 that correct from 1—¢ fraction
of insertions and deletions over an alphabet of size eOW that is enco-
dable in linear time and decodable in quadratic time in terms of the
block length.

Proor. Theorem 3.6 provides a technique to convert an error
correcting code into an insertion-deletion code by indexing the co-
dewords with a synchronization string. We use the error correcting
code C from Lemma 4.13 with parameter ¢/ = ¢/2 and y = 0.01
along with a linear-time constructible synchronization strings S
from Theorem 4.7 with parameter ¢/ = (¢/2)? in the context of The-
orem 3.6. We also use the global decoding algorithm from Haeupler
and Shahrasbi [20] for the synchronization string. This will give an
insertion deletion code over an alphabet of size £ corrects from
(1—¢") — Ve’ = 1 — ¢ insdels with a rate of

rc _ 0 (%) _00)

14 |ZS|/|ZC| 1 +O(€//—O(1)/€—1.01) '

As C is encodable and S is constructible in linear time, the encoding
time for the insdel code will be linear. Further, as C is decodable
in linear time and S is decodable in quadratic time (using global
decoding from [20]), the code is decodable in quadratic time. O

Using insertion-deletion code from Theorem 4.14 and boosting
step from Lemma 4.10, we can now proceed to the main theorem
of this section that provides a highly explicit construction for ¢ =
O¢(1)-long-distance synchronization strings.
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'th element
of the string
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Figure 2: Pictorial representation of the construction of a
long-distance ¢-synchronization string of length n.

THEOREM 4.15. There is a deterministic algorithm that, for any
constant 0 < ¢ < 1 and n € N, computes a ¢ = e~ 9D -long-distance
e-synchronization string S € X" where |Z| = ¢~ OW) Moreover, this
construction is O(log n)-explicit and can even compute S[i, i + logn]
in O¢(log n) time.

Proor. We simply use an insertion-deletion code from Theo-
log an
R
where g = ¢79( is the size of the alphabet from Theorem 4.14.
Using this code in Lemma 4.10 gives a string S of length gRN -N > n
that satisfies 4¢” = e-synchronization property over any pair of

intervals of total length % =0 (dl;,olgon ) =0 (e’o(l) log n) or

gq
more. Since the insertion-deletion code from Theorem 4.14 is line-
arly encodable, the construction will be highly-explicit.

To turn S into a c-long-distance e-synchronization string for
4N
elogn
that satisfies e-synchronization property for neighboring intervals
of total size smaller than clog n. In other words, we propose the fol-
lowing structure for constructing c-long-distance e-synchronization

string R.

rem 4.14 with parameter ¢’ = ¢/4 and block length N =

c= =0 (5_0(1) ) we simply concatenate it with a string T

4

c(m)[i(modw,r[i])

Let S’ be an e-synchronization string of length 2¢ log n. Using
linear-time construction from Theorem 4.7, one can find S’ in linear
time in its length, i.e, O(log n). We define strings T1 and T» consisting
of repetitions of S’ as follows.

T =(5,8,-.,8),  Tp=(0°18" 5,5 ... .5
The string T; - T satisfies e-synchronization strings for neighboring
intervals of total length c log n or less as any such substring falls into
one copy of §’. Note that having S’ one can find any symbol of T in
linear time. Hence, T has a highly-explicit linear time construction.
Therefore, concatenating S and T gives a linear time construction
for c-long-distance e-synchronization strings over an alphabet of
size e~OM) that is highly-explicit and, further, allows computing any
substring [i, i + log n] in O(log n) time. A schematic representation
of this construction can be found in Figure 2. o
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Figure 3: Construction of Infinite synchronization string T

4.5 Infinite Synchronization Strings: Highly
Explicit Construction

Throughout this section we focus on construction of infinite sy-
nchronization strings. To measure the efficiency of a an infinite
string’s construction, we consider the required time complexity for
computing the first n elements of that string. Moreover, besides the
time complexity, we employ a generalized notion of explicitness to
measure the quality of infinite string constructions.

In a similar fashion to finite strings, an infinite synchronization
string is called to have a T(n)-explicit construction if there is an
algorithm that computes any position S[i] in O (T(i)). Moreover, it
is said to have a highly-explicit construction if T(i) = O(log i).

