
Synchronization Strings: Explicit Constructions, Local Decoding,
and Applications∗

Bernhard Haeupler
Carnegie Mellon University

Pittsburgh, PA, USA
haeupler@cs.cmu.edu

Amirbehshad Shahrasbi
Carnegie Mellon University

Pittsburgh, PA, USA
shahrasbi@cs.cmu.edu

ABSTRACT

This paper gives new results for synchronization strings, a po-

werful combinatorial object introduced by [Haeupler, Shahrasbi;

STOC’17] that allows to efficiently deal with insertions and deleti-

ons in various communication problems: (1) We give a determinis-

tic, linear time synchronization string construction, impro-

ving over an O(n5) time randomized construction. Independently

of this work, a deterministic O(n log2 logn) time construction was

proposed by Cheng, Li, and Wu. (2) We give a deterministic con-

struction of an infinite synchronization string which outputs

the first n symbols inO(n) time. Previously it was not known whet-

her such a string was computable. (3) Both synchronization string

constructions are highly explicit, i.e., the ith symbol can be deter-

ministically computed in O(log i) time. (4) This paper also introdu-

ces a generalized notion we call long-distance synchronization

strings. Such strings allow for local and very fast decoding. In

particular only O(log3 n) time and access to logarithmically many

symbols is required to decode any index.

The paper also provides several applications for these improved

synchronization strings: (1) For any δ < 1 and ε > 0 we pro-

vide an insdel error correcting block code with rate 1 − δ − ε

which can correct any δ/3 fraction of insertion and deletion errors

in O(n log3 n) time. This near linear computational efficiency

is surprising given that we do not even know how to compute

the (edit) distance between the decoding input and output in sub-

quadratic time. (2) We show that local decodability implies that

error correcting codes constructed with long-distance synchroni-

zation strings can not only efficiently recover from δ fraction of

insdel errors but, similar to [Schulman, Zuckerman; TransInf’99],

also from any O(δ/logn) fraction of block transpositions and

block replications. These block corruptions allow arbitrarily long

substrings to be swapped or replicated anywhere. (3) We show that

highly explicitness and local decoding allow for infinite channel

simulations with exponentially smaller memory and deco-

ding time requirements. These simulations can then be used to

∗Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award
CCF-1750808. An extended version of this article is available at [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25ś29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00
https://doi.org/10.1145/3188745.3188940

give the first near linear time interactive coding scheme for

insdel errors, similar to the result of [Brakerski, Naor; SODA’13]

for Hamming errors.

CCS CONCEPTS

· Mathematics of computing → Coding theory; · Theory of

computation → Error-correcting codes;

KEYWORDS

Synchronization Strings, Insertions and Deletions

ACM Reference Format:

Bernhard Haeupler and Amirbehshad Shahrasbi. 2018. Synchronization

Strings: Explicit Constructions, Local Decoding, and Applications. In Procee-

dings of 50th Annual ACM SIGACT Symposium on the Theory of Computing

(STOC’18). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3188745.3188940

1 INTRODUCTION

This paper gives new results for ε-synchronization strings, a

powerful combinatorial object that can be used to effectively deal

with insertions and deletions in various communication problems.

Synchronization strings are pseudo-random non-self-similar se-

quences of symbols over some finite alphabet that can be used to

index a finite or infinite sequence of elements similar to the trivial

indexing sequence 1, 2, 3, 4, . . . ,n. In particular, if one first indexes

a sequence of n elements with the trivial indexing sequence and

then applies some k insertions or deletions of indexed elements

one can still easily recover the original sequence of elements up

to k half-errors, i.e., erasures or substitutions (where substitutions

count twice). An ε-synchronization strings allows essentially the

same up to an arbitrarily small error of εn half-errors but instead

of having indexing symbols from a large alphabet of size n, which

grows with the length of the sequence, a finite alphabet size of

ε−O (1) suffices for ε-synchronization strings. Often this allows to

efficiently transform insertion and deletion errors into ordinary

Hamming errors which are much better understood and easier to

handle.

One powerful application of synchronization strings is the de-

sign of efficient insdel error correcting codes (ECC), i.e., codes that

can efficiently correct insertions and deletions. While codes for

Hamming errors have been well understood making progress on

insdel codes has been difficult [13, 16, 18, 26, 27, 33]. Synchroniza-

tion strings solve this problem by transforming any regular error

correcting block codeC with a sufficiently large finite alphabet into

an essentially equally efficient insdel code by simply indexing the

symbols of C . This leads to the first insdel codes that approach the

841

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

Singleton bound, i.e., for any δ < 1 and ε > 0 one can get an insdel

code with rate 1 − δ − ε which, in quadratic time, recovers from

any δ fraction of insertions or deletions. Further applications are

given in [22, 23]. Most importantly, [23] introduces the notion of a

channel simulation which allows one to use any insertion deletion

channel like a black-box regular symbol corruption channel with

a slightly increased error rate. This can be used to give the first

computationally efficient interactive coding schemes for insdel er-

rors and the first interactive coding scheme for insdel errors whose

communication rate goes to one as the amount of noise goes to

zero.

This paper provides drastically improved constructions of finite

and infinite synchronization strings and a stronger synchroniza-

tion string property which allows for decoding algorithms that are

local and significantly faster. We furthermore give several applica-

tions for these results, including near linear time insertion-deletion

codes, a near linear time coding scheme for interactive communica-

tion over insertion-deletion channels, exponentially better channel

simulations in terms of time and memory, infinite channel simu-

lations, and codes that can correct block transposition and block

replication corruptions.

2 OUR RESULTS, STRUCTURE OF THIS
PAPER, AND RELATED WORK

Next we give an overview of the main results and the overall struc-

ture of this paper. We also put our result in relation to related prior

works.

2.1 Deterministic, Linear Time, Highly Explicit
Construction of Infinite Synchronization
Strings

In [20] the authors introduced synchronization strings and gave a

O(n5) time randomized synchronization string construction. This

construction could not be easily derandomized. In order to provide

deterministic explicit constructions of insertion deletion block co-

des, [20] introduced a strictly weaker notion called self-matching

strings, showed that these strings could be used for code constructi-

ons as well, and gave a deterministicnO (1) time self-matching string

construction. Obtaining a deterministic construction for synchro-

nization strings, however, was left open. [20] also showed the ex-

istence of infinite synchronization strings. This existence proof

however is highly non-constructive. In fact, even the existence of a

computable infinite synchronization string was left open; i.e., up

to this paper there was no algorithm that would compute the ith

symbol of some infinite synchronization string in finite time.

In this paper, we give deterministic constructions of finite and

infinite synchronization strings. Instead of going to a weaker no-

tion, as done in [20], Section 4.1 introduces a stronger notion called

long-distance synchronization strings. Interestingly, while the exis-

tence of these generalized synchronization strings can be shown

with a similar Lovász local lemma based proof as for plain syn-

chronization strings, this proof allows for an easier derandomi-

zation, which leads to a deterministic polynomial time con-

struction of (long-distance) synchronization strings. Beyond

this derandomization, the notion of long-distance synchronization

strings turns out to be very useful and interesting in its own right,

as will be shown later.

Next, two different boosting procedures, which make synchro-

nization string constructions faster and more explicit, are given.

The first boosting procedure, given in Section 4.4, leads to a de-

terministic linear time synchronization string construction.

We remark that concurrently and independently Cheng, Li, and

Wu obtained a deterministic O(n log2 logn) time synchronization

string construction [9].

Our second boosting step, which is introduced in Section 4.3,

makes our synchronization string construction highly-explicit,

i.e., allows to compute any position of an n long synchronization

string in time O (logn). This highly-explicitness is a property of

crucial importance in most of our new applications.

Lastly, in Section 4.5 we give a simple transformation which

allows us to use any construction for finite length synchronization

strings and utilize it to give an construction of an infinite synchro-

nization string. This transformation preserves highly-explicitness.

Infinite synchronization strings are important for applications in

which one has no a priori bound on the running time of a system,

such as, streaming codes, channel simulations, and some interactive

coding schemes. Overall we get the following simple to state theo-

rem:

Theorem 2.1. For any 0 < ε < 1, there exists an infinite ε-

synchronization string S over an alphabet of size ε−O (1) and a de-

terministic algorithm which for any i takes O(log i) time to compute

S[i, i+log i], i.e., the ith symbol of S (as well as the next log i symbols).

Since any substring of an ε-synchronization string is also an

ε-synchronization string itself this infinite synchronization string

construction also implies a deterministic linear time construction

of finite synchronization strings which is fully parallelizable. In

particular, for any n there is a linear work parallel NC1 algorithm

with depthO(logn) andO(n/logn) processors which computes the

ε-synchronization string S[1,n].

