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ABSTRACT

Distributed network optimization problems, such as minimum span-
ning tree, minimum cut, and shortest path, are an active research
area in distributed computing. This paper presents a fast distributed
algorithm for such problems in the CONGEST model, on networks
that exclude a fixed minor.

On general graphs, many optimization problems, including the

ones mentioned above, require Ω̃(
√
n) rounds of communication

in the CONGEST model, even if the network graph has a much
smaller diameter. Naturally, the next step in algorithm design is
to design efficient algorithms which bypass this lower bound on
a restricted class of graphs. Currently, the only known method of
doing so uses the low-congestion shortcut framework of Ghaffari
and Haeupler [SODA’16]. Building off of their work, this paper
proves that excluded minor graphs admit high-quality shortcuts,

leading to an Õ (D2) round algorithm for the aforementioned prob-
lems, where D is the diameter of the network graph. To work with
excluded minor graph families, we utilize the Graph Structure The-
orem of Robertson and Seymour. To the best of our knowledge, this
is the first time the Graph Structure Theorem has been used for an
algorithmic result in the distributed setting.

Even though the proof is involved, merely showing the existence
of good shortcuts is sufficient to obtain simple, efficient distributed
algorithms. In particular, the shortcut framework can efficiently
construct near-optimal shortcuts and then use them to solve the
optimization problems. This, combined with the very general family
of excluded minor graphs, which includes most other important
graph classes, makes this result of significant interest.
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1 INTRODUCTION

Network optimization problems in the CONGEST model, such as
Minimum Spanning Tree, Min-Cut or Shortest Path are an active
research area in theoretical distributed computing [8, 11, 22, 27].
This paper provides a fast distributed algorithm for such problems
in excluded minor graphs in the CONGEST model.

Recently, lower bounds have been established on many dis-
tributed network optimization problems, including all of the men-
tioned ones [5]. More specifically, each of these problems in the

CONGEST model require Ω̃(
√
n)1 rounds of communication to

solve. This holds even on graphs with small diameter, for example,
when the diameter is logarithmic in the number of nodes n. The
result is surprising since it is not immediately clear why a network
of small diameter requires such a large number of communication
rounds when solving an optimization problem.

On the positive side, the next major question in algorithmic
design is to determine whether one can bypass this barrier by re-
stricting the class of network graphs. One immediate question that
arises is, what family of graphs should one consider? Ideally, such a
class of graphs should be inclusive enough to admit most łrealisticž
networks, yet be restrictive enough to disallow the pathological
lower bound instances.

In our search for a restricted graph family to study, we focus
on three criteria. First, we desire a family with a rich and rigorous

mathematical theory, so that our result is technically meaningful.
Second, the family should capture many networks in practice. And
finally, we want robustness: a graph with a few added or perturbed
edges and vertices should still remain in the family. Robustness is
an important goal, since we want our graph family to be resistant to
noise. For example, planar graphs satisfy the first two criteria, but
fail to be robust since often adding a single random edge will make
the graph non-planar. Indeed, most algorithms on planar graphs fail
completely when run on a planar graph with a few perturbed edges
and vertices. Next, one might try genus-bounded graphs, but they

1Throughout this paper, Õ ( ·) and Ω̃( ·) hide polylogarithmic factors in n, the number
of nodes in the network.
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also suffer from similar problems since adding a single randomly
connected vertex can arbitrarily increase the genus.

A candidate graph family that fulfills all three conditions is the
family of excluded minor graphs, namely the graphs which do not
have a fixed graph H as a minor. This family encompasses sev-
eral classes of naturally occuring networks. For example, trees
which exclude K3, planar graphs that capture the structure of two-
dimensional maps exclude K5 and K3,3, and, series-parallel graphs
that capture many network backbones exclude K4 [1, 9]. Excluded
minor graphs also have a history of deep results, including the
series of Graph Minor papers by Robertson and Seymour.

In this paper, we provide efficient distributed algorithms for the

class of excluded minor graphs which break the Ω̃(
√
n + D) lower

bound for general graphs, giving evidence that most practical net-

works admit efficient distributed algorithms. We show an Õ (D2)

algorithm for MST and (1 + ϵ ) approximate min-cut, among other
results. For networks having low diameter, such as D = poly(logn)

or D = no (1) , our algorithms are optimal up to poly(logn) or no (1)

factors, respectively. This is a significant improvement over previ-
ous MST and min-cut algorithms, which run in Ω(

√
n) time even

on an excluded minor graph with D = poly(logn), such as a planar
graph with an added vertex attached to every other node.

Our results use the framework of low-congestion shortcuts,
introduced by [12] and built on by [15], which is a combinatorial
abstraction to designing distributed algorithms. It introduces a
simple, combinatorial problem involving shortcuts on a graph,
and guarantees that a good quality solution to this combinatorial
problem automatically translates to a simple, efficient distributed
algorithm for MST and (1 + ϵ ) approximate min-cut, among other
problems; the concepts of shortcuts and quality will be defined later.
Actually, the algorithm is the same regardless of the network or the
graph family; the purpose of the combinatorial shortcuts problem is
to prove that the algorithm runs efficiently on the graph or family.

To solve the shortcuts problem on excluded minor graphs, we
appeal to the Graph Structure Theorem of Robertson and Sey-
mour [29, 30]. At a high level, the Graph Structure Theorem de-
composes every excluded minor graph into a set of almost-planar
graphs connected in a tree-like fashion. Our solution to the short-
cuts problem is in fact a series of results, one for each step in the
structure decomposition. We remark that our result is, to the best
of our knowledge, the first in distributed computing to make use
of the Graph Structure Theorem to claim a distributed algorithm
is fast. The absence of such a preceding result in distributed com-
puting is unsurprising, since algorithms working with the Graph
Structure Theorem generally require computing the required de-
composition beforehand, and no efficient distributed algorithm to
do so is known. Even the best classical algorithm still takes O (n3)

time [21], so even a sublinear distributed algorithm is still out of
reach. However, our result is unique in that we merely show the
existence of a solution to the shortcuts problem in excluded minor
graphs, and as a consequence, the simple algorithm of [15]Ðwhich
does not look at any structure in the network graph, let alone com-
pute a decompositionÐis proven to run efficiently on excluded
minor graphs.