We show how to deterministically construct an infinitely-long
e-synchronization string over an alphabet ¥ which is polynomially
large in ¢~ Our construction can compute the first n elements of
the infinite string in O(n) time, is highly-explicit, and, further, can
compute any [i, i + logi] in O(log i).

THEOREM 4.16. For all 0 < ¢ < 1, there exists an infinite ¢-
synchronization string construction over a poly(e~!)-sized alphabet
that is highly-explicit and also is able to compute S[i, i + logi] in
O(log i). Consequently, using this construction, the first n symbols of
the string can be computed in O(n) time.

Proor. Letk = % and let S; denote a §-synchronization string
of length i. We define U and V as follows:

U= (ks SgssSgss -+ )s V= (2 Sgets S -+ )

In other words, U is the concatenation of £-synchronization strings

oflength k, k3,k5,... and V is the concatenation of %-synchronization

strings of length k2, k%, k°, . ... We build an infinite string T such
that T[i] = (U[i], V[i]) (see Figure 3).

First, if finite synchronization strings S;; used above are con-
structed using the highly-explicit construction algorithm intro-
duced in Theorem 4.15, any index i can be computed by simply
finding one index in two of Sy.ss in O(log n). Further, any substring
of length n of this construction can be computed by constructing
finite synchronization strings of total length O(n). According to
Theorem 4.15, that can be done in O,(n).

Now, all that remains is to show that T is an e-synchronization
string. We use following lemma to prove this.

LEMMA 4.17. Let x < y < z be positive integers and let t be such
that k! < |T[x,z)| < k!*1. Then there exists a block of Sgi inU orV
such that all but a % fraction of T[x, z) is covered by S.i.

Note that this lemma shows that

ED(T[x,y). T[y,2)) > (1-¢/2)(IT[x,y)| + Ty, 2)]) (1 - 3/k)
= (1-¢/2 (ITlx, )l + |Tly, 2)))
z (1= (Tlxy)l + |T[y. 2)])
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which implies that T is an e-synchronization string. O

PROOF OF LEMMA 4.17. We first define i‘" turning point g; to be
the index of T at which Syi+1 starts, i.e, q; = k' + K2y gi~44.. .,
Note that

kK2 +k*+-.-+k? Eveni
q9i = 5 . ) (5)
k+k>+---+kt 0Oddi
_ { k? fzj Even i ©
k=l oddi

Note that g;_1 < 2k*~! and |T[x, z)| > k*. Therefore, one can throw
away all the elements of T[x, z) whose indices are less than q;—1
without losing more than a % fraction of the elements of T[x, z).
We will refer to the remaining part of T[x, z) as T.

Now, the distance of any two turning points g; and g; where
t <i<jisatleast qs+1 — qs, and

~ { kklgz:ll—kzigj Even ¢ )
e = KTl gkl oddy
_ +2 5
W ek g,

Hence, q;+1 — q; > k™! (1 - %) Since |T| < |T[x,2)| < k'*1,
this fact gives that there exists a S.; which covers a (l - %) fraction

of T. This completes the proof of the lemma. ]

5 LOCAL DECODING

In Section 4, we discussed the close relationship between long-
distance synchronization strings and insertion-deletion codes and
provided highly-explicit constructions of long-distance synchroni-
zation strings based on insdel codes.

In this section, we make a slight modification to the highly expli-
cit structure (4) we introduced in Theorem 4.15 where we showed
one can use a constant rate insertion-deletion code C with distance
1 - £ and block length N = O(logn) and a string T satisfying
e-synchronization property for pairs of neighboring intervals of to-
tal length clogn or less to make a c-long-distance synchronization
string of length n. In addition to the symbols of the string consisting
of codewords of C and symbols of string T, we append © (log %)
extra bits to each symbol to enable local decodability. This extra

symbol, as described in (9), essentially works as a circular index
counter for insertion-deletion code blocks.

el gffes3)] o

With this extra information appended to the construction, we claim
that relative suffix error density is smaller than ¢ upon arrival of
some symbol, then one can decode the corresponding index cor-
rectly by only looking at the last O(log n) symbols. At any point
of a communication over an insertion-deletion channel, relative
suffix error density is defined as the maximum fraction of errors
occurred over all suffixes of the message sent so far. (Definition 5.12
from [20]).

