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Synchronization Strings: Highly Efficient Deterministic Constructions over
Small Alphabets*

Kuan Cheng' Bernhard Haeupler ¥

Abstract

Synchronization strings are recently introduced by Ha-
eupler and Shahrasbi [1] in the study of codes for cor-
recting insertion and deletion errors (insdel codes). A
synchronization string is an encoding of the indices of
the symbols in a string, and together with an appropri-
ate decoding algorithm it can transform insertion and
deletion errors into standard symbol erasures and cor-
ruptions. This reduces the problem of constructing in-
sdel codes to the problem of constructing standard error
correcting codes, which is much better understood. Be-
sides this, synchronization strings are also useful in ot-
her applications such as synchronization sequences and
interactive coding schemes. For all such applications,
synchronization strings are desired to be over alphabets
that are as small as possible, since a larger alphabet size
corresponds to more redundant information added.

Haeupler and Shahrasbi [1] showed that for any
parameter € > 0, synchronization strings of arbitrary
length exist over an alphabet whose size depends only
on . Specifically, [1] obtained an alphabet size of
O(¢7%), which left an open question on where the
minimal size of such alphabets lies between Q(e~1) and
O(e™%). In this work, we partially bridge this gap by
providing an improved lower bound of 2 (¢7%/2), and an
improved upper bound of O (5‘2). We also provide fast
explicit constructions of synchronization strings over
small alphabets.

Further, along the lines of previous work on similar
combinatorial objects, we study the extremal question
of the smallest possible alphabet size over which syn-
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chronization strings can exist for some constant ¢ <
1. We show that one can construct e-synchronization
strings over alphabets of size four while no such string
exists over binary alphabets. This reduces the extremal
question to whether synchronization strings exist over
ternary alphabets.

1 Introduction

This paper focuses on the study of a combinatorial
object called synchronization string. Intuitively, a
synchronization string is a (finite or infinite) string
that avoids similarities between pairs of intervals in the
string. Such nice properties and synchronization strings
themselves can actually be motivated from at least two
different aspects: coding theory and pattern avoidance.
We now discuss the motivations and previous work in
each aspect below.

1.1 DMotivation and Previous Work in Coding
Theory The general and most important goal of coding
theory is to obtain reliable transmissions of information
in the presence of noise or adversarial error. Starting
from the pioneering works of Shannon, Hamming, and
many others, coding theory has evolved into an exten-
sively studied field, with applications found in various
areas in computer science. Regarding the general goal
of correcting errors, we now have a very sophisticated
and almost complete understanding of how to deal with
Hamming errors, i.e., symbol erasures and substituti-
ons. On the other hand, the knowledge of codes for edit
errors (i.e., symbol insertions and deletions) has lagged
far behind despite also being studied intensively since
the 1960s. In practice, this is one of the main reasons
why communication systems require a lot of effort and
resources to maintain synchronization strictly.

One major difficulty in designing codes for insertion
and deletion errors is that in the received codeword, the
positions of the symbols may have changed. This is in
contrast to standard symbol erasures and substitutions,
where the positions of the symbols always stay the same.
Thus, many of the known techniques in designing codes
for standard Hamming errors cannot be directly utilized
to protect against insertion and deletion errors.
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In this context, a recent work of Haeupler and
Shahrasbi [1] introduced synchronization strings, which
enable a black-box transformation of Hamming-type
error correcting codes to codes that protect against
edit errors (insdel codes for short). Informally, a
synchronization string of length n is an encoding of
the indices of the m positions into a string over some
alphabet 3, such that, despite some insertion and
deletion errors, one can still recover the correct indices
of many symbols. With these correct indices, a standard
error correcting code can then be used to recover the
original message. This then gives a code for insertion
and deletion errors, which is the combination of a
standard error correcting code and a synchronization
string.

The simplest example of a synchronization string is
just to record the index of each symbol, i.e, the string
1,2,--- ,n. It can be easily checked that even if (1 — ¢)
fraction of these indices are deleted, one can still cor-
rectly recover the positions of the remaining en symbols.
However, this synchronization string uses an alphabet
whose size grows with the length of the string. The
main contribution of [1] is to show that under a slight
relaxation, there exist synchronization strings of arbi-
trary length n over an alphabet of fixed size. Further,
[1] provided efficient and streaming algorithms to cor-
rectly recover the indices of many symbols from a syn-
chronization string after being altered by insertion and
deletion errors. Formally, [1] defines e-synchronization
strings as follows. A string S is an e-synchronization
string if the edit distance (the number of insertions and
deletions needed to transform one string into another)
of any two consecutive substrings S[i,j) and S[j, k) is
at least (1 —¢)(k — 7).

DEFINITION 1.1. (e-SYNCHRONIZATION STRING) A
string S is an e-synchronization string if V1 < i <
j<k<|S|+1, ED(S[i,j),S[j, k) > (1 —¢e)(k —1).
A string S is an infinite e-synchronization string
if it has infinite length and V1 < i < j < k,
ED(Si,5),S[4,k)) > (1—¢)(k—1). Here ED(,) stands
for the edit distance.

Using the construction and decoding algorithms
for e-synchronization strings, [1] gives a code that for
any § € (0,1) and € > 0, can correct ¢ fraction of
insertion and deletion errors with rate 1 —90 —e. Besides
this, synchronization strings have found a variety of
applications, such as in synchronization sequences [2],
interactive coding schemes [3, 4, 5, 6, 7, 8, 9, 10], coding
against synchronization errors [10, 11, 12], and edit
distance tree codes [9, 13].

For all such applications, synchronization strings
are desired to be over alphabets that are as small as pos-

sible, since a larger alphabet size corresponds to more
redundant information added. Thus a natural question
here is how small the alphabet size can be. In [1],
Haeupler and Shahrasbi showed that e-synchronization
strings with arbitrary length exist over an alphabet
of size O(e™*), they also gave a randomized polyno-
mial time algorithm to construct such strings. In a
very recent work [10], they further gave various effi-
cient deterministic constructions for finite/infinite e-
synchronization strings, which have alphabets of size
poly (5*1) for some unspecified large polynomial. On
the other hand, the definition of synchronization strings
implies that any ! consecutive symbols in an e-
synchronization string have to be distinct—providing
an ) (5‘1) lower-bound for the alphabet size.
Haeupler and Shahrasbi [10] further introduced
another notion called long distance synchronization
strings. Besides requiring that the edit distance of
any adjacent intervals should be large, long distance
synchronization strings also require that any large,
nearby intervals should have large edit distance.

DEFINITION 1.2. (f(I)-DISTANCE £-SYNCHRONIZATION
STRING)
A string S € X" is a f(l)-distance e-synchronization
string if for every 1 < i < j < ¢ < j < n+1,
ED (S[i,5),S[i',3") > (1 —¢)(1) fori' —j < f(I) where
l=7+j5 —i—7.

As a special case, 0-distance synchronization strings
are standard synchronization strings. Similar to [10],
we focus on f(I) = n - Lisclogn Where Lisciogn 1S
the indicator function for [ > clogn. This definition
considers the edit distance of all pairs of large intervals
and adjacent small intervals.

DEFINITION 1.3. (C—LONG—DISTANCE E-SYNCHRONIZATION

STRING)

We call n - 1j5c10g n-distance e-synchronization strings
c-long-distance e-synchronization strings.

Haeupler and Shahrasbi [10] showed that long dis-
tance synchronization strings are locally decodable.
This crucial property is used in [10] to construct co-
des for edit errors with block transpositions and block
repetitions. Long distance synchronization strings can
also be applied to achieve infinite channel simulations
with exponentially smaller memory and decoding time
requirements [10]. We note that the constructions in
[10] have alphabets of size poly (6_1) for some unspeci-
fied large polynomial, which motivates us to reduce the
alphabet size.

1.2 Motivation and Previous Work in Pattern
Avoidance Apart from applications in coding theory

and other communication problems involving insertions
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and deletions, synchronization strings are also interes-
ting combinatorial objects from a mathematical per-
spective. As a matter of fact, plenty of very similar
combinatorial objects have been studied prior to this
work.

A classical work of Thue [14] introduces and studies
square-free strings, i.e., strings that do not contain two
identical consecutive substrings. Thue shows that such
strings exist over alphabets of size three and provides a
fast construction of such strings using morphisms. The
seminal work of Thue inspired further works on the same
problem [15, 16, 17, 18, 19, 20] and problems with a
similar pattern avoidance theme.

Krieger et. al. [21] study strings that satisfy relaxed
variants of square-freeness, i.e., strings that avoid ap-
proximate squares. Their study provides several results
on strings that avoid consecutive substrings of equal
length with small additive or multiplicative Hamming
distance in terms of their length. In each of these re-
gimes, [21] gives constructions of approximate square
free strings over alphabets with small constant size for
different parameters.

Also, Camungol and Rampersad [22] study approzi-
mate squares with respect to edit distance, which is equi-
valent to the e-synchronization string notion except that
the edit distance property is only required to hold for
pairs of consecutive substrings of equal length. [22] em-
ploys a technique based on entropy compression to prove
that such strings exist over alphabets that are constant
in terms of string length but exponentially large in terms
of e71. We note that the previous result of Haeupler
and Shahrasbi [1] already improves this dependence to
O(e™).

Finally, Beck [31] uses the Lovasz local lemma to
show the existence of words where subsequent occur-
rences of identical substrings of length n occur expo-
nentially (in n) far away from each other, which is very
similar to long distance synchronization string. The dif-
ference is that Beck mainly care about identical sub-
strings being widely separated.

Again, a main question addressed in most of the
above-mentioned previous work on similar mathemati-
cal objects is how small the alphabet size can be.

1.3 Owur Results In this paper we study the question
of how small the alphabet size of an e-synchronization
string can be. We address this question both for a
specified € and for unspecified €. In the first case we try
to bridge the gap between the upper bound of O (5’4)
provided in [1] and the lower bound of Q (¢7!). In the
second case we study the question of how small the
alphabet size can be to ensure the existence of an e-
synchronization string for some constant ¢ < 1. In both

cases we also give efficient constructions that improve
previous results.

