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ABSTRACT

This paper gives drastically faster gossip algorithms to compute

exact and approximate quantiles.

Gossip algorithms, which allow each node to contact a uniformly

random other node in each round, have been intensely studied and

been adopted inmany applications due to their fast convergence and

their robustness to failures. Kempe et al. [24] gave gossip algorithms

to compute important aggregate statistics if every node is given a

value. In particular, they gave a beautiful O(logn + log 1
ϵ ) round

algorithm to ϵ-approximate the sum of all values and an O(log2 n)
round algorithm to compute the exact ϕ-quantile, i.e., the ⌈ϕn⌉
smallest value.

We give an quadratically faster and in fact optimal gossip al-

gorithm for the exact ϕ-quantile problem which runs in O(logn)
rounds. We furthermore show that one can achieve an exponential

speedup if one allows for an ϵ-approximation. In particular, we give

an O(log logn + log 1
ϵ ) round gossip algorithm which computes a

value of rank between ϕn and (ϕ + ϵ)n at every node. Our algo-

rithms are extremely simple and very robust - they can be operated

with the same running times even if every transmission fails with a,

potentially different, constant probability. We also give a matching

Ω(log logn + log 1
ϵ ) lower bound which shows that our algorithm

is optimal for all values of ϵ .
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1 INTRODUCTION

Today, due to the vast amount of data and advances in connecti-

vity between computers, distributed data processing has become

increasingly important. In distributed systems, data is stored across

different nodes. When one requires some aggregate properties of

the data, such as, sums, ranks, quantiles, or other statistics, nodes
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must communicate in order to compute these properties. Aggre-

gating data in an efficient and reliable way is a central topic in

distributed systems such as P2P networks and sensor networks

[27, 39, 40].

We consider uniform gossip protocols, which are often very

practical due to their fast convergence, their simplicity, and their

stability under stress and disruptions. In uniform gossiping proto-

cols, computation proceeds in synchronized rounds. In each round,

each node chooses to pull or push. In a push a node chooses a mes-

sage, which is delivered to a uniformly random other node. In a pull

each node receives a message from a random node. The message

size is typically restricted to O(logn) bits. The (time) complexity

of an algorithm is measured by the number rounds executed. One

typically wants algorithms that succeed with high probability, i.e.,

with probability at least 1 − 1/poly(n).
In this paper, we study the quantile computation problem. In

the exact ϕ-quantile problem each node v is given a distinct1

O(logn) bit value xv and wants to compute the ⌈ϕn⌉ smallest value

overall. In the ϵ-approximate ϕ-quantile problem each node

wants to compute a value whose rank is between (ϕ + ϵ)n and

(ϕ − ϵ)n.
Previously, Kempe et al. [24] gave a beautiful and simple

O(logn + log 1
ϵ ) round gossip algorithm to approximate the sum

of all values up to a (1 ± ϵ) factor. They also showed how to use

this algorithm to solve the exact ϕ-quantile problem in O(log2 n)
rounds with high probability.

The main result of this paper is a quadratically faster gossip al-

gorithm for the ϕ-quantile problem. TheO(logn) round complexity

of our algorithm means that the exact ϕ-quantile can be computed

as fast as broadcasting a single message.

Theorem 1.1. For any ϕ ∈ [0, 1] there is a uniform gossip algorithm

which solves the exact ϕ-quantile problem in O(logn) rounds with
high probability using O(logn) bit messages.

Clearly the running time of this algorithm is optimal as Ω(logn)
rounds are known to be necessary to even just broadcast to each

node the ϕ-quantile value, after it has been identified.

Equally interestingly we show that one achieve even faster algo-

rithms if one considers the approximate ϕ-quantile problem. While

aO( 1
ϵ 2

logn) round algorithm for an ϵ-approximation follows from

simple sampling and a O(logn) round algorithm computing the

median up to a ±O(
√

logn
n ) (but not general quantiles) was given

by Doerr et al. [7], no approximation algorithm for the quantile

problem with a sub-logarithmic round complexity was known prior

1The assumption of distinct values is without loss of generality and made for simplicity
as one can always break ties consistently, e.g., according to the ID of the node where
the value started.
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to this work. We give an O(log logn + log(1/ϵ)) round algorithm

for ϵ-approximating any ϕ-quantile which, for arbitrarily good con-

stant approximations, is exponentially faster than our optimal exact

algorithm:

Theorem 1.2. For any constant or non-constant ϵ(n) > 0 and any

ϕ ∈ [0, 1], there exists a uniform gossip algorithm that solves the

ϵ-approximate ϕ quantile problem in O(log logn + log 1
ϵ (n) ) rounds

with high probability using O(logn) bit messages.

We also give a Ω(log 1
ϵ ) and a Ω(log logn) lower bound for the

ϵ-approximate ϕ-quantile problem, which shows that our algorithm

is optimal for essentially any value of ϵ .

Theorem 1.3. For any
10 logn

n < ϵ < 1/8 and ϕ ∈ [0, 1], any gossip
algorithm that uses less than 1

2 log logn or less than log4
8
ϵ round

fails to solve the ϵ-approximate ϕ-quantile problem with probability

at least 1/3. This remains true even for unlimited message sizes.

