Session 2A: Approximation and Learning

PODC’18, July 23-27, 2018, Egham, United Kingdom

Optimal Gossip Algorithms for Exact and Approximate Quantile

Computations
Bernhard Haeupler* Jeet Mohapatra Hsin-Hao Su
CMU MIT UNC Charlotte
haeupler@cs.cmu.edu jeetmo@mit.edu hsinhaosu@uncc.edu
ABSTRACT must communicate in order to compute these properties. Aggre-

This paper gives drastically faster gossip algorithms to compute
exact and approximate quantiles.

Gossip algorithms, which allow each node to contact a uniformly
random other node in each round, have been intensely studied and
been adopted in many applications due to their fast convergence and
their robustness to failures. Kempe et al. [24] gave gossip algorithms
to compute important aggregate statistics if every node is given a
value. In particular, they gave a beautiful O(logn + log %) round
algorithm to e-approximate the sum of all values and an O(log? n)
round algorithm to compute the exact ¢-quantile, i.e., the [¢n]
smallest value.

We give an quadratically faster and in fact optimal gossip al-
gorithm for the exact ¢-quantile problem which runs in O(log n)
rounds. We furthermore show that one can achieve an exponential
speedup if one allows for an e-approximation. In particular, we give
an O(loglogn + log %) round gossip algorithm which computes a
value of rank between ¢n and (¢ + €)n at every node. Our algo-
rithms are extremely simple and very robust - they can be operated
with the same running times even if every transmission fails with a,
potentially different, constant probability. We also give a matching
Q(loglogn + log é) lower bound which shows that our algorithm
is optimal for all values of €.

ACM Reference Format:

Bernhard Haeupler, Jeet Mohapatra, and Hsin-Hao Su. 2018. Optimal Gossip
Algorithms for Exact and Approximate Quantile Computations. In PODC
’18: ACM Symposium on Principles of Distributed Computing, July 23-27,
2018, Egham, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3212734.3212770

1 INTRODUCTION

Today, due to the vast amount of data and advances in connecti-
vity between computers, distributed data processing has become
increasingly important. In distributed systems, data is stored across
different nodes. When one requires some aggregate properties of
the data, such as, sums, ranks, quantiles, or other statistics, nodes

*Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award
CCF-1750808.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC ’18, July 23-27, 2018, Egham, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5795-1/18/07...$15.00
https://doi.org/10.1145/3212734.3212770

179

gating data in an efficient and reliable way is a central topic in
distributed systems such as P2P networks and sensor networks
[27, 39, 40].

We consider uniform gossip protocols, which are often very
practical due to their fast convergence, their simplicity, and their
stability under stress and disruptions. In uniform gossiping proto-
cols, computation proceeds in synchronized rounds. In each round,
each node chooses to pull or push. In a push a node chooses a mes-
sage, which is delivered to a uniformly random other node. In a pull
each node receives a message from a random node. The message
size is typically restricted to O(log n) bits. The (time) complexity
of an algorithm is measured by the number rounds executed. One
typically wants algorithms that succeed with high probability, i.e.,
with probability at least 1 — 1/poly(n).

In this paper, we study the quantile computation problem. In
the exact ¢-quantile problem each node v is given a distinct!
O(log n) bit value x,, and wants to compute the [¢n] smallest value
overall. In the e-approximate ¢-quantile problem each node
wants to compute a value whose rank is between (¢ + €)n and
(¢ —e)n.

Previously, Kempe et al. [24] gave a beautiful and simple
O(logn + log é) round gossip algorithm to approximate the sum
of all values up to a (1 + €) factor. They also showed how to use
this algorithm to solve the exact ¢-quantile problem in O(log? n)
rounds with high probability.

The main result of this paper is a quadratically faster gossip al-
gorithm for the ¢-quantile problem. The O(log n) round complexity
of our algorithm means that the exact ¢-quantile can be computed
as fast as broadcasting a single message.

Theorem 1.1. Forany ¢ € [0, 1] there is a uniform gossip algorithm
which solves the exact ¢-quantile problem in O(log n) rounds with
high probability using O(log n) bit messages.

Clearly the running time of this algorithm is optimal as Q(log n)
rounds are known to be necessary to even just broadcast to each
node the ¢-quantile value, after it has been identified.

Equally interestingly we show that one achieve even faster algo-
rithms if one considers the approximate ¢-quantile problem. While
a O(ﬁ log n) round algorithm for an e-approximation follows from
simple sampling and a O(log n) round algorithm computing the
logn

n
by Doerr et al. [7], no approximation algorithm for the quantile

problem with a sub-logarithmic round complexity was known prior

median up to a +O() (but not general quantiles) was given

1 The assumption of distinct values is without loss of generality and made for simplicity
as one can always break ties consistently, e.g., according to the ID of the node where
the value started.

Session 2A: Approximation and Learning

to this work. We give an O(loglogn + log(1/¢)) round algorithm
for e-approximating any ¢-quantile which, for arbitrarily good con-
stant approximations, is exponentially faster than our optimal exact
algorithm:

Theorem 1.2. For any constant or non-constant €(n) > 0 and any
¢ € [0, 1], there exists a uniform gossip algorithm that solves the
e-approximate ¢ quantile problem in O(loglogn + log ﬁ) rounds
with high probability using O(log n) bit messages.

We also give a Q(log é) and a Q(log log n) lower bound for the
e-approximate ¢-quantile problem, which shows that our algorithm
is optimal for essentially any value of €.

10logn

2= <€ <1/8and¢ € [0, 1], any gossip
algorithm that uses less than %log log n or less than log, % round
fails to solve the e-approximate ¢-quantile problem with probability
at least 1/3. This remains true even for unlimited message sizes.

Theorem 1.3. For any

We furthermore show that our algorithms can be made robust
to random failures, i.e., the same round complexities apply even
if nodes fail with some constant probability. We remark that a small
caveat of excluding an exp(—t) fraction of nodes after a running
time of ¢ rounds is necessary and indeed optimal given that this is
the expected fraction of nodes which will not have participated in
any successful push or pull after ¢ rounds.

Theorem 1.4. Suppose in every round every node fails with a, po-
tentially different, probability bounded by some constant u < 1. For
any ¢ € [0, 1] there is a gossip algorithm that solves the ¢ quan-
tile problem in O(log n) rounds. For any t and any e(n) > 0, there
furthermore exists a gossip algorithm that solves the e-approximate
¢-quantile problem in O(loglogn + log ﬁ + t) rounds for all but

o nodes, with high probability.

Despite being extremely fast and robust our algorithms remain
very simple. In fact they do little more than repeatedly sampling
two or three nodes, requesting their current value and selecting
the largest, smallest, or median value. Given that in many cases an
e-approximation is more than sufficient we expect this algorithm to
easily find applications in areas like sensor networks and distributed
database systems. For instance, suppose that a sensor network
consisting of thousands of devices is spread across an object to
monitor and control the temperature. Say the top and bottom 10%-
quantiles need special attention. By computing the 90%- and 10%-
quantile, each node can determine whether it lies in the range. It
is unlikely that such a computation needs to be exact. In fact, for
any 0 < € < 1, running O(1/€) approximate quantile computations
suffices for each node to determine its own quantile/rank up to
an additive e. The fact that this can be done in O(log log n) rounds
further demonstrates the power of approximations as there is not
even a o(n) algorithm known? which allows each node to compute
its quantile/rank exactly.