2.2 Long Distance Synchronization Strings and
Fast Local Decoding

Section 5 shows that the long-distance property we introduced in

Section 4.1, together with our highly explicit constructions from

Section 4.3, allows the design of a much faster and highly local

decoding procedure. In particular, to decode the index of an element

in a stream that was indexedwith a synchronization string it suffices

to look at onlyO(logn) previously received symbols. The decoding

of the index itself furthermore takes only O(log3 n) time and can

be done in a streaming fashion. This is significantly faster than the

O(n3) streaming decoder or the O(n2) global decoder given in [20].

The paper furthermore gives several applications which demon-

strate the power of these improved synchronization string con-

structions and the local decoding procedure.

842

Synchronization Strings: Explicit Constructions, Local Decoding, and Applications STOC’18, June 25–29, 2018, Los Angeles, CA, USA

2.3 Application: Codes Against Insdels, Block
Transpositions and Replications

2.3.1 Near Linear Time Decodable Error Correcting Codes. Fast

encoding and decoding procedures for error correcting codes have

been important and influencial in both theory and practice. For

regular error correcting block codes, the celebrated expander code

framework given by Sipser and Spielman [32] and in Spielman’s

thesis [34] as well as later refinements by Alon, Edmonds, and

Luby [1] as well as Guruswami and Indyk [14, 15] gave good ECCs

with linear time encoding and decoding procedures. Very recently,

a beautiful work by Hemenway, Ron-Zewi, and Wooters [24] achie-

ved linear time decoding also for capacity achieving list decodable

and locally list recoverable codes.

The synchronization string based insdel codes in [20] have linear

encoding times but quadratic decoding times. As pointed out in

[20], the latter seemed almost inherent to the harsher setting of

insdel errors because łin contrast to Hamming codes, even computing

the distance between the received and the sent/decoded string is an

edit distance computation. Edit distance computations in general do

usually not run in sub-quadratic time, which is not surprising given

the recent SETH-conditional lower bounds [2]ž. Very surprisingly to

us, our fast decoding procedure allows us to construct insdel codes

with near linear decoding complexity:

Theorem 2.2. For any δ < 1 and ε > 0 there exists an insdel

error correcting block code with rate 1−δ −ε that can correct from
any δ/3 fraction of insertions and deletions in O(n log3 n) time. The

encoding time is linear and the alphabet bit size is near linear in 1
δ+ε

.

Note that for any input string the decoder finds the codeword

that is closest to it in edit distance, if a codeword with edit distance

of at most O(δn) exists. However, computing the distance between

the input string and the codeword output by the decoder is an edit

distance computation. Shockingly, even now, we do not know of any

sub-quadratic algorithm that can compute or even crudely approxi-

mate this distance between input and output of our decoder, even

though intuitively this seems to be much easier almost prerequisite

step for the distance minimizing decoding problem itself. After all,

decoding asks to find the closest (or a close) codeword to the input

from an exponentially large set of codewords, which seems hard to

do if one cannot even approximate the distance between the input

and any particular codeword.

2.3.2 Application: High-Rate InsDel Codes that Efficiently Cor-

rect Block Transpositions and Replications. Section 6.2 gives another

interesting application of our local decoding procedure. In parti-

cular, we show that local decodability directly implies that insdel

ECCs constructed with our highly-explicit long-distance synchro-

nization strings can not just efficiently recover from δ fraction of

insdel errors but also from any O(δ/logn) fraction of block trans-

positions and block replications. Block transpositions allow for

arbitrarily long substrings to be swapped while a block replication

allows for an arbitrarily long substring to be duplicated and inserted

anywhere else. A similar result, albeit for block transpositions only,

was shown by Schulman, Zuckerman [30] for the efficient constant

distance constant rate insdel codes given by them. They also show

that the O(δ/logn) resilience against block errors is optimal up to

constants.

2.4 Application: Exponentially More Efficient
Infinite Channel Simulations

[23] introduced the powerful notion of a channel simulation. In

particular, [23] showed that for any adversarial one-way or two-way

insdel channel one can put a simple black-box at both ends such that

to any two parties interacting with these black-boxes the behavior

is indistinguishable from a much nicer Hamming channel which

only introduces (a slightly larger fraction of) erasures and symbol

corruptions. To achieve this these black-boxes were required to

know a prior for how many stepsT the channel would be used and

required an amount of memory size that is linear inT . Furthermore,

for each transmission at a time step t the receiving black-box would

perform a O(t3) time computation. We show that using our locally

decodable highly explicit long-distance synchronization strings

can reduce both the memory requirement and the computation

complexity exponentially. In particular each box is only required

to have O(log t) bits of memory (which is optimal because at the

very least it needs to store the current time) and any computation

can be done in O(log3 t) rounds. Furthermore due to our infinite

synchronization string constructions the channel simulations black-

boxes are not required to know anymore for how much time overall

the channel will be used. These drastic improvements make channel

simulations significantly more useful and indeed potentially quite

practical.

2.5 Application: Near-Linear Time Interactive
Coding Schemes for InsDel Errors

Interactive coding schemes, as introduced by Schulman [28, 29],

allow to add redundancy to any interactive protocol between two

parties in such a way that the resulting protocol becomes robust

to noise in the communication. Interactive coding schemes that

are robust to symbol corruptions have been intensely studied over

the last few years [4, 5, 7, 10ś12, 19, 25]. Similar to error correcting

codes the main parameters for an interactive coding scheme is the

fraction of errors it can tolerate[7, 10, 28, 29] its communication

rate[19, 25] and its computational efficiency [4, 5, 11, 12]. In particu-

lar, Brakerski and Kalai [4] gave the first computationally efficient

polynomial time interactive coding scheme. Brakerski and Naor [5]

improved the complexity to near linear. Lastly, Ghaffari and Haeu-

pler [12] gave a near-linear time interactive coding scheme that also

achieved the optimal maximal robustness. More recently interactive

coding schemes that are robust to insertions and deletions have

been introduced by Braverman, Gelles, Mao, and Ostrovsky [6] sub-

sequently Sherstov and Wu [31] gave a scheme with optimal error

tolerance and Haeupler, Shahrasbi, and Vitercik [23] used channel

simulations to give the first computationally efficient polynomial

time interactive coding scheme for insdel errors. Our improved

channel simulation can be used together with the coding scheme

from [12] to directly get the first interactive coding scheme for in-

sertions and deletions with a near linear time complexity - i.e., the

equivalent of the result of Brakerski and Naor [5] but for insertions

and deletions.

843

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

3 DEFINITIONS AND PRELIMINARIES

In this section, we provide the notation and definitions we will

use throughout the rest of the paper. We also briefly review key

definitions and techniques from [20, 23].

3.1 String Notation

String Notation. Let S ∈ Σ
n and S ′ ∈ Σ

n′
be two strings over

alphabet Σ. We define S · S ′ ∈ Σ
n+n′

to be their concatenation.

For any positive integer k we define Sk to equal k copies of S

concatenated together. For i, j ∈ {1, . . . ,n}, we denote the substring
of S from the ith index through and including the jth index as S[i, j].
Such a consecutive substring is also called a factor of S . For i < 1

we define S[i, j] = ⊥−i+1 · S[1, j] where ⊥ is a special symbol not

contained in Σ. We refer to the substring from the ith index through,

but not including, the jth index as S[i, j). The substrings S(i, j] and
S(i, j) are similarly defined. S[i] denotes the ith symbol of S and

|S | = n is the length of S . Occasionally, the alphabets we use are

the cross-product of several alphabets, i.e. Σ = Σ1 × · · · × Σn . If T

is a string over Σ, then we writeT [i] = [a1, . . . ,an], where ai ∈ Σi .

Finally, symbol by symbol concatenation of two strings S and T of

similar length is [(S1,T1), (S2,T2), · · ·].
Edit Distance. Throughout this work, we rely on the well-known

edit distance metric defined as follows.

Definition 3.1 (Edit distance). The edit distance ED(c, c ′) between
two strings c, c ′ ∈ Σ

∗ is the minimum number of insertions and

deletions required to transform c into c ′.

It is easy to see that edit distance is a metric on any set of strings

and in particular is symmetric and satisfies the triangle inequality

property. Furthermore, ED (c, c ′) = |c | + |c ′ | − 2 · LCS (c, c ′), where
LCS (c, c ′) is the longest common substring of c and c ′.

Definition 3.2 (Relative Suffix Distance). For any two strings

S, S ′ ∈ Σ
∗ we define their relative suffix distance RSD as follows:

RSD(S, S ′) = max
k>0

ED (S(|S | − k, |S |], S ′(|S ′ | − k, |S ′ |])
2k

Lemma 3.3. For any strings S1, S2, S3 we have

• Symmetry: RSD(S1, S2) = RSD(S2, S1),
• Non-Negativity and Normalization: 0 ≤ RSD(S1, S2) ≤ 1,

• Identity of Indiscernibles: RSD(S1, S2) = 0 ⇔ S1 = S2, and

• Triangle Inequality:RSD(S1, S3) ≤ RSD(S1, S2)+RSD(S2, S3).
In particular, RSD defines a metric on any set of strings.