We furthermore show that our algorithms can be made robust

to random failures, i.e., the same round complexities apply even

if nodes fail with some constant probability. We remark that a small

caveat of excluding an exp(−t) fraction of nodes after a running

time of t rounds is necessary and indeed optimal given that this is

the expected fraction of nodes which will not have participated in

any successful push or pull after t rounds.

Theorem 1.4. Suppose in every round every node fails with a, po-

tentially different, probability bounded by some constant µ < 1. For

any ϕ ∈ [0, 1] there is a gossip algorithm that solves the ϕ quan-

tile problem in O(logn) rounds. For any t and any ϵ(n) > 0, there

furthermore exists a gossip algorithm that solves the ϵ-approximate

ϕ-quantile problem in O(log logn + log 1
ϵ (n) + t) rounds for all but

n
2t

nodes, with high probability.

Despite being extremely fast and robust our algorithms remain

very simple. In fact they do little more than repeatedly sampling

two or three nodes, requesting their current value and selecting

the largest, smallest, or median value. Given that in many cases an

ϵ-approximation is more than sufficient we expect this algorithm to

easily find applications in areas like sensor networks and distributed

database systems. For instance, suppose that a sensor network

consisting of thousands of devices is spread across an object to

monitor and control the temperature. Say the top and bottom 10%-

quantiles need special attention. By computing the 90%- and 10%-

quantile, each node can determine whether it lies in the range. It

is unlikely that such a computation needs to be exact. In fact, for

any 0 < ϵ < 1, running O(1/ϵ) approximate quantile computations

suffices for each node to determine its own quantile/rank up to

an additive ϵ . The fact that this can be done in O(log logn) rounds
further demonstrates the power of approximations as there is not

even a o(n) algorithm known2 which allows each node to compute

its quantile/rank exactly.

Corollary 1.5. For any constant or non-constant ϵ > 0 and given

that each node has a value there is a gossip algorithm that allows

every node to approximate the quantile of its value up to an additive ϵ

2The trivial algorithm which broadcasts the maximum value n times requires
O (n logn) rounds. Using network coding gossip [18] one can improve this to O (n)
rounds. It is likely that computing the exact rank at each node cannot be done faster.

in 1
ϵ ·O(log logn+log

1
ϵ ) rounds with high probability usingO(logn)

bit messages.

Technical Summary. While computing exact quantiles seems to

be a very different problem from the approximate problem at first

we achieve our exact algorithm by first designing an extremely

efficient solution to the ϵ-approximate quantile problem running

in O(log logn + log 1
ϵ ) rounds. This algorithm is in some sense

based on sampling and inherently is not able to work for the exact

quantile problem or too small ϵ itself, as it might randomly discard

the target value in its first iteration. However, we show that the

algorithm does work for ϵ larger than some polynomial in n. This

allows us to bootstrap this algorithm and repeatedly remove a

polynomial fraction of values within O(logn) rounds until, after a
constant number of such iterations, only the target value persists.

Overall this leads to an O(log logn + log 1
ϵ ) algorithm for the ϵ-

approximate ϕ-quantile problem which works for ϵ values that

can be any function of n. This actually generalizes the O(logn)
algorithm for the exact ϕ-quantile problem, too, given that the 1

2n -

approximate ϕ-quantile problem is accurate enough to compute

exact ranks and quantiles.

Next we outline an, indeed very simple, intuition of why a time

complexity of O(log logn + log 1
ϵ ) is conceivable for the quantile

computation problem: Suppose we sampleΘ(logn/ϵ2)many values

uniformly and independently at random. With high probability the

ϕ-quantile of the sampled values is an ϵ-approximation to the ϕ-

quantile in the original data. Since each node can sample t node

values (with replacement) in t rounds, one immediately get an

O(logn/ϵ2) round algorithm that uses O(logn) bit messages.

Using larger message sizes, it is possible to reduce the number

of rounds. Consider the following doubling algorithm: Each node v

maintains a set Sv such that initially Sv = {xv }. In each round, let

t(v) be the node contacted byv . Nodev updates Sv by setting Sv ←
Sv ∪ St (v). Since the set size essentially doubles each round, after

logO(logn/ϵ2) = O(log logn + log 1
ϵ ) rounds, we have sampled

Ω(logn/ϵ2) values uniformly, albeit not quite independently, at

random. A careful analysis shows that indeed aO(log logn+ log 1
ϵ )

running time can be achieved using messages of size Θ(log2 n/ϵ2)
bits.

Our first approach for reducing the message sizes tried to utilize

the quantile approximation sketches from the streaming algorithm

community (see related work). We managed to reduce the mes-

sage complexity to O( 1ϵ · logn · (log logn + log(1/ϵ))) by adopting

the compactor ideas from these streaming sketches. A write-up

of this might be of independent interest and can be found in the

full version. Unfortunately even if one could losslesly port the

state-of-the-art compactors scheme from [21] into this setting, the

Ω( 1ϵ log log(1/δ )) for getting ϵ-approximate quantile sketches with

probability 1−δ suggests that one cannot achieve a o(logn log logn)
message size this way, even if ϵ is a constant. In contrast to most