Corollary 1.5. For any constant or non-constant € > 0 and given
that each node has a value there is a gossip algorithm that allows
every node to approximate the quantile of its value up to an additive
2The trivial algorithm which broadcasts the maximum value n times requires

O(nlog n) rounds. Using network coding gossip [18] one can improve this to O(n)
rounds. It is likely that computing the exact rank at each node cannot be done faster.

180

PODC’18, July 23-27, 2018, Egham, United Kingdom

in % -O(loglog n+log %) rounds with high probability using O(log n)
bit messages.

Technical Summary. While computing exact quantiles seems to
be a very different problem from the approximate problem at first
we achieve our exact algorithm by first designing an extremely
efficient solution to the e-approximate quantile problem running
in O(loglogn + log %) rounds. This algorithm is in some sense
based on sampling and inherently is not able to work for the exact
quantile problem or too small € itself, as it might randomly discard
the target value in its first iteration. However, we show that the
algorithm does work for € larger than some polynomial in n. This
allows us to bootstrap this algorithm and repeatedly remove a
polynomial fraction of values within O(log n) rounds until, after a
constant number of such iterations, only the target value persists.
Overall this leads to an O(loglogn + log %) algorithm for the e-
approximate ¢-quantile problem which works for e values that
can be any function of n. This actually generalizes the O(log n)
algorithm for the exact ¢-quantile problem, too, given that the %-
approximate @-quantile problem is accurate enough to compute
exact ranks and quantiles.

Next we outline an, indeed very simple, intuition of why a time
complexity of O(loglogn + log é) is conceivable for the quantile
computation problem: Suppose we sample ©(log n/€?) many values
uniformly and independently at random. With high probability the
¢-quantile of the sampled values is an e-approximation to the ¢-
quantile in the original data. Since each node can sample t node
values (with replacement) in ¢ rounds, one immediately get an
O(log n/€®) round algorithm that uses O(log n) bit messages.

Using larger message sizes, it is possible to reduce the number
of rounds. Consider the following doubling algorithm: Each node v
maintains a set Sy, such that initially S;, = {x }. In each round, let
t(v) be the node contacted by v. Node v updates Sy, by setting S;, «—
Sv U Sy(v)- Since the set size essentially doubles each round, after
log O(logn/e?) = O(loglogn + log %) rounds, we have sampled
Q(log n/€?®) values uniformly, albeit not quite independently, at
random. A careful analysis shows that indeed a O(log log n + log %)
running time can be achieved using messages of size ©(log? n/e?)
bits.

Our first approach for reducing the message sizes tried to utilize
the quantile approximation sketches from the streaming algorithm
community (see related work). We managed to reduce the mes-
sage complexity to O(é -logn - (loglogn + log(1/¢))) by adopting
the compactor ideas from these streaming sketches. A write-up
of this might be of independent interest and can be found in the
full version. Unfortunately even if one could losslesly port the
state-of-the-art compactors scheme from [21] into this setting, the
Q(% loglog(1/4)) for getting e-approximate quantile sketches with
probability 1—-J suggests that one cannot achieve a o(log nlog log n)
message size this way, even if € is a constant. In contrast to most
other distributed models of computation gossip algorithms furt-
hermore do not allow to easily shift extra factors in the message
size over to the round complexity. In fact, we did not manage to de-
vise any o(log n) round gossip algorithm based on sketching which
adheres to the standard O(log n) bound on message sizes.

Session 2A: Approximation and Learning

Instead of sticking to the centralized mentality where each node
tries to gather information to compute the answer, consider the
following 3-TOURNAMENT mechanism. In each iteration, each node
uniformly samples three values (in three rounds) and assign its
value to the middle one®. Intuitively nodes close to the median
should have a higher probability of surviving and being replica-
ted. Indeed, we show that the number of nodes that have values
that are € close to the median grows exponentially for the first
O(log é) iterations. After that, the number of nodes with values
more than en away from the median decreases double exponenti-
ally. For sufficiently large € this simple 3-TOURNAMENT algorithm
gives an approximation of the the median in O(log % + loglogn)
iterations. In general, if we want to approximate the ¢-quantile, we
shift the [¢ — €, ¢ + €] quantiles to the quantiles around the median
by the following 2-TOURNAMENT mechanism. If ¢ < 1/2, each node
samples two values and assign its value to the higher one. The case
for ¢ > 1/2 is symmetric. Intuitively this process makes it more
likely for nodes with higher/smaller values to survive. Indeed, we
show that with a bit of extra care in the last iterations, O(log %)
invocations suffice to shift the values around the ¢-quantile to al-
most exactly the median, at which point one can apply the median
approximation algorithm.

Finally, our lower bound comes from the fact that if one chooses
O(en) nodes and either gives them a very large or a very small
value, then knowing which of the two cases occurred is crucial for
computing any e-approximate quantiles. However, initially only
these ©(en) nodes have such information. We show that it takes
Q(loglogn + log %) rounds to spread the information from these
nodes to every node, regardless of the message size.

Related Work. The randomized gossip-based algorithms dates
back to Demers et al. [6]. The initial studies are on the spreading
of a single message [14, 22, 32], where Karp et al. [22] showed
that O(log n) round and O(nloglog n) total messages is sufficient
to spread a single message w.h.p. Kempe et al. [24] studied gossip-
based algorithms for the quantile computation problem as well
as other aggregation problems such as computing the sum and
the average. Kempe et al. developed O(log n) rounds algorithm to
compute the sum and average w.h.p. Later, efforts have been made
to reduce the total messages to O(nloglogn) for computing the
sum and the average [4, 23]. Using the ability to sample and count,
Kempe et al. implemented the classic randomized selection algo-
rithm [12, 19] in O(log? n) rounds. Doerr et al. [7] considered gossip
algorithms for the problem of achieving a stabilizing consensus
algorithm under adversarial node failures. They analyze the median
rule, i.e., sample three values and keep the middle value, in this
setting and show that O(log n) rounds suffice to converge to an

+0(4/ 10%)-approximate median even if O(+/n) adversarial node
failures occur. Similar gossip dynamics were also studied in [10]
which considers randomly corrupted (binary) messages.

The exact quantile computation is also known as the selection
problem, where the goal is to select the k’th smallest element. The
problem has been studied extensively in both centralized and dis-
tributed settings. Blum et al. [3] gave a deterministic linear time

3Such gossip dynamics have also been analyzed in [7] for the setting of adversarial
node failures and in [10] for the setting of random message corruptions.

181

PODC’18, July 23-27, 2018, Egham, United Kingdom

algorithm for the problem in the centralized setting. In the distri-
buted setting, Kuhn et al. [25] gave an optimal algorithm for the
selection problem that runs in O(D logp,) rounds in the CONGEST
model, where D is the diameter of the graph. Many works have
been focused on the communication complexity aspect (i.e. the total
message size sent by each node) of the problem [16, 30, 31, 34-38].
Most of them are for complete graphs or stars. Others studied speci-
fic class of graphs such as two nodes connected by an edge [5, 33],
rings, meshes, and complete binary trees [13].