RIi]
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THEOREM 5.1. Let R be a highly-explicit long-distance e-synchronization

string constructed according to (9). Let R[1, i] be sent by Alice and be
received as R’[1, j] by Bob. If relative suffix error density is smaller
than 1 — £, then Bob can find i in % - Tpec(N) + % - (Tgne(N) +
Ext(clogn) + ¢ log? n) only by looking at the last max(t—gj, clogn)
received symbols where Ty, and Tpe. is the encoding and deco-
ding complexities of C and Ext(l) is the amount of time it takes to
construct a substring of T of length I.

For linear-time encodable, quadratic-time decodable code C and
highly-explicit string T constructed by repetitions of short synchro-
nization strings used in Theorem 4.15, construction (9) provides
the following.

THEOREM 5.2. Let R be a highly-explicit long-distance e-synchronization

string constructed according to (9) with code C and string T as descri-
bed in Theorem 4.15. Let R[1, i] be sent by Alice and be received as
R'[1, ] by Bob. If relative suffix error density is smaller than 1 — 5,
then Bob can find i in O(log® n) time only by looking at the last
O(log n) received symbols.

This decoding procedure, which we will refer to as local deco-
ding consists of two principal phases upon arrival of each symbol.
During the first phase, the receiver finds a list of % numbers that is

guaranteed to contain the index of the current insertion-deletion
N

code block. This gives - candidates for the index of the received
symbol. The second phase uses the relative suffix error density
guarantee to choose the correct candidate among the list. The fol-
lowing lemma formally presents the first phase. This idea of using
list decoding as a middle step to achieve unique decoding has been
used by several previous work [12, 16-18].

LEMMA 5.3. Let S be an e-synchronization string constructed as
described in (9). Let S[1, i] be sent by Alice and be received as S;[1, j]
by Bob. If relative suffix error density is smaller than 1 — ¢/2, then
Bob can compute a list of% numbers that is guaranteed to contain
i

Proor. Note that as relative suffix error density is smaller than
1—¢/2 < 1, the last received symbol has to be successfully transmit-
ted. Therefore, Bob can correctly figure out the insertion-deletion
code block index counter value which we denote by count. Note
that if there are no errors, all symbols in blocks with index counter
value of count, count — 1, - - , count —4/¢+ 1 mod E% that was sent
by Bob right before the current symbol, have to be arrived within
the past 4/¢ - N symbols. However, as adversary can insert symbols,

those symbols can appear anywhere within the last %% = 2—1;’
symbols.

Hence, if Bob looks at the symbols arrived with index i € {count,
count—1,-- -, count —4/e+ 1} mod £ within the last i—l.}] received
symbols, he can observe all symbols coming from blocks with index

count,count — 1,--- ,count — 4/¢ + 1 mod % that was sent right
before S[i]. Further, as our counter counts modulo 5%’ no symbols
from older blocks with indices count, count — 1, - - ,count — 1/¢ +

1 mod 5% will appear within the past 85_];] symbols. Therefore, Bob

can find the symbols from the last % blocks up to some insdel errors.
By decoding those blocks, he can make up a list of % candidates for
the actual block number. As each block contains N elements, there
are a total of % many candidates for i.
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Note that as relative suffix error density is at most 1 —¢/2 and the
last block may not have been completely sent yet, the total fraction
of insdels in reconstruction of the last % blocks on Bob side smaller
than 1 —¢/2 + #
least one of those blocks is not larger than 1 — %. This guarantees
that at least one block will be correctly decoded and henceforth the
list contains the correct actual index. O

< 1 - £. Therefore, the error density in at

We now define a limited version of relative suffix distance (de-
fined in [20]) which enables us to find the correct index among
candidates found in Lemma 5.3.

Definition 5.4 (Limited Relative Suffix Distance). For any two
strings S, S’ € £* we define their [-limited relative suffix distance,
[-LRSD, as follows:

ED (S(|S| - &, |S[],S’(|S”| = k, |S’
LRSI, = e ED(SUSI = KISILS (5" = k1)
0<k<l 2k

Note that [ = O(log n)-limited suffix distance of two strings can
be computed in O(I%) = O(log? n) by computing edit distance of all
pairs of prefixes of their I-long suffixes.