1.3.1 New Bounds on Minimal Alphabet Size
for a given ¢ Our first theorem gives improved upper
bound and lower bound for the alphabet size of an e-
synchronization string for a given &.

THEOREM 1.1. For any 0 < e < 1, there exists
an alphabet ¥ of size 0(8_2) such that an infinite
e-synchronization string exists over Y. In addition,
Vn € N, a randomized algorithm can construct an
e-synchronization string of length n in expected time
O(n®logn).  Further, the alphabet size of any e-
synchronization string has to be at least  (e73/2).

REMARK 1.1. Here € can be any number in (0,1), not
just a constant. The lower bound is conditioned on
that the synchronization string is long enough in terms
of €, as short synchronization strings can exist over
small alphabets. For example, a binary string 01 is a
synchronization string, but we are not very interested
in such cases.

Next, we provide efficient and even linear-time con-
structions of e-synchronization strings over drastically
smaller alphabets than the efficient constructions in [10].
The construction is highly-explicit in the sense that the
i’th position of a synchronization string can be compu-
ted in time O(logi). Moreover, our construction also
works for the notion of long distance synchronization
strings.

THEOREM 1.2. For every n € N and any constant
e € (0,1), there is a deterministic construction of
a (long-distance) e-synchronization string of length n
over an alphabet of size O(¢~2) that runs in poly(n)
time. Further, there is a highly-explicit linear time
construction of such strings over an alphabet of size

O(e73).

In addition, in Section 5.3, we present a method
to construct infinite synchronization strings using con-
structions of finite ones, which only increases the alp-
habet size by a constant factor—as opposed to the con-
struction in [10] that increases the alphabet size qua-
dratically.

THEOREM 1.3. For any constant 0 < € < 1, there exists
an explicit construction of an infinite e-synchronization
string S over an alphabet of size O(c=2). Further, there
exists a highly-explicit construction of an infinite e-
synchronization string S over an alphabet of size O(e~3)
such that for any i € N, the first i symbols can be
computed in O(i) time and S[i,i+log ] can be computed
in O(log1) time.

Copyright © 2019 by SIAM

2187 Unauthorized reproduction of this article is prohibited



Downloaded 03/24/19 to 71.61.179.136. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

1.3.2 Minimal Alphabet Size for Unspecified
e: Three or Four? One interesting question that
has been commonly addressed by previous work on
similar combinatorial objects is the size of the smallest
alphabet over which one can find such objects. Along
the lines of [14, 20, 21, 22], we study the existence
of synchronization strings over alphabets with minimal
constant size.

It is easy to observe that no such string can ex-
ist over a binary alphabet since any binary string of
length four either contains two consecutive identical
symbols or two consecutive identical substrings of length
two. On the other hand, one can extract constructions
over constant-sized alphabets from the existence proofs
in [1, 10], but the unspecified constants there would be
quite large. In Section 7.2, for some ¢ < 1, we pro-
vide a construction of arbitrarily long e-synchronization
strings over an alphabet of size four. This narrows down
the question to whether such strings exist over alpha-
bets of size three.

To construct such strings, we introduce the no-
tion of weak synchronization string, which requires sub-
strings to satisfy a similar property as that of an e-
synchronization string, except that the lower bound on
edit distance is rounded down to the nearest integer.
We show that weak synchronization strings exist over
binary alphabets and use one such string to modify a
ternary square-free string ([14]) into a synchronization
string over an alphabet of size four.

1.3.3 Constructing Synchronization Strings
Using Uniform Morphisms Morphisms have been
widely used in previous work as a tool to construct si-
milar combinatorial objects. A uniform morphism of
rank 7 over an alphabet X is a function ¢ : 3 — X" that
maps any symbol of an alphabet ¥ to a string of length
r over the same alphabet. Using this technique, some si-
milar combinatorial objects in previous work have been
constructed by taking a symbol from the alphabet and
then repeatedly using an appropriate morphism to re-
place each symbol with a string [20, 21|. Here we in-
vestigate whether such tools can also be utilized to con-
struct synchronization strings. In Section 7.1, we show
that no such morphism can construct arbitrarily long
e-synchronization strings for any € < 1.

1.4 Applications Our new constructions of synchro-
nization strings can be used in all known applications of
these objects, including converting standard error cor-
recting codes into error correcting codes for edit errors
that approach the singleton bound, giving locally de-
codable codes for edit errors, constructing codes for
block transpositions and replications, obtaining near-

linear time interactive coding schemes for edit errors,
achieving exponentially more efficient infinite channel
simulations and so on.

For all these applications, our constructions can re-
duce the alphabet size of the code by at least a &2
factor where ¢ is the error parameter of the synchroni-
zation string. This also further improves the alphabet
size of an approximate square free string with respect
to edit distance in [22] to O(e72).

In addition, our construction relies on a novel
implementation of a deterministic Lovasz Local Lemma.
This may have further applications in other related
problems.

1.5 Overview of Our Techniques Our constructi-
ons differ from previous constructions in several key as-
pects. Here we first highlight the new ideas we use to
achieve the improvements.

1. Non-uniform Lovasz Local Lemma. To show
the existence of e-synchronization strings over an
alphabet of size O(¢72), as in previous works we use
Lovasz Local Lemma. However, instead of using
a uniform sample space, we use a non-uniform
sample space. We carefully set up this sample space
so that the dependency graph is still sparse, and
thus the Local Lemma can be used to establish the
existence of synchronization strings.

2. Adapted algorithmic Lovasz Local Lemma.
To get an explicit construction of our synchroniza-
tion strings, we need to use an algorithmic version
of Lovasz Local Lemma. However, since our sample
space is non-uniform, we also need to adapt the al-
gorithm accordingly. Specifically, we need to adjust
the sampling process to generate the non-uniform
sample space very carefully.

3. Adapted deterministic Lovasz Local Lemma.
To get a deterministic construction of our synchro-
nization strings, we further need a deterministic al-
gorithmic Lovéasz Local Lemma. A direct applica-
tion of previous known results such as that of of
Chandrasekaran et al. [23] is problematic, since it
will make the dependency graph too dense. Thus,
we need to carefully redefine the bad events in the
Local Lemma to make this work.

4. Synchronization circles. To protect small inter-
vals in a synchronization string, we introduce a new
combinatorial object called synchronization circle.
A synchronization circle is a generalization of syn-
chronization string, which can be viewed as a cir-
cle of symbols. It has the property that no matter
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where one cuts the circle, it becomes a synchroniza-
tion string. We show that a synchronization circle
can be constructed by concatenating two synchro-
nization strings over two disjoint alphabets, which
only increases the alphabet size by a factor of two.
This idea is also used in our construction of infinite
synchronization strings to reduce the alphabet size.

5. Reverse connection between insdel codes
and synchronization strings. We give a new
way to construct synchronization strings, by conca-
tenating different codewords from an appropriately
designed insdel code. This reduces the task of con-
structing synchronization strings to a much smal-
ler size, which is important to achieve our highly
explicit constructions. This also complements the
connection established in [1], which shows that in-
sdel codes can be constructed from synchronization
strings.

We now explain our techniques in more details.

1.5.1 Existence of e-synchronization strings
over small alphabets Haecupler and Shahrasbi [1] sho-
wed the existence of e-synchronization strings over an
alphabet of size O(¢7%). By using the Local Lemma,
they first show that with positive probability, a uni-
formly random string S over an alphabet of size O(e~2)
satisfies the requirement of a synchronization string
when the intervals have size at least t for some ¢ =
Q(e72). To take care of the small intervals, they do a
symbol-wise concatenation of S and another string R
whose i’th position is R[i] = (# mod t). This results in
an alphabet size of O(e74).

To get rid of the concatenation, we directly use a
non-uniform sample space in the Local Lemma. In our
construction, we randomly sample each symbol (say the
i’th symbol) in the string S from an alphabet ¥ of
size O(e72), conditioned on that this symbol is different
from the previous ¢t — 1 or ¢ — 1 symbols, whichever is
smaller. We then define the bad events in the following
way: an interval S[i, k] is bad if there is a j,i < j < k,
s.t. ED(S[i,5),S[5,k) < (1 —¢e)(k —1i). At a first
glance, as each symbol now depends on the previous
t — 1 symbols, we may not directly apply Lovész Local
Lemma. However, our key observation is that, although
the symbols are not independent of each other, the
badness of an interval I is mutually independent of the
badness of all intervals that do not intersect with 1. We
show this by a direct computation of the probabilities.
Now we can apply Lovasz Local Lemma to show that S
is an e-synchronization string with positive probability.

1.5.2 Constructions of
strings over small alphabets

Randomized construction. In order to apply
the algorithmic framework of Lovasz Local Lemma in
[24] and [25], we need the probability space in the Local
Lemma to be sampled from n independent random
variables P = {Py,...,P,}, and that each event in
the collection of bad events A = {Ai,..., A} is
determined by some subsets of P. However our non-
uniform sample space discussed above does not satisfy
these conditions.

To rectify this, we implement our previous sampling
process as follows (which gives an alternative view of
the previous sampling procedure): we initially fix an
arbitrary order for the symbols in the alphabet 3. When
we sample the i’th symbol of the string, we reorder the
alphabet such that the first ¢—1 symbols in the alphabet
are exactly the previous t — 1 symbols in the string,
and the rest of the symbols are placed in the current
order as the last |X| — ¢ 4+ 1 symbols in the alphabet.
Then we uniformly randomly choose an integer P; in
{1,2,...,]¥] =t + 1} and let the ¢’th symbol be the
(t — 1 4 P;)’th symbol in the new order of ¥. In
this way, the random variables {P},..., P,} are indeed
independent, and the i’th symbol is different from the
previous t — 1 symbols. Furthermore, the event of any
interval S[i, k] being bad depends only on {P;, ..., P}.
This enables us to follow the framework in [24] and [25]
and give a randomized construction of synchronization
strings over small alphabets.