The quantile computation problem has also been studied extensi-
vely in the streaming algorithm literature [1, 2, 11, 15, 17, 20, 21, 26,
28, 29], where the goal is to approximate ¢-quantile using a small
space complexity when the data comes in a single stream.

2 THE TOURNAMENT ALGORITHMS

In this section, we present our algorithm for the e-approximate
quantile computation problem for sufficiently large €. For conve-
nience, we use a + b to denote the interval [a — b, a + b].

Theorem 2.1. For any constant or non-constant e(n) = Q(1/n°-99)

and any ¢ € [0,1], there exists a uniform gossip algorithm that
solves the e-approximate ¢ quantile problem in O(log log n+log ﬁ)
rounds with high probability using O(log n) bit messages.

The algorithm is divided into two phases. In the first phase, each
node adjusts its value so that the quantiles around the ¢-quantile
will become the median quantiles approximately. In the second
phase, we show how to compute the approximate median.

2.1 Phase I: Shifting the Target Quantiles to
Approximate Medians

Algorithm 1 2-TOURNAMENT (o)
1 hg—(1—-(p+e)
21« 0,T=1/2—¢.
3: while h; > T do
4: hi+1 — hf

5. § < min (1, R
i~ i+l
With probability § do

6
7 Select two nodes t1(v) and #;(v) randomly
8
9

hi-T)

Xp ¢ MIN(Xt, () Xpy(0))
Otherwise do
10: Select a node #;(v) randomly
11 X < Xt (v)
122 ie—i+1
13: end while

Let L;, M;, and H; denote the nodes whose quantiles lie in [0, ¢ —
€),[¢ —€,¢ + €], and (¢ + €, 1] respectively at the end of iteration
i, and Lo, My, and Hy be the nodes with those quantiles in the
beginning. We run the 2-TOURNAMENT algorithm (Algorithm 1) until
the iteration t such that h; < T, where T = 1/2 — €. The goal is
to show that by the end of iteration t, the size of |L;| and |H;| are
(1/2 = Q(€)) - n so that an approximate median lies in M;, which
consists of our target quantiles.

Session 2A: Approximation and Learning

Let h = 1 — (¢ +€) and [y = ¢ — e. We first consider the
case where hy > [y and the other case is symmetric. Initially, we

have % € hg + 1/n. Let hjpq = h for i > 1. We will show
that t = O(log(1/€)) and u concentrates around h; for iteration

1<i< t—1and1ntheendwehave In" eT=+5.
The algorithm ends when h; decreases below T. The lemma

below bounds the number of iterations needed for this to happen.

It can be shown that since h; squares in each iteration, the quantity
(1 — h;) roughly grows by a constant factor in each iteration. Since
initially (1—-ho) > €, O(log(1/¢)) iterations suffice for h; to decrease
below T. The missing proofs of the lemmas in this section can be
found in the full version.

Lemma 2.2. Let t denote the number of iterations in Algorithm 1,

t < log7/4(4/e) + 2.

Proor. The algorithm ends when h; < 1/2 — €. The highest
i
possible value for hy is 1 — . We show that h; < 1 — (%) - €

i-1
provided that 1 — (%) -€>3/4.

Suppose by induction that h;_; < 1— (%) - €. We have

L e R R]

<
Therefore, after iy = log7/4(4/e) iterations we have, hj, < 1-(3 .
e<1- ‘_11 = %. Since hj 42 < (%)4 < % — € for € < 1/8, it must be
the case t < iy + 2 = O(log(1/€)). O

Note that Line 7 and Line 8 are executed with probability 1 during
the first ¢ — 1 iterations. We show the following.

|H, |
n? -

Lemma 2.3. Foriteration1 <i<t-1, E[@ | Hi] =

Proor.

H;
E[' l+1| |Hz]
n

Z Pr(xtl(v) eH; A Xty(v) € H;)

veV
_ Ly (I L (1P -
“n n T\ a2
veV
Therefore, for1 <i <t-1,if @ ~ h; (~ means they are close),
then @ ~ hit1
since hj+1 = h2.

13
In the last iteration, we truncate the probability of doing the

tournament by doing it with only probability § for each node, so
that ideally we hope to have E[llffl |Hy—1]

is calculated with respect to h;_; instead of the actual @ we
need the following lemma to bound the deviated expectation. In the

—_

.o |H; . .
if % concentrates around its expectation,

= T. However, since §

182

PODC’18, July 23-27, 2018, Egham, United Kingdom

next lemma, we show that if @

B[,]~ T

~ h_1, then indeed we have

H;_
Lemma 2.4. Suppose that (1—€"")hs—1 < % < (1+€”)hs—q for
some0 < €’ < 1. We haveT —3¢”” <E [@ | H[,l] <T+3¢e".

In the end, we hope that M deviates from T by at most €/2.

To achieve this, we show that in each iteration 1 <i <t -1, lH’I

|Hz 1|

deviates from its expectation, ,by at mosta (1 +¢’) factor,
where €’ = €/2!** is an error control parameter that is much less

than €. Note that 2 1|

= h; to some
[Hi|
f n

is already deviated from hlz._1
degree. The next lemma bounds the cumulative deviation o
from h;. Note that €’ has to be large enough in order guarantee

[Hi| s N H i
that == lies in the (1 +¢’) - —_
to be large enough.

range. This also implies € has

Lemma 2.5. Lete = Q(1/n'/*47) and e’ =
-1, hs
i

W.h.p. for iteration

€
ot+4
0 <i<t, wehave % e(l+ e')zi+1
Combining Lemma 2.4 for the deviation on the last round and
Lemma 2.5 for the deviation on first t — 1 rounds, the following
lemma summarizes the final deviation.

Lemma 2.6. Lete = Q(1/n'/%%7). At the end of the algorithm,

€ o H:| €
whp.T—-5< =8 <T+ 3
ProOF. Let €’ = 5. By Lemma 2.5, we have IH;l’ll e (1+
e’)zt_l - hs—1 whp.

Note that (1 + €/)2"! < 1+ 2(2f —1)¢/ < 1+ 2!*1¢’, since
(1+a)? <1+2ab provided 0 < ab < 1/2 and we have (2! — 1)’ <
€/16 < 1/2. Similarly, (1 — e')zt_1 > 1 - 2!*1¢e’. Therefore, we can
let €”” = 2/*1¢’ and apply Lemma 2.4 to conclude that

T-3-2""e’ < T-3¢" < E

L He- 1] < T-3¢"” < T+3-2"*1€
Since @ Q(1) (by Lemma 2.5) and €’ = ¢/2/** =
Q(+/log n/n). we can apply Chernoff Bound to show w.h.p. |H;| €
(1+ €)E[|H;| | Hy-1]- Thus,

H
1-€e)T =32ty < =L [H: | <1 +€)T+3-2M1e)
n
H
Toa2ter < Bl gy prme
n
T—Eslit|ST+S e =€/ o
2 n 2
Initially, Mﬁ”‘ > 2e. In a similar vein, we show that that lM’ |

does not decreases much from 2e.