The fact that this algorithm does not actually compute the Graph
Structure Theorem should be stressed further. Since the framework

of [15] computes a shortcut competitive to the optimal one, a con-
sequence is that the running time of this algorithm rarely depends
on the (large) constants appearing in the Graph Structure Theorem.
In other words, while we can only prove that the constants in the
running time are bounded by (some functions of) the constants
in the Graph Structure Theorem, the actual running time of the
algorithm is likely to be much smaller. In fact, for most excluded

minor networks, we expect the running time to be Õ (D2) with a

small constant, or even Õ (D). In contrast, algorithms that explic-
itly compute a Graph Structure Theorem decomposition have an
inherent bottleneck in the form of the potentially huge constants
of the Graph Structure Theorem.

This paper is structured as follows. After the introduction, we
beginwith introducing the twomain tools necessary for ourmain re-
sult, namely the Graph Structure Theorem and the low-congestion
shortcuts framework. Then, we prove the existence of good short-
cuts one step at a time, following the step-by-step construction in
the Graph Structure Theorem.

1.1 Outline of the Proof

The goal of this section is to outline the proof of our main result,
without delving into the technical details. Some concepts will be left
undefined (e.g., shortcut quality, tree-restricted shortcuts), since the
definitions are technical and require a lot of motivation beforehand.
However, one can think of shortcuts as a combinatorial construction
on a graph, and think of quality as a metric with which to measure
a solution.

Theorem 1. [Haeupler et al. [15, 16]] Suppose that a graph with

diameter D admits tree-restricted shortcuts of quality q : N → N.
Then, there is an Õ (q(D))-round distributed algorithm for MST and

(1 + ϵ )-approximate min-cut for that graph.

Our main technical result is showing the existence of good tree-
restricted shortcuts in excluded minor graphs.

Theorem 2. [Main Theorem] Every graph in a graph family ex-

cluding a fixed minor H admits tree-restricted shortcuts of quality

q(d ) = Õ (d2). The constants in the big-O depend only on the minor

H .

Combining the above Theorem 1 and Theorem 2, we get out
main result.

Corollary 1. There exists an Õ (D2)-round distributed algorithm

for MST and (1 + ϵ )-approximate min-cut, for any ϵ > 0, on graph

networks excluding a fixed minor.

For excluded minor graphs of diameter no (1) , as is the case for

many practical networks, our algorithms also run in no (1) time,
which is optimal up to lower order terms. This is a significant

improvement over the previously known Ω̃(
√
n) time algorithms

and it avoids the Ω̃(
√
n) lower bound for general graphs, even when

they have no (1) diameter.

Corollary 2. There exists an no (1)-round distributed algorithm for

MST and (1 + ϵ )-approximate min-cut, for any ϵ > 0, on graph

networks with diameter no (1) and excluding a fixed minor.

In order to work with excluded minor families, we appeal to
the Robertson-Seymour Graph Structure Theorem. At a high level,
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this theorem states that every graph in an excluded minor family
can be decomposed into a set of graph almost embeddable in
a bounded genus surface that are glued together in a tree-like
fashion. Naturally, our approach is to first construct good-quality
shortcuts for the entire family of almost embeddable graphs, and
thenmodify them in a robustmanner as they are patched together in
the composition.While this approachworks in general, the patching
required is very involved because of various interactions between
the many ingredients involved in the decomposition. For example,
one step in the construction of an almost embeddable graph is the
addition of an łapexž vertex that connects arbitrarily to all previous
vertices. While the addition of only one vertex appears harmless
at first glance, observe that the diameter can shrink arbitrarily,
e.g., to 2 if the apex is connected to all other vertices. If the graph
without the apex has large diameter D, and its shortcuts solution

leads to an Õ (D2)-round algorithm, this same algorithm will not
suffice on the graph with the apex, which can have diameter 2. A
lot of technical effort goes into reconstructing shortcuts upon the
addition of an apex, in order to handle the arbitrary decrease in
graph diameter. Hence, as a consequence of all these difficulties,

we settle for Õ (d2)-quality shortcuts, and leave the improvement

to Õ (d )-quality shortcuts as an open problem.

1.2 Related Work

Work on global network problems in the distributed setting was
started by Gallager, Humblet and Spira [10] who gave a O (n logn)-
round algorithm to compute the MST. The algorithm was subse-
quently improved by Awerbuch [2] to an łoptimalž O (n) rounds.
However, Peleg and Awerbuch [3] noted that a more useful notion
of round complexity would parametrize on both the number of
nodes n and the diameter D since D ≪ n for many practical net-
works. This influenced a substantial amount of work that followed,
culminating in an Õ (D +

√
n) distributed algorithm for many op-

timizations problems in the CONGEST setting. Examples of such
problems include the MST [8, 11, 22], (1 + ϵ )-approximate Max-
imum Flow [13], Minimum Cut [14, 27], Shortest Paths, and Di-
ameter [7, 18ś20, 23, 24, 26]. The mentioned Õ (D +

√
n) round

complexity is existentially optimal for all of these problems, as
there exists a family of graphs for which any algorithm must take

a matching Ω̃(D +
√
n) rounds [5, 6].

Some early work that tried to circumvent the Ω(
√
n) bound

was done by Khan and Pandurangan[22] who argued that their
MST algorithm performed in an universally optimal manner on

some restricted classes of graphs. In particular, they gave a Õ (D)

round MST algorithm for (1) unit disk networks where weights
match the distances, and (2) networks with IID random weights.
Their approach used a novel parameter called łlocal shortest path
diameterž that takes the edge weights into account. This makes
their approach unsuitable for arbitrary weights and topologically
constrained networks such as planar graphs.