LEMMA 5.5. If string S is a c-long distance e-synchronization
string, then for any two distinct prefixes S[1, i] and S[1, j], (c log n)-
LRSD(S[1,1],S[1,j]) > 1 —&.

Proor. If j — i < clogn, the synchronization string property
gives that ED(S(2i — j, i], S(i, j]) > 2(j — i)(1 — ¢) which gives the
claim for k = j —i.If j — i > clogn, the long-distance property
gives that ED(S(i — log n, i], S(j — logn, j]) > 2(1 — €)clog n which

again, proves the claim. O
Lemmas 5.3 and 5.5 enable us to prove Theorem 5.1.

Proor oF THEOREM 5.1. Using Lemma 5.3, by decoding 4/¢ co-
dewords, Bob forms a list of 4N /¢ candidates for the index of the
received symbol. This will take 4/¢ - Tpec(N) time. Then, using
Lemma 5.5, for any of the 4N /¢ candidates, he has to construct a
clog n substring of R and compute the (clog n)-LRSD of that with
the string he received. This requires looking at the last max(4n/e,
clog n) recieved symbols and takes 4N /¢ (Tgpe(N)+Exr(clog n)+
¢?log? n) time. O

6 APPLICATION: NEAR LINEAR TIME CODES

AGAINST INSDELS, BLOCK
TRANSPOSITIONS, AND BLOCK
REPLICATIONS

In Sections 4 and 5, we provided highly explicit constructions and
local decodings for synchronization strings. Utilizing these two
important properties of synchronization strings together suggests
important improvements over insertion-deletion codes introduced
by Haeupler and Shahrasbi [20]. We start by stating the following
important lemma which summarizes the results of Sections 4 and 5.

LEMMA 6.1. For any 0 < ¢ < 1, there exists an streaming (n, §)-
indexing solution with e-synchronization string S and streaming deco-
ding algorithm D that figures out the index of each symbol by merely
considering the last O,(log n) received symbols and in O,(log® n)
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time. Further, S € 3" is highly-explicit and constructible in linear-

nd

time and |Z| = O (8_0(1)). This solution may contain up to =

misdecodings.

PROOF. Let S be a long-distance 2¢-synchronization string con-
structed according to Theorem 4.15 and enhanced as suggested
in (9) to ensure local decodablity. As discussed in Sections 4 and 5,
these strings trivially satisfy all properties claimed in the statement
other than the misdecoding guarantee.

According to Theorem 5.2, correct decoding is ensured whenever
relative suffix error density is less than 1 — 275 =1 — ¢. Therefore,
as relative suffix error density can exceed 1 — ¢ upon arrival of at

most % many symbols (see Lemma 5.14 from [20]), there can be

nd
at most 1=

decoded correctly. This proves the misdecoding guarantee.

many successfully received symbols which are not
]

6.1 Near-Linear Time Insertion-Deletion Code

Using the indexing technique proposed by Haeupler and Shahrasbi [20]

summarized in Theorem 3.6 with synchronization strings and de-
coding algorithm from Theorem 3.5, one can obtain the following
insdel codes.

THEOREM 6.2. For any 0 < § < 1/3 and sufficiently small e > 0,
there exists an encoding map E : 3 — =" and a decoding map D :
* — 3k, such that, if EditDistance(E(m), x) < dn then D(x) = m.
Further, % >1-38—¢, |Z| = f(¢), and E and D can be computed in
O(n) and O(nlog® n) time respectively.

Proor. We closely follow the proof of Theorem 1.1 from [20]
and use Theorem 3.6 to convert a near-MDS error correcting code
to an insertion-deletion code satisfying the claimed properties.

Given the § and ¢, we choose ¢’ = £ and use locally decodable
O (1)-long-distance ¢’-synchronization string S of length n over
alphabet 2 of size ¢/~00W = ¢~O0() from Theorem 5.2.