Deterministic polynomial time construction.
We combine the sampling algorithm described above
with the deterministic Lovész local lemma of Chandra-
sekaran et al. [23] to give a polynomial-time con-
struction of c-long distance e-synchronization strings.
In addition to the requirement on edit distance of ad-
jacent intervals, long distance synchronization strings
also require that any pair of large disjoint intervals
S[il,il + ll),S[iQ,iQ + lg), where 71 + 11 < iy and
l1+1s > clogn, has large enough edit distance. However,
it’s problematic to define the bad event corresponding
to intervals S[i1, 41 + 1) and Slia, i3 + l2) in the usual
way': ED(S[il,il + ll), S[Z‘gﬁg + lz)) < (1 — E)(l1 + 12).
This is because under this definition, the event not only
depends on the random variables {P;} within these in-
tervals, but also depends on the random variables be-
tween these two intervals. This will make the depen-
dency graph too dense to apply the Local Lemma.

To fix this, we redefine the badness of the pair of in-
tervals S[i1, i1 +11) and Sig, is+12) as follows: the pair
is bad if there exists a choice of the random variables in
the middle, such that according to the sampling algo-
rithm, ED(S[Z&, i1+ ll), S[ig, 1o+ 12)) < (1 — 6)(l1 + 12).

e-synchronization
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This definition removes the dependence on the random
variables between the two intervals, and we show that
under this definition, the badness of a pair of intervals is
still mutually independent of the badness of all disjoint
pairs of intervals. Fortunately, the probability of the
bad events under this new definition can also be boun-
ded appropriately. Thus we can apply the deterministic
Lovéasz Local Lemma of Chandrasekaran et al. [23].

Deterministic highly explicit construction.
A long distance synchronization string of length n
considers the edit distance of all pairs of large intervals
and adjacent small intervals. Our construction of long
distance synchronization strings uses concatenations of
different codewords of a carefully designed insdel code
C where each codeword has length m = O(logn), and
we show that this construction can handle both large
intervals and small intervals.

For large intervals the intuition is the following. If
the codeword has length m = clogn, then after con-
catenations of different codewords, any pair of intervals
whose total length is larger than m must have large edit
distance, since the intervals must contain parts from at
least two different codewords.

We are now left with small adjacent intervals. This
is where we need to carefully design the code C. [1] sho-
wed that an insdel code can be constructed by doing
a symbol-wise concatenation of a standard error cor-
recting code with a synchronization string. If we con-
struct C in this way, each codeword in C is a synchroniza-
tion string itself, which can protect adjacent small inter-
vals if they lie within one codeword. However, we have
no guarantee for small intervals crossing two codewords.
To address this problem, we introduce a new combinato-
rial object called synchronization circle, which is a gene-
ralization of synchronization string. A synchronization
circle S of length n requires that S is a synchroniza-
tion string beginning from any position . That is, for
any 1 < i <mn, S[,...,S[n],S[1],...,S[i — 1] is a sy-
nchronization string. We give explicit constructions for
synchronization circles by concatenating two synchro-
nization strings on disjoint alphabets. Now by doing
a symbol-wise concatenation of a standard error cor-
recting code with a synchronization circle, we have that
every codeword in C is itself a synchronization circle.
This guarantees that any two adjacent small intervals
in our synchronization string have large edit distance.

Note that our construction is highly-explicit be-
cause we can construct each block (each codeword of
C in the construction) independently.

Explicit construction of infinite &-
synchronization strings To construct an infinite
e-synchronization string, we first construct a sequence
of synchronization strings whose lengths increase

exponentially. That is, for some k& = O(1/e), we
construct synchronization strings Si,S9,... such that
S; has length k%, and concatenate them sequentially.
For the analysis, consider any pair of intervals whose
total length is between k! and k'*! for some ¢, then
we can ignore the part of these two intervals before
S¢. This is because the number of symbols before S;
is quite small compared to the rest of the string. The
remaining part either lies in a synchronization string
S;, or crosses two synchronization strings S; 1 and .S;.
The first case is already taken care of by the property
of a synchronization string. To take care of the second
case, we use two disjoint alphabets 31, ¥5 to construct
these synchronization strings. That is, we construct
S; for odd i’s over ¥; and S; for even i’s over Xg. If
we use our previous highly-explicit constructions of
synchronization strings to construct these S;’s, then
this construction is also highly-explicit.

1.5.3 Existence of e-synchronization string over
alphabet of size 4 To construct a synchronization
string over an alphabet of size four, we introduce the
notion of weak synchronization string, which requires
substrings to satisfy a similar property as that of an
e-synchronization string, except that the lower bound
on edit distance is rounded down to the nearest integer.
We show that weak synchronization strings exist over
binary alphabets and use one such string to modify a
ternary square-free string ([14]) into a synchronization
string over an alphabet of size four.

2 Discussions and Open Problems

In this paper we give highly efficient constructions of
various e-synchronization strings over small alphabets.
In particular, we reduce the alphabet size from O(s™%)
or poly(1/e) in previous works to O(e72). We also
obtain an improved lower bound of € (¢73/2). This
leaves the open problem of what is the tight bound.
Similarly, for synchronization strings with unspecified ¢,
we show that such strings exist over an alphabet of size 4
but cannot exist over an alphabet of size 2, which leaves
the open problem of whether synchronization strings
can exist over an alphabet of size 3. Experimental
results seem to suggest that the answer is yes.

It would be interesting to find other applications of
synchronization strings, and we believe our new way of
using the deterministic Lovasz Local Lemma may also
find other applications.

3 Notations and Definitions

Usually we use X (probably with some subscripts) to
denote the alphabet and ¥* to denote all strings over
alphabet X.
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DEFINITION 3.1. (SUBSEQUENCE) The subsequence of
a string S is any sequence of symbols obtained from S by
deleting some symbols. It doesn’t have to be continuous.

DEFINITION 3.2. (EDIT DISTANCE) For every n € N,
the edit distance ED(S,S") between two strings S, S’ €
3™ is the minimum number of insertions and deletions
required to transform S into S’.

DEFINITION 3.3. (LONGEST COMMON SUBSEQUENCE)
For any strings S, S over X, the longest common sub-
sequence of S and S’ is the longest pair of subsequence
that are equal as strings. We denote by LCS(S,S’) the
length of the longest common subsequence of S and S’.

Note that ED(S,S’") = |S| + |S'| — 2LCS(S,5")
where |S| denotes the length of S.

DEFINITION 3.4. (SQUARE-FREE STRING) A string S
is a square free string if V1 < i < i+ 2l < |S|+1,
(S[i,i +1) and S[i+ 1,7+ 2l)) are different as words.

We also introduce the following generalization of
a synchronization string, which will be useful in our
deterministic constructions of synchronization strings.

DEFINITION 3.5. (e-SYNCHRONIZATION CIRCLE)

A string S is an e-synchronization circle if
Vi < 7 < |S|7 Siasi-i-la' . '75\5\3517527"'751'—1 18
an e-synchronization string.

Note that in a communication that suffers from
symbol corruptions and erasures, any erasure leads to
half a unit of Hamming distance from original string
and any corruption results into one. To easily quantify
errors that consist of both types, we define half-errors
as follows. Here, the name half-error comes from the
fact that a symbol erasure is half as bad as a symbol
corruption.

DEFINITION 3.6. (HALF-ERRORS) Any set of a symbol
substitutions and b symbol erasures is referred to as
2a + b half-errors, where one symbol substitution is
counted as two half errors, and one symbol erasure is
counted as one half error.

4 e-synchronization Strings and Circles with
Alphabet Size O(s72?)

In this section we show that by using a non-uniform
sample space together with the Lovéasz local lemma, we
can have a randomized polynomial time construction of
an e-synchronization string with alphabet size O(s72).
We then use this to give a simple construction of an
e-synchronization circle with alphabet size O(e72) as
well. Although the constructions here are randomized,

the parameter € can be anything in (0,1) (even sub-

constant), while our deterministic constructions in later

sections usually require ¢ to be a constant in (0,1).
We first recall the general Lovdsz local lemma, [30].

LEMMA 4.1. (General Lovdsz Local Lemma) Let
A1, ..., Ay be a set of bad events. G(V,E) is a depen-
dency graph for this set of events if V.= {1,...,n} and
each event A; is mutually independent of all the events
{4, : (i.j) & B}.

If there exists xq, ...,

we have
PriA] <z [] (1-2))
(i,))€E

xn € [0,1) such that for all i

Then the probability that none of these events hap-
pens is bounded by

Using this lemma, we have the following theorem
showing the existence of e-synchronization strings over
an alphabet of size O(s72).

THEOREM 4.1. Ve € (0,1) and Vn € N, there exists an
e-synchronization string S of length n over alphabet X

of size O(c72).

Proof. Suppose || = c1e=2 where c; is a constant. Let
t =coe ? and 0 < ¢y < ¢;. The sampling algorithm is
as follows:

1. Randomly pick ¢ different symbols from ¥ and let
them be the first ¢t symbols of S. If t > n, we just
pick n different symbols.

2. For t +1 < i < n, we pick the ith symbol S|i]
uniformly randomly from X\ {S[i—1],...,S[i—t+

1}

Now we prove that there’s a positive probability that
S contains no bad interval S[i, k] which violates the
requirement that ED(S[i, ], S[j+1,k]) > (1 —¢)(k—1)
for any ¢ < j < k. This requirement is equivalent to
LCS(S[i, j], S[j + 1, k]) < 5(k —1).

Notice that for k — i < ¢, the symbols in S[i, k] are
completely distinct. Hence we only need to consider
the case where k — i > t. First, let’s upper bound the
probability that an interval is bad:

Pr[interval I of length [ is bad]

<()m1-0-#
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The first inequality holds because if the interval is
bad, then it has to contain a repeating sequence
a1as ...a,a10s . ..a, where p is at least %l Such se-
quence can be specified via choosing el positions in
the interval and the probability that a given sequence
is valid for the string in this construction is at most
(|$| — t)~%. The second inequality comes from Stir-
ling’s inequality.