3.2 Synchronization Strings

We now recall synchronization string based techniques and rele-

vant lemmas from [20, 23] which we will be of use here. In short,

synchronization strings allow communicating parties to protect

against synchronization errors by indexing their messages without

blowing up the communication rate. The general idea of coding

schemes introduced and utilized in [20, 23], is to index any commu-

nicated symbol in the sender side and then guess the actual position

of received symbols on the other end using the attached indices.

A straightforward candidate for such technique is to attach

1, · · · ,n to communicated symbols where n indicates the rounds of

communication. However, this trivial indexing scheme would not

lead to an efficient solution as it requires assigning a logn-sized

space to indexing symbols. This shortcoming accentuates a natural

trade-off between the size of the alphabet among which indexing

symbols are chosen and the accuracy of the guessing procedure on

the receiver side.

Haeupler and Shahrasbi [20] introduce ε-synchronization strings

as well-fitting candidates for this matter. This family of strings, pa-

rametrized by ε , are over alphabets of constant size in terms of

communication length n and dependent merely on parameter ε .

ε-synchronization strings can convert any adversarial k synchro-

nization errors into hamming-type errors. The extent of disparity

between the number translated hamming-type errors and k can be

controlled by parameter ε .

Imagine Alice and Bob as two parties communicating over a

channel suffering from up to δ -fraction of adversarial insertions

and deletions. Suppose Alice sends a string S of length n to Bob. On

the other end of the communication, Bob will receive a distorted

version of S as adversary might have inserted or deleted a number

of symbols. A symbol which is sent by Alice and is received by

Bob without being deleted by the adversary is called a successfully

transmitted symbol.

Assume that Alice and Bob both know string S a priori. Bob

runs an algorithm to determine the actual index of each of the

symbols he receives, in other words, to guess which element of S

they correspond to. Such algorithm has to return an number in [1,n]
or łI don’t knowž for any symbol of Sτ . We call such an algorithm

an (n,δ)-indexing algorithm.

Ideally, a indexing algorithm is supposed to correctly figure

out the indices of as many successfully transmitted symbols as

possible. The measure of misdecodings has been introduced in [20]

to evaluate the quality of a (n,δ)-indexing algorithm as the number

of successfully transmitted symbols that an algorithm might not

decoded correctly. An indexing algorithm is called to be streaming

if its output for a particular received symbol depends only on the

symbols that have been received before it.

Haeupler and Shahrasbi [20] discuss ε-synchronization strings

along with several decoding techniques for them.

Definition 3.4 (ε-Synchronization String). String S ∈ Σ
n is an

ε-synchronization string if for every 1 ≤ i < j < k ≤ n + 1 we have

that ED (S[i, j), S[j,k)) > (1 − ε)(k − i). We call the set of prefixes

of such a string an ε-synchronization code.

We will make use of the global decoding algorithm from [20]

described as follows.

Theorem 3.5 (Theorems and 6.14 from [20]). There is a de-

coding algorithm for an ε-synchronization string of length n which

guarantees decoding with up to O(n
√
ε) misdecodings and runs in

O(n2/
√
ε) time.

Theorem 3.6 (Theorem 4.1 from [20]). Given a synchroniza-

tion string S over alphabet ΣS with an (efficient) decoding algorithm

DS guaranteeing at most k misdecodings and decoding complexity

TDS
(n) and an (efficient) ECC C over alphabet ΣC with rate RC ,

encoding complexityTEC , and decoding complexityTDC that corrects

up to nδ + 2k half-errors, one obtains an insdel code that can be (effi-

ciently) decoded from up tonδ insertions and deletions. The rate of this

code is at least
RC

1+log |ΣS |/log |ΣC | The encoding complexity remains

844

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

locating at indices a1 < a2 < · · · < am and b1 < b2 < · · · < bm
respectively. We callM = {(a1,b1), · · · , (am ,bm)} a monotone mat-

ching from S[i1, j1) to S[i2, j2). Let 1 ≤ i ≤ m be the largest number

such that |S[i1,ai]| + |S[i2,bi]| ≤ ⌈l/2⌉. It is easy to verify that

there are integers ai < k1 ≤ ai+1 and bi < k2 ≤ bi+1 such that

|S[i1,k1)| + |S[i2,k2)| ∈ {⌈l/2⌉ − 1, ⌈l/2⌉}.
Therefore, we can split the pair of intervals (S[i1, j1), S[i2, j2))

into two pairs of intervals (S[i1,k1), S[i2,k2)) and (S[k1, j1), S[k2, j2))
such that each pair of the matchingM falls into exactly one of these

pairs. Hence, in at least one of those pairs, the size of the matching

is larger than ε
2 times the total length. This gives that the edit

distance of those pairs is less than 1 − ε and finishes the proof. �

Lemma 4.3 shows that if there is a pair of intervals of total

length l that have small relative edit distance, we can find a pair

of intervals of size {⌈l/2⌉ − 1, ⌈l/2⌉, ⌈l/2⌉ + 1} which have small

relative edit distance as well. Now, let us consider a string S with a

pair of intervals that violate the c-long distance ε-synchronization

property. If the total length of the intervals exceed 2c logn, using

Lemma 4.3 we can find another pair of intervals of almost half the

total length which still violate the c-long distance ε-synchronization

property. Note that as their total length is longer than c logn, we

do not worry about the distance of those intervals. Repeating this

procedure, we can eventually find a pair of intervals of a total

length between c logn and 2c logn that violate the c-long distance

ε-synchronization property. More formally, we can derive the follo-

wing statement by Lemma 4.3.

Corollary 4.4. If S is a string which satisfies the c-long-distance

ε-synchronization property for any two non-adjacent intervals of total

length 2c logn or less, then it satisfies the property for all pairs of

non-adjacent intervals.

Proof. Suppose, for the sake of contradiction, that there exist

two intervals of total length 2 logc n or more that violate the c-long-

distance ε-synchronization property. Let [i1, j1) and [i2, j2) where
i1 < j1 ≤ i2 < j2 be two intervals of the smallest total length

l = j1 − i1 + j2 − i2 larger than 2 logc n (breaking ties arbitrarely) for

which ED(S[i1, j1), [i2, j2)) ≤ (1−ε)l . By Lemma 4.3 there exists two

intervals [i ′1, j
′
1) and [i ′2, j

′
2) where i

′
1 < j ′1 ≤ i ′2 < j ′2 of total length

l ′ ∈ [l/2, l) with ED(S[i ′1, j
′
1), [i

′
2, j

′
2)) ≤ (1 − ε)l . If l ′ ≤ 2 logc n, the

assumption of c-long-distance ε-synchronization property holding

for intervals of length 2 logc n or less is contradicted. Unless, l ′ >
2 logc n that contradicts the minimality of our choice of l . �

Theorem 4.5. For any 0 < ε < 1 and every n there is a determi-

nistic nO (1) time algorithm for computing a c = O(1/ε)-long-distance
ε-synchronization string over an alphabet of size O(ε−4).

Proof. To prove this, we will make use of the Lovász local

lemma and deterministic algorithms proposed for it in [8]. We ge-

nerate a random string R over an alphabet of size |Σ| = O(ε−2) and
define bad event Bi1,l1,i2,l2 as the event of intervals [i1, i1 + l1) and
[i2, i2+l2) violating theO(1/ε)-long-distance synchronization string
property over intervals of total length 2/ε2 or more. In other words,

Bi1,l1,i2,l2 occurs if and only if ED(R[i1, i1 + l1),R[i2, i2 + l2)) ≤
(1 − ε)(l1 + l2). Note that by the definition of c-long-distance ε-

synchronization strings, Bi1,l1,i2,l2 is defined for (i1, l1, i2, l2)s where
either l1 + l2 ≥ c logn and i1 + l1 ≤ i2 or 2/ε2 < l1 + l2 <

c logn and i2 = i1 + l1. We aim to show that for large enough

n, with non-zero probability, none of these bad events happen.