Lemma 2.7. Let € = Q(l/n1/4'47). At the end of the algorithm,

wh.p. \M,| 4

The following lemma shows that at the end of Algorithm 1, the

problem has been reduced to finding the approximate median.

Lemma 2.8. Lete = Q(1/n'/*47). At the end ofiteration t of Algo-
rithm 1, w.h.p. any ¢’ -quantile where ¢’ € [— -5 Ly S 1 must be
in My.

Session 2A: Approximation and Learning

> ?Te by Lemma
+ §. Combined with

ProOF. Since % - 375 <

2.5 and Lemma 2.7, we have
the fact that lH’ | < %

n
\

£, we conclude that any ¢7' quantile where

+ %] must be in M;. o

2.2 Phase II: Approximating the Median

Let L;, M;, and H; denote the nodes whose quantiles lie in [0, % —e),
[% — €, % + €], and (% — €, 1] respectively at the end of iteration
i, and Lo, My, and Hy be the nodes with those quantiles in the

beginning. Note that L; and H; are the nodes whose values are not
our targets. We will show the quantities of % and % decrease in
each iteration as our 3-TOURNAMENT algorithm (Algorithm 2) makes
progress.

Initially, lo = ho = § —€. Let hjy1 = 3h?—2h% and [;1 = 31221}
fori > 0, we will show that lL l and @ concentrate around /; and
hi. Note that h; and [; roughly square in each iteration. Once they
decrease below a constant after the first O(log(1/€)) iterations, they
decrease double exponentially in each iteration. The tournaments
end when [; and h; decrease below T = 1/n1/3,

Algorithm 2 3-TOURNAMENT(v)

1: h(), lo — % —€

cie—0,T=1/n/3.

: while [; > T do

hiv1 — 3h% — 2R3, Iy 312 =213

Select three nodes t1(v), t2(v), t3(v) randomly.

Xp median(xy (v)s Xty(v)> Xt5(0))-

: end while

: Sample K = O(1) nodes uniformly at random and output the
median value of these nodes.

[TN NI B N SR

Lemma 2.9. Lett denote the number of iterations in Algorithm 2.
We have t < 1°g11/8(ﬁ) + log, log, n = O(log(1/¢) + loglog n).
PRroOF. Suppose that (%)i_le < 1/4, we will show that [;
1/2 - (%)’e First, lp = 1/2 — €. Suppose by induction that [;_;
1/2 - (18—1)’_16. We have:

INIA

li =312 20},

I}
o
[NCRIE
|
—
—
»| 2
S—
|
kR
™
S —
Do
|
)
— S
- | =
. |
—
—_
w| 2
S —
|
kR
™
S —
w

IN

Therefore, after iy = logn/s(é) iterations, we have [; < 1 -

io
11 1_1_1
(F) €s3-1%1

183

PODC’18, July 23-27, 2018, Egham, United Kingdom

Suppose that i1 = log, log, n, we have
. 1 211
i j2h i
i1 <300 £31~(Z)

log, n log, 3
1 4 1 82
5(10g4n)10gz3.(1) - % <n

llo+ll < 3l
2/3

Therefore, t < ip+1i = logn/s(é) +log, logy n = O(log(1/€) +
loglog n). O

Lemma 2.10. For each iteration 0 < i < t, E[@ | Li] =
ILil\2 [Lil\3 [Hi|y2 [Hil\3
3(50)° —2(50) () —2055)

and B[l | prp = 3
Proor. We will show the proof for E[@ |Li], since E[@ |
Hj] is the same. Note that a node v is in L;4; if and only if at least
2 of t1(v), t2(v), t3(v) are in L;. Therefore,

)

[|L1+1| |L] P
n nvEV

eI

The following lemma shows the probabilities that % and @
deviate from their expectation by a (1 + ¢”) factor are polynomially
small in n, provided €’ is sufficiently large. We cap the quantity at
T for the purpose of applying concentration inequalities.

(log n)'/2
= Q&G

< (+e) - max(T, B[| By and 2l < (14 ¢)-
max(T,E[% | Lica)).

Lemma 2.11. Let €’
<=t |Hz

), w.h.p. for each iteration 0 <

ProOF. In each iteration, since each node set its value indepen-
dently, by Chernoff Bound (see Lemma A.2), we have

(il 1| E[|Li] |Li—1])
n

< exp(—Q(e/z max(n - T, E[|L;| | Li-1])))
= exp(—Q(e’2n?/3)) = 1/poly(n)

< (1+€) max(T,

The proof for |H;| is the same. O
Then we bound the cumulative deviation of % from h; and
the cumulative deviation of M from ;.

log n'/?
m

1, (14 €)T) and Bl < max((1+

Lemma 2.12. Let e’ = Q(). W.h.p. for each iteration 0 <
i<=t, ILil ’I < max((1+e’) 7
)T hian, (14 €)).

Proor. We only show the proof for |L;| and we will prove by

induction. Initially, ”;fl < lp. Suppose that 1Ll ’l < max((1+¢€’)L;
li+1, (1 + €)T) is true.

By Lemma 2.11, we have wh.p, @ < 1+ ¢€)-
maX(E“L"“”L' T). If E[IL”IllL"] < T, then we are done, since
il < (14¢). % (1+¢€)-T. Also, if il > (14+¢/7,
then E[ILzlelL] <3. IL \ < IL -0(2/3) <

Session 2A: Approximation and Learning

Otherwise, if % > (1 + €’)T then it must be the case that
il < (14)5

|Ll+l|
n

- lj4+1 by induction hypothesis. Therefore,

E[|L;| | Li-1]
n

2 3
s(1+e’)-3(|Li|) —2(u)
n n

<(1+é€)-

i 2 3iq 3
S(1+e’)-(3((1+6')321-li) —2((1+e’)T-l,~))
s(1+e’)-(((1+e’)*)~(3-lf—z-lf))

[+ er™s) b o

Now, by setting e’ roughly equal to 1/3¢ ~ €345 /(log,), we
can bound the final deviations of @ and % from T by a factor
of 2 w.h.p.

Lemma 2.13. Lete = Q(
|Lt|

5% ") and e’ = €3 45/(log n)1-5% then

< 2T and lH" < 2T wh.p.

e3-45

Proor. First, €’ Q(ey) = Q(l()gl/3). By Lemma 2.12,

ILI

<(1+¢€)- T0r|L|<(1+e') ly.

If it is the former, then we are done since == [Lel “l <(1+¢€)-T<2l.
Otherwise, we have

L ‘.
u < ((1+5/)3721) - T
n

3t -1
)7
2

(1+x)" <1+ 2nxfornx <

w.h.p. we have either

< (1 +2-€-
1
2
1+€ - 3logn/8(i)+log2 log4n) T

logy1/53
1 1178 log, 3
<[1+€ = slog, " n|-T
((46) B4
2

T e =¥ /(log,m)*° o

Finally, we show that when % and # are O(1/n?/3), if we
sample a constant number of values randomly and output the me-
dian of them, then w.h.p. the median is in M;.

Lemma 2.14. W.h.p. every node outputs a quantile in [% —€ 5 +el

Proor. By Corollary 2.13, w.h.p. at the end of iteration ¢, % <
2/n?/3 and @ < 2/n*/3. The algorithm outputs a quantile in
[% -, % + €] if there are less than K/2 nodes in L; are sampled
and less than K/2 nodes in H; are sampled.