The inequality above indicates that the probability
that an interval of length [ is bad can be upper bounded
by C~¢!, where C is a constant and can be arbitrarily
large by modifying ¢; and cs.

Now we use general Lovész local lemma to show
that S contains no bad interval with positive probabi-
lity. First we’ll show the following lemma.

CrLa 1. The badness of interval I = S|i, j] is mutu-
ally independent of the badness of all intervals that do
not intersect with 1.

Proof. Suppose the intervals before I that do not in-
tersect with I are Iy,...,I,,, and those after I are
Ii,...,I],,. We denote the indicator variables of each
interval being bad as b, by, and b},,.

First we prove that there exists p € (0,1) such that

Vo, o, ..., Ty € {0,1},
Prb=1lby =2, k=1,...,m]=p

According to our construction, we can see that for
any fixed prefix S[1,4 — 1], the probability that I is bad
is a fixed real number p’. That is,

¥ valid S € XL Prb=1|S[1,i — 1] = 5] = p'
This comes from the fact that, the sampling of the
symbols in S[i, k] only depends on the previous h =
min{i—1,t—1} different symbols, and up to a relabeling
these h symbols are the same h symbols (e.g., we can
relabel them as {1,---,h} and the rest of the symbols
as {h+1,---,|X|}). On the other hand the probability
that b = 1 remains unchanged under any relabeling of
the symbols, since if two sampled symbols are the same,
they will stay the same; while if they are different, they
will still be different. Thus we have:

Prb=1|by = 2x,i=1,...,m]
:ZgPr[bzl,S[l,z‘—l]:S]
S Pr[S[l,i—1] = 5]

S[,i—1] = 5]
‘pzzs,Pr[ S[i—1] =3

/

:p.

In the equations, S indicates all valid string that prefix
S[1,4i—1] can be such that by, = z, k = 1,...,m. Hence,
b is independent of {bx,k = 1,...,m}. Similarly, we can
prove that the joint distribution of {b},, k' =1,...,m’}
is independent of that of {b,b;,k =1,...,m}. Hence b
is independent of {by, by, k=1,...,m k' =1,...,m'},
which means, the badness of interval [ is mutually
independent of the badness of all intervals that do not
intersect with I.

Obviously, an interval of length [ intersects at most
I + 1" intervals of length I’. To use Lovéasz local lemma,
we need to find a sequence of real numbers z; 5, € [0,1)
for intervals S[i, k] for which

Pr[S[i, k]is bad] < z; H
S[i,kJNS[i’ K]0

(1 — xi’,k’)

The rest of the proof is the same as that of Theorem
5.7 in [1].

We propose x; = D= =9 for some constant
D > 1. Hence we only need to find a constant D such
that for all S[i, k],

C—E(k—i) < D—E(k—i) H[l

=t

D—El]l+(k—i)

That is, for all I’ € {1,...,n},

1<D1H l“

D
[[2,[1— D]

Notice that the righthand side is maximized when n =
00,1’ = 1. Hence it’s sufficient to show that

=C>

/U +1
€

D
2 o —el L
Hl:t[l -D ] €

D
H?it[l - D_EZ]HTI

guarantee that C > L.

Let L = maxpsq . We only need to

We claim that L = ©(1). Since t = cpe2 =
(3
D < D
o ENTYESS 1
TR

We can see that for D = 7, max. {53 (1DDZ)2} <

0.9. Therefore (5) is bounded by a constant, which
means L = O(1) and the proof is complete.
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Using a modification of an argument in [1], we can
also obtain a randomized construction.

LEMMA 4.2. There exists a randomized algorithm
which for any € € (0,1) and any n € N, constructs
an e-synchronization string of length n over alphabet of
size O(e72) in expected time O(n®logn).

Proof. The algorithm is similar to that of Lemma 5.8 in
[1], using algorithmic Lovasz Local lemma [24] and the
extension in [25].

THEOREM 4.2. (THEOREM 3.1 IN [25]) Suppose there
isan & € 10,1) and an assignment of reals x : A — (0,1)
such that:

VAe A:PrlA] < (1-&z(4) [ (1—2(B)
BeT(A)

Here, T := ) s 4 #(A), where T'(A) = T 4(A) for
the set of all events B # A in A with vbl(B) Nvbl(A) #
0, in which vbl(A) is the smallest subset of random
variables determining event A.

Furthermore:

1. if £ =0, then the expected number of re-samplings
done by the MT algorithm is at most v =
Tmaxaca #(Aﬁ’ and for any parameter \ >
1, the MT algorithm terminates within Avy re-
samplings with probability at least 1 — 1/,

2. if &€ > 0, then the expected number of re-samplings
done by the MT algorithm is at most ve =
O(% log %), and for any parameter A > 1, the MT
algorithm terminates within Ave re-samplings with
probability 1 — exp(—\).

Here, MT algorithm is a sampling algorithm introduced
in [24], which can quickly terminates with high probabi-
luty.

It starts with a string sampled according to the
sampling algorithm in the proof of Theorem 4.1, over
alphabet X of size Ce~2 for some large enough constant
C. Then the algorithm checks all O(n?) intervals for
a violation of the requirements for e-synchronization
string. If a bad interval is found, this interval is re-
sampled by randomly choosing every symbol s.t. each
one of them is different from the previous t — 1 symbols,
where ¢t = ¢’e~2 with ¢’ being a constant smaller than
C.

One subtle point of our algorithm is the following.
Note that in order to apply the algorithmic framework
of [24] and [25], one needs the probability space to be
sampled from n independent random variables P =
{Py,--+,Pp} so that each event in the collection A4 =

{A1, -+, A} is determined by some subset of P. Then,
when some bad event A; happens, one only resamples
the random variables that decide A;. Upon first look,
it may appear that in our application of the Lovész
Local lemma, the sampling of the ¢’th symbol depends
on the the previous h = min{i — 1,¢t — 1} symbols,
which again depend on previous symbols, and so on.
Thus the sampling of the i’th symbol depends on the
sampling of all previous symbols. However, we can
implement our sampling process as follows: for the
i’th symbol we first independently generate a random
variable P; which is uniform over {1,2,---,|X| — h},
then we use the random variables { Py, - - - , P, } to decide
the symbols, in the following way. Initially we fix
some arbitrary order of the symbols in ¥, then for
i =1,--- ,n, to get the i’th symbol, we first reorder
the symbols ¥ so that the previous h chosen symbols
are labeled as the first h symbols in 3, and the rest of
the symbols are ordered in the current order as the last
|2| — h symbols. We then choose the #’th symbol as the
(h + P;)’th symbol in this new order. In this way, the
random variables {Py,--- , P,} are indeed independent,
and the ¢’th symbol is indeed chosen uniformly from
the |3] — h symbols excluding the previous h symbols.
Furthermore, the event of any interval S[i, k] being bad
only depends on the random variables (P;, - - - , Py) since
no matter what the previous h symbols are, they are
relabeled as {1,---,h} and the rest of the symbols
are labeled as {h + 1,---,|3|}. From here, the same
sequence of (P, -+ , P;) will result in the same behavior
of S[i, k] in terms of which symbols are the same. We
can thus apply the same algorithm as in [1].

Note that the time to get the ¢’th symbol from
the random variables {P;, -+, P,} is O(nlogl) since
we need O(n) operations each on a symbol of size
Ce™2. Thus resampling each interval takes O(n?log 1)
time since we need to resample at most n symbols.
For every interval, the edit distance can be computed
using the Wagner-Fischer dynamic programming within
O(n*log 1) time. Theorem 4.2 shows that the expected
number of re-sampling is O(n). The algorithm will
repeat until no bad interval can be found. Hence the
overall expected running time is O(n®log 1).

Note that without loss of generality we can assume
that ¢ > 1/4/n because for smaller errors we can always
use the indices directly, which have alphabet size n. So
the overall expected running time is O(n® logn).

We can now construct an e-synchronization circle
using Theorem 4.1.

THEOREM 4.3. For every € € (0,1) and every n € N,
there exists an e-synchronization circle S of length n
over alphabet 3 of size O(e72).
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Proof. First, by Theorem 4.1, we can have two e-
synchronization strings: S; with length [5] over ¥,
and So with length [ 4] over Xp. Let ¥ N Xy = ) and
|¥1] = [X2| = O(¢7?). Let S be the concatenation of Sy
and S5. Then S is over alphabet ¥ = ¥, UX5 whose size
is O(e72). Now we prove that S is an e-synchronization
circle.

viI < m < n, consider string S =
Smns Smb1y -+« »Sny S1,52, -, Sm—1. Notice that for two
strings T'and 7" over alphabet X, LCS(T,T") < 5(|T'|+
|T'|) is equivalent to ED(T,T") > (1 —&)(|T| + |T").
For any i < j < k, we call an interval S'[i, k] good if
LCS(S'[i,j],5'[j +1,k]) < 5(k — ). It suffices to show
that V1 < i,k < n, the interval S’[i, k] is good.

Without loss of generality let’s assume m € [[5],7].

Intervals which are substrings of S; or Sy are good
intervals, since S; and Sy are e-synchronization strings.

We are left with intervals crossing the ends of S; or
Ss.

If S'[i,k] contains s,,s; but doesn’t contain
sfey: If j < m —m + 1, then there’s no common
subsequence between s'[i, j] and S’'[n — m + 2, k]. Thus

LCS(S'[i,4],S'[j +1,k)) < g(n—m+1—z’) < %(k—z’)

If j > n—m+ 1, then there’s no common subsequence
between S’[j + 1, k] and S’[i,n —m + 1]. Thus

LCS(S'[i, 4], S'[j+1,k]) < %(k—(n—m+2)) < g(k—i)

Thus intervals of this kind are good.

If S'[i,k] contains s »|,sfz but doesn’t con-
tain s,: If j <n—m+[5|+1, then there’s no common
subsequence between S’[4, j] and S'[n —m+[5] + 1, k],
thus .