This will prove the existence of a string that satisfies c = O(1/ε)-
long-distance ε-synchronization strings for all pairs of intervals

that are of total length 2/ε2 or more. To turn this string into a

c = O(1/ε)-long-distance ε-synchronization strings, we simply con-

catenate it with a string consisting of repetitions of 1, · · · , 2ε−2,
i.e., 1, 2, · · · , 2ε−2, 1, 2, · · · , 2ε−2, · · · . This string will take care of

the edit distance requirement for neighboring intervals with total

length smaller than 2ε−2.
Note that using Lemma 4.3, by a similar argument as in Claim 4.4,

we only need to consider bad events where l1 + l2 ≤ 2c logn. As the

first step, note that Bi1,l1,i2,l2 happens only if there is a common

subsequence of length ε(l1 + l2)/2 or more between R[i1, i1 + l1)
and R[i2, i2 + l2). Hence, the union bound gives that

Pr
{

Bi1,l1,i2,l2
}

≤
(

l1

ε(l1 + l2)/2

) (

l1

ε(l1 + l2)/2

)

|Σ|−
ε (l1+l2)

2

≤
(

2e
√
l1l2

ε(l1 + l2)
√

|Σ|

)ε (l1+l2)
≤

(

e

ε
√

|Σ|

)εl

where l = l1+l2. In order to apply LLL, we need to find real numbers

xi1,l1,i2,l2 ∈ [0, 1] such that for any Bi1,l1,i2,l2

Pr{Bi1,l1,i2,l2 } ≤ xi1,l1,i2,l2 ·
∏

[S [i1,i1+l1)∪S [i2,i2+l2)]∩[S [i′1,i′1+l ′1)∪S [i′2,i′2+l ′2)],∅
(1 − xi′1,l

′
1,i

′
2,l

′
2
) (1)

We eventually want to show that our LLL argument satisfies

the conditions required for polynomial-time deterministic algo-

rithmic LLL specified in [8]. Namely, it suffices to certify two other

properties in addition to (1). The first additional requirement is to

have each bad event in LLL depend on up to logarithmically many

variables and the second is to have (1) hold with a constant expo-

nential slack. The former is clearly true as our bad events consist

of pairs of intervals each of which is of a length between c logn

and 2c logn. To have the second requirement, instead of (1) we find

xi1,l1,i2,l2 ∈ [0, 1] that satisfy the following stronger property.

Pr{Bi1,l1,i2,l2 } ≤
[

xi1,l1,i2,l2 ·

∏

[S [i1,i1+l1)∪S [i2,i2+l2)]∩[S [i′1,i′1+l ′1)∪S [i′2,i′2+l ′2)],∅
(1 − xi′1,l

′
1,i

′
2,l

′
2
)
]1.01

(2)

Any small constant can be used as slack. We pick 1.01 for the sake

of simplicity. We propose xi1,l1,i2,l2 = 2−ε (l1+l2). It can be shown

that for sufficiently small ε , c = 2/ε , and some |Σ| = O(ε−2), this
choice of x satisfies (2) and, therefore, completes the proof. The

details of this proof are available in the extended version of this

paper [21]. �

4.3 Boosting I: Linear Time Construction of
Synchronization Strings

Next, we provide a simple boosting step which allows us to po-

lynomially speed up any ε-synchronization string construction.

Essentially, we propose a way to construct anO(ε)-synchronization

846

Synchronization Strings: Explicit Constructions, Local Decoding, and Applications STOC’18, June 25–29, 2018, Los Angeles, CA, USA

string of lengthOε (n2) having an ε-synchronization string of length
n.

Lemma 4.6. Fix an even n ∈ N and γ > 0 such that γn ∈ N.
Suppose S ∈ Σ

n is an ε-synchronization string. The string S ′ ∈ Σ
′γn2

with Σ
′
= Σ

3 and

S ′[i] =
(

S[i mod n], S[(i + n/2) mod n], S
[⌈

i

γn

⌉])

is an (ε + 6γ)-synchronization string of length γn2.

Proof. Intervals of length at most n/2 lay completely within a

copy of S and thus have the ε-synchronization property. For inter-

vals of size l larger than n/2 we look at the synchronization string

which is blown up by repeating each symbol γn times. Ensuring

that both sub-intervals contain complete blocks changes the edit

distance by at most 3γn and thus by at most 6γl . Once only com-

plete blocks are contained we use the observation that the longest

common subsequence of any two strings becomes exactly a factor

k larger if each symbols is repeated k times in each string. This

means that the relative edit distance does not change and is thus at

least ε . Overall this results in the (ε + 6γ)-synchronization string

property to hold for large intervals in S ′. �

We use this step to speed up the polynomial time deterministic

ε-synchronization string construction in Theorem 4.5 to linear time.

Theorem 4.7. There exists an algorithm that, for any 0 < ε < 1,

constructs an ε-synchronization string of length n over an alphabet

of size ε−O (1) in O(n) time.

Proof. Note that if one takes an ε ′-synchronization strings of

length n′ and applies the boosting step in Theorem 4.6 k times with

parameter γ , he would obtain a (ε ′ + 6kγ)-synchronization string

of length γ 2
k−1n2

k
.

For any 0 < ε < 1, Theorem 4.5 gives a deterministic algo-

rithm for constructing an ε-synchronization string over an alpha-

bet O(ε−4) that takes O(nT) time for some constant T independent

of ε and n. We use the algorithm in Theorem 4.5 to construct an

ε ′ = ε
2 synchronization string of length n′ = n1/T

γ for γ = ε
12 logT

over an alphabet of size O(ε−4) in O(n′T) = O(n) time. Then, we

apply boosting step I k = logT times with γ = ε
12 logT

to get an

(ε ′ + 6γ logT = ε)-synchronization string of length γT−1n′T ≥ n.

As boosting step have been employed constant times, the eventual

alphabet size will be ε−O (1) and the run time is O(n). �

4.4 Boosting II: Explicit Constructions for
Long-Distance Synchronization Strings

We start this section by a discussion of explicitness quality of syn-

chronization string constructions. In addition to the time complexity

of synchronization strings’ constructions, an important quality of

a construction that we take into consideration for applications that

we will discuss later is explicitness or, in other words, how fast one

can calculate a particular symbol of a synchronization string.

Definition 4.8 (T (n)-explicit construction). If a synchronization
string construction algorithm can compute ith index of the string

it is supposed to find, i.e., S[i], in T (n) we call it an T (n)-explicit
algorithm.

We are particularly interested in cases where T (n) is polylo-
garithmically large in terms of n. For such T (n), a T (n)-explicit
construction implies a near-linear construction of the entire string

as one can simply compute the string by finding out symbols one

by one in n ·T (n) overall time. We use the term highly-explicit to

refer to O(logn)-explicit constructions.
We now introduce a boosting step in Lemma 4.10 that will lead

to explicit constructions of (long-distance) synchronization strings.

Lemma 4.10 shows that, using a high-distance insertion-deletion

code, one can construct strings that satisfy the requirement of long-

distance synchronization strings for every pair of substrings that

are of total length Ωε (logn) or more. Having such a string, one can

construct aOε (1)-long-distance ε-synchronization string by simply

concatenating the outcome of Lemma 4.10 with repetitions of an

Oε (logn)-long ε-synchronization string.

This boosting step is deeply connected to our new definition of

long-distance ε-synchronization strings. In particular, we observe

the following interesting connection between insertion-deletion

codes and long-distance ε-synchronization strings.

Lemma 4.9. If S is a c-long-distance ε-synchronization string over

an alphabet of size q where c = Θ(1) then C = {S(i · c logn, (i + 1) ·
c logn]|0 ≤ i < n

c logn
− 1} is an insdel error correcting code with

minimum distance at least 1 − ε and constant rate Ωq (1). Further, if
any substring S[i, i + logn] is computable in O(logn) time, C has a

linear encoding time.

Proof. The distance follows from the definition of long-distance

ε-synchronization strings. The rate follows because the rate R

is equal to R =
log |C |

c logn logq
=

log n
c logn

Oq (logn) = Ωq (1). Finally, since
|S(i · c logn, (i + 1) · c logn]| = c logn, one can compute S(i ·c logn,
(i + 1) · c logn] in linear time in terms of its length. �

Our boosting step is mainly built on the converse of this obser-

vation.

Lemma 4.10. Suppose C is a block insdel code over alphabet of

size q, block length N , distance 1 − ε and rate R and let S be a string

obtained by attaching all codewords back to back in any order. Then,

for ε ′ = 4ε , S is a string of length n = qR ·N · N which satisfies the

long-distance ε ′-synchronization property for any pair of intervals of

aggregated length 4
ε N ≤ 4

ε logq
(logn − logR) or more. Further, if C

is linear-time encodable, S has a highly explicit construction.

Proof. The length of S follows from the definition of rate. Mo-

reover, the highly explicitness follows from the fact that every

substring of S of length logn may include parts of 1
ε logq

+ 1 co-

dewords each of which can be computed in linear time in terms

of their length. Therefore, any substring S[i, i + logn] can be con-

structed inO
(

max
{

logn
ε logq

, logn
})

= Oε,q (logn). To prove the long
distance property, we have to show that for every four indices

i1 < j1 ≤ i2 < j2 where j1 + j2 − i1 − i2 ≥ 4N
ε , we have

ED(S[i1, j1), S[i2, j2)) ≥ (1 − 4ε)(j1 + j2 − i1 − i2). (3)

Assume that S[i1, j1) contains a total of p complete blocks of

C and S[i2, j2) contains q complete blocks of C. Let S[i ′1, j
′
1) and

S[i ′2, j
′
2) be the strings obtained be throwing the partial blocks away

from S[i1, j1) and S[i2, j2). Note that the overall length of the partial

847

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

blocks in S[i1, j1) and S[i2, j2) is less than 4N , which is at most an

ε-fraction of S[i1, j1) ∪ S[i2, j2), since 4N
4N /ε < ε .