However, an alternative approach has recently made progress for
global optimization problems on restricted graph classes. Ghaffari
and Haeupler showcased a distributed MST and (1+ϵ )-approximate

min-cut algorithm that runs in Õ (D) rounds on planar graphs [12],
which was later simplified and generalized to bounded treewidth
graphs and bounded genus graphs [16]. All of these results use the
aforementioned low-congestion shortcuts framework.

1.3 Preliminaries

For a graph G, let V (G ) and E (G ) denote the vertices and edges,
respectively. Given P ⊆ V (G ), G[P] denotes the induced subgraph,
namely, the one obtained by removing V (G ) \ P from G. Finally,
when G is the underlying network graph, we always assume that
G is connected and contains no self-loops (which can be ignored in
the distributed setting anyway).

Due to space constraints, we move the preliminary concerning
the Graph Structure Theorem to Section 2; the reader is encouraged
to review it to become familiar with the used terminology.

1.3.1 CONGEST model. While we only use the classical CON-
GEST model indirectly, via Theorem 1 of [15], we will state its
assumptions for context. A network is given by a connected graph
G = (V ,E) with n nodes and diameter D. Communication proceeds
in synchronous rounds. In each round, each node can send a differ-
ent O (logn) bit message to each of its neighbors. Local computa-
tions are free and require no time. Nodes have no initial knowledge
of the topology G, except that we assume that they know n and
D up to constants. One can easily remove these assumptions by
distributively computing these parameters in O (D) time, which is
negligible in our context.

2 PRELIMINARY: GRAPH STRUCTURE

THEOREM

In this section we introduce Robertson and Seymour’s Graph Struc-
ture Theorem, following the survey of Lovász [25]. This theorem is
instrumental in our shortcut construction, since it provides struc-
ture for all graphs that are H -free, for any minor H . At a high level,
the theorem says that every H -free graph can be glued together
in a tree-like fashion from graphs that can be łalmostž embedded
in a fixed surface. To elaborate on this statement, we need a few
definitions. The first definition, k-clique-sum, captures the tree-like
structure of the graph.

Definition 1 (k-clique-sum). Let G1 and G2 be two graphs, and let

Si ⊆ Gi be a k-clique for i = 1, 2. LetG be obtained by identifying S1
with S2 and deleting some (possibly none, possibly all) edges between

the nodes in S1 = S2. We say thatG is a k-clique-sum ofG1 andG2.

More generally, G is a k-clique-sum of G1,G2, . . . ,Gℓ if G is formed

by starting with G1 and iteratively taking the k-clique-sum of the

current graph with Gi , for i = 2, . . . , ℓ in that order.

The next few definitions classify the graphs which are almost
embeddable on a surface. We start with the three main ingredients
in constructing such a graph, and then define what it means to be
almost-embeddable.

Definition 2 (Apex). Define adding an apex to graph G as fol-

lows: create a new vertex called the apex, and connect it to an arbitrary

subset of the vertices in G.

Definition 3 (Surface of genusд). A graphG has genusд if there is a

2-cell embedding in a surface of genus д. In other words, this means:

(i) there exists an oriented or unoriented surface (i.e., 2-manifold) Σ

of genus д, (ii) vertices of G are mapped to distinct points of Σ, (iii)

edges are mapped to simple paths whose interiors do not contain any

vertices of G nor do path interiors mutually intersect, and (iv) each

face defined by such embedding is homeomorphic to a unit disk, i.e.,

contains no holes or handles in it.
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Definition 4 (Vortex [25]). LetG be a graph with a 2-cell embedding.

Let C be a cycle in G that corresponds to a face on the surface. Call a

continuous interval on the cycle an arc. Select a family of arcs on C

so that each node is contained in at most k of these arcs. For each arc

A, create a new node vA and connect vA to a subset of the vertices in

C that lie on arc A. Such nodes vA are called internal vortex nodes.

Finally, for any two arcs A and B sharing a common vertex in C , we

may add the edge {vA,vB }. We call this operation adding a vortex

of depth k to cycle C .

Definition 5. A graph G is (q,д,k, ℓ)-almost-embeddable if it

can be constructed according to the three steps below.

(i) Start with a graph G ′ embedded on a surface of genus at most

д.

(ii) We select at most ℓ faces of G ′ and add a vortex of depth at

most k to each of them. Call the result G ′′.
(iii) We add q apices to G ′′, connected arbitrarily to vertices in G ′′

and to each other, and obtain the desired graph G.

For simpler notation, we say a graph is h-almost-embeddable if it

is (h,h,h,h)-almost embeddable.

By this definition, the planar graphs are precisely the (0, 0, 0, 0)-
almost-embeddable graphs, and the genus-д graphs are precisely
the (0,д, 0, 0)-almost-embeddable graphs. Later on, we will study
the planar graphs with added vortices, in particular the (0, 0,k, ℓ)-
almost-embeddable graphs for constants k and ℓ.

As a final ingredient to the Graph Structure Theorem, we con-
struct a graph family Lk as follows.

Definition 6. Let Lk denote all graphs that can be represented as

a k-clique-sum of k-almost-embeddable graphs. That is, a graph G

is in Lk if there exist k-almost-embeddable graphs G1,G2, . . . ,Gℓ

such that G is a k-clique-sum of G1,G2, . . . ,Gℓ .

In other words, take any set of k-almost-embeddable graphs
G1,G2, . . . ,Gℓ for ℓ ≥ 1, and letG be their k-clique-sum. Construct
a graph G by repeatedly taking a k-clique-sum operation between
multipleGi ’s constructed using step (i)ś(iii) and connect them in a
tree-like fashion. Define Lk as precisely all graphs G that can be
constructed in this way.

Finally, we present the Graph Structure Theorem, which states
that for any H , there is a k such that Lm includes (but does not
exactly characterize) all graphs that are H -free [25].