other distributed models of computation gossip algorithms furt-

hermore do not allow to easily shift extra factors in the message

size over to the round complexity. In fact, we did not manage to de-

vise any o(logn) round gossip algorithm based on sketching which

adheres to the standard O(logn) bound on message sizes.
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Instead of sticking to the centralized mentality where each node

tries to gather information to compute the answer, consider the

following 3-TOURNAMENT mechanism. In each iteration, each node

uniformly samples three values (in three rounds) and assign its

value to the middle one3. Intuitively nodes close to the median

should have a higher probability of surviving and being replica-

ted. Indeed, we show that the number of nodes that have values

that are ϵ close to the median grows exponentially for the first

O(log 1
ϵ ) iterations. After that, the number of nodes with values

more than ϵn away from the median decreases double exponenti-

ally. For sufficiently large ϵ this simple 3-TOURNAMENT algorithm

gives an approximation of the the median in O(log 1
ϵ + log logn)

iterations. In general, if we want to approximate the ϕ-quantile, we

shift the [ϕ − ϵ,ϕ + ϵ] quantiles to the quantiles around the median

by the following 2-TOURNAMENT mechanism. If ϕ < 1/2, each node

samples two values and assign its value to the higher one. The case

for ϕ > 1/2 is symmetric. Intuitively this process makes it more

likely for nodes with higher/smaller values to survive. Indeed, we

show that with a bit of extra care in the last iterations, O(log 1
ϵ )

invocations suffice to shift the values around the ϕ-quantile to al-

most exactly the median, at which point one can apply the median

approximation algorithm.

Finally, our lower bound comes from the fact that if one chooses

Θ(ϵn) nodes and either gives them a very large or a very small

value, then knowing which of the two cases occurred is crucial for

computing any ϵ-approximate quantiles. However, initially only

these Θ(ϵn) nodes have such information. We show that it takes

Ω(log logn + log 1
ϵ ) rounds to spread the information from these

nodes to every node, regardless of the message size.

Related Work. The randomized gossip-based algorithms dates

back to Demers et al. [6]. The initial studies are on the spreading

of a single message [14, 22, 32], where Karp et al. [22] showed

that O(logn) round and O(n log logn) total messages is sufficient

to spread a single message w.h.p. Kempe et al. [24] studied gossip-

based algorithms for the quantile computation problem as well

as other aggregation problems such as computing the sum and

the average. Kempe et al. developed O(logn) rounds algorithm to

compute the sum and average w.h.p. Later, efforts have been made

to reduce the total messages to O(n log logn) for computing the

sum and the average [4, 23]. Using the ability to sample and count,

Kempe et al. implemented the classic randomized selection algo-

rithm [12, 19] inO(log2 n) rounds. Doerr et al. [7] considered gossip
algorithms for the problem of achieving a stabilizing consensus

algorithm under adversarial node failures. They analyze the median

rule, i.e., sample three values and keep the middle value, in this

setting and show that O(logn) rounds suffice to converge to an

±O(
√

logn
n )-approximate median even if O(

√
n) adversarial node

failures occur. Similar gossip dynamics were also studied in [10]

which considers randomly corrupted (binary) messages.

The exact quantile computation is also known as the selection

problem, where the goal is to select the k’th smallest element. The

problem has been studied extensively in both centralized and dis-

tributed settings. Blum et al. [3] gave a deterministic linear time

3Such gossip dynamics have also been analyzed in [7] for the setting of adversarial
node failures and in [10] for the setting of random message corruptions.

algorithm for the problem in the centralized setting. In the distri-

buted setting, Kuhn et al. [25] gave an optimal algorithm for the

selection problem that runs inO(D logD n) rounds in theCONGEST
model, where D is the diameter of the graph. Many works have

been focused on the communication complexity aspect (i.e. the total

message size sent by each node) of the problem [16, 30, 31, 34ś38].

Most of them are for complete graphs or stars. Others studied speci-

fic class of graphs such as two nodes connected by an edge [5, 33],

rings, meshes, and complete binary trees [13].

The quantile computation problem has also been studied extensi-

vely in the streaming algorithm literature [1, 2, 11, 15, 17, 20, 21, 26,

28, 29], where the goal is to approximate ϕ-quantile using a small

space complexity when the data comes in a single stream.

2 THE TOURNAMENT ALGORITHMS

In this section, we present our algorithm for the ϵ-approximate

quantile computation problem for sufficiently large ϵ . For conve-

nience, we use a ± b to denote the interval [a − b,a + b].

Theorem 2.1. For any constant or non-constant ϵ(n) = Ω(1/n0.096)
and any ϕ ∈ [0, 1], there exists a uniform gossip algorithm that

solves the ϵ-approximateϕ quantile problem inO(log logn+log 1
ϵ (n) )

rounds with high probability using O(logn) bit messages.

The algorithm is divided into two phases. In the first phase, each

node adjusts its value so that the quantiles around the ϕ-quantile

will become the median quantiles approximately. In the second

phase, we show how to compute the approximate median.