Assume by contradiction that ED(S[i1, j1), S[i2, j2)) < (1−4ε)(j1+
j2 − i1 − i2). Since edit distance preserves the triangle inequality,
we have that

ED
(

S[i ′1, j
′
1), S[i

′
2, j

′
2)

)

≤ ED (S[i1, j1), S[i2, j2)) + |S[i1, i ′1)| +
|S[j ′1, j1)| + |S[i2, i ′2)| + |S[j ′2, j2)|

≤ (1 − 4ε + ε) (j1 + j2 − i1 − i2)

<

(

1 − 3ε

1 − ε

)

(

(j ′1 − i ′1) + (j
′
2 − i ′2)

)

.

This means that the longest common subsequence of S[i ′1, j
′
1)

and S[i ′2, j
′
2) has length of at least

1

2

[

(

|S[i ′1, j
′
1)| + |S[i ′2, j

′
2)|

)

(

1 − 1 − 3ε

1 − ε

)]

,

which means that there exists a monotonically increasing matching

between S[i ′1, j
′
1) and S[i

′
2, j

′
2) of the same size. Since the matching

is monotone, there can be at most p + q pairs of error-correcting

code blocks having edges to each other. The Pigeonhole Principle

implies that there are two error-correcting code blocks B1 and B2
such that the number of edges between them is at least

1
2

[

(|S[i1, j1)| + |S[i2, j2)|)
(

1 − 1−3ε
1−ε

)]

p + q

=

(p + q)N
(

1 − 1−3ε
1−ε

)

2(p + q)

>
1

2

(

1 − 1 − 3ε

1 − ε

)

· N .

Notice that this is also a lower bound on the longest common

subsequence of B1 and B2. This means that

ED(B1,B2) < 2N −
(

1 − 1 − 3ε/4
1 − ε/4

)

N <
2 − 4ε

1 − ε
N < 2 (1 − ε)N .

This contradicts the error-correcting code’s distance property,

which we assumed to be larger than 2(1−ε)N , and therefore wemay

conclude that for all indices i1 < j1 ≤ i2 < j2 where j1+ j2−i1−i2 ≥
4N
ε , (3) holds. �

We point out that even a brute force enumeration of a good insdel

code could be used to find a string that satisfies ε-synchronization

property for pairs of intervals with large total length. All needed to

get an ε-synchronization string is to concatenate that with a string

which satisfies ε-synchronization property for small intervals. This

one could be brute forced as well. Overall, this gives an alternative

polynomial time construction (still using the inspiration of long-

distance strings, though). More importantly, if we use a linear time

construction for short intervals and a linear time encodable insdel

code for long ones, we get a simpleOε (logn)-explicit long-distance
ε-synchronization string construction for which any interval [i, i +
Oε (logn)] is computable in Oε (logn).

In the rest of this section, as depicted in Figure 1, we first in-

troduce a high distance, small alphabet error correcting code that

is encodable in linear time in Lemma 4.13 using a high-distance

linear-time code introduced in [15]. We then turn this code into a

high distance insertion deletion code using the indexing technique

from [20]. Finally, we will employ this insertion-deletion code in

the setup of Lemma 4.10 to obtain a highly-explicit linear-time

long-distance synchronization strings.

Our codes are based on the following code from Guruswami and

Indyk [15].

Theorem 4.11 (Theorem 3 from [15]). For every r , 0 < r < 1,

and all sufficiently small ϵ > 0, there exists a family of codes of rate

r and relative distance at least (1 − r − ϵ) over an alphabet of size

2O (ϵ−4r−1 log(1/ϵ)) such that codes from the family can be encoded in

linear time and can also be (uniquely) decoded in linear time from

(1 − r − ϵ) fraction of half-errors, i.e., a fraction e of errors and s of

erasures provided 2e + s ≤ (1 − r − ϵ).

One major downside of constructing ε-synchronization strings

based on the code from Theorem 4.11 is the exponentially large

alphabet size in terms of ε . We concatenate this code with an ap-

propriate small alphabet code to obtain a high-distance code over a

smaller alphabet size.

Lemma 4.12. For sufficiently small ε and A,R > 1, and any set Σi

of size |Σi | = 2O (ε−5 log(1/ε)), there exists a code C : Σi → Σ
N
o with

distance 1 − ε and rate εR where |Σo | = O(ε−A).

Proof. To prove the existence of such code, we show that a

random code with distance δ = 1 − ε , rate r = εA, alphabet size

|Σo | = ε−A, and block length

N =
log |Σi |
log |Σo |

· 1
r
= O

(

ε−5 log(1/ε)
A log(1/ε) · 1

εR

)

=

1

A
·O

(

ε−5−R
)

exists with non-zero probability. The probability of two randomly

selected codewords of length N out of Σo being closer than δ = 1−ε
can be bounded above by the following term.

(

N

Nε

) (

1

|Σo |

)−Nε

Hence, the probability of the random code with |Σo |Nr
= |Σ1 |

codewords having a minimum distance smaller than δ = 1 − ε is at

most the following.

(

N

Nε

) (

1

|Σo |

)Nε (

|Σi |
2

)

≤
(

Ne

Nε

)Nε |Σi |2

|Σo |Nε

=

(e

ε

)Nε 2O (ε−5 log(1/ε))

(ε−A)Nε

= 2O ((1−A) log(1/ε)Nε+ε−5 log(1/ε))

= 2(1−A)O (ε−4−R log(1/ε))+O (ε−5 log(1/ε))

For A > 1, 1 − A is negative and for R > 1, ε−4−R log(1/ε) is
asymptotically larger than ε−5 log(1/ε). Therefore, for sufficiently

small ε , the exponent is negative and the desired code exists. �

Concatenating the code from Theorem 4.11 (as the outer code)

and the code from Lemma 4.12 (as inner code) gives the following

code.

848

Synchronization Strings: Explicit Constructions, Local Decoding, and Applications STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Theorem 5.1. LetR be a highly-explicit long-distance ε-synchronization

string constructed according to (9). Let R[1, i] be sent by Alice and be

received as R′[1, j] by Bob. If relative suffix error density is smaller

than 1 − ε
2 , then Bob can find i in 4

ε · TDec (N) + 4N
ε · (TEnc (N) +

ExT (c logn)+ c2 log2 n) only by looking at the lastmax(4N
ε2
, c logn)

received symbols where TEnc and TDec is the encoding and deco-

ding complexities of C and ExT (l) is the amount of time it takes to

construct a substring of T of length l .

For linear-time encodable, quadratic-time decodable code C and

highly-explicit stringT constructed by repetitions of short synchro-

nization strings used in Theorem 4.15, construction (9) provides

the following.

Theorem 5.2. LetR be a highly-explicit long-distance ε-synchronization

string constructed according to (9) with code C and stringT as descri-

bed in Theorem 4.15. Let R[1, i] be sent by Alice and be received as

R′[1, j] by Bob. If relative suffix error density is smaller than 1 − ε
2 ,

then Bob can find i in O(log3 n) time only by looking at the last

O(logn) received symbols.

This decoding procedure, which we will refer to as local deco-

ding consists of two principal phases upon arrival of each symbol.

During the first phase, the receiver finds a list of 1
ε numbers that is

guaranteed to contain the index of the current insertion-deletion

code block. This gives N
ε candidates for the index of the received

symbol. The second phase uses the relative suffix error density

guarantee to choose the correct candidate among the list. The fol-

lowing lemma formally presents the first phase. This idea of using

list decoding as a middle step to achieve unique decoding has been

used by several previous work [12, 16ś18].

Lemma 5.3. Let S be an ε-synchronization string constructed as

described in (9). Let S[1, i] be sent by Alice and be received as Sτ [1, j]
by Bob. If relative suffix error density is smaller than 1 − ε/2, then
Bob can compute a list of 4N

ε numbers that is guaranteed to contain

i .

Proof. Note that as relative suffix error density is smaller than

1−ε/2 < 1, the last received symbol has to be successfully transmit-

ted. Therefore, Bob can correctly figure out the insertion-deletion

code block index counter value which we denote by count . Note

that if there are no errors, all symbols in blocks with index counter

value of count , count − 1, · · · , count − 4/ε + 1 mod 8
ε3

that was sent

by Bob right before the current symbol, have to be arrived within

the past 4/ε ·N symbols. However, as adversary can insert symbols,

those symbols can appear anywhere within the last 2
ε
4N
ε =

8N
ε2

symbols.