The probability that at least K/2 nodes in |L;| are sampled is at

most
9 K/2< 4e K/2

K 2 \K/2
(K/z) ' (W) =

K/2
eK/

K
2

184

PODC’18, July 23-27, 2018, Egham, United Kingdom

Similarly, the probability that at least K/2 nodes in |H;| are sampled
72
. By an union bound, the probability that

is also at most (o

less than K/2 nodes in L; are sampled and less than K/2 nodes in
&)K/ 2 _
n2l3 =

Theorem 2.1 follows from Lemma 2.8 and Lemma 2.14.

H; are sample is at least 1 — 2 - (1 - 1/poly(n).]

3 EXACT QUANTILE COMPUTATION

To fill the gap of approximating the ¢-quantile with € error for
€ = 0(1/n%9%), we show that the exact quantile computation can
be done in O(log n) rounds using O(log n) message size. Since we

are to compute the exact quantile ¢, we can assume that ko = ¢ n
is an integer. The problem is to compute a value whose rank is
ko. Again, w.l.o.g. we assume that every node has a distinct value
initially.

Algorithm 3 Exact Quantile Computation

1 koe—¢-n

2: fori=1,2,...,25do

3: Each node v computes an -approximate of the (k’n - %)
quantile and an §-approximate of the (% + £)-quantile
with e = n70-03 /2,

4. Each node learns the max and the min of these approximates
of all nodes.

5. Compute the rank of min among the original x,,’s and denote
it by R.

6: Each node v set x, « oo if x, ¢ [min, max]. Call these
nodes valueless, otherwise valued.

7. Let m; be the smallest power of 2 that is larger than
(n%-99/2)/(# valued nodes). Each valued node makes m; co-
pies of its value and distribute them to valueless nodes so
that there are at least n%-°° /2 valued nodes. (For convenience,
we let the duplicated values to have smaller ranks than the
original one.)

8: Setk; « m;-(ki-1 —R+1).

9: end for

10: Every node outputs an (e/3)-approximate (k25

— £)-quantile.

The following is a detailed implementation of each step.

Step 3: Since € = n7%:%3/2, we can $ -approximate the quantiles
in O(log n) rounds by Theorem 2.1.

Step 4: The maximum (the minimum) can be computed by ha-
ving each node forwarding the maximum (the minimum) value it
has ever received. Since it takes O(log n) rounds to spread a message
by [14, 32], this step can be done in O(log n) rounds.

Step 5: The rank of the minimum can be computed by perfor-
ming a counting. The nodes whose x,, values are less than or equal
to the minimum will be assigned 1. Otherwise they are assigned 0.
By Kempe et al. [24], the sum can be aggregated in O(log n) rounds
w.h.p.

Step 7: Consider the following process for distributing the values.
Initially, every valued node v generates a token with weight equal
to m;, the targeted number of copies. We denote the token by a
value-weight pair (x,, m;). Recall that m; is a power of 2 and it can

Session 2A: Approximation and Learning

be computed by counting the number of valued nodes in O(log n)
rounds. The goal is to split and distribute the tokens so that every
node has at most one token of weight 1 in the end.

The process consists of O(logn) phases and each phase
uses O(1) rounds. Suppose that node v holds tokens
(x1, w1), (x2,w2), . ..(Xm,wm) at the beginning of a phase.
For each token (x;, w;), if w; # 1, v splits (x;, w;) into two tokens
(xi, wi/2) and push each one to a node randomly. If w; = 1, then
the token remains at v. Note that when two tokens of the same
value are on the same node, they do not merge.

First note lg m; = O(log n) phases are needed to split to tokens
into tokens of weight 1. Now, we show that it takes constant number
of rounds to implement one phase.

Let N(v, i) denote the number of tokens at v at the end i’th phase.
Let N = maxy,; N(v, i). It takes N rounds to implement one phase.
The value of N(v, i) can be bounded by following calculation. Since
at any phase, there cannot be more than n’-% tokens and each
token appears at a node chosen uniformly at random, we have

= (1/nm)K.

1n0-99 1 10-99 100K
Pr(N(v,i) > 100K) < . <
- ~ \100K| pnl100K — n

By taking an union bound over each v and i, we conclude that
N < 100K w.h.p. Therefore, w.h.p. each phase can be implemented
in 200K = O(1) rounds. At the end of O(log n) phase, every node
has at most 100K tokens of weight 1 w.h.p.

Next, in the subsequent phases, if a node holds more than one
token, then it will push every token except one to a random node
(one random node per token). We say a token succeeded at the end
of the phase if it was pushed to a node without any other tokens.
Consider a token, the probability a token did not succeed in a phase
is at most n%%/n = 1/n%% since there are at most n%-%°
with tokens at the end of the phase.

Therefore, after 100K phases, the probability that a token did
not succeed is at most 1/n0-01"100K — 1 /,K By a union bound over
the tokens, we conclude that w.h.p. all tokens succeeded. Moreover,
again, each phase can be implemented using 100K rounds. There-
fore, we can split and distribute the tokens in O(log n) rounds. Each
original token is duplicated with exactly m; copies. Then, those
nodes holding a token set its value to the value of the token. Nodes
without a token will remain valueless.

nodes

Correctness: Let ans be the answer (the value whose initial rank
is ko). Let M; =]_[j.:1 m; denote the number of copies of each value
from the beginning. We show by induction that the values whose
ranks lying in (k; — M;, k;] are ans after iteration i. Initially, My = 1,
the statement trivially holds.

Suppose that at the end of iteration i — 1, the values whose
ranks lying in (kj—1 — M;, kj—1] are ans. After Step 6 in iteration
i, the rank of ans is exactly k;—; — R + 1. Since every value is
duplicated to have m; copies after Step 7, the rank of ans becomes
ki = m; - (ki1 —R+1) (Recall that we let the original value to have
a larger rank than the duplicated values). Since the values whose
ranks lying in (kj—1 — M;_1, ki—1] were ans at the end of iteration
i — 1 and ans € [min, max], it must be the case that every value
in this range is duplicated with m; copies. Therefore, all values
whose ranks lying in (k; — m; - M;j—1,k;] = (ki — M;, k;] are ans
after iteration i.

185

PODC’18, July 23-27, 2018, Egham, United Kingdom

Next, we show that after 25 iterations, Mas > en. Suppose that
Mi;_1 < en. The number of valueless node after Step 6 is at most
2en + 2M;_1 < 4en. The 2en comes from the fact that at most 2en
values can lie in the range (min, max). The 2M;_; term is because
at most M;_; values are equal to min and max. Therefore, m; >
(n%-92/2)/(4en) = (n°-%4/4) and M; > (n®-%4/4) - M;_;.

Therefore, Mas > min(en, (n%%4/4)2%) = en. Now the the values
of the items whose ranks are in the range of (ka5 — en, kz5] must
be ans. We then compute a quantile in (% -, %] using our €/3-
approximate quantile computation algorithm to approximate the

(% — £)-quantile in O(log n) rounds.

4 A LOWER BOUND

We show that it takes at least Q(log(1/€) + loglogn) rounds to
approximate the ¢-quantile up to € error w.h.p.