2.1 Phase I: Shifting the Target Quantiles to

Approximate Medians

Algorithm 1 2-TOURNAMENT(v)

1: h0 ← (1 − (ϕ + ϵ))
2: i ← 0, T = 1/2 − ϵ .
3: while hi > T do

4: hi+1 ← h2i

5: δ ← min
(
1, hi−T

hi−hi+1

)
6: With probability δ do

7: Select two nodes t1(v) and t2(v) randomly

8: xv ← min(xt1(v), xt2(v))
9: Otherwise do

10: Select a node t1(v) randomly

11: xv ← xt1(v)
12: i ← i + 1

13: end while

Let Li ,Mi , andHi denote the nodes whose quantiles lie in [0,ϕ−
ϵ), [ϕ − ϵ,ϕ + ϵ], and (ϕ + ϵ, 1] respectively at the end of iteration

i , and L0,M0, and H0 be the nodes with those quantiles in the

beginning. We run the 2-TOURNAMENT algorithm (Algorithm 1) until

the iteration t such that ht ≤ T , where T = 1/2 − ϵ . The goal is
to show that by the end of iteration t , the size of |Lt | and |Ht | are
(1/2 − Ω(ϵ)) · n so that an approximate median lies in Mt , which

consists of our target quantiles.
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Let h0 = 1 − (ϕ + ϵ) and l0 = ϕ − ϵ . We first consider the

case where h0 ≥ l0 and the other case is symmetric. Initially, we

have
|H0 |
n ∈ h0 ± 1/n. Let hi+1 = h2i for i ≥ 1. We will show

that t = O(log(1/ϵ)) and |Hi |
n concentrates around hi for iteration

1 ≤ i ≤ t − 1 and in the end we have
|Ht |
n ∈ T ± ϵ

2 .

The algorithm ends when hi decreases below T . The lemma

below bounds the number of iterations needed for this to happen.

It can be shown that since hi squares in each iteration, the quantity

(1 − hi ) roughly grows by a constant factor in each iteration. Since

initially (1−h0) ≥ ϵ ,O(log(1/ϵ)) iterations suffice forhi to decrease

below T . The missing proofs of the lemmas in this section can be

found in the full version.

Lemma 2.2. Let t denote the number of iterations in Algorithm 1,

t ≤ log7/4(4/ϵ) + 2.

Proof. The algorithm ends when ht ≤ 1/2 − ϵ . The highest

possible value for h0 is 1 − ϵ . We show that hi ≤ 1 −
(
7
4

)i
· ϵ

provided that 1 −
(
7
4

)i−1
· ϵ ≥ 3/4.

Suppose by induction that hi−1 ≤ 1 −
(
7
4

)i−1
· ϵ . We have

hi = h
2
i−1

≤
(
1 −

(
7

4

)i−1
· ϵ

)2

= 1 −
(
7

4

)i−1
· ϵ ·

(
2 −

(
7

4

)i−1
· ϵ

)

≤ 1 −
(
7

4

)i−1
· ϵ ·

(
2 − 1

4

)
≤ 1 −

(
7

4

)i
· ϵ 1 −

(
7

4

)i−1
· ϵ ≥ 3/4

Therefore, after i0 = log7/4(4/ϵ) iterations we have, hi0 ≤ 1− ( 74 )i ·
ϵ ≤ 1 − 1

4 =
3
4 . Since hi0+2 ≤ (

3
4 )4 <

1
2 − ϵ for ϵ < 1/8, it must be

the case t ≤ i0 + 2 = O(log(1/ϵ)). �

Note that Line 7 and Line 8 are executed with probability 1 during

the first t − 1 iterations. We show the following.

Lemma 2.3. For iteration 1 ≤ i < t − 1, E[ |Hi+1 |
n | Hi ] = |Hi |2

n2 .

Proof.

E

[
|Hi+1 |
n
| Hi

]
=

1

n

∑
v ∈V

Pr(xt1(v) ∈ Hi ∧ xt2(v) ∈ Hi )

=

1

n

∑
v ∈V

(
|Hi |
n

)2
=

(
|Hi |2
n2

)
�

Therefore, for 1 ≤ i ≤ t −1, if |Hi |
n ∼ hi (∼means they are close),

then
|Hi+1 |
n ∼ hi+1 if

|Hi+1 |
n concentrates around its expectation,

since hi+1 = h
2
i .

In the last iteration, we truncate the probability of doing the

tournament by doing it with only probability δ for each node, so

that ideally we hope to have E[ |Ht |
n |Ht−1] = T . However, since δ

is calculated with respect to ht−1 instead of the actual
|Ht−1 |
n , we

need the following lemma to bound the deviated expectation. In the

next lemma, we show that if
|Ht−1 |
n ∼ ht−1, then indeed we have

E[ |Ht |
n |Ht−1] ∼ T .

Lemma 2.4. Suppose that (1−ϵ ′′)ht−1 ≤ |Ht−1 |
n ≤ (1+ϵ ′′)ht−1 for

some 0 < ϵ ′′ < 1. We have T − 3ϵ ′′ ≤ E
[
|Ht |
n | Ht−1

]
≤ T + 3ϵ ′′.

In the end, we hope that
|Ht |
n deviates from T by at most ϵ/2.

To achieve this, we show that in each iteration 1 ≤ i ≤ t − 1, |Hi |
n

deviates from its expectation,
|Hi−1 |2
n2 , by at most a (1 ± ϵ ′) factor,

where ϵ ′ = ϵ/2t+4 is an error control parameter that is much less

than ϵ . Note that
|Hi−1 |2
n2 is already deviated from h2i−1 = hi to some

degree. The next lemma bounds the cumulative deviation of
|Hi |
n

from hi . Note that ϵ
′ has to be large enough in order guarantee

that
|Hi |
n lies in the (1 ± ϵ ′) · |Hi−1 |2

n2 range. This also implies ϵ has

to be large enough.