Theorem 3 (Graph Structure Theorem). For every graph H

there is a fixed integer k = k (H ) such that any H -free graph G is

contained in Lk .
Below, we include additional terminology on clique-sums and

vortices used in the shortcut construction.

Definition 7 (Vortex terminology). Let C be a cycle of G, and add

a vortex of depth k to C , following Definition 4. Let v1,v2, . . . be the

vertices created when adding a vortex of depth k to C . The vertices

in C form the vortex boundary, and the added vertices v1,v2, . . .

are called inside the vortex and internal vortex nodes. Moreover,

suppose an internal vertex vi corresponds to arc Ai ofC in the vortex

construction. Define the vortex decomposition to be the map P
satisfying P (vi ) = Ai . Finally, ifG is embedded on a closed surface

such thatC forms a face in the embedding, then that face is called the

vortex face.

Definition 8 (k-Clique-sum decomposition tree). Let the graph G

be constructed as the k-clique-sum of subgraphs B1,B2, . . . ,Bℓ . The

subgraphs Bi ⊆ G are denoted as bags. A k-clique-sum decompo-

sition tree ofG is a treeDT whose verticesV (DT) are identified with

bags Bi . The edges of the decomposition f ∈ E (DT) correspond to a
clique in two of the bags, with possibly some removed edges. Therefore,

we refer to them as partial k-cliquesCf . The decomposition satisfies

the following properties:

(1)
⋃

i ∈DT
V (Bi ) = V (G ).

(2) For all i ∈ V (DT), Bi ⊆ G.

(3) For all f = {i, j} ∈ E (DT), Bi ∩ Bj = Cf .
(4) For allv ∈ V (G ), the set {i ∈ V (DT) | v ∈ V (Bi )} is connected

in DT.

(5) For all e ∈ E (G ), there exists i ∈ V (DT) with e ∈ E (Bi ).

We conclude with a statement that the above clique-sum de-
composition tree captures all possible ways to take clique-sums of
graphs.

Fact 1. Let a graph G be the k-clique-sum of graphs from a family

F . Then, G has a k-clique-sum decomposition tree whose bags are

graphs in F .

2.0.1 Tree-restricted Shortcuts. This section introduces the short-
cut framework from [12] and [15]. We state the definitions and
concisely repeat the motivations behind them.

Imagine solving the following problem in a distributed manner:
Each node in the network is assigned a number xv . The network is

partitioned into a number of vertex disjoint individually-connected

parts and each node wants to compute the minimum/maximum/sum

of xv between all nodes in its own part. The above subproblem
often occurs in algorithm design. Notably, it appears in Boruvka’s
Minimum Spanning Tree algorithm [28]. A naive solution would
spread the information about xv independently inside each part,
because the problem statement basically makes them independent.
However, this will incur performance penalties if the diameter of
the parts in isolation is much larger than the diameter of the entire
graph. For instance, a wheel graph has Θ(1) diameter, while a part
containing all the outer nodes has Θ(n) diameter. This leads us to
the idea of łhelpingž a part by assigning it additional edges that it
can use to spread information. We call these edges łshortcutsž.

Definition 9 (General Shortcuts). Let G = (V ,EG ) be an undi-

rected graph with vertices subdivided into pairwise disjoint and

connected subsets P = (P1, P2, ..., P |P | ), Pi ⊆ V . In other words,

G[Pi ] is connected and Pi ∩ Pj = ∅ for i , j. The subsets Pi are

called parts. We define a shortcutH as a tuple of shortcut edges

(H1,H2, . . . ,H |P | ), Hi ⊆ E (G ).

The shortcut framework has particularly nice properties if the
shortcut edges are restricted to some tree T , typically the BFS tree.
In particular, they can be near-optimally constructed in a distributed
and uniformmanner on any network. We first define this structured
version of shortcuts, enumerate the quality measures for them, and
finally state the relevant theorems.

Definition 10 (Tree-Restricted Shortcuts). LetH = (H1,H2, ...,H |P | )
be a shortcut on the graph G = (V ,EG ) with respect to the parts

P = (Pi )i . Given a spanning tree T = (V ,ET ) ⊆ G we say that a
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shortcutH is T -restricted if for each part Pi ∈ P, its shortcut edges
Hi ⊆ ET . In other words, every edge of Hi lies on the tree T .

Note that the above definitions do not impose any hard condition
onHi with respect to Pi . We introduce these conditions implicitly by
defining congestion, block, and quality parameters to measure
how good they are (smaller is better).

Definition 11 (Congestion). LetH = (H1,H2, ...,H |P | ) be a short-
cut on G = (V ,EG ). Define a congestion over an edge e as ce :=

|{i : e ∈ Hi }|, the number of shortcuts using an edge. Finally, define

the congestion of the shortcut to be maxe ∈EG ce , the maximum

congestion of any edge.

Another beneficial property we would like is that the subgraphs
G[Pi ]+Hi have small diameter. ByG[Pi ]+Hi wemean the subgraph
constructed by taking the induced subgraphG[Pi ] and then adding
all the edges inHi as well as any of their endpoints not contained in
Pi . We will measure diameter of G[Pi ] +Hi indirectly, by defining
a block parameter b that essentially measures the number of
different subtrees (components) that exist in Hi . We use it in the
following way: note that (1) G[Pi ] is connected by definition, (2)
G[Pi ] + Hi effectively looks like bi interconnected subtrees, (3)
each subtree has diameterO (D) sinceT is typically a spanning tree
whose height is at most the diameter of G. From these properties
we conclude that G[Pi ] + Hi has diameter O (biD).

Definition 12 (Block parameter). For a shortcutH = (H1,H2, ...,H |P | ),
fix a part Pi and consider the connected components of the spanning

subgraph (V ,Hi ). If a connected component contains a node in Pi
we call it a block component. They correspond to subtrees of T . We

define that H has block parameter b if no part has more than b

block components.