LOS(S'li, 11,85 + 1K) < 5k 1)

l
If j > n—m+ [5] + 1, then there’s no common
subsequence between S'[j 41, k] and S'[i,n—m+ [ 5|+
1]. Thus

LCS(S'[i, 4], 8'[j +1,k]) < g(k —4)

Thus intervals of this kind are good.

If S[i, k] contains sjn) and s,: If n —m +2 <
Jj<n—m+[5]+1, then the common subsequence is
either that of S'[i,n —m+1] and S’[n —m + [§]+1,K]
or that of S’[n—m+2,j] and S’[j +1,n—m+ [ 5] +1].
This is because ¥; N Xy = (0. Thus

LCS(S'[i, 4], S[j + 1, &])
<max{LCS(S'[i,n — m+1],5[n —m + [%1 +1,k),

LCS(S'In—m+2,3], 8l + Ln —m+ | £ ] + 1))}

<§(k—i)

If j <n —m+ 1, then there’s no common subsequence
between S’[i, j] and S'[n—m+2,n—m+ [ 5| +1]. Thus

LCS (8], 4),8'[j +1,k]) < %(k —4)
If j > S’[n—m+ [§] + 1], the proof is similar to the
case where j <n —m+ 1.
This shows that S’ is an e-synchronization string.
Thus by the definition of synchronization circle, the
construction gives an e-synchronization circle.

5 Deterministic Constructions of
Long-Distance Synchronization Strings

In this section, we give deterministic constructions of
synchronization strings. In fact, we consider a generali-
zed version of synchronization strings, i.e., f(I)-distance
e-synchronization strings first defined by Haeupler and
Shahrasbi [10]. Throughout this section, ¢ is considered
to be a constant in (0,1).

5.1 Polynomial Time Constructions of Long-
Distance Synchronization Strings Here, by com-
bining the deterministic Lovasz local lemma of
Chandrasekaran et al. [23] and the non-uniform sam-
ple space used in Theorem 4.1, we give a deter-
ministic polynomial-time construction of c-long e-
synchronization strings over an alphabet of size O(s72).

THEOREM 5.1. (THEOREM 2 IN [23]) Let the time
needed to compute the conditional probability
Pr[AVi € I : P, = v for any A € A and any

partial evaluation (v; € D;);e; where I C [n] be at most
te. If there is an € € (0,1) and an assignment of reals
z: A~ (0,1) such that

VA€ A:Pr[A] <2/(A) = [2(4) J] 1-=(B)

BED(A)

Then, a deterministic algorithm can find a good evalu-
ation wn time
DM?(H+Y/9) Jog M

EWmgin

O(tc)

=0 (tc -D-M3+2/6>
Here,
o 2'(4) = 2(A) [Iper(a)(1 — 2(B))

o D= maxpcp{domain(P)} where P is the set of
random variables.

2|vbl(A z(A
o M = max{n74m,4za€f( lx,(i‘))l . 1_;(1)4)}

where A = {A € Alz'(A) > 1=}, n is the number
of random variables and m is the number of events

n A.
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® Wppin = MINAc A{— loga/(A)}

o I'(A) = T 4(A) for the set of all events B # A
in A with vbl(B) Nvbl(A) # 0, in which vbl(A) is
the smallest subset of random variables determining
event A.

First we recall the following property of ¢-long synchro-
nization strings.

LEMMA 5.1. (COROLLARY 4.4 OF [10]) If S is a
string which satisfies the edit distance requirement
of c-long-distance e-synchronization property stated
in Definition 1.2 for any two non-adjacent intervals
of total length 2clogn or less, then it satisfies such
requirement for all pairs of non-adjacent intervals.

We now have the following theorem.

THEOREM 5.2. For any n € N and any constant
e € (0,1), there is a deterministic construction of an
O(1/e)-long-distance e-synchronization string of length
n, over an alphabet of size O(¢~2), in time poly(n).

Proof. To prove this, we will use the Lovész local lemma
and its deterministic algorithm in [23]. Suppose the
alphabet is ¥ with |S| = ¢ = c1e72 where ¢; is a
constant. Let ¢t = coe™2 and 0 < ¢y < ¢;. We denote
|X|—t as ¢. The sampling algorithm of string S (1-index
based)is as follows:

e Initialize an arbitrary order for X.
e For ¢th symbol:

— Denote h = min{t — 1,7 — 1}.  Gene-
rate a random variable P; uniformly over

{1,2,...,]2| - h}.

— Reorder ¥ such that the previous h chosen
symbols are labeled as the first A symbols in 2,
and the rest are ordered in the current order
as the last |X| — h symbols.

— Choose the (P; + h)’th symbol in this new
order as S[i].

Define the bad event A;, ;, i,.1, as intervals S[iy, i1 +11)
and S[ig, ia + l2) violating the ¢ = O(1/¢)-long-distance
synchronization string property for i; +1; < i5. In other
words, Aj, 1,0, occurs if and only if ED(S[i1, i1 +
ll), S[ig,ig + lg)) S (1 — 6)([1 + 12), which is equivalent
to LCS(S[Zl, 11+ ll), S[iz,ig + 12)) > %(ll + lg)

Note that according to the definition of c-long
distance e-synchronization string and Lemma 5.1, we
only need to consider Aj;, i, i1, Where [; + 1o < clogn

and clogn < I3 + 1o < 2clogn. Thus we can upper
bound the probability of A

i1,l1,02,l29

Pr[A

I el el

e e ~
i1,l1,%2,l2 < | — =\ = :CElv
i (51«/|E|—t> (5\/2|—t>

where | = 1 + 15 and C is a constant which depends on
c1 and cs.

However, to apply the deterministic Lovasz local
lemma (LLL), we need to have two additional requi-
rements. The first requirement is that each bad event
depends on up to logarithmically many variables, and
the second is that the inequalities in the Lovasz local
lemma hold with a constant exponential slack [10].

The first requirement may not be true under the
current definition of badness. Consider for example the
random variables P;,, ..., P, 41,1, Piy,- -+, Piyt1,—1 for
a pair of split intervals S[i1, 41 + 1), S[iz, i2 + l2) where
the total length I; + l5 is at least 2clogn. The event
Ay 1h,is,1, may depend on too many random variables
(i‘e'7 -Pil? ceey Pi2+l2*1)'

To overcome this, we redefine the badness of the
split interval S[i1,i; + {1) and S[is,io + l2) as fol-
lows: let B;, ;,4,,1, be the event that there exists
Pitiyy..., Pi,—1 (ice., the random variables chosen be-
tween the two intervals) such that the two intervals ge-
nerated by Pi1 e 7P721+1171 and Pi27 ey Pi2+l271 (tO—
gether with P, y;,,...,P,_1) makes LCS(S[i1,41 +
I1), S[ig,i2 +12)) > 5(l1 +12) according to the sampling
algorithm. Note that if B;, i, i,.1, does not happen, then
certainly A;, 1, i,,1, does not happen.

Notice that with this new definition of badness,
Bi, 1,.is0, is independent of {P;,4,...,P,—1} and
only depends on {P;, ..., P;,411,—1,Piny- -y Piyt1,}. In
particular, this implies that B, i, i,., is independent
of the badness of all other intervals which have no
intersection with (S[Zl, 11+ ll), S[ig, 19 + lg))

We now bound Pr[B;, i, i,.1,]. When considering
the two intervals S[iy, i1 + l1), S[i2,i2 + l2) and their
edit distance under our sampling algorithm, without
loss of generality we can assume that the order of the
alphabet at the point of sampling S[i1] is (1,2,...,q)
just by renaming the symbols. Now, if we fix the order
of the alphabet at the point of sampling S[iz] in our
sampling algorithm, then S[ia, 2 + l2) only depends on
{P,L'27 . 7Pi2+l2} and thus LCS(S[ll, ’il + ll>, S[’ig,iz +
12)) Only depends on {‘P’Ll ER) Pi1+l1*17 Pi27 s 7P7l2+l2}‘

Conditioned on any fixed order of the alphabet at
the point of sampling S[is], we have that LC'S(S[i1, i1+
I1), S[iz,i2+12)) > 5(l1+12) happens with probability at
most C*! by the same computation as we upper bound
Pr[A;, 1, ,is,1,]- Note that there are at most ¢! different
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orders of the alphabet. Thus by a union bound we have
Pr[Bil,lh’iz,lQ} S éal X q! = CEZ,

for some constant C.

In order to meet the second requirement of the
deterministic algorithm of Lovész local lemma, we also
need to find real numbers i, i, 41, is.is+1, € [0,1] such
that for any B

i1,l1,42,l25

1.01
Pr(Bi, 1y s 1) < | s ot [ [(1 = l’ig,l;,i;,z;)] :
X

where X denotes the condition that
[S[Z'l,’b'l + 11) U S[ig,ig + lg)] N [S[’Lll, ’Lll + lll) @] 5[1/2,2/2 +
15)] # 0. We propose ;, 1,.i,1, = D~11H2) for some
D > 1 to be determined later. D has to be chosen such
that for any i1,11,49,lo and | =11 + l5:

el
€
(5\/|E| —t)
1.01
< lel H (1 _ Ds(l'1+l/2))‘|
X

Notice that

Dl H (1 _ D—s(l’1+l’2))
X

>D¢
’ ~

2clogn 1 o in clogn " 1+
T T p) T (1)

l'=clognli=1 U=t

2clogn I
o 100

l'=clognl=1

clogn

y H (17D—al”)l+l”

1=t

l
. D—cz‘s*l
>D—sl 1-32 3 1 3 D—Eclogn 1—-=
> ( 32c¢°nlog™ n ) T D
(1 ch2/E(D7€ + c2/€2 _ 02D7€/€2)
(1- D)2

where in the inequalities,

C= (L +17) + (h +15) + (o +17) + (la +15)]

2—(:2/5

For D = 2 and ¢ = 2/e, lim. 0 f—== = 0
Thus, for sufficiently small e, ?:c;_/z < % Moreover,

32¢2nlog2nD—s = 2le’n _ o(1) Finally, for suffi-

e n

D—cz/s(Dfsl_tcg/f:);cZD—a/Ez) S 9.
Therefore, for sufficiently small ¢ and sufficiently large
n, the requirement for LLL is satisfied under the con-

dition:
Dl H (1 _ D—s(l’1+l’2))
X

1 1 4-¢l
> 27 (1—2)@2 ) 1-=)>

So for LLL to work, the following should be gua-
ranteed:

ciently small €, 1 —

e 1.0t 4—€l 42-02(1+¢€)e”
< “— <Xl -t
e\ |8 —t -4 g2 <l
Hence the second requirement holds for |X| — ¢ =
4.04 2
4 526 — 0(572).