Lemma 2.5. Let ϵ = Ω(1/n1/4.47) and ϵ ′ = ϵ
2t+4

. W.h.p. for iteration

0 ≤ i < t , we have
|Hi |
n ∈ (1 ± ϵ ′)2i+1−1 · hi .

Combining Lemma 2.4 for the deviation on the last round and

Lemma 2.5 for the deviation on first t − 1 rounds, the following

lemma summarizes the final deviation.

Lemma 2.6. Let ϵ = Ω(1/n1/4.47). At the end of the algorithm,

w.h.p. T − ϵ
2 ≤

|Ht |
n ≤ T + ϵ

2 .

Proof. Let ϵ ′ = ϵ
2t+4

. By Lemma 2.5, we have
|Ht−1 |
n ∈ (1 ±

ϵ ′)2t−1 · ht−1 w.h.p.
Note that (1 + ϵ ′)2t−1 ≤ 1 + 2(2t − 1)ϵ ′ ≤ 1 + 2t+1ϵ ′, since

(1+a)b ≤ 1+ 2ab provided 0 < ab ≤ 1/2 and we have (2t − 1)ϵ ′ ≤
ϵ/16 ≤ 1/2. Similarly, (1 − ϵ ′)2t−1 ≥ 1 − 2t+1ϵ ′. Therefore, we can
let ϵ ′′ = 2t+1ϵ ′ and apply Lemma 2.4 to conclude that

T−3·2t+1ϵ ′ ≤ T−3ϵ ′′ ≤ E
[
|Ht |
n
| Ht−1

]
≤ T−3ϵ ′′ ≤ T+3·2t+1ϵ ′

Since
|Ht−1 |
n = Ω(1) (by Lemma 2.5) and ϵ ′ = ϵ/2t+4 =

Ω(
√
logn/n). we can apply Chernoff Bound to show w.h.p. |Ht | ∈

(1 ± ϵ)E[|Ht | | Ht−1]. Thus,

(1 − ϵ ′)(T − 3 · 2t+1ϵ ′) ≤ |Ht |
n
≤ (1 + ϵ ′)(T + 3 · 2t+1ϵ ′)

T − 4 · 2t+1ϵ ′ ≤ |Ht |
n
≤ T + 4 · 2t+1ϵ ′

T − ϵ

2
≤ |Ht |

n
≤ T + ϵ

2
ϵ ′ = ϵ/(2t+4) �

Initially,
|M0 |
n ≥ 2ϵ . In a similar vein, we show that that

|Mt |
n

does not decreases much from 2ϵ .

Lemma 2.7. Let ϵ = Ω(1/n1/4.47). At the end of the algorithm,

w.h.p.
|Mt |
n ≥ 7ϵ

4 .

The following lemma shows that at the end of Algorithm 1, the

problem has been reduced to finding the approximate median.

Lemma 2.8. Let ϵ = Ω(1/n1/4.47). At the end of iteration t of Algo-
rithm 1, w.h.p. any ϕ ′-quantile where ϕ ′ ∈ [ 12 −

ϵ
4 ,

1
2 +

ϵ
4 ] must be

inMt .
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Proof. Since 1
2 −

3ϵ
2 ≤

|Ht |
n ≤ 1

2 −
ϵ
2 and

|Mt |
n ≥ 7ϵ

4 by Lemma

2.5 and Lemma 2.7, we have
|Mt |
n +

|Ht |
n ≥ 1

2 +
ϵ
4 . Combined with

the fact that
|Ht |
n ≤ 1

2 −
ϵ
2 , we conclude that any ϕ

′-quantile where
ϕ ′ ∈ [ 12 −

ϵ
4 ,

1
2 +

ϵ
4 ] must be inMt . �

2.2 Phase II: Approximating the Median

Let Li ,Mi , andHi denote the nodes whose quantiles lie in [0, 12 −ϵ),
[ 12 − ϵ,

1
2 + ϵ], and ( 12 − ϵ, 1] respectively at the end of iteration

i , and L0,M0, and H0 be the nodes with those quantiles in the

beginning. Note that Li and Hi are the nodes whose values are not

our targets. We will show the quantities of
|Li |
n and

|Hi |
n decrease in

each iteration as our 3-TOURNAMENT algorithm (Algorithm 2) makes

progress.

Initially, l0 = h0 =
1
2 −ϵ . Lethi+1 = 3h2i −2h

3
i and li+1 = 3l2i −2l

3
i

for i ≥ 0, we will show that
|Li |
n and

|Hi |
n concentrate around li and

hi . Note that hi and li roughly square in each iteration. Once they

decrease below a constant after the firstO(log(1/ϵ)) iterations, they
decrease double exponentially in each iteration. The tournaments

end when li and hi decrease below T = 1/n1/3.

Algorithm 2 3-TOURNAMENT(v)

1: h0, l0 ← 1
2 − ϵ

2: i ← 0, T = 1/n1/3.
3: while li > T do

4: hi+1 ← 3h2i − 2h
3
i , li+1 ← 3l2i − 2l

3
i

5: Select three nodes t1(v), t2(v), t3(v) randomly.