We plug this synchronization string with the local decoding
from Theorem 5.2 into Theorem 3.6 with a near-MDS expander
code [15] C (see Theorem 4.11) which can efficiently correct up to
8¢ = 39 + £ half-errors and has a rate of Rg > 1 - 8¢ — § over

an alphabet ¢ = exp(e"9M) such that log [S¢| = % This

logZs _
z RC_lOgZC -

ensures that the final rate is indeed at least ﬁ—gzs

logZ¢c
1-38-3% =1-36 - ¢ and the fraction of insdel errors that can
be efficiently corrected is d¢ — 21%, >35+¢/3-26(1+2¢)=6.
The encoding and decoding complexities are furthermore straight
forward according to guarantees stated in Theorem 6.1 and the

linear time construction of S. O

6.2 Insdels, Block Transpositions, and Block
Replications

In this section, we introduce block transposition and block repli-
cation errors and show that code from Theorem 6.2 can overcome
these types errors as well.

One can think of several way to model transpositions and repli-
cations of blocks of data. One possible model would be to have the
string of data split into blocks of length [ and then define transposi-
tions and replications over those fixed blocks. In other words, for

852

Bernhard Haeupler and Amirbehshad Shahrasbi

message my, my, - -+ ,my € X", a single transposition or replication
would be defined as picking a block of length / and then move or
copy that blocks of data somewhere in the message.

Another (more general) model is to let adversary choose any
block, i.e., substring of the message he wishes and then move or
copy that block somewhere in the string. Note that in this model,
a constant fraction of block replications may make the message
length exponentially large in terms of initial message length. We
will focus on this more general model and provide codes protecting
against them running near-linear time in terms of the received block
length. Such results automatically extend to the weaker model that
does not lead to exponentially large corrupted messages.

We now formally define (i, j, [)-block transposition as follows.

Definition 6.3 (i, ,1)-Block Transposition). For a given string
M = mjy - - - mpy, the (i, j, I)-block transposition operation for 1 < i <
i+l <nandje{1,---,i—-1,i+1+1,---,n}is defined as an
operation which turns M into

!
M =my, - mim, My ey My, My My, My, - My
ifj>i+lor
’
M =my, - mj,my, 0 M, Mg, M1, M1 s My

if j < i by removing M[i, i + [] and inserting it right after M[j].
Also, (i, j, I)-block replication is defined as follows.

Definition 6.4 ((i, j, I)-Block Replication). For a given string M =
my - - - my, the (i, j, [)-block replication operationfor 1 < i < i+l < n
and j € {1,---,n} is defined as an operation which turns M into
M =mq,--- ,Mj, mj - -Mjy],Mjy1, -+, my Which is obtained by
copying M[i, i + I] right after M[j].

We now proceed to the following theorem that implies the code
from Theorem 6.2 recovers from block transpositions and replicati-
ons as well.

THEOREM 6.5. LetS € 27 be a locally-decodable highly-explicit
c-long-distance e-synchronization string from Theorem 5.2 and C be
an half-error correcting code of block length n, alphabet S, rater,
and distance d with encoding function E¢ and decoding function
Dc that run in Tg, and Tp,, respectively. Then, one can obtain an
encoding function Ey, : Zgr — [Z¢ x 2s]" that runs in Tg, + O(n)

and decoding function Dp, : [Z¢ X 25]" — 7 which runs inTp, +

o (log3 n) and recovers from nd;ps4e; fraction of synchronization

errors and Opjck fraction of block transpositions or replications as

T—i/z) Sinsdel + (12clogn)dpiock < d.

long as (2 +
Proor. To obtain such codes, we simply index the symbols of
the given error correcting code with the symbols of the given sy-
nchronization strings. More formally, the encoding function &(x)
for x € Zg’ first computes E¢(x) and then indexes it, symbol by
symbol, with the elements of the given synchronization string.
On the decoding end, D(x) first uses the indices on each symbol
to guess the actual position of the symbols using the local decoding
of the c-long-distance e-synchronization string. Rearranging the
received symbols in accordance to the guessed indices, the recei-
ving end obtains a version of Ec(x), denoted by x, that may suffer
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from a number of symbol corruption errors due to incorrect in-
dex misdecodings. As long as the number of such misdecodings,
k, satisfies nd;p5qe1 + 2k < nd, computing D (%) gives x. The
decoding procedure naturally consists of decoding the attached
synchronization string, rearranging the indices, and running D¢
on the rearranged version. Note that if multiple symbols where
detected to be located at the same position by the synchronization
string decoding procedure or no symbols where detected to be at
some position, the decoder can simply put a special symbol ‘?’ there
and treat it as a half-error. The decoding and encoding complexities
are trivial.