In general, for functions b, c : N→ N, a graph G is said to admit

tree-restricted shortcuts with block parameter b and congestion c if

for any spanning tree T with diameter at most dT and any family of

parts there exists a T -restricted shortcut with block parameter b (dT )

and congestion c (dT ). łGoodž tree-restricted shortcuts typically have

Õ (1) block parameter and Õ (dT ) congestion.

Similarly, a family of graphs admits tree-restricted shortcuts with

block parameter b and congestion c if all graphs in the family indi-

vidually admit them.

We now define the quality of a tree-restricted shortcut. The
terminology of admitting tree-restricted shortcuts carries over to
quality.

Definition 13 (Quality). The quality of a tree-restricted shortcut

is the function q : N→ N defined by q(d ) = b (d ) · d + c (d ).

We now restate the central theorem from the low-congestion
shortcuts framework.

Theorem 1. [Haeupler et al. [15, 16]] Suppose that a graph with

diameter D admits tree-restricted shortcuts of quality q : N → N.
Then, there is an Õ (q(D))-round distributed algorithm for MST and

(1 + ϵ )-approximate min-cut for that graph.

Note that D replaces dT in the argument to the functions b and c .
This is because the theorem takesT to be a BFS tree of the network
graph, which has diameter at most D.

Finally, it is known from [12, 16] that good tree-restricted short-
cuts exist in planar graphs and bounded treewidth graphs. We will
be using this fact in a later section.

Theorem 4 ([12]). The family of planar graphs admits tree-restricted

shortcuts with block parameterO (logdT ) and congestionO (dT logdT ).

Theorem 5 ([16]). The family of graphs of treewidth at most

k admits tree-restricted shortcuts with block parameter O (k ) and

congestion O (k logn).

3 SHORTCUTS IN EXCLUDED MINOR

GRAPHS

Our main result extends Theorem 4 and Theorem 5 to excluded
minor graphs, showing that any family of graphs excluding a fixed
minor has good tree-restricted shortcuts. We repeat Theorem 2
with a bit of extra detail.

Theorem 6. [Main Theorem, Extended Version] The family of

graphs excluding a fixed minor H admits tree-restricted shortcuts

of quality q(d ) = Õ (d2). More generally, the family admits block

parameter b (d ) = O (d ) and congestion c (d ) = O (d logn + log2 n).
The constants in the big-O depend only on the minor H .

Using the shortcuts framework of Theorem 1, the above theorem
translates to the algorithmic result of Corollary 1.

3.1 Two Parts of the Proof

Recall that the Graph Structure Theorem says that any excluded
minor graph can be represented as a k-clique-sum of k-almost-
embeddable graphs, for some constant k depending on the excluded
minor. As with most results utilizing the Graph Structure Theorem,
our proof is split into two parts, one handling the k-clique-sums
and one for the k-almost-embeddable graphs.

Our proof has two main components, namely, Theorem 7 and
Theorem 8 that we state below. It should be clear that they are
sufficient to prove the main technical result, Theorem 6.

Clique Sums Part: In the k-clique-sums part, we show that if a
family of graphs admits shortcuts with good quality, then so does
any k-clique-sum of graphs from this family, for any constant k . In
other words, having good tree-restricted shortcuts is a property ro-
bust under taking k-clique-sums for a fixed integer k . The theorem
below is proved in Section 4.

Theorem 7. [Shortcuts in Clique Sums] Let F be a family of

graphs that admits tree-restricted shortcuts with block parameter bF
and congestion cF . Let G be a k-clique-sum of graphs in F . Then

G admits tree-restricted shortcuts with block parameter bG (d ) ≤
2k +O (bF (dT )) and congestion cG (d ) ≤ O (k log2 n) + cF (dT ).

On a high level, the proof relies on carefully charging the con-
gestion to bags in the k-clique-sum decomposition. This leads to a
bound that relies on the depth of the decomposition, which can be
controlled by folding up long bag-paths in the decomposition.

To prove the full result, we use Theorem 7with F as the family of
k-almost-embeddable graphs, which we show admits tree-restricted

shortcuts with block parameter and congestion Õ (d ). Plugging

in these parameters, we obtain bG (d ) = 2k + Õ (d ) and cG (d ) =

O (k log2 n) + Õ (d ) for the final result, which are both Õ (d ) since k
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Cf
Bh

Gh

B0
h

Figure 2: Local shortcut construction. On the left, T is solid

red. Dotted black edges are edges absent from the partial k-

cliques. On the right is B0
h
for the Bh on the left.

We now argue about the congestion. Consider an edge e ∈ E (G ),
and let B be the set of bags on the DT-root-path to he , including
he . Clearly, |B| ≤ dDT. Edge e can only be assigned to parts that
contain a vertex in the partial-clique on a parent edge of a bag in
B. Hence its congestion is at most k |B| ≤ kdDT.

Local Shortcuts: See Figure 2. Let h be an arbitrary bag, we apply
the following argument to all of them. We now focus on the local
shortcut within Bh . LetT

1
h
:= T ∩ Bh be the forest when we look at

Bh in isolation (note that the tree T can become disconnected). We
will repair T 1

h
in the next paragraph.

Let B0
h
∈ F be the original bag of Bh , which is Bh with all partial

k-cliques involved in the clique-sum completed to full k-cliques
(see Figure 2). In particular, V (Bh ) = V (B0

h
). We emphasize that

B0
h
∈ F by the definition of partial-cliques.