6: xv ←median(xt1(v), xt2(v), xt3(v)).
7: end while

8: Sample K = O(1) nodes uniformly at random and output the

median value of these nodes.

Lemma 2.9. Let t denote the number of iterations in Algorithm 2.

We have t ≤ log11/8( 14ϵ ) + log2 log4 n = O(log(1/ϵ) + log logn).

Proof. Suppose that ( 118 )i−1ϵ ≤ 1/4, we will show that li ≤
1/2 − ( 118 )iϵ . First, l0 = 1/2 − ϵ . Suppose by induction that li−1 ≤
1/2 − ( 118 )i−1ϵ . We have:

li = 3l2i−1 − 2l
3
i−1

= 3

(
1

2
−

(
11

8

)i−1
· ϵ

)2
− 2

(
1

2
−

(
11

8

)i−1
· ϵ

)3

=

1

2
− 3

2

(
11

8

)i−1
· ϵ + 2

((
11

8

)i−1
· ϵ

)3

≤ 1

2
− 3

2

(
11

8

)i−1
· ϵ + 1

8

((
11

8
· ϵ

)i−1)

=

1

2
−

(
11

8

)i
· ϵ

Therefore, after i0 = log11/8( 14ϵ ) iterations, we have li ≤ 1
2 −(

11
8

)i0
ϵ ≤ 1

2 −
1
4 =

1
4 .

Suppose that i1 = log2 log4 n, we have

li0+i1 ≤ 3l2i0+i1−1 ≤ 3i1l2
i1

i0
≤ 3i1 ·

(
1

4

)2i1

≤ (log4 n)log2 3 ·
(
1

4

) log4 n
=

(log4 n)log2 3
n

≤ n2/3

Therefore, t ≤ i0 + i1 = log11/8( 14ϵ )+ log2 log4 n = O(log(1/ϵ)+
log logn). �

Lemma 2.10. For each iteration 0 ≤ i < t , E[ |Li+1 |n | Li ] =
3( |Li |n )2 − 2(

|Li |
n )3 and E[

|Hi+1 |
n | Hi ] = 3( |Hi |

n )2 − 2(
|Hi |
n )3.

Proof. We will show the proof for E[ |Li+1 |n |Li ], since E[ |Hi+1 |
n |

Hi ] is the same. Note that a node v is in Li+1 if and only if at least

2 of t1(v), t2(v), t3(v) are in Li . Therefore,

E

[
|Li+1 |
n
| Li

]
=

1

n

∑
v ∈V

((
|Li |
n

)3
+ 3

(
|Li |
n

)2 (
1 − |Li |

n

))

= 3

(
|Li |
n

)2
− 2

(
|Li |
n

)3
�

The following lemma shows the probabilities that
|Li |
n and

|Hi |
n

deviate from their expectation by a (1 + ϵ ′) factor are polynomially

small in n, provided ϵ ′ is sufficiently large. We cap the quantity at

T for the purpose of applying concentration inequalities.

Lemma 2.11. Let ϵ ′ = Ω( (logn)
1/2

n1/3 ), w.h.p. for each iteration 0 ≤
i <= t ,

|Hi |
n ≤ (1+ϵ ′) ·max(T ,E[ |Hi |

n | Hi−1]) and |Li |n ≤ (1+ϵ ′) ·
max(T ,E[ |Li |n | Li−1]).

Proof. In each iteration, since each node set its value indepen-

dently, by Chernoff Bound (see Lemma A.2), we have

Pr

(
|Li |
n
≤ (1 + ϵ ′) ·max(T , E[|Li | | Li−1]

n
)
)

≤ exp(−Ω(ϵ ′2max(n ·T ,E[|Li | | Li−1])))

= exp(−Ω(ϵ ′2n2/3)) = 1/poly(n)
The proof for |Hi | is the same. �

Then we bound the cumulative deviation of
|Hi |
n from hi and

the cumulative deviation of
|Li |
n from li .

Lemma 2.12. Let ϵ ′ = Ω( logn
1/2

n1/3 ). W.h.p. for each iteration 0 ≤

i <= t ,
|Li |
n ≤ max((1 + ϵ ′) 3

i −1
2 · li , (1 + ϵ ′)T ) and |Hi |

n ≤ max((1 +
ϵ ′) 3

i −1
2 · hi+1, (1 + ϵ ′)T ).