Theorem 1.4. Suppose in every round every node fails with a, po-
tentially different, probability bounded by some constant yi < 1. For
any ¢ € [0,1] there is a gossip algorithm that solves the ¢ quan-
tile problem in O(log n) rounds. For any t and any e(n) > 0, there
furthermore exists a gossip algorithm that solves the e-approximate
¢-quantile problem in O(loglogn + log ﬁ + t) rounds for all but

or nodes, with high probability.

Proor. Consider the following two scenarios. The first is when

each node is associated with a distinct value from {1, 2, ..., n}. The
second is when each node is associated with a distinct value from
{1+ |2€n],...,n+ [2en]}.

A node is able to distinguish between these cases only if it re-

cieves an value from S déf {1,2,...,|2en]}U{n+1Ln+2,...,n+
[2en]}. Otherwise, it can only output a value whose quantile is in
[1/2 — €,1/2 + €] with probability 1/2, since the difference of the
¢-quantile in both scenarios is at least | 2en| > en.

Call a node good if it ever received a value from S, and bad
otherwise. Note that a bad node cannot outputs a correct answer
with probability more than 1/2. Initially there are at most 2- | 2en] <
4en good nodes. We will show that with probability 1 — 1/n there
exists at least one bad node at the end of round t.

Let Xo = 2- | 2en] and let X; denote the number of good nodes at
the end of round i. Given a bad node v, it can become good if it pulls
from a good node or some good node pushes to it. Let Y, denote the
event that v pulls from a good node, we have Pr(Y,, | X;) = X;/n.
Also, the pushes from the good nodes can only generate another at
most X; good nodes. Therefore,

E[Xi+1 | Xi] £2X; +E Z Yo | <3X;
vEB;
since E[Y,ep, Yo | Xi]l < X

By Chernoff Bound, we have Pr(¥,ep, Yo > 2X; | Xi) <
e Xi/2 < ¢75logn < 1/p5 since X; = Xo > 10log n. Therefore,
with probability at least 1 — 1/n°, X;4+1 < 4X;. By taking a union
bound over such events for the first t’ = log,(8/¢) rounds, we
conclude with probability at least 1 — 1/n%, Xy < (4en)4'/ < n/2.

Let ty be the last round such that X;, < n/2. Define Z; = |B;|/n.
A node v remains in B; if it did not pull from a good node and it

Session 2A: Approximation and Learning

was not pushed from any good nodes. Denote the event by W,,, we

have Pr(W,, | Bj) > Z; - (1 — %)"_1 > Z; - e~ Therefore,
E[|Bisil | Bl =E| D) Wo |Bi| 2| > Zi-e™ |=|Bil-Zi-e™!
vEB; VEB;

Note that the events {W; },ep, are negatively dependent [8]
(the number of empty bins in the balls into bins problem). Suppose
that Z; - |B;| > 60e log n. By Chernoff Bound,

Pr(|Bi+1| < |Bil - Zi/(2e) | By) < e~ 1Bil/(12e) < 15

Therefore, Pr(Zj+1 < Zl.z/(Ze) | Z;) < 1/n’. Suppose that #;
We can take an union bound over the subsequent t; rounds to show
that with probability at least 1 — 1/n%, Zi4; > Zl.z/(Ze) holds for
these rounds, as long as Zt i 2 > (601log n)/n

Let z4, = 1/2 and z;41 = z?/(Ze). If Zt0+t1 > (60logn)/n, with
probability at least 1 — 1/ n*, we have Zip+t; 2
% lglog n, by definition of z;, we have

Zto+t - Let t; =

_ (2 " 21
2ttty = % " Z,

1 t+20
> (5) zy, =1/2 2 1/(2e)
1 (Iglog n)/2++/logn
(2]
1\2 logn
(2) for sufficiently large n
e

Since (2e)72VIg™ = Q((logn)/n), zyy+s, = 272Vign >
(60log n)/n for sufficiently large n. Therefore, with probability at
least 1 — 1/n?, Zty+t, > 0.

Since with probability 1—1/n%, ty > log, 8/¢. By taking an union
bound over these two events, we conclude with probability at most
2/n, all nodes are good by the end of round to + t.

Therefore, the probability that every node computes a correct
output at the end of round ty + #; is at most 1/2 + 2/n*. O

5 ROBUSTNESS

In this section, we show that our algorithm is robust against failures.

We consider the following model of failures: Let 0 < y < 1 be
a constant. Every node v in every round i is associated with a
probability 0 < p, ; < p. Note that p,, ; is pre-determined before
the execution of the algorithm. During the execution of round i,
each node v fails with probability p, ; to perform its operation
(which may be either push or pull). We show how to modify the
algorithm and the analysis for the tournament algorithms and the
exact quantile computation algorithms in the following.

5.1 The Tournament Algorithms

First consider the 2-TOURNAMENT algorithm. Initially, every node
is good. Consider node v, instead of only pulling from 2 neighbors
each iteration, now pull from @(ﬁ . log(ﬁ)) neighbors. We say
a pull is good if the node performing the pull operation did not fail

and it pulls from a node who is good at the end of iteration i — 1.

A node remains good at the end of iteration i if there are at least

= O(n).

186

PODC’18, July 23-27, 2018, Egham, United Kingdom

two good pulls. Then, v uses the first two good pulls to execute the
tournament procedure. Also, note that in the last iteration, we let a
good node to have probability of § to do the two tournament using
the first two good pulls and probability 1 — § to set the value equal
to the first good pull. We show that the good nodes always consists
of a constant fraction of nodes.

Lemma 5.1. For0 <i <t —1, wh.p. at the end of each iteration i
of 2-TOURNAMENT , there are at least n/2 good nodes if every node
pulls fromk = G(ﬁ . log(ﬁ)) other nodes.

Proor. We will prove by induction. Initially, every node is good.
Suppose that there are at least n/2 good nodes at the end of iteration
i — 1. During iteration i, a node with more than k — 2 bad pulls will
become bad at the end of iteration i.

Letk = ﬁ log ﬁ + 1. The probability that there are at least
k — 1 bad pulls is at most:

k-1
(k).(1_(1_’11)) <k e’%'(kfl)
k-1 2

2
4 4 1-
S(log +1)~(H)
1—p 1—p 4

1/e+1/16 < 0.44

IN

xlog(1/x) maximized at 1/e

Therefore, the expected number of bad nodes is at most 0.44n for
iteration 1 < i < t —1. Since each node becomes bad independently
of other nodes, by Chernoff Bound, w.h.p. there are at most 0.5n
bad nodes at the end of iteration i. O

At the end of iteration ¢ — 1, there are at least n/2 good nodes
w.h.p. The expected number of bad nodes at the end of iteration ¢ is
at most), cy 8- 0.44 + (1 - 5)/2 < 0.5n. By Chernoff Bound again,
we can conclude that w.h.p. there are at least n/3 good nodes.

We can also modify the process in the same way for the
3-TOURNAMENT algorithm. That is, in each iteration each node pulls
from @(ﬁ log ﬁ) other nodes. If there are less than 3 good pulls,
then the node becomes bad. Otherwise, it uses the first 3 good pulls
to do the tournament procedure. We can show similarly that there
are at most a constant fraction bad nodes in each iteration.