In order to find the actual index of a received symbol correctly, we
need the local decoding procedure to compute the index correctly.
For that purpose, it suffices that no block operations cut or paste
symbols within an interval of length 2clogn before that index
throughout the entire block transpositions/replications performed
by the adversary and the relative suffix error density caused by
synchronization errors for that symbol does not exceed 1 — ¢/2. As
any block operation might cause three new cut/cop/paste edges and
relative suffix error density is larger than 1 — /2 for up to ﬁ
many symbols (according to Lemma 5.14 from [20]), the positions

L

1-2¢
symbols will be decoded incorrectly via synchronization string
decoding procedure. Hence, as long as nd;,sge; + 2k < 60p1ock X

of all but at most k < 3ndpjock X 2clogn + néipsder (1 +

2clogn+nd;psder (3 + ﬁ) < d the decoding procedure succeeds.
Finally, the encoding and decoding complexities follow from the fact
that indexing codewords of length n takes linear time and the local
decoding of synchronization strings takes O(n log® n) time. O

Employing locally-decodable O,(1)-long-distance synchroniza-
tion strings of Theorem 5.2 and error correcting code of Theo-
rem 4.11 in Theorem 6.5 gives the following code.

THEOREM 6.6. For any 0 < r < 1 and sufficiently small ¢ there
exists a code with rate r that corrects nd;, 4.1 synchronization errors
and ndpj,ck block transpositions or replications as long as 68;psdel +
clogndpjock < 1—r — ¢ for somec = O(1). The code is over an alp-
habet of size O,(1) and has O(n) encoding and O(N log® n) decoding
complexities where N is the length of the received message.

7 APPLICATIONS: NEAR-LINEAR TIME
INFINITE CHANNEL SIMULATIONS WITH
OPTIMAL MEMORY CONSUMPTION

We now show that the indexing algorithm introduced in Theo-
rem 6.1 can improve the efficiency of channel simulations from [23]
as well as insdel codes. Consider a scenario where two parties are
maintaining a communication that suffers from synchronization er-
rors, i.e, insertions and deletions. Haeupler et al. [23] provided a sim-
ple technique to overcome this desynchronization. Their solution
consists of a simple symbol by symbol attachment of a synchroniza-
tion string to any transmitted symbol. The attached indices enables
the receiver to correctly detect indices of most of the symbols he
receives. However, the decoding procedure introduced in Haeupler
et al. [23] takes polynomial time in terms of the communication
length. The explicit construction introduced in Section 4 and local
decoding provided in Section 5 can reduce the construction and
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decoding time and space complexities to polylogarithmic. Further,
the decoding procedure only requires to look up O, (log n) recently
received symbols upon arrival of any symbol.

Interestingly, we will show that, beyond the time and space
complexity improvements over simulations in [23], long-distance
synchronization strings can make infinite channel simulations pos-
sible. In other words, two parties communicating over an insertion-
deletion channel are able to simulate a corruption channel on top
of the given channel even if they are not aware of the length of the
communication before it ends with similar guarantees as of [23]. To
this end, we introduce infinite strings that can be used to index com-
munications to convert synchronization errors into symbol corrup-
tions. The following theorem analogous to the indexing algorithm
of Lemma 6.1 provides all we need to perform such simulations.

THEOREM 7.1. For any0 < ¢ < 1, there exists an infinite string S
that satisfies the following properties:

(1) String S is over an alphabet of size g0,

(2) StringS has a highly-explicit construction and, for anyi, S[i, i+
log i] can be computed in O(log i).

(3) Assume that S[1,i] is sent over an insertion-deletion channel.
There exists a decoding algorithm for the receiving side that, if
relative suffix error density is smaller than 1 — ¢, can correctly
find i by looking at the last O(log i) and knowing the number
of received symbols in O(log® i) time.