Proof. We only show the proof for |Li | and we will prove by

induction. Initially,
|L0 |
n ≤ l0. Suppose that

|Li |
n ≤ max((1+ϵ ′) 3

i −1
2 ·

li+1, (1 + ϵ ′)T ) is true.
By Lemma 2.11, we have w.h.p.,

|Li+1 |
n ≤ (1 + ϵ ′) ·

max(E[ |Li+1 | |Li ]n ,T ). If E[ |Li+1 | |Li ]n ≤ T , then we are done, since
|Li+1 |
n ≤ (1+ ϵ ′) · E[ |Li+1 | |Li ]n = (1+ ϵ ′) ·T . Also, if |Li |n ≥ (1+ ϵ ′)T ,

then
E[ |Li+1 | |Li ]

n ≤ 3 · |Li |
2

n2 ≤ |Li |n ·O(
1

n2/3 ) ≤ T .
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Otherwise, if
|Li |
n > (1 + ϵ ′)T then it must be the case that

|Li |
n ≤ (1 + ϵ ′)

3i −1
2 · li+1 by induction hypothesis. Therefore,

|Li+1 |
n
≤ (1 + ϵ ′) · E[|Li | | Li−1]

n

≤ (1 + ϵ ′) · 3
(
|Li |
n

)2
− 2

(
|Li |
n

)3

≤ (1 + ϵ ′) ·
(
3

(
(1 + ϵ ′)

3i −1
2 · li

)2
− 2

(
(1 + ϵ ′)

3i −1
2 · li

)3)

≤ (1 + ϵ ′) ·
((
(1 + ϵ ′)

3i+1−3
2

)
·
(
3 · l2i − 2 · l

3
i

))

=

(
(1 + ϵ ′)

3i+1−1
2

)
· li+1 �

Now, by setting ϵ ′ roughly equal to 1/3t ∼ ϵ3.45/(log4 n)1.59, we
can bound the final deviations of

|Hi |
n and

|Li |
n from T by a factor

of 2 w.h.p.

Lemma 2.13. Let ϵ = Ω( log
0.61 n

n0.096 ) and ϵ ′ = ϵ3.45/(log4 n)1.59, then
|Lt |
n ≤ 2T and

|Ht |
n ≤ 2T w.h.p.

Proof. First, ϵ ′ = Ω( ϵ 3.45

log1.59 n
) = Ω( log

1/2 n
n1/3 ). By Lemma 2.12,

w.h.p. we have either
|Lt |
n ≤ (1 + ϵ ′) ·T or

|Lt |
n ≤ (1 + ϵ ′) 3

i −1
2 · lt .

If it is the former, then we are done since
|Lt |
n ≤ (1 + ϵ ′) ·T ≤ 2T .

Otherwise, we have

|Lt |
n
≤

(
(1 + ϵ ′)

3t −1
2

)
·T

≤
(
1 + 2 · ϵ ′ · 3

t − 1
2

)
·T

(1 + x)n ≤ 1 + 2nx for nx ≤ 1
2

≤
(
1 + ϵ ′ · 3log11/8(

1
4ϵ )+log2 log4 n

)
·T

≤
(
1 + ϵ ′ ·

(
1

4ϵ

) log11/8 3
· loglog2 34 n

)
·T

≤ 2 ·T ϵ ′ = ϵ3.45/(log4 n)1.59 �

Finally, we show that when
|Lt |
n and

|Ht |
n are O(1/n2/3), if we

sample a constant number of values randomly and output the me-

dian of them, then w.h.p. the median is inMt .

Lemma 2.14. W.h.p. every node outputs a quantile in [ 12 − ϵ,
1
2 + ϵ].

Proof. By Corollary 2.13, w.h.p. at the end of iteration t ,
|Lt |
n ≤

2/n2/3 and
|Ht |
n ≤ 2/n2/3. The algorithm outputs a quantile in

[ 12 − ϵ,
1
2 + ϵ] if there are less than K/2 nodes in Lt are sampled

and less than K/2 nodes in Ht are sampled.

The probability that at least K/2 nodes in |Lt | are sampled is at

most(
K

K/2

)
·
(

2

n2/3

)K/2
≤

(
eK
K
2

)K/2
·
(

2

n2/3

)K/2
≤

(
4e

n2/3

)K/2

Similarly, the probability that at leastK/2 nodes in |Ht | are sampled

is also at most
(
4e
n2/3

)K/2
. By an union bound, the probability that

less than K/2 nodes in Lt are sampled and less than K/2 nodes in
Ht are sample is at least 1 − 2 ·

(
4e
n2/3

)K/2
= 1 − 1/poly(n). �

Theorem 2.1 follows from Lemma 2.8 and Lemma 2.14.

3 EXACT QUANTILE COMPUTATION

To fill the gap of approximating the ϕ-quantile with ϵ error for

ϵ = O(1/n0.096), we show that the exact quantile computation can

be done in O(logn) rounds using O(logn) message size. Since we

are to compute the exact quantile ϕ, we can assume that k0
def
= ϕ ·n

is an integer. The problem is to compute a value whose rank is

k0. Again, w.l.o.g. we assume that every node has a distinct value

initially.

Algorithm 3 Exact Quantile Computation

1: k0 ← ϕ · n
2: for i = 1, 2, . . . , 25 do

3: Each node v computes an ϵ
2 -approximate of the (ki−1n −

ϵ
2 )-

quantile and an ϵ
2 -approximate of the (ki−1n +

ϵ
2 )-quantile

with ϵ = n−0.05/2.
4: Each node learns the max and the min of these approximates

of all nodes.

5: Compute the rank of min among the original xv ’s and denote

it by R.

6: Each node v set xv ← ∞ if xv < [min,max]. Call these
nodes valueless, otherwise valued.

7: Let mi be the smallest power of 2 that is larger than

(n0.99/2)/(# valued nodes). Each valued node makesmi co-

pies of its value and distribute them to valueless nodes so

that there are at least n0.99/2 valued nodes. (For convenience,
we let the duplicated values to have smaller ranks than the

original one.)