Consider a node v in the modified processes. Suppose that v is
good in iteration i, then v must have at least two (or three) good
pulls. Note that the probability that v pulls from a particular good
node, conditioned v is good at the end of iteration, is uniform among
all nodes that are good at the end of iteration i — 1.

Let V; denote the set of good nodes and n; = |V;|. Given any
subset of good nodes S C V;_1, the probability of choosing a node

in |S| is therefore |S|/n;. Therefore, we can replace ”;: il lI;Ili | and
My ’l in our proofs in the previous section with ln l, II: l, nd lM I

and observe that all the statements hold. Note that n; i>n/3= Q(n)
for 0 < i < t wh.p. Thus, all the concentration inequalities also
hold.

In the last step of Algorithm 2, all nodes pulls from
o(-X - log 1K) nodes. If there are K good pulls, then each node
outputs the rnedlan directly. Otherwise, it becomes bad and outputs
nothing. We can similarly show that there are at least constant

Session 2A: Approximation and Learning

fraction of good nodes. Therefore, at least a constant fraction of no-
des output a correct answer and all the others output nothing. Note
that we can use additional O(t) rounds of pulling from valueless
nodes to have all but zlf nodes learn a correct answer.

5.2 Exact Quantile Computation

Consider Algorithm 3. We know Step 3 (Section 5.1), Step 4 [9], and
Step 5 [24] tolerate such failures with a constant factor delay on
the running time.

The only step that remains to discuss is Step 7. We run the same
algorithm described. Initially each valued node v generates a token
(x0, m;). In the first O(log n) phases, each node tries to split every
token whose weight is larger than 1 into two tokens with halved
weight, and push one of them to a random node. If the push succeed,
the token has been pushed is considered a new token and the one
with halved weight remaining at the same node is considered as
the old one. If the push fails, then we will merge them back to the
original one.

We will show that at the end of O(log n) phase, each node holds
at most O(1) tokens and their weights are 1. In each subsequent
phases, if a node has more than one tokens, then it will push every
token except one to a random neighbor. We argue that after O(log n)
phases, every node contains exactly one token.

First, we show that the number of tokens at each node is bounded
by a constant w.h.p. so that each phase can be implemented in O(1)
rounds. Recall that N(v, i) is the number of tokens at v at the end of
i’th phase. Suppose the total number of phases is Clog n for some
constant C > 0. For a token (except the one that is initially at v)
to be at node i, it must be the case that it was pushed to i during
one of the phase. Note that at any phase, there are at most n®-%°
tokens. By taking an union bound over all possible set of tokens of
size 200K and all possible combinations of phases on when each of
the token was pushed to i, we have

0.99

n 1
Pr(N(v, i) > 200K + 1) < - (Clog n)200K .
(@D) (200K) (Clogn) n200K
0.99 200K
< (C"_log") < 1K,
n

Next, we show that for a token (x, m;), it takes O(log n) rounds
to split into tokens of weight 1 w.h.p. Let Ty, (i) denote the set of
all ©’s tokens with weight at least 2 at the end of Phase i. Let
(i) = X(xy, w)eT, (i) w? be a potential function. Consider a token
(x2, w) € Ty (i), since with probability at most y it fails to split, the
expected contribution of the token to the ®(i + 1) is at most:

1_
_ﬂ).wz
2

Therefore, E[®(i + 1) | ®(i)] < (1 — (1 — p)/2) - ®(i). Since &(0) < n,

_ 2K
after t = e

aw? + (1 —)2 - (w/2)? = (1 -

log n rounds, we have

2K Jogn
1—p\i
[1) H ~n§e_K10gn-nSl/nK_l
Since ®(¢) must be an integer, we conclude that with probability
at least 1 — 1/nX~1, ®(t) = 0 by Markov’s inequality. Therefore,
after ¢ rounds w.h.p. every token of value v has weight 1. We can

187

PODC’18, July 23-27, 2018, Egham, United Kingdom

further take an union over all tokens to show that it holds for all
tokens w.h.p.

Therefore, w.h.p. the weight of all tokens are 1 at the end of
O(log n) round. In the subsequent phases, the probability a token
fail to be pushed to a node without any other tokens is at most
1+n%%°/n = O(1). Therefore, the probability a token fails in the all
of the next O(log n) phases is at most 1/poly(n). Thus, w.h.p. after
O(log n) phases, every node has at most one token. Since each phase
can be implemented using O(1) rounds, we conclude that Step 7
can be done in O(log n) rounds in our failure model.

ACKNOWLEDGEMENT

We thank Lewis Tseng and the anonymous reviewers for helpful
suggestions and comments. We also thank Frederik Mallmann-
Trenn for pointing out [7] to us.

REFERENCES

[1] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei
Wei, and Ke Yi. 2013. Mergeable Summaries. ACM Trans. Database Syst. 38, 4,
Article 26 (2013), 28 pages.

Khaled Alsabti, Sanjay Ranka, and Vineet Singh. 1997. A One-Pass Algorithm
for Accurately Estimating Quantiles for Disk-Resident Data. In Proc. 23rd Int’l
Conference on Very Large Data Bases (VLDB). 346-355.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. 1973. Time Bounds for Selection. J. Comput. Syst. Sci. 7, 4 (1973), 448-461.
Jen-Yeu Chen and Gopal Pandurangan. 2012. Almost-Optimal Gossip-Based
Aggregate Computation. SIAM . Comput. 41, 3 (2012), 455-483.

Francis Chin and H. F. Ting. 1987. An improved algorithm for finding the median
distributively. Algorithmica 2, 1 (1987), 235-249.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. 1987. Epidemic Algorithms for
Replicated Database Maintenance. In Proc. 6th ACM Symposium on Principles of
Distributed Computing (PODC). 1-12.

Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and
Christian Scheideler. 2011. Stabilizing Consensus with the Power of Two Choices.
In Proc. 23rd Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). 149-158.

Devdatt Dubhashi and Desh Ranjan. 1998. Balls and bins: A study in negative
dependence. Random Structures & Algorithms 13, 2 (1998), 99-124.

R. Elsdsser and T. Sauerwald. 2009. On the Runtime and Robustness of Randomi-
zed Broadcasting. Theor. Comput. Sci. 410, 36 (2009), 3414-3427.

Ofer Feinerman, Bernhard Haeupler, and Amos Korman. 2017. Breathe before
speaking: efficient information dissemination despite noisy, limited and anony-
mous communication. Distributed Computing 30, 5 (2017), 339-355.

David Felber and Rafail Ostrovsky. 2015. A Randomized Online Quantile Sum-
mary in O((1/€)log(1/€)) Words. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM. 775-785.
Robert W. Floyd and Ronald L. Rivest. 1975. Expected Time Bounds for Selection.
Commun. ACM 18, 3 (1975), 165-172.

Greg N. Frederickson. 1983. Tradeoffs for Selection in Distributed Networks
(Preliminary Version). In Proc. 2nd ACM Symposium on Principles of Distributed
Computing (PODC). 154-160.