In order to find a tree-restricted shortcut on Bh , we have to define
the tree. The forestT 1

h
:= T ∩B0

h
might be disconnected, so we have

to repair it. First, we define a path contraction operation between
two vertices s, t ∈ V (B0

h
). Consider the unique path between s and

t in T , represented as a sequence of vertices s = u0,u1, . . . ,u∗ = t .
Delete any vertex ui < V (Bh ) and one is left with (a sequence of
vertices representing a) valid path in B0

h
between s and t . Note that

the contracted path is a graph minor of T .
We form the repaired treeT 2

h
in the following way: for every two

s, t ∈ V (B0
h
), take the path contraction between them and union

it into T 2
h
. It is clear that (1) T 2

h
is a subgraph of B0

h
, in fact, it is

a spanning tree of B0
h
, (2) T 1

h
is a subgraph of T 2

h
, and (3) T 2

h
is a

contraction ofT . The last property implies thatT 2
h
is connected and

that its diameter is at most dT . Also, note that the same argument
shows that for any part P , its restriction B0

h
[P] is also connected

since we can contract any path inside P and the resulting path is
still in B0

h
and contains only vertices in PÐthe only unimportant

difference being that this path might be on T .
Next, construct a T 2

h
-restricted shortcut, discard all edges in

T 2
h
\T = T 2

h
\T 1

h
, and discard all edges contained in Cf , where f

B7B6B5B4B3B2B1 →
B1 ∪ B4 ∪ B7

B2 ∪ B3 B5 ∪ B6

Figure 3: Compressing a k-clique-sum decomposition tree

with high depth.

is the parent DT-edge of h. The resulting assignment is the local
shortcut of Bh .

The congestion of the local shortcut is cF (dT ). Fix an edge
e ∈ E (G ), and note that it is only locally assigned in the bag he (due
to discarding edge of Cf ). But the local congestion of he is cF (dT ),
as claimed. The total congestion is at most the sum of the local and
global one, hence it is at most kdDT + cF (dT ).

Bounding the Block Parameter: With all shortcut edges estab-
lished, we now upper bound the block parameter for each part
P ⊆ V (G ). Remember that T is, arbitrarily, rooted. We will bound
the number of nodes v ∈ V (G ) that are roots of block components.
Note that v ∈ BhP since otherwise the global shortcut assigns the
T -parent edge of v to P . But in the lowest common ancestor BhP , v
can be a block root only if either (a) it is a vertex in Cf , where f is

the parent DT-edge of hP , or (b) it is a block root of a local shortcut
inside BhP . Summing up the contributions of these two cases, the
total number of block roots, and therefore block components, can
be at most k + bF (dT ).

□

To improve the dDT factor in the congestion and prove the main
result of this section, we compress the decomposition tree DT to

reduce its depth to O (log2 n), in a similar way to the compression
scheme in [4] for treewidth decompositions.

Theorem 7. [Shortcuts in Clique Sums] Let F be a family of

graphs that admits tree-restricted shortcuts with block parameter bF
and congestion cF . Let G be a k-clique-sum of graphs in F . Then

G admits tree-restricted shortcuts with block parameter bG (d ) ≤
2k +O (bF (dT )) and congestion cG (d ) ≤ O (k log2 n) + cF (dT ).

Proof. Let DT be a k-clique-sum decomposition tree of G. To
motivate the main proof, we first consider the case when DT is
a single path from root to leaf. This case will directly help in the
general case, in which we apply heavy-light decomposition to the
tree, breaking it up into chains, and then treat each chain as a single
path; we will present this general case next.

Case When DT Is a Path: Assume that DT is a rooted path with
bags B1, . . . ,BdDT , in that order. We recursively construct a bal-
anced binary decomposition tree DT′ as follows.

(1) Group the bags B1,B ⌈dDT/2⌉ ,BdDT into a single bag Br .
(2) Recursively solve the pathsB2, . . . ,B ⌈dDT/2⌉−1 andB ⌈dDT/2⌉+1, . . . ,BdDT .
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(3) Attach the two resulting trees as subtrees of Br (see Figure 3).

We call this operation folding a path.
Call the new decomposition tree DT′; it is almost a k-clique-sum

decomposition tree, with one exception: an edge may no longer a
partial k-clique, but a union of two partial k-cliques. We call such
edges double edges. Note that, while we can add edges within
each of the two partial k-cliques and keep the graph in the family
F , we cannot add edges between a vertex in one partial k-clique
and a vertex in the other. Hence, we cannot simply treat the union
of two partial k-cliques as a single partial 2k-clique. However, a
bag Bi can have at most two children connected by double edges.

Using the terminology of the above proof, let B0
h
still be the

bag Bh with all partial cliques filled in with edges (the union of
two cliques in a double edge will not have edges between them).
The only difference this incurs in the proof is the following: in
the global shortcut, partial cliques on the edge of DT can now
contain 2k vertices instead of k , doubling the congestion; and, in
the local shortcut, a part restricted to to a bag B0

h
[P] might not be

connected anymore. However, we claim that it consists of at most
O (1) connected components: for each connected component we
find a łrepresentative vertexž in that component as follows. If (1) the
component touches a partial clique in a double edge to a child, then
the representative is the lowest numbered vertex in such a partial
clique, and otherwise (2) we pick any vertex in the component.
Now there will be at most O (1) different representatives, thereby
finishing the claim since no two different components can have
the same representative. One can see this by arguing if (1) a part
touches a partial clique in a double edge to a child, the it has at
most 4 possibilities; otherwise (2) the part is already connected via
the previous proof.

We construct local shortcuts considering connected components
of the parts as separate (sub)parts and union the assignment in the
end. This only decreases the congestion, and increases the block by
a multiplicative O (1) to a total of 2k +O (bF (dT )).

We now discuss the general case, when DT is an arbitrary tree.
The main steps of the proof are as follows. First, we compute a
heavy-light decomposition [17] of DT. Then, we fold every chain in
the heavy-light decomposition the same way we fold a single path,

so that the resulting tree decomposition has depth O (log2 n).

Heavy-Light Decomposition: The heavy-light decomposition is
a decomposition of any rooted tree into vertex-disjoint paths, called
heavy chains, such that any path from the root to a leaf changes
at most O (logn) heavy chains, where n is the number of vertices
in the tree. The decomposition is simple: for each non-leaf vertex
of the tree, connect it to the child vertex with the largest number
of vertices in its own subtree. On any path from root to leaf, if
traveling from vertex u to vertex v changes heavy chains, then
vertex u has at least twice as many vertices in its subtree than does
v ; such an event can only occur log2 n times along the path.