Hence, if Bob looks at the symbols arrived with index i ∈ {count ,
count − 1, · · · , count − 4/ε + 1} mod 8

ε3
within the last 8N

ε2
received

symbols, he can observe all symbols coming from blocks with index

count , count − 1, · · · , count − 4/ε + 1 mod 8
ε3

that was sent right

before S[i]. Further, as our counter counts modulo 8
ε3
, no symbols

from older blocks with indices count , count − 1, · · · , count − 1/ε +
1 mod 4

ε3
will appear within the past 8N

ε2
symbols. Therefore, Bob

can find the symbols from the last 4
ε blocks up to some insdel errors.

By decoding those blocks, he can make up a list of 4
ε candidates for

the actual block number. As each block contains N elements, there

are a total of 4N
ε many candidates for i .

Note that as relative suffix error density is at most 1−ε/2 and the
last block may not have been completely sent yet, the total fraction

of insdels in reconstruction of the last 4
ε blocks on Bob side smaller

than 1 − ε/2 + N
4N /ε2 ≤ 1 − ε

4 . Therefore, the error density in at

least one of those blocks is not larger than 1 − ε
4 . This guarantees

that at least one block will be correctly decoded and henceforth the

list contains the correct actual index. �

We now define a limited version of relative suffix distance (de-

fined in [20]) which enables us to find the correct index among

candidates found in Lemma 5.3.

Definition 5.4 (Limited Relative Suffix Distance). For any two

strings S, S ′ ∈ Σ
∗ we define their l-limited relative suffix distance,

l-LRSD, as follows:

l-LRSD(S, S ′) = max
0<k<l

ED (S(|S | − k, |S |], S ′(|S ′ | − k, |S ′ |])
2k

Note that l = O(logn)-limited suffix distance of two strings can

be computed inO(l2) = O(log2 n) by computing edit distance of all

pairs of prefixes of their l-long suffixes.

Lemma 5.5. If string S is a c-long distance ε-synchronization

string, then for any two distinct prefixes S[1, i] and S[1, j], (c logn)-
LRSD(S[1, i], S[1, j]) > 1 − ε .

Proof. If j − i < c logn, the synchronization string property

gives that ED(S(2i − j, i], S(i, j]) > 2(j − i)(1 − ε) which gives the

claim for k = j − i . If j − i ≥ c logn, the long-distance property

gives that ED(S(i − logn, i], S(j − logn, j]) > 2(1 − ε)c logn which

again, proves the claim. �

Lemmas 5.3 and 5.5 enable us to prove Theorem 5.1.

Proof of Theorem 5.1. Using Lemma 5.3, by decoding 4/ε co-
dewords, Bob forms a list of 4N /ε candidates for the index of the
received symbol. This will take 4/ε · TDec (N) time. Then, using

Lemma 5.5, for any of the 4N /ε candidates, he has to construct a
c logn substring of R and compute the (c logn)-LRSD of that with

the string he received. This requires looking at the last max(4n/ε,
c logn) recieved symbols and takes 4N /ε · (TEnc (N)+ExT (c logn)+
c2 log2 n) time. �

6 APPLICATION: NEAR LINEAR TIME CODES
AGAINST INSDELS, BLOCK
TRANSPOSITIONS, AND BLOCK
REPLICATIONS

In Sections 4 and 5, we provided highly explicit constructions and

local decodings for synchronization strings. Utilizing these two

important properties of synchronization strings together suggests

important improvements over insertion-deletion codes introduced

by Haeupler and Shahrasbi [20]. We start by stating the following

important lemma which summarizes the results of Sections 4 and 5.

Lemma 6.1. For any 0 < ε < 1, there exists an streaming (n,δ)-
indexing solution with ε-synchronization string S and streaming deco-

ding algorithmD that figures out the index of each symbol by merely

considering the last Oε (logn) received symbols and in Oε (log3 n)

851

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

time. Further, S ∈ Σ
n is highly-explicit and constructible in linear-

time and |Σ| = O
(

ε−O (1)
)

. This solution may contain up to nδ
1−ε

misdecodings.

Proof. Let S be a long-distance 2ε-synchronization string con-

structed according to Theorem 4.15 and enhanced as suggested

in (9) to ensure local decodablity. As discussed in Sections 4 and 5,

these strings trivially satisfy all properties claimed in the statement

other than the misdecoding guarantee.

According to Theorem 5.2, correct decoding is ensured whenever

relative suffix error density is less than 1 − 2ε
2 = 1 − ε . Therefore,

as relative suffix error density can exceed 1 − ε upon arrival of at

most nδ
1−ε many symbols (see Lemma 5.14 from [20]), there can be

at most nδ
1−ε many successfully received symbols which are not

decoded correctly. This proves the misdecoding guarantee. �

6.1 Near-Linear Time Insertion-Deletion Code

Using the indexing technique proposed byHaeupler and Shahrasbi [20]

summarized in Theorem 3.6 with synchronization strings and de-

coding algorithm from Theorem 3.5, one can obtain the following

insdel codes.

Theorem 6.2. For any 0 < δ < 1/3 and sufficiently small ε > 0,

there exists an encoding map E : Σk → Σ
n and a decoding map D :

Σ
∗ → Σ

k , such that, if EditDistance(E(m),x) ≤ δn then D(x) =m.

Further, kn > 1 − 3δ − ε , |Σ| = f (ε), and E and D can be computed in

O(n) and O(n log3 n) time respectively.

Proof. We closely follow the proof of Theorem 1.1 from [20]

and use Theorem 3.6 to convert a near-MDS error correcting code

to an insertion-deletion code satisfying the claimed properties.

Given the δ and ε , we choose ε ′ = ε
12 and use locally decodable

Oε ′(1)-long-distance ε ′-synchronization string S of length n over

alphabet ΣS of size ε ′−O (1)
= ε−O (1) from Theorem 5.2.

We plug this synchronization string with the local decoding

from Theorem 5.2 into Theorem 3.6 with a near-MDS expander

code [15] C (see Theorem 4.11) which can efficiently correct up to

δC = 3δ + ε
3 half-errors and has a rate of RC > 1 − δC − ε

3 over

an alphabet ΣC = exp(ε−O (1)) such that log |ΣC | ≥
3 log |ΣS |

ε . This

ensures that the final rate is indeed at least
RC

1+
log ΣS
log ΣC

≥ RC−
log ΣS
log ΣC

=

1 − 3δ − 3 ε3 = 1 − 3δ − ε and the fraction of insdel errors that can

be efficiently corrected is δC − 2 δ
1−ε ′ ≥ 3δ + ε/3 − 2δ (1 + 2ε ′) ≥ δ .

The encoding and decoding complexities are furthermore straight

forward according to guarantees stated in Theorem 6.1 and the

linear time construction of S . �

6.2 Insdels, Block Transpositions, and Block
Replications

In this section, we introduce block transposition and block repli-

cation errors and show that code from Theorem 6.2 can overcome

these types errors as well.

One can think of several way to model transpositions and repli-

cations of blocks of data. One possible model would be to have the

string of data split into blocks of length l and then define transposi-

tions and replications over those fixed blocks. In other words, for

messagem1,m2, · · · ,mn ∈ Σ
n , a single transposition or replication

would be defined as picking a block of length l and then move or

copy that blocks of data somewhere in the message.

Another (more general) model is to let adversary choose any

block, i.e., substring of the message he wishes and then move or

copy that block somewhere in the string. Note that in this model,

a constant fraction of block replications may make the message

length exponentially large in terms of initial message length. We

will focus on this more general model and provide codes protecting

against them running near-linear time in terms of the received block

length. Such results automatically extend to the weaker model that

does not lead to exponentially large corrupted messages.

We now formally define (i, j, l)-block transposition as follows.

Definition 6.3 ((i, j, l)-Block Transposition). For a given string

M =m1 · · ·mn , the (i, j, l)-block transposition operation for 1 ≤ i ≤
i + l ≤ n and j ∈ {1, · · · , i − 1, i + l + 1, · · · ,n} is defined as an

operation which turnsM into

M ′
=m1, · · · ,mi−1,mi+l+1 · · · ,mj ,mi · · ·mi+l ,mj+1, · · · ,mn

if j > i + l or

M ′
=m1, · · · ,mj ,mi , · · · ,mi+l ,mj+1, · · · ,mi−1,mi+l+1 · · · ,mn

if j < i by removingM[i, i + l] and inserting it right afterM[j].

Also, (i, j, l)-block replication is defined as follows.

Definition 6.4 ((i, j, l)-Block Replication). For a given stringM =

m1 · · ·mn , the (i, j, l)-block replication operation for 1 ≤ i ≤ i+l ≤ n

and j ∈ {1, · · · ,n} is defined as an operation which turns M into

M ′
=m1, · · · ,mj ,mi · · ·mi+l ,mj+1, · · · ,mn which is obtained by

copyingM[i, i + l] right afterM[j].