Proor. To construct such a string S, we use our finite-length
highly-explicit locally-decodable long-distance synchronization
string constructions from Theorem 5.2 and use to construct finite
substrings of S as proposed in the infinite string construction of
Theorem 4.16 which is depicted in Figure 3. We choose length pro-
gression parameter k = 10/¢2. Similar to the proof of Lemma 4.17,
we define turning point q; as the index at which Sy.i+1 starts. We ap-
pend one extra bit to each symbol S[i] which is zero if g; < i < gj11
for some even j and one otherwise.

This construction clearly satisfies the first two properties claimed
in the theorem statement. To prove the third property, suppose that
S[1,i] is sent and received as S’[1,i’] and the error suffix density
is less than 1 — ¢. As error suffix density is smaller than 1 — &,
ie < i’ < i/e which implies that i’¢e < i < i’/e. This gives an
uncertainty interval whose ends are close by a factor of 1/¢2. By
the choice of k, this interval contains at most one turning point.
Therefore, using the extra appended bit, receiver can figure out
index j for which gj < i < gj+1. Knowing this, it can simply use
the local decoding algorithm for finite string S;—1 to find i. O

THEOREM 7.2. [Improving Channel Simulations from [23]]

(a) Suppose that n rounds of a one-way/interactive insdel channel
over an alphabet 3 with a § fraction of insertions and deletions
are given. Using an e-synchronization string over alphabet
Zsyn, it is possible to simulate n (1 — O,()) rounds of a one-
way/interactive corruption channel over X;m, with at most
O¢ (n8) symbols corrupted so long as |Zsim| X |Zsyn| < |Z].

Suppose that n rounds of a binary one-way/interactive insertion-
deletion channel with a § fraction of insertions and deleti-

ons are given. It is possible to simulate n(1 — ©(;/6 log(1/9)))

rounds of a binary one-way/interactive corruption channel

(b

~=
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with ©(4/d log(1/6)) fraction of corruption errors between two

parties over the given channel.

Having an explicitly-constructible, locally-decodable, infinite string
from Theorem 7.1 utilized in the simulation, all of the simulations
mentioned above take O(logn) time for sending/starting party of
one-way/interactive communications. Further, on the other side, the
simulation spends O(log® n) time upon arrival of each symbol and
only looks up O(log n) many recently received symbols. Overall, these
simulations take a O(nlog® n) time and O(log n) space to run. These
simulations can be performed even if parties are not aware of the
communication length.

Proor. We simply replace ordinary e-synchronization strings
used in all such simulations in [23] with the highly-explicit locally-
decodable infinite string from Theorem 7.1 with its corresponding
local-decoding procedure instead of minimum RSD decoding proce-
dure that is used in [23]. This keeps all properties that simulations
proposed by Haeupler et. al. [23] guarantee. Further, by properties
stated in Theorem 7.1, the simulation is performed in near-linear
time, i.e., O(nlog® n). Also, constructing and decoding each symbol
of the string from Theorem 7.1 only takes O(log n) space which
leads to an O(log n) memory requirement on both sides. O

8 APPLICATIONS: NEAR-LINEAR TIME
CODING SCHEME FOR INTERACTIVE
COMMUNICATION

Using the near-linear time interactive channel simulation in Theo-
rem 7.2 with the near-linear time interactive coding scheme of Haeu-
pler and Ghaffari [12] (stated in Theorem 8.1) gives the near-linear
time coding scheme for interactive communication over insertion-
deletion channels stated in Theorem 8.2.

THEOREM 8.1 (THEOREM 1.1 FROM [12]). For any constant € > 0
and n-round protocol I1 there is a randomized non-adaptive coding
scheme that robustly simulates I1 against an adversarial error rate
of p < 1/4 — ¢ using N = O(n) rounds, a near-linear nlog®" n
computational complexity, and failure probability 276(n)

THEOREM 8.2. For a sufficiently small § and n-round alternating
protocol 11, there is a randomized coding scheme simulating II in
presence of & fraction of edit-corruptions with constant rate (i.e., in
O(n) rounds) and in near-linear time. This coding scheme works with
probability 1 — 20(n),
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