Folding a Chain: Once we compute the heavy-light decomposi-
tion, we partition the vertices ofDT into heavy chains, and then fold
each chain independently. Then, we connect the resulting binary
trees in the following natural way: if the root of chain C1 is a child
of some vertex v , then we connect the root of the binary tree of C1

to v . Note that this is not a double edge. We get a rooted tree DT′

of depth O (log2 n) with the following key property: while every

vertex in the new decomposition tree can have many children, it
has at most two children connected via double edges. Therefore,
the same argument for double edges in the single path case also

applies here. With the depth of DT′ reduced toO (log2 n), the result
follows. □

5 SHORTCUTS IN ALMOST EMBEDDABLE

GRAPHS

In this section, we prove Theorem 8. In particular, we prove that k-
almost-embeddable graphs admit good shortcuts. Recall that these
graphs have bounded genus with an additional constant number of
apices and vortices of constant depth added.

5.1 Apex Graphs

In this section, we add apices to (0,д,k, l )-almost-embeddable (łGenus
+ Vortexž) graphs. At first glance, the addition of an apex to a graph
might seem trivial, since the graph only changes by one vertex,
and using that vertex can only make the shortcuts better. However,
notice that the diameter of the graph can shrink arbitrarily with the
addition of an apex, and our shortcuts on the apex graph must be
competitive with the new diameter. Hence, we need ideas beyond
our shortcut constructions for the graph without the apex. For a
simple example, in a cycle graph, shortcuts with quality Θ(n) are
considered good. However, by adding a single central vertex, we can
transform the graph into the wheel graph where łgoodž shortcuts
should have quality Θ(1). While good shortcuts actually do exist in
the wheel graph, there are examples of graphs with good shortcuts
where adding a apex makes good shortcuts impossible.

To streamline our arguments for (q,д,k, l )-almost-embeddable
graphs (łApex+Genus+Vortexž) graphs, we will define a couple of
intermediate properties which do not depend on the graph topology.
More precisely, we will define the notions of β-cell-assignment

and s-combinatorial gates. On a very high level, We will show
that:

(1) A Genus+Vortex graph has an s-combinatorial gate, for an
appropriately chosen s . (Section 5.3 and the Appendix)

(2) Graphs with s-combinatorial gate are β-cell-assignable, for
appropriately chosen β and some technical stipulations. (Sec-
tion 5.2)

(3) Graphs that are β-cell-assignable and each cell locally ad-
mits good tree-restricted shortcuts also globally admit good
tree-restricted shortcuts, barring various technicalities. (Sec-
tion 5.4)

In each part, we separately prove the statementswithGenus+Vortex
graphs replaced by planar graphs. It is recommended that the reader,
in their first reading, focus only on the lemmas regarding planar
graphs with a single apex, namely Lemmas 2, 3, 5, and 7.

5.2 Cell Partitions, β-Cell-Assignment and

s-Combinatorial Gate

In this section, we first introduce the notions of łcell partitionsž,
łβ-cell-assignmentž and łs-combinatorial gatesž. Second, we prove
that the second property implies the first.

Definition 14. A cell partition of G is simply a partition of VG
into disjoint, connected components with a small diameter, called the

cells.
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Note that the diameter condition is the only thing differentiating
it from the definition of parts. It is helpful to think of cells as low-
diameter components, whereas parts may be long and skinny. A
canonical example for a cell partition is the following. Given an
apex graph of diameter D, remove the apex and start a concurrent
BFS from each node adjacent to the removed apex. Each node in the
graph (except the apex) gets assigned to exactly one BFS component.
We call such BFS components cells. For most of this section, we
will ignore any extra property that a cell partition might have
and assuming nothing besides them being disjoint, connected and
having a controlled diameter.

A graph is cell-assignable if we can relate its cells and parts in a
way that no cell is assigned to too many parts and parts are assigned
to almost all intersecting cells.

Definition 15. A graph G = (VG ,EG ) is β-cell-assignable if the

following holds. For every valid family of parts P (as in Definition 9)

and every valid cell partition C of diameter d there exists a relation

R ⊆ C × P with the following properties:

(i) each part is in relation with all cells it intersects, except for

at most 2 of them

(ii) each cell is in relation with at most β parts

Note: β is a function of the cell diameter d .

We will not prove directly that Genus+Vortex graphs are β-cell-
assignable. Instead, we focus on a combinatorial property that we
show implies cell-assignment. This property is called a łcombina-
torial gatež and it intuitively asserts that every two touching cells
have a łgatež that covers all the edges between them. Furthermore,
the boundary of such a gate is called a łfencež and its size should
be controlled. The reader is encouraged to review ?? for a mental
picture of combinatorial gates on a planar graph.

Definition 16. For a subset of vertices S ⊆ V , define the ∂S to be the

set of vertices in S on the boundary of S , i.e., the vertices in S whose

neighborhoods intersect V \ S .
Definition 17. Let G = (V ,E) be a graph from a family F , and let

C be a partition ofG into cells. We define a s-combinatorial gate to

be a collection S = {(Fi , Si )}i where F ⊆ V are called fences, S ⊆ V

are gates, and the following properties hold:

(1) Fences are a subset of their corresponding gates. I.e., F ⊆ S for

all (F , S ) ∈ S.
(2) The boundary of a gate are included in its fence. I.e., ∂(S ) ⊆ F

for all (F , S ) ∈ S.
(3) Each edge {a,b} ∈ E whose endpoints are in different cells

must be covered by some gate. I.e., a ∈ S ∧b ∈ S for some gate

S .