A M. Frieze and G.R. Grimmett. 1985. The shortest-path problem for graphs with
random arc-lengths. Discrete Applied Mathematics 10, 1 (1985), 57 — 77.

Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient Online Computa-
tion of Quantile Summaries. SIGMOD Rec. 30, 2 (2001), 58-66.

Michael B. Greenwald and Sanjeev Khanna. 2004. Power-conserving Computation
of Order-statistics over Sensor Networks. In Proc. of the 23rd ACM Symposium on
Principles of Database Systems (PODS). 275-285.

Sudipto Guha and Andrew McGregor. 2009. Stream Order and Order Statistics:
Quantile Estimation in Random-Order Streams. SIAM J. Comput. 38, 5 (2009),
2044-2059.

Bernhard Haeupler. 2016. Analyzing Network Coding (Gossip) Made Easy. 7.
ACM (2016), 26:1-26:22. https://doi.org/10.1145/2629696

C. A. R. Hoare. 1961. Algorithm 63 (PARTITION) and Algorithm 65 (FIND).
Commun. ACM 4, 7 (1961), 321-322.

Regant Y. S. Hung and Hingfung F. Ting. 2010. An Q((1/€)log(1/€)) Space
Lower Bound for Finding e-approximate Quantiles in a Data Stream. In Proc. 4th
International Conference on Frontiers in Algorithmics (FAW). 89-100.

Z. Karnin, K. Lang, and E. Liberty. 2016. Optimal Quantile Approximation in
Streams. In Proc. 57th IEEE Annual Symposium on Foundations of Computer Science

[2

3

[4]

[5

[6]

=
)

=
&

=
&

=
ol

Session 2A: Approximation and Learning

[22]

[23

[24]

[25]

[26

[27]

[28

[29]

[30]

(31

[32]

[33

[34]

[35]

[36]

(37]

[38]

[39

[40]

A

(FOCS). 71-78.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. 2000. Randomized rumor
spreading. In Proc. 41st IEEE Symposium on Foundations of Computer Science
(FOCS). 565-574.

Srinivas Kashyap, Supratim Deb, K. V. M. Naidu, Rajeev Rastogi, and Anand
Srinivasan. 2006. Efficient Gossip-based Aggregate Computation. In Proc. of the
25th ACM Symposium on Principles of Database Systems (PODS). 308-317.
David Kempe, Alin Dobra, and Johannes Gehrke. 2003. Gossip-Based Computa-
tion of Aggregate Information. In Proc. 44th IEEE Symposium on Foundations of
Computer Science (FOCS 2003). 482-491.

Fabian Kuhn, Thomas Locher, and Rogert Wattenhofer. 2007. Tight Bounds
for Distributed Selection. In Proc. of 19th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA). 145-153.

Qiang Ma, S. Muthukrishnan, and Mark Sandler. 2013. Frugal Streaming for
Estimating Quantiles. In Space-Efficient Data Structures, Streams, and Algorithms:
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday. 77-96.
Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2002.
TAG: A Tiny AGgregation Service for Ad-hoc Sensor Networks. SIGOPS Oper.
Syst. Rev. 36, SI (Dec. 2002), 131-146.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1999. Random
Sampling Techniques for Space Efficient Online Computation of Order Statistics
of Large Datasets. SIGMOD Rec. 28, 2 (1999), 251-262.

J.I. Munro and M.S. Paterson. 1980. Selection and sorting with limited storage.
Theoretical Computer Science 12, 3 (1980), 315 - 323.

A. Negro, N. Santoro, and J. Urrutia. 1997. Efficient distributed selection with
bounded messages. IEEE Transactions on Parallel and Distributed Systems 8, 4
(1997), 397-401.

Boaz Patt-Shamir. 2007. A Note on Efficient Aggregate Queries in Sensor Net-
works. Theor. Comput. Sci. 370, 1-3 (Feb. 2007), 254-264.

Boris Pittel. 1987. On Spreading a Rumor. SIAM J. Appl. Math. 47, 1 (1987),
213-223.

Michael Rodeh. 1982. Finding the median distributively. J. Comput. System Sci.
24, 2 (1982), 162-166.

Doron Rotem, Nicola Santoro, and Jeffrey B. Sidney. 1986. Shout echo selection
in distributed files. Networks 16, 1 (1986), 77-86. https://doi.org/10.1002/net.
3230160108

Nicola Santoro, Michael Scheutzow, and Jeffrey B. Sidney. 1988. On the expected
complexity of distributed selection. J. Parallel and Distrib. Comput. 5, 2 (1988),
194 - 203.

Nicola Santoro, Jeffrey B. Sidney, and Stuart J. Sidney. 1992. A distributed selection
algorithm and its expected communication complexity. Theoretical Computer
Science 100, 1 (1992), 185 — 204. https://doi.org/10.1016/0304-3975(92)90368-P
N. Santoro and E. Suen. 1989. Reduction techniques for selection in distributed
files. IEEE Trans. Comput. 38, 6 (1989), 891-896.

Liuba Shrira, Nissim Francez, and Michael Rodeh. 1983. Distributed K-selection:
From a Sequential to a Distributed Algorithm. In Proceedings of 2nd ACM Sympo-
sium on Principles of Distributed Computing (PODC). 143-153.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and Beyond: New Aggregation Techniques for Sensor
Networks. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys '04). ACM, New York, NY, USA, 239-249.
https://doi.org/10.1145/1031495.1031524

Yong Yao and Johannes Gehrke. 2002. The Cougar Approach to In-network
Query Processing in Sensor Networks. SIGMOD Rec. 31, 3 (2002), 9-18.

TOOLS

Lemma A.1. (Chernoff Bound) Let X3, ..., X, be indicator varia-
bles such that Pr(X; = 1) = p. Let X = X | X;. Then, for § > 0:

E[X
5 [X]

Pr(X > (1+9)E[X]) < (1+0)1+8)

E[X
0 [X]

Pr(X < (1-6)E[X]) < (1-0)0-8)

The two bounds above imply that for 0 < § < 1, we have:

Pr(X > (1 + 8)E[X]) < e O EIXI/3
Pr(X < (1 - 8)E[X]) < e EIX1/2,

188

PODC’18, July 23-27, 2018, Egham, United Kingdom

Lemma A.2. Suppose that for any § > 0,

1np
ed

Pr(X > (1+d)np) < m

then forany M > np and0 < § < 1,

el

(1 +8)1+0)

< e—(SzM/S

Pr(X > np+ M) <

Proor. Without loss of generality, assume M = tnp for some
t > 1, we have

Pr(X > np + SM)

np
otd

<|—"
(1 + t5)(1+18)

e

1+ t§)(1+t5)/t
M
el

< m (%)

-5°M/3 s -5%/3
<e / mSe /f01“0<5<1

Inequality (*) follows if (1 + t8)1*29)/t > (1 + §)(1+9)_ or equi-
valently, ((1 + t8)/t)In(1 + t8§) = (1 + 8)In(1 + 9). Letting
Ft) = (1 +8)/)In(1 + £8) — (1 + 8)In(1 + 5), we have f'(t) =
(8¢t —In(1 + 6t)) > 0 for ¢t > 0. Since f(1) = 0 and f’(t) > 0 for
t > 0, we must have f(t) > 0fort > 1. m]