COROLLARY 5.1. For any n € N and any constant
e € (0,1), there is a deterministic construction of an
e-synchronization string of length n, over an alphabet
of size O(e72), in time poly(n).

By a similar concatenation construction used in
the proof of Theorem 4.3, we also have a deterministic
construction for synchronization circles.

COROLLARY 5.2. For any n € N and any constant
e € (0,1), there is a deterministic construction of an
e-synchronization circle of length n, over an alphabet of
size O(e72), in time poly(n).

5.2 Deterministic linear time constructions of
c-long distance e-synchronization string Here we
give a much more efficient construction of a c-long
distance e-synchronization string, using synchronization
circles and standard error correcting codes. We show
that the following algorithm gives a construction of c-
long distance synchronization strings.

ALGORITHM 5.1. [Explicit Linear Time Construction
of c-long distance e-synchronization string]
Input:

e An error correcting code C C Y%, with distance om
and block length m = clogn.

e An gg-synchronization circle SC = (scy,...,s¢n,)
of length m over alphabet Yg¢.

Operations:
e Construct a code C C Y™ such that
C = {((61, SCl)7 ey <ém, scm))|(él, e

where Y = EC X Esc.

,ém) € C}
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e Let S be concatenation of all codewords Cq,...,Cn
from C.

Output: S.

To prove the correctness, we first recall the following
theorem from [1].

THEOREM 5.3. (THEOREM 4.2 OF [1]) Given an &p-
synchronization string S with length n, and an efficient
error correcting code C with block length n, that cor-
rects up to n(ﬁf% half errors, one can obtain an in-
sertion/deletion code C' that can be decoded from up
to nd deletions, where C' = {(c},...,c,)|Vi € [n],c; =

(Cl‘,S[iD, ((51, .. .,Cn) S C}

We have the following property of longest common
subsequence.

LEMMA 5.2. Suppose Ty is the concatenation of £,
strings, Ty = S10---0Sy, and Ts is the concatenation of
ly strings, Ty = Sy o---0S) . If there exists an integer
t such that for all i,j, we have LCS(S;,S}) < t, then
we have LCS(Ty,Ts) < (41 + £3)t.

Proof. We  rename the strings in 75 by
Se14+1 7 3 S0, +05- Suppose the longest common
subsequence between T} and Ty is T, which can be
viewed as a matching between 77 and T5.

we can divide T sequentially into disjoint intervals,
where each interval corresponds to a common subse-
quence between a different pair of strings (S;, S;), where
S; is from T and S is from T5. In addition, if we look at
the intervals from left to right, then for any two consecu-
tive intervals and their corresponding pairs (5;, S;) and
(S, Sjr), we must have i’ > i and j' > j since the ma-
tchings which correspond to two intervals cannot cross
each other. Furthermore either i > i or j/ > j as the
pair (S;, ;) is different from (S, Sj).

Thus, starting from the first interval, we can label
each interval with either ¢ or j such that every interval
receives a different label, as follows. We label the first
interval using either ¢ or j. Then, assuming we have
already labeled some intervals and now look at the next
interval. Without loss of generality assume that the
previous interval is labeled using 7, now if the current
7" > 1 then we can label the current interval using ¢’;
otherwise we must have j' > j so we can label the
current interval using j/. Thus the total number of the
labels is at most I; + l5, which means the total number
of the intervals is also at most {; + lo. Note that each
interval has length at most ¢, therefore we can upper
bound LCS(Tl,TQ) by (ll + lz)t.

LEMMA 5.3. The output S in Algorithm 5.1 is an €1-

synchronization circle, where e1 < 10(1 — %016)

Proof. Suppose C can correct up to dm half errors. Then
according to Theorem 5.3, C can correct up to i;‘:g om
deletions.
Let a=1- };20 6. Notice that C has the following
0
properties:

1. LCS(C) = maxc, c,ec LCS(c1,¢2) < am

2. Each codeword in C is an e-synchronization circle
over X.

Consider any shift of the start point of S, we
only need to prove that V1 < ¢ < j < k <
n, LCS(S[i,j], S[j + 1, k]) < F(k — ).

Suppose S; = S[i,j] and Sy = S[j + 1,k]. Let
&1 = 10a..

Case 1: k —i > m. Let |S1| = s1 and |Ss| = so,
thus s;+s2 > m. If we look at each Sy, for h = 1,2, then
S} can be divided into some consecutive codewords, plus
at most two incomplete codewords at both ends. In this
sense each S} is the concatenation of ¢ strings with
lp, < 22 4+ 2. An example of the worst case appears in
Figure 1.

1 Co C3

S 12356 15624 31456
i Fi k

Figure 1: Example of the worst case, where j splits a
codeword, and there are two incomplete codewords at
both ends.

Now consider the longest common subsequence be-
tween any pair of these strings where one is from Sy
and the other is from S5, we claim that the length of
any such longest common subsequence is at most am.
Indeed, if the pair of strings are from two different co-
dewords, then by the property of the code C we know
the length is at most am. On the other hand, if the
pair of strings are from a single codeword (this happens
when j splits a codeword, or when S[i] and S[k] are in
the same codeword), then they must be two disjoint in-
tervals within a codeword. In this case, by the property
that any codeword is also a synchronization circle, the
length of the longest common subsequence of this pair
is at most Sm.

Note that a = 1 — };—286 >1-— }I_Zg = 124520 > gp
(since d,9 € (0,1)). Thus 5tm < am. Therefore, by
Lemma 5.2, we have
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LCS(51,82)
<2 t+2+2 4 2am
m m
(5.1) =a(sy + sg +4m)
<ba(s1 + s2)
=5a(k — i) = %(k )
Case 2: If £k — i < m, then according to the

property of synchronization circle SC, we know that
the longest common subsequence of S; and Sy is less
than 2(k — i) < a(k —1i) < F(k —1).

As a result, the longest common subsequence of
S[i, j] and S[j +1, k] is less than S-(k —1), which means
that S is an £;-synchronization circle.

Similarly, we also have the following lemma.

LEMMA 5.4. The output S of algorithm 5.1 is a c-long

distance e-synchronization string of length n = Nm
where N is the number of codewords in C, e = 12(1 —
1

e 0)-

Proof. By Lemma 5.3, S is an €;-synchronization string,
thus the length of longest common subsequence for
adjacent intervals S7, 5o with total length [ < clogn is
less than 51. We only need to consider pair of intervals
S1, S2 whose total length [ € [clogn, 2¢clogn].

Notice that the total length of S; and S5 is at most
2clogn, which means that S; and S, each intersects
with at most 3 codewords from C. Using Lemma 5.2,
we have that LCS(S1,S2) < 6al.

Thus picking ¢ = max{12a,e1} = 12a = 12(1 —

—£04), S from algorithm 5.1 is a c-long distance e-

1+80 ; . .
synchronization circle.

We need the following code constructed by Gurus-
warmi and Indyk [26].

LEMMA 5.5. (THEOREM 3 OF [26]) For every 0 < r <
1, and all sufficiently small € > 0, there exists a family
of codes of rate r and relative distance (1—r—¢) over an
alphabet of size 20" r M log(1/2)) gych that codes from
the family can be encoded in linear time and can also be
uniquely decoded in linear time from 2(1—r—¢) fraction
of half errors.

LEMMA 5.6. [Error Correcting Code by Brute Force
Search]

For any n € N, any ¢ € [0, 1], one can construct an
error correcting code in time O(2°"(%¢)"nlog(1/¢)) and
space O(2°"nlog(1/e)), with block length n, number of
codewords 2°™, distance d = (1—¢)n, alphabet size 2¢/e.

Proof. We conduct a brute-force search here to find all
the codewords one by one.

We denote the code as C and the alphabet as Y. Let
|X| = q. At first, let C = (). Then we add an arbitrary
element in X" to C. Every time after a new element
C' is added to C, we exclude every such element in %"
that has distance less than d from C. Then we pick an
arbitrary one from the remaining elements, adding it to
C. Keep doing this until |C| = 2°".

Note that given C € X", the total number of
elements that have distance less than d to C, is at most
(M)t = ((n"d))qd < (£)="g1=9". We have to require
that [C[(£)"g )" < ¢". Let ¢ = 2e/e. So C can be
2En

The exclusion operation takes time
O((%¢)"nlog(1/e)) as we have to exhaustively se-
arch the space and for each word we have to compute
it’s hamming distance to the new added code word.
Since there are 2°™ code words, the time complexity is
as stated.

We have to record those code words, so the space
complexity is also as stated.

We can now use Algorithm 5.1 to give a linear
time construction of c-long distance e-synchronization
strings.

THEOREM 5.4. For every n € N and any constant
0 < e < 1, there is a deterministic construction of
a ¢ = O(¢72)-long distance e-synchronization string
S € X" where |S| = O(e73), in time O(n). Moreover,
S[i, i + logn] can be computed in O(log") time.