We now proceed to the following theorem that implies the code

from Theorem 6.2 recovers from block transpositions and replicati-

ons as well.

Theorem 6.5. Let S ∈ Σ
n
S
be a locally-decodable highly-explicit

c-long-distance ε-synchronization string from Theorem 5.2 and C be

an half-error correcting code of block length n, alphabet ΣC , rate r ,
and distance d with encoding function EC and decoding function

DC that run in TEC and TDC respectively. Then, one can obtain an

encoding function En : ΣnrC → [ΣC × ΣS]n that runs in TEC +O(n)
and decoding functionDn : [ΣC × ΣS]∗ → Σ

nr
C which runs inTDC +

O
(

log3 n
)

and recovers from nδinsdel fraction of synchronization

errors and δblock fraction of block transpositions or replications as

long as
(

2 + 2
1−ε/2

)

δinsdel + (12c logn)δblock < d .

Proof. To obtain such codes, we simply index the symbols of

the given error correcting code with the symbols of the given sy-

nchronization strings. More formally, the encoding function E(x)
for x ∈ Σ

nr
C first computes EC(x) and then indexes it, symbol by

symbol, with the elements of the given synchronization string.

On the decoding end, D(x) first uses the indices on each symbol

to guess the actual position of the symbols using the local decoding

of the c-long-distance ε-synchronization string. Rearranging the

received symbols in accordance to the guessed indices, the recei-

ving end obtains a version of EC(x), denoted by x̄ , that may suffer

852

Synchronization Strings: Explicit Constructions, Local Decoding, and Applications STOC’18, June 25–29, 2018, Los Angeles, CA, USA

from a number of symbol corruption errors due to incorrect in-

dex misdecodings. As long as the number of such misdecodings,

k , satisfies nδinsdel + 2k ≤ nd , computing DC(x̄) gives x . The
decoding procedure naturally consists of decoding the attached

synchronization string, rearranging the indices, and running DC
on the rearranged version. Note that if multiple symbols where

detected to be located at the same position by the synchronization

string decoding procedure or no symbols where detected to be at

some position, the decoder can simply put a special symbol ‘?’ there

and treat it as a half-error. The decoding and encoding complexities

are trivial.

In order to find the actual index of a received symbol correctly, we

need the local decoding procedure to compute the index correctly.

For that purpose, it suffices that no block operations cut or paste

symbols within an interval of length 2c logn before that index

throughout the entire block transpositions/replications performed

by the adversary and the relative suffix error density caused by

synchronization errors for that symbol does not exceed 1 − ε/2. As
any block operation might cause three new cut/cop/paste edges and

relative suffix error density is larger than 1 − ε/2 for up to 1
1−ε/2

many symbols (according to Lemma 5.14 from [20]), the positions

of all but at most k ≤ 3nδblock × 2c logn + nδinsdel

(

1 + 1
1−2ε

)

symbols will be decoded incorrectly via synchronization string

decoding procedure. Hence, as long as nδinsdel + 2k ≤ 6δblock ×
2c logn+nδinsdel

(

3 + 2
1−2ε

)

< d the decoding procedure succeeds.

Finally, the encoding and decoding complexities follow from the fact

that indexing codewords of length n takes linear time and the local

decoding of synchronization strings takes O(n log3 n) time. �

Employing locally-decodable Oε (1)-long-distance synchroniza-
tion strings of Theorem 5.2 and error correcting code of Theo-

rem 4.11 in Theorem 6.5 gives the following code.

Theorem 6.6. For any 0 < r < 1 and sufficiently small ε there

exists a code with rate r that corrects nδinsdel synchronization errors

and nδblock block transpositions or replications as long as 6δinsdel +

c lognδblock < 1 − r − ε for some c = O(1). The code is over an alp-

habet of size Oε (1) and has O(n) encoding and O(N log3 n) decoding
complexities where N is the length of the received message.

7 APPLICATIONS: NEAR-LINEAR TIME
INFINITE CHANNEL SIMULATIONS WITH
OPTIMAL MEMORY CONSUMPTION

We now show that the indexing algorithm introduced in Theo-

rem 6.1 can improve the efficiency of channel simulations from [23]

as well as insdel codes. Consider a scenario where two parties are

maintaining a communication that suffers from synchronization er-

rors, i.e, insertions and deletions. Haeupler et al. [23] provided a sim-

ple technique to overcome this desynchronization. Their solution

consists of a simple symbol by symbol attachment of a synchroniza-

tion string to any transmitted symbol. The attached indices enables

the receiver to correctly detect indices of most of the symbols he

receives. However, the decoding procedure introduced in Haeupler

et al. [23] takes polynomial time in terms of the communication

length. The explicit construction introduced in Section 4 and local

decoding provided in Section 5 can reduce the construction and

decoding time and space complexities to polylogarithmic. Further,

the decoding procedure only requires to look up Oε (logn) recently
received symbols upon arrival of any symbol.

Interestingly, we will show that, beyond the time and space

complexity improvements over simulations in [23], long-distance

synchronization strings can make infinite channel simulations pos-

sible. In other words, two parties communicating over an insertion-

deletion channel are able to simulate a corruption channel on top

of the given channel even if they are not aware of the length of the

communication before it ends with similar guarantees as of [23]. To

this end, we introduce infinite strings that can be used to index com-

munications to convert synchronization errors into symbol corrup-

tions. The following theorem analogous to the indexing algorithm

of Lemma 6.1 provides all we need to perform such simulations.

Theorem 7.1. For any 0 < ε < 1, there exists an infinite string S

that satisfies the following properties:

(1) String S is over an alphabet of size ε−O (1).
(2) String S has a highly-explicit construction and, for any i , S[i, i+

log i] can be computed in O(log i).
(3) Assume that S[1, i] is sent over an insertion-deletion channel.

There exists a decoding algorithm for the receiving side that, if

relative suffix error density is smaller than 1 − ε , can correctly

find i by looking at the last O(log i) and knowing the number

of received symbols in O(log3 i) time.

Proof. To construct such a string S , we use our finite-length

highly-explicit locally-decodable long-distance synchronization

string constructions from Theorem 5.2 and use to construct finite

substrings of S as proposed in the infinite string construction of

Theorem 4.16 which is depicted in Figure 3. We choose length pro-

gression parameter k = 10/ε2. Similar to the proof of Lemma 4.17,

we define turning point qi as the index at which Sk i+1 starts. We ap-

pend one extra bit to each symbol S[i]which is zero if qj ≤ i < qj+1
for some even j and one otherwise.

This construction clearly satisfies the first two properties claimed

in the theorem statement. To prove the third property, suppose that

S[1, i] is sent and received as S ′[1, i ′] and the error suffix density

is less than 1 − ε . As error suffix density is smaller than 1 − ε ,

iε ≤ i ′ ≤ i/ε which implies that i ′ε ≤ i ≤ i ′/ε . This gives an
uncertainty interval whose ends are close by a factor of 1/ε2. By
the choice of k , this interval contains at most one turning point.

Therefore, using the extra appended bit, receiver can figure out

index j for which qj ≤ i < qj+1. Knowing this, it can simply use

the local decoding algorithm for finite string Sj−1 to find i . �

Theorem 7.2. [Improving Channel Simulations from [23]]

(a) Suppose that n rounds of a one-way/interactive insdel channel

over an alphabet Σ with a δ fraction of insertions and deletions

are given. Using an ε-synchronization string over alphabet

Σsyn , it is possible to simulate n (1 −Oε (δ)) rounds of a one-
way/interactive corruption channel over Σsim with at most

Oε (nδ) symbols corrupted so long as |Σsim | × |Σsyn | ≤ |Σ|.
(b) Suppose thatn rounds of a binary one-way/interactive insertion-

deletion channel with a δ fraction of insertions and deleti-

ons are given. It is possible to simulate n(1 − Θ(
√

δ log(1/δ)))
rounds of a binary one-way/interactive corruption channel

853

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bernhard Haeupler and Amirbehshad Shahrasbi

with Θ(
√

δ log(1/δ)) fraction of corruption errors between two
parties over the given channel.