(4) Each gate S intersects at most two cells in C.
(5) The non-fence vertices of the gates are disjoint. I.e., for every

v ∈ V there is at most one (Fi , Si ) ∈ S s.t. v ∈ Si \ Fi .
(6) The average size of fences compared to the number of cells is

at most s . I.e.,
∑

(F ,S )∈S |F | ≤ s |C|.
Since this condition is entirely combinatorial, the proofs that

imply β-cell-assignment are also combinatorial. Therefore, these
results are self-contained and disregard any possible structure
in the graph, for example, planarity. Next, we state that the s-
combinatorial boundary implies β-cell-assignment via the follow-
ing two lemmas. The proofs are omitted due to space constraints.

Lemma2. Suppose a graphG with cell partitionC has an s-combinatorial

gate S. Then, for any collection of parts P, either there exists a part
intersecting at most two cells, or there exists a cell intersecting at most

2s parts.

Lemma 3. Let F be a family of graphs that is closed under taking

minors. Suppose that there is a function s (d ) : N→ N such that every

graph G ∈ F satisfies the following property:

• If G has a cell partition of diameter d , then there exists an

s (d )-combinatorial gate S of subsets of V (G ).

Then, every graph G ∈ F with a cell partition of diameter d is 2s (d )-

cell-assignable.

While Lemma 3 works well for planar graphs that are closed un-
der taking minors, Genus+Vortex graphs do not have that property
due to the existence of a bounded number of vortices. In particular,
if one contracts an edge inside the vortex, the resulting graph is not
Genus+Vortex. Therefore, we will deal with cells touching vortices
as łspecial cellsž that are not allowed to be contracted.

Lemma 4. Let F be a family of graphs, not necessarily closed under

taking minors. Suppose that there is a function s (d ) : N → N such

that every graph G ∈ F satisfies the following property:

• If G has a cell partition of diameter d , then there exists an

s (d )-combinatorial gate S of subsets of V (G ).

Consider a graph G ∈ F with a cell partition into two types of cellsÐ

normal cells and ℓ special cellsÐboth of diameter d . Let E∗ denote the
set of edges in special cells. Assume that any graph G ′ obtained by
deleting vertices and contracting edges outside of special cells is still

in F . Then,G is 2ℓs (d )-cell-assignable with respect to a cell partition

of only the normal cells.

5.3 Graphs with s-Combinatorial Gate Property

In this section, we show that Genus+Vortex graphs satisfy the s-
combinatorial property. We highlight our main ideas by proving the
statement for planar graphs before moving on to genus-bounded
graphs.

Lemma 5. LetG be a planar graph with a cell partition of diameter

d . Then, there is an 36d-combinatorial gate S.

Lemma 6. Let G be a genus-д graph with (a possibly unbounded

number of) vortices of depthk , and consider a cell partition of diameter

d such that no vortex is split between more than one cell. Then, there

exists an O ((д + 1)kd )-combinatorial gate of G.

5.4 Wrapping Up: From β-Cell-Assignment to

Good Shortcuts

In this section, we finalize our proof for tree-restricted shortcuts
in almost embeddable graphs. We do this by showing that if an
(0,д,k, l )-almost-embeddable (łGenus+Vortexž) graph is β-cell-assignable
for small enough parameter β , then the same graph with q added
apices admits good tree-restricted shortcuts. We first assume that
the apex graph has exactly one apex, then establish a simple reduc-
tion from the multiple apices case. We begin with the same state-
ment for (1, 0, 0, 0)-almost-embeddable (łApex+Planarž) graphs,
continue with the full statement apart from the single apex, and fi-
nally finish with the most general statement. The proofs are omitted
due to space constraints.
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Lemma 7. LetG be a planar graph with a single apex and a diameter

dT spanning tree T of G. For a given set of parts, there exists a T -

restricted shortcut with block parameter O (logdT ) and congestion

O (dT logdT ).

Lemma 8. LetG be a genus-д graph with ℓ vortices of depth k and a

single apex and T a spanning tree of G . For a given set of parts, there

exists a T -restricted shortcut with block parameter O ((д + 1)kℓ2dT )
and congestion O (kℓ2dT (д + logn)).

Theorem 8. [Shortcuts in Almost Embeddable Graphs] An (q,д,k, ℓ)-

almost-embeddable graph G admits tree-restricted shortcuts with

block parameter b (d ) = O (q + (д + 1)kℓ2d ) and congestion c (d ) =

O (q + kℓ2d (д + logn)).

Proof. Let G be the apex graph and T a the spanning tree of G.
If a part contains one of the q apices, we give the entire treeT to the
part. This increases the congestion by at most q. For the remaining
parts, we do the following. First, add an auxiliary new vertex x that
connects to each of the q apices; the diameter can grow by at most
1. Contract these q + 1 vertices to a single apex to form graphG ′;T
might now contain cycles, so take a spanning subtree of depth dT
in the contracted T . Apply Lemma 8 to the single apex graph G ′. If
we extend the shortcuts for each part in the natural way to G, the
congestion does not change any further. Furthermore, the block
parameter increases by at most q − 1 because a block component
containing x splits into at most q block components. □

6 CONCLUSION AND OPEN PROBLEMS

We have proved all the ingredients we need to prove our main
theorem, which we restate for convenience.

Theorem 6. [Main Theorem, Extended Version] The family of

graphs excluding a fixed minor H admits tree-restricted shortcuts

of quality q(d ) = Õ (d2). More generally, the family admits block

parameter b (d ) = O (d ) and congestion c (d ) = O (d logn + log2 n).
The constants in the big-O depend only on the minor H .

An obvious open question is whether the block parameterO (dT )

can be improved to Õ (1), which would result in a near-optimal

Õ (D)-round algorithm for MST and (1 + ϵ )-approximate mincut
on excluded minor network graphs. The bottleneck in the cur-
rent proof lies in the treewidth argument when arguing about
Genus+Vortex graph, which produces the O (dT ) block parameter.
This treewidth argument cannot be improved due to lower bounds
on treewidth-k graphs, as presented in [16]. Hence, an improvement
on Genus+Vortex graphs requires a better understanding of vor-
tices, beyond treating them as simply low-treewidth (or pathwidth)
graphs.
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