Proof. Suppose we have an error correcting code C with

distance rate 1 — &’ HSG (1 — {5), message rate
6

re = O(e"?), over an alphabet of size |S.| = O(e'71),
with block length m = O(¢'~2logn). Let ¢ = O(¢'72) =
O(s72). We apply Algorithm 5.1, using C' and an -
synchronization circle SC of length m over an alphabet
of size O(¢72). Here SC is constructed by Corollary

5.2 in time poly(m) = poly(logn). By Lemma 5.4,

we have a c-long-distance 12(1 — Liﬁg(l —&)) = e
synchronization string of length m - |X.|"™ > n.

It remains to show that we can have such a C
with linear time encoding. We use the code in Lemma
5.5 as the outer code and the one in Lemma 5.6 as
inner code. Let C,,; be an instantiation of the code

in Lemma 5.5 with rate r, = ¢, = :1,) ' relative distance

dy = (1 — 2¢,) and alphabet size 20( 0" log(1/20))  and

block length n, = 1§g(110/gst)’

decodable in linear time.
Further, according to Lemma 5.6 one can find a

which is encodable and

code C;, with rate r; = O(g;) where ¢; = ?1) ¢, relative
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distance 1 — ¢;, over an alphabet of size %, and block

length n; = O(¢; %log(1/¢;)). Note that since the block
length and alphabet size are both constant because ¢ is
a constant. So the encoding can be done in constant
time.

Concatenating C,,+ and C;,, gives the desire code C
with rate O(g?), distance 1 —O(&’) and alphabet of size
O(¢’71) and block length O(¢'~2logn). Moreover, the
encoding of C can be done in linear time, because the
encoding of C,,; is in linear time and the encoding of
Cin 1s in constant time.

Note that since every codeword of C can be compu-
ted in time O(loagzn), S[i,i 4+ logn| can be computed in
O(*5™) time.

COROLLARY 5.3. For every n € N and any constant
0 < e < 1, there is a deterministic construction of an
e-synchronization string S € X" where || = O(e73),
in time O(n). Moreover, S[i,i + logn| can be computed

in O( 1‘;%") time.

5.3 Explicit Constructions of Infinite Synchro-
nization Strings In this section we focus on the con-
struction of infinite synchronization strings.

To measure the efficiency of the construction of
an infinite string, we consider the time complexity for
computing the first n elements of that string. An
infinite synchronization string is said to have an explicit
construction if there is an algorithm that computes any
position S[i] in time poly(z). Moreover, it is said to have
a highly-explicit construction if there is an algorithm
that computes any position S[i] in time O(log?).

We have the following algorithm.

ALGORITHM 5.2. [Construction — of  infinite  e-
synchronization string]

Input:
e A constant € € (0,1).
Operations:

e Let ¢ € N be the size of an alphabet large enough to
construct an $-synchronization string. Let ¥; and
Y5 be two alphabets of size ¢ such that 1Ny = (.

o Let k£ = %. For i = 1,2,..., construct an 3-
synchronization string Sy: of length k', where Sy
is over X; if 7 is odd and over Y5 otherwise.

e Let S be the sequential concatenation of
Sk, Sk2,Sk3, ..., Sty ...

Output: S.

LEMMA 5.7. If there is a construction of §5-
synchronization strings with alphabet size q, then

Algorithm 5.2 constructs an infinite e-synchronization
string with alphabet size 2q.

Proof. Algorithm 5.2 can be shown as in the figure
below.

Figure 2: S and Sjs are over alphabet ¥; and 52 is
over Xs.

Now we show that S is an infinite e-synchronization
string.

CLAaM 2. Let ¢ < y < z be positive integers and
let t be such that k' < |S[z,2)] < k'Tt.  Then
ED(S[z,y), S[y,2)) = (1 = §)(z —x)(1 - 3).

Proof. Let l; be the index of S where Sji+1 starts. Then
] . i+1

li =Y k= E k. Notice that l,_y < 2k"! and

|S[x, 2)| > k', one can throw away all elements of S|z, z)

whose indices are less than [;_; without losing more

than 2"}:;1 = 2 fraction of the elements of S[z,z). We
use S[z’, z) to denote the substring after throwing away
the symbols before I;_;. Thus 2’ > l;_;.

Since o’ > i1, S|/, z) either entirely falls into
a synchronization string Sy or crosses two synchroni-
zation strings S;: and Sji+1 over two entirely different
alphabets 31 and Y. Thus the edit distance of S[x’,y)

and Sy, z) is at least (1 — 5)(z — x).

Since k = %, we have that

ED(S[x,y), Sy, 2))

2(13)<H>(1;)

2(1-¢)(z - )
This shows that S is an e-synchronization string.

If we instantiate Algorithm 5.2 using Corollary 5.1,
then we have the following theorem.

THEOREM 5.5. For any constant 0 < € < 1, there exists
an explicit construction of an infinite e-synchronization
string S over an alphabet of size O(e72).

Proof. We combine Algorithm 5.2 and Corollary 5.1.
In the algorithm, we can construct every substring Sy
in polynomial time with alphabet size ¢ = O(g72),
by Corollary 5.1. So the first n symbols of S can be
computed in polynomial time.

By Lemma 5.7, S is an infinite e-synchronization
string over an alphabet of size 2¢ = O(s72).
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If we instantiate Algorithm 5.2 using Corollary 5.3,
then we have the following theorem.

THEOREM 5.6. For any constant 0 < ¢ < 1, there
exists a highly-explicit construction of an infinite e-
synchronization string S over an alphabet of size
O(e73). Moreover, for any i € N, the first i symbols
can be computed in O(i) time and S[i,i + logi] can be
computed in O(logi) time.

Proof. Combine Algorithm 5.2 and Corollary 5.3. In
the algorithm, we can construct every substring S;: in
linear time with alphabet size ¢ = O(¢~3), by Corollary
5.3. So the first i symbols can be computed in O(7)
time. Also any substring S[i, i 4+ logi] can be computed
in time O(log ).

By Lemma 5.7, S is an infinite e-synchronization
string over an alphabet of size 2¢ = O(s73).

6 € (c%?) Lower-Bound on Alphabet Size

The twin word problem was introduced by Axenovich,
Person, and Puzynina [27] and further studied by
Bukh and Zhou [28]. Any set of two identical disjoint
subsequences in a given string is called a twin word.
[27, 28] provided a variety of results on the relations
between the length of a string, the size of the alphabet
over which it is defined, and the size of the longest twin
word it contains. We will make use of the following
result from [28] that is built upon Lemma 5.9 from [29]
to provide a new lower-bound on the alphabet size of
synchronization strings.

THEOREM 6.1. (THEOREM 3 FROM [28]) There exists
a constant ¢ so that every word of length n over a q-
letter alphabet contains two disjoint equal subsequences
of length cng=2/3.

Further, Theorem 6.4 of [1] states that any e-
synchronization string of length n has to satisfy e-self-
matching property which essentially means that it can-
not contain two equal (not necessarily disjoint) subse-
quences of length en or more. These two requirements
lead to the following inequality for an e-synchronization
string of length n over an alphabet of size q.

eng 2P <en= e <yq
7 Synchronization Small
Alphabets

In this section, we focus on synchronization strings over
small constant-sized alphabets. We study the question
of what is the smallest possible alphabet size over which
arbitrarily long e-synchronization strings can exist for
some € < 1, and how such synchronization strings can
be constructed.

Strings over

Throughout this section, we will make use of square-
free strings introduced by Thue [14], which is a we-
aker notion than synchronization strings that requi-
res all consecutive equal-length substrings to be non-
identical. Note that no synchronization strings or
square-free strings of length four or more exist over
a binary alphabet since a binary string of length four
either contains two consecutive similar symbols or two
identical consecutive substrings of length two. Howe-
ver, for ternary alphabets, arbitrarily long square-free
strings exist and can be constructed efficiently using
uniform morphism [20]. In Section 7.1, we will briefly
review this construction and show that no uniform mor-
phism can be used to construct arbitrary long synchro-
nization strings. In Section 7.2, we make use of ter-
nary square-free strings to show that arbitrarily long e-
synchronization strings exist over alphabets of size four
for some € < 1.

7.1 Morphisms cannot Generate Synchroniza-
tion Strings Previous works show that one can con-
struct infinitely long square-free or approximate-square-
free strings using uniform morphisms. A uniform mor-
phism of rank = over an alphabet Y is a function
¢ : X — X7 that maps any symbol out of an alpha-
bet ¥ to a string of length r over the same alphabet.
Applying the function ¢ over some string S € >* is
defined as replacing each symbol of S with ¢(S).

[21, 15, 16, 17, 20] show that there are uniform
morphisms that generate the combinatorial objects they
study respectively. More specifically, one can start from
any letter of the alphabet and repeatedly apply the
morphism on it to construct those objects. For instance,
using the uniform morphisms of rank 11 suggested
in [20], all such strings will be square-free. In this
section, we investigate the possibility of finding similar
constructions for synchronization strings. We will show
that no such morphism can possibly generate an infinite
e-synchronization strings for any fixed 0 < e < 1.

The key to this claim is that a matching between
two substrings is preserved under an application of the
uniform morphism ¢. Hence, we can always increase the
size of a matching between two substrings by applying
the morphism sufficiently many times, and then adding
new matches to the matching from previous steps.

THEOREM 7.1. Let ¢ be a uniform morphism of rank r
over alphabet . Then ¢ does not generate an infinite
e-synchronization string, for any 0 < e < 1.

Proof. To prove this, we show that for any 0 <
€ < 1, applying morphism ¢ sufficiently many ti-
mes over any symbol of alphabet ¥ produces a strings
that has two neighboring intervals which contradict e-
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synchronization property. First, we claim that, without
loss of generality, it suffices to prove this for morphisms
¢ for which ¢(o) contains all elements of ¥ for any
o € X. To see this, consider the graph G with |X|
vertices where each vertex corresponds to a letter of the
alphabet and there is a (01, 02) edge if ¢(o1) contains
9. It is straightforward to verify that after applying
morphism ¢ over a letter sufficiently many times, the
resulting string can be split into a number of substrings
so that the symbols in any of them belong to a sub-
set of ¥ that corresponds to some strongly connected
component in G. As e-synchronization string property
is a hereditary property over substrings, this gives that
one can, without loss of generality, prove the above-
mentioned claim for morphisms ¢ for which the corre-
sponding graph G is strongly connected. Further, let d
be the greatest common divisor of the size of all cycles
in G. One can verify that, for some sufficiently large k,
#*? will be a morphism that, depending on the letter o
to perform recursive applications of the morphism on,
will always generate strings over some alphabet ¥, and
#*4(o") contains all symbols of ¥, for all o' € ¥,. As
proving the claim for ¢*? implies it for ¢ as well, the
assumption mentioned above does not harm the gene-
rality.