Having an explicitly-constructible, locally-decodable, infinite string

from Theorem 7.1 utilized in the simulation, all of the simulations

mentioned above take O(logn) time for sending/starting party of

one-way/interactive communications. Further, on the other side, the

simulation spends O(log3 n) time upon arrival of each symbol and

only looks upO(logn)many recently received symbols. Overall, these

simulations take a O(n log3 n) time and O(logn) space to run. These
simulations can be performed even if parties are not aware of the

communication length.
Proof. We simply replace ordinary ε-synchronization strings

used in all such simulations in [23] with the highly-explicit locally-

decodable infinite string from Theorem 7.1 with its corresponding

local-decoding procedure instead of minimum RSD decoding proce-

dure that is used in [23]. This keeps all properties that simulations

proposed by Haeupler et. al. [23] guarantee. Further, by properties

stated in Theorem 7.1, the simulation is performed in near-linear

time, i.e.,O(n log3 n). Also, constructing and decoding each symbol

of the string from Theorem 7.1 only takes O(logn) space which
leads to an O(logn) memory requirement on both sides. �

8 APPLICATIONS: NEAR-LINEAR TIME
CODING SCHEME FOR INTERACTIVE
COMMUNICATION

Using the near-linear time interactive channel simulation in Theo-

rem 7.2 with the near-linear time interactive coding scheme of Haeu-

pler and Ghaffari [12] (stated in Theorem 8.1) gives the near-linear

time coding scheme for interactive communication over insertion-

deletion channels stated in Theorem 8.2.

Theorem 8.1 (Theorem 1.1 from [12]). For any constant ε > 0

and n-round protocol Π there is a randomized non-adaptive coding

scheme that robustly simulates Π against an adversarial error rate

of ρ ≤ 1/4 − ε using N = O(n) rounds, a near-linear n logO (1) n
computational complexity, and failure probability 2−Θ(n).

Theorem 8.2. For a sufficiently small δ and n-round alternating

protocol Π, there is a randomized coding scheme simulating Π in

presence of δ fraction of edit-corruptions with constant rate (i.e., in

O(n) rounds) and in near-linear time. This coding scheme works with

probability 1 − 2Θ(n).

REFERENCES
[1] Noga Alon, Jeff Edmonds, and Michael Luby. 1995. Linear time erasure codes with

nearly optimal recovery. In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 512ś519.

[2] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in
strongly subquadratic time (unless seth is false). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing. ACM, 51ś58.

[3] J Beck. 1984. An application of Lovász local lemma: there exists an infinite
01-sequence containing no near identical intervals. In Finite and Infinite Sets.
Elsevier, 103ś107.

[4] Zvika Brakerski and Yael Tauman Kalai. 2012. Efficient interactive coding against
adversarial noise. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 160ś166.

[5] Zvika Brakerski and Moni Naor. 2013. Fast algorithms for interactive coding.
In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 443ś456.

[6] Mark Braverman, Ran Gelles, JiemingMao, and Rafail Ostrovsky. 2017. Coding for
interactive communication correcting insertions and deletions. IEEE Transactions
on Information Theory 63, 10 (2017), 6256ś6270.

[7] Mark Braverman and Anup Rao. 2014. Toward coding for maximum errors in
interactive communication. IEEE Transactions on Information Theory 60, 11 (2014),
7248ś7255.

[8] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. De-
terministic algorithms for the Lovász local lemma. SIAM J. Comput. 42, 6 (2013),
2132ś2155.

[9] Kuan Cheng, Xin Li, and Ke Wu. 2017. Synchronization Strings: Efficient
and Fast Deterministic Constructions over Small Alphabets. arXiv preprint
arXiv:1710.07356 (2017).

[10] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J Schulman. 2015.
Optimal coding for streaming authentication and interactive communication.
IEEE Transactions on Information Theory 61, 1 (2015), 133ś145.

[11] Ran Gelles, Ankur Moitra, and Amit Sahai. 2014. Efficient coding for interactive
communication. IEEE Transactions on Information Theory 60, 3 (2014), 1899ś1913.

[12] Mohsen Ghaffari and Bernhard Haeupler. 2014. Optimal error rates for interactive
coding II: Efficiency and list decoding. In Proceedings of the Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 394ś403.

[13] SW Golomb, J Davey, I Reed, H Van Trees, and J Stiffler. 1963. Synchronization.
IEEE Transactions on Communications Systems 11, 4 (1963), 481ś491.

[14] Venkatesan Guruswami and Piotr Indyk. 2001. Expander-based constructions of
efficiently decodable codes. In Proceedings of the Annual Symposium on Foundati-
ons of Computer Science (FOCS). IEEE, 658ś667.

[15] Venkatesan Guruswami and Piotr Indyk. 2005. Linear-time encodable/decodable
codes with near-optimal rate. IEEE Transactions on Information Theory 51, 10
(2005), 3393ś3400.

[16] Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. In Proceedings of the 2016 IEEE
International Symposium on Information Theory.

[17] Venkatesan Guruswami and Atri Rudra. 2006. Explicit capacity-achieving list-
decodable codes. In Proceedings of the Annual Symposium on Theory of Computing
(STOC). ACM, 1ś10.

[18] Venkatesan Guruswami and Carol Wang. 2015. Deletion Codes in the High-noise
and High-rate Regimes. In Proceedings of the 19th International Workshop on
Randomization and Computation (RANDOM). 867ś880.

[19] Bernhard Haeupler. 2014. Interactive channel capacity revisited. In Proceedings
of the Annual Symposium on Foundations of Computer Science (FOCS). 226ś235.

[20] Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization strings:
codes for insertions and deletions approaching the Singleton bound. In Procee-
dings of the Annual Symposium on Theory of Computing (STOC). ACM, 33ś46.

[21] Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization Strings:
Explicit Constructions, Local Decoding, and Applications. arXiv preprint
arXiv:1710.09795 (2017).

[22] Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. 2018. Synchro-
nization Strings: List Decoding for Insertions and Deletions. In Proceedings of the
International Conference on Automata, Languages, and Programming (ICALP).

[23] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2018. Synchro-
nization Strings: Channel Simulations and Interactive Coding for Insertions and
Deletions. In Proceedings of the International Conference on Automata, Languages,
and Programming (ICALP).

[24] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. 2017. Local List Reco-
very of High-Rate Tensor Codes & Applications. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS).

[25] Gillat Kol and Ran Raz. 2013. Interactive channel capacity. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. ACM, 715ś724.

[26] Vladimir Levenshtein. 1965. Binary codes capable of correcting deletions, inserti-
ons, and reversals. Doklady Akademii Nauk SSSR 163 4 (1965), 845ś848.

[27] Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. 2010. A survey of error-
correcting codes for channels with symbol synchronization errors. IEEE Commu-
nications Surveys & Tutorials 1, 12 (2010), 87ś96.

[28] Leonard J. Schulman. 1992. Communication on noisy channels: A coding theorem
for computation. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS). 724ś733.

[29] Leonard J. Schulman. 1996. Coding for interactive communication. IEEE tran-
sactions on information theory 42, 6 (1996), 1745ś1756.

[30] Leonard J. Schulman and David Zuckerman. 1999. Asymptotically good codes cor-
recting insertions, deletions, and transpositions. IEEE transactions on information
theory 45, 7 (1999), 2552ś2557.

[31] Alexander A Sherstov and Pei Wu. 2017. Optimal Interactive Coding for Inser-
tions, Deletions, and Substitutions.. In Electronic Colloquium on Computational
Complexity (ECCC), Vol. 24. 79.

[32] Michael Sipser and Daniel A Spielman. 1996. Expander codes. IEEE Transactions
on Information Theory 42, 6 (1996), 1710ś1722.

[33] Neil JA Sloane. 2002. On single-deletion-correcting codes. Codes and Designs, de
Gruyter, Berlin (2002), 273ś291.

[34] Daniel Alan Spielman. 1995. Computationally efficient error-correcting codes and
holographic proofs. Ph.D. Dissertation. Massachusetts Institute of Technology.

854

	Abstract
	1 Introduction
	2 Our Results, Structure of this Paper, and Related Work
	2.1 Deterministic, Linear Time, Highly Explicit Construction of Infinite Synchronization Strings
	2.2 Long Distance Synchronization Strings and Fast Local Decoding
	2.3 Application: Codes Against Insdels, Block Transpositions and Replications
	2.4 Application: Exponentially More Efficient Infinite Channel Simulations
	2.5 Application: Near-Linear Time Interactive Coding Schemes for InsDel Errors

	3 Definitions and Preliminaries
	3.1 String Notation
	3.2 Synchronization Strings

	4 Highly Explicit Constructions of Long-Distance and Infinite -Synchronization Strings
	4.1 Long-Distance Synchronization Strings
	4.2 Polynomial Time Construction of Long-Distance Synchronization Strings
	4.3 Boosting I: Linear Time Construction of Synchronization Strings
	4.4 Boosting II: Explicit Constructions for Long-Distance Synchronization Strings
	4.5 Infinite Synchronization Strings: Highly Explicit Construction

	5 Local Decoding
	6 Application: Near Linear Time Codes Against Insdels, Block Transpositions, and Block Replications
	6.1 Near-Linear Time Insertion-Deletion Code
	6.2 Insdels, Block Transpositions, and Block Replications

	7 Applications: Near-Linear Time Infinite Channel Simulations with Optimal Memory Consumption
	8 Applications: Near-Linear Time Coding Scheme for Interactive Communication
	References