We now proceed to prove that for any morphism ¢
of rank r as described above, any positive integer n € N,
and any positive constant 0 < § < 1, there exists m € N
so that

LOS(6™(a), 6™(b)) > [1 - (1 - ﬁ) _5} Ly

for any a,b € ¥ where ¢™ represents m consecutive
applications of morphism ¢ and LCS(.,.) denotes the
longest common substring.

Having such claim proved, one can take § = (1—¢)/2
and n large enough so that m applications of ¢ over any
pair of symbols entail strings with a longest common
substring that is of a fraction larger than 1 — (1 —
€) = € in terms of the length of those strings. Then,
for any string S € X*, one can take two arbitrary
consecutive symbols of ¢(S) like S[i] and S[i + 1].
Applying morphism ¢, m more times on ¢(S) makes
the corresponding intervals of ¢™*!(S) have an edit
distance that is smaller than 1 — ¢ fraction of their
combined lengths. This shows that ¢™*1(S) is not an
e-synchronization string and finishes the proof.

Finally, we prove the claim by induction on n. For
the base case of n = 1, given the assumption of all
members of ¥ appearing in ¢(o) for all o € X, ¢(a)
and ¢(b) have a non-empty common subsequence. This

gives that

LCS(¢(a), (b)) = 1
P R

Therefore, choosing m = 1 finishes the induction base.

We now prove the induction step. Note that by
induction hypothesis, for some given n, one can find m;
such that

LOS(6™ (a), 6™ (b)) > [1 - (1 _ |21|2r>" - g] o

Now, let mg = [log, 2]. Consider ¢™2(a) and ¢™2(b).
Note that among all possible pairs of symbols from %2,
,,.m

one appears at least ﬁ times in respective positions of

@™2(a) and ¢™2(b). Let (a’,b’) be such pair. As ¢(a’)

and ¢(b') contain all symbols of 3, one can take one

specific occurrence of a fixed arbitrary symbol o € X

in all appearances of the pair ¢(a’) and ¢(b') to find
1

. M2 rm2t
a common subsequence of size sz = ’IZT or more

between ¢™271(a) and ¢™271(b) (See Figure 3).

/

&~ —— — = 0ge- — — — — — °
$(

o | ew |

¢m2(b) @™ti(b)

Figure 3: Induction step in Theorem 7.1; Most common
pair (a’,0') = (b, a).

Note that one can apply the morphism ¢ further
times over ¢™2%1(a) and ¢™2*1(b) and such common
subsequence will still be preserved; However, one might
be able to increase the size of it by adding new ele-
ments to the common subsequence from equal length
pairs of intervals between current common subsequence
elements (denoted by blue dashed line in Figure 3). The
total length of such intervals is

1 _1_ 19
|S[2r  pmetl [Z12r 2

or more. In fact, using the induction hypothesis, by
applying the morphism m; more times, one can get the
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following for m = my + mg + 1.

LCS(6™ (a), 0™ (b))

AR T,
- |22 |22 2
1 8\ .,

'<1‘|z2r‘2>]’"
1 n+1 .

This completes the induction step and finishes the proof.

v

7.2 Synchronization Strings over Alphabets of
Size Four In this section, we show that synchroniza-
tion strings of arbitrary length exist over alphabets of
size four. In order to do so, we first introduce the notion
of weak e-synchronization strings. This weaker notion
is very similar to the synchronization string property
except the edit distance requirement is rounded down.

DEFINITION 7.1. (WEAK e-SYNCHRONIZATION STRINGS)
String S of length n is a weak e-synchronization string
if for every 1 <1< j <k <n,

ED(S[i,j), Slj, k) = [(1 = &) (k — ).

We start by showing that binary weak e-synchronization
strings exist for some € < 1.

7.2.1 Binary Weak &e-Synchronization Strings
Here we prove that an infinite binary weak e-
synchronization string exists. The main idea is to take
a synchronization string over some large alphabet and
convert it to a binary weak synchronization string by
mapping each symbol of that large alphabet to a binary
string and separating each binary encoded block with a
block of the form 0%1%.

THEOREM 7.2. There exists a constant € < 1 and an
infinite binary weak e-synchronization string.

Proof. Take some arbitrary ¢’ € (0,1). According to
[1], there exists an infinite &’-synchronization string S
over a sufficiently large alphabet X. Let k = [log |X]].
Translate each symbol of S into &k binary bits, and
separate the translated k-blocks with 0¥1%. We claim
that this new string 7T is a weak e-synchronization
binary string for some ¢ < 1.

First, call a translated k-length symbol followed
by 0%1% a full block. Call any other (possibly empty)
substring a half block. Then any substring of T is a half-
block followed by multiple full blocks and ends with a
half block.

Let A and B be two consecutive substrings in 7.
Without loss of generality, assume |A| < |B| (because
edit distance is symmetric). Let M be a longest common
subsequence between A and B. Partition blocks of B
into the following 4 types of blocks:

1. Full blocks that match completely to another full
block in A.

2. Full blocks that match completely but not to just
1 full block in A.

3. Full blocks where not all bits within are matched.
4. Half blocks.

The key claim is that the 3k elements in B which
are matched to a type-2 block in A are not contiguous
and, therefore, there is at least one unmatched symbol
in B surrounded by them. To see this, assume by
contradiction that all letters of some type-2 block in A
are matched contiguously. The following simple analysis
over 3 cases contradicts this assumption:

e Match starts at middle of some translated k-length
symbol, say position p € [2,k]. Then the first 1 of
1¥ in A will be matched to the (k — p + 2)-th 0 of
0% in B, contradiction.

e Match starts at O-portion of 0¥1* block, say at the
p-th 0. Then the p-th 1 of 1* in A will be matched
to the first 0 of 0% in B, contradiction.

e Match starts at 1-portion of 0¥1* block, say at the
p-th 1. Then the p-th 0 of 0F in A will be matched
to the first 1 of 1¥ in B, contradiction.

Let the number of type-i blocks in B be t;. For every
type-2 block, there is an unmatched letter in A between
its first and last matches. Hence, |A| > |M| + to.
For every type-3 block, there is an unmatched letter
in B within. Hence, |B| > |M| + t3. Therefore,
|A| + |B| > 2| M| + to + t3.

Since |A| < |B|, the total number of full blocks
in both A and B is at most 2(¢; + t2 + t3) + 1. (the
additional +1 comes from the possibility that the two
half-blocks in B allows for one extra full block in A)
Note t; is a matching between the full blocks in A and
the full blocks in B. So due to the &’-synchronization
property of S, we obtain the following.

o
t1 < B} (2(t1 +t2 + tg) + 1)

e’ e’
— ) < —(t t —_—
1S 1_6,(2+ 3)+2(1_€/)
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Furthermore, t1 + to + t3 + 2 > % > |A|$C‘B|. This,
along with the above inequality, implies the following.
1 4 — 3¢

——(ta +t3) +

|A| + |B|
1—¢ ’

2(1—¢') 6k

The edit distance between A and B is

ED(A, B)
= |Al+[B|-2|M| >ty + 13
1—¢ 4 — 3¢’
A Bl) —
> oAl 1B) - 15
1-¢
Al+|B]|) — 2.
> =S4l +1B)

Set e =1 — 2=5", If |A| 4+ |B| > L, then

18k * 1—e?
1-—¢
A B|) -2
141+ 1)
1-¢
> -2(1—- Al+|B
> (F5 - 209 (414180

= (1=o)(A[+[B]) = [(1—e)(|Al +|B])].

As weak e-synchronization property trivially holds for
|A| + |B| < 1=, this will prove that T is a weak e-
synchronization string.

7.2.2 e-Synchronization Strings over Alphabets
of Size Four A corollary of Theorem 7.2 is the exis-
tence of infinite synchronization strings over alphabets
of size four. Here we make use of the fact that infinite
ternary square-free strings exist, which was proven in
previous work [14]. We then modify such a string to
fulfill the synchronization string property, using the ex-
istence of an infinite binary weak synchronization string.

THEOREM 7.3. There exists some ¢ € (0,1) and an
infinite e-synchronization string over an alphabet of size
four.

Proof. Take an infinite ternary square-free string 1" over
alphabet {1,2,3} [14] and some ¢ € (1},1). Let S be
an infinite weak binary ¢’ = (12e — 11)-synchronization
string. Consider the string W that is similar to T" except
that the i-th occurrence of symbol 1 in T is replaced
with symbol 4 if S[i] = 1. Note W is still square-free.
We claim W is an e-synchronization string as well.

Let A = Wi,j),B = W]j, k) be two consecutive
substrings of W. If k —i < 1/(1 —¢), then ED(A, B) >
1> (1 —¢)(k —1) by square-freeness.

Otherwise, k —i > 1/(1 —¢e) > 12. Consider
all occurrences of 1 and 4 in A and B, which form
consecutive subsequences As and B; of S respectively.

Note that |Ag|+|Bs| > (k—i—3)/4, because, by square-
freeness, there cannot be a length-4 substring consisting
only of 2’s and 3’s in W.

By weak synchronization property,

ED(As,Bs) = [(1-¢€)(|As|+ [Bs))]
> [Bl-e)(k—i-3)]
> 31—e)k—i)—9(1—¢)—1
> (1—e)(k—1),

and hence, ED(A, B) > ED(As,Bs) > (1 —¢)(k — ).
Therefore, W is an e-synchronization string.
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