8: Set ki ←mi · (ki−1 − R + 1).
9: end for

10: Every node outputs an (ϵ/3)-approximate (k25n −
ϵ
2 )-quantile.

The following is a detailed implementation of each step.

Step 3: Since ϵ = n−0.05/2, we can ϵ
2 -approximate the quantiles

in O(logn) rounds by Theorem 2.1.

Step 4: The maximum (the minimum) can be computed by ha-

ving each node forwarding the maximum (the minimum) value it

has ever received. Since it takesO(logn) rounds to spread a message

by [14, 32], this step can be done in O(logn) rounds.
Step 5: The rank of the minimum can be computed by perfor-

ming a counting. The nodes whose xv values are less than or equal

to the minimum will be assigned 1. Otherwise they are assigned 0.

By Kempe et al. [24], the sum can be aggregated inO(logn) rounds
w.h.p.

Step 7: Consider the following process for distributing the values.

Initially, every valued node v generates a token with weight equal

to mi , the targeted number of copies. We denote the token by a

value-weight pair (xv ,mi ). Recall thatmi is a power of 2 and it can
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be computed by counting the number of valued nodes in O(logn)
rounds. The goal is to split and distribute the tokens so that every

node has at most one token of weight 1 in the end.

The process consists of O(logn) phases and each phase

uses O(1) rounds. Suppose that node v holds tokens

(x1,w1), (x2,w2), . . . (xm,wm ) at the beginning of a phase.

For each token (xi ,wi ), ifwi , 1, v splits (xi ,wi ) into two tokens

(xi ,wi/2) and push each one to a node randomly. If wi = 1, then

the token remains at v . Note that when two tokens of the same

value are on the same node, they do not merge.

First note lgmi = O(logn) phases are needed to split to tokens

into tokens of weight 1. Now, we show that it takes constant number

of rounds to implement one phase.

Let N (v, i) denote the number of tokens atv at the end i’th phase.

Let N = maxv ,i N (v, i). It takes N rounds to implement one phase.

The value of N (v, i) can be bounded by following calculation. Since

at any phase, there cannot be more than n0.99 tokens and each

token appears at a node chosen uniformly at random, we have

Pr(N (v, i) ≥ 100K) ≤
(
n0.99

100K

)
· 1

n100K
≤

(
n0.99

n

)100K
= (1/n)K .

By taking an union bound over each v and i , we conclude that

N < 100K w.h.p. Therefore, w.h.p. each phase can be implemented

in 200K = O(1) rounds. At the end of O(logn) phase, every node

has at most 100K tokens of weight 1 w.h.p.

Next, in the subsequent phases, if a node holds more than one

token, then it will push every token except one to a random node

(one random node per token). We say a token succeeded at the end

of the phase if it was pushed to a node without any other tokens.

Consider a token, the probability a token did not succeed in a phase

is at most n0.99/n = 1/n0.01, since there are at most n0.99 nodes

with tokens at the end of the phase.

Therefore, after 100K phases, the probability that a token did

not succeed is at most 1/n0.01·100K = 1/nK . By a union bound over

the tokens, we conclude that w.h.p. all tokens succeeded. Moreover,

again, each phase can be implemented using 100K rounds. There-

fore, we can split and distribute the tokens inO(logn) rounds. Each
original token is duplicated with exactly mi copies. Then, those

nodes holding a token set its value to the value of the token. Nodes

without a token will remain valueless.

Correctness: Let ans be the answer (the value whose initial rank

is k0). LetMi =
∏i

j=1mi denote the number of copies of each value

from the beginning. We show by induction that the values whose

ranks lying in (ki −Mi ,ki ] are ans after iteration i . Initially,M0 = 1,

the statement trivially holds.

Suppose that at the end of iteration i − 1, the values whose

ranks lying in (ki−1 −Mi ,ki−1] are ans. After Step 6 in iteration

i , the rank of ans is exactly ki−1 − R + 1. Since every value is

duplicated to havemi copies after Step 7, the rank of ans becomes

ki =mi · (ki−1 −R + 1) (Recall that we let the original value to have
a larger rank than the duplicated values). Since the values whose

ranks lying in (ki−1 −Mi−1,ki−1] were ans at the end of iteration

i − 1 and ans ∈ [min,max], it must be the case that every value

in this range is duplicated with mi copies. Therefore, all values

whose ranks lying in (ki −mi · Mi−1,ki ] = (ki − Mi ,ki ] are ans
after iteration i .

Next, we show that after 25 iterations,M25 ≥ ϵn. Suppose that

Mi−1 ≤ ϵn. The number of valueless node after Step 6 is at most

2ϵn + 2Mi−1 ≤ 4ϵn. The 2ϵn comes from the fact that at most 2ϵn

values can lie in the range (min,max). The 2Mi−1 term is because

at most Mi−1 values are equal to min and max. Therefore,mi ≥
(n0.99/2)/(4ϵn) = (n0.04/4) andMi ≥ (n0.04/4) ·Mi−1.

Therefore,M25 ≥ min(ϵn, (n0.04/4)25) = ϵn. Now the the values

of the items whose ranks are in the range of (k25 − ϵn,k25] must

be ans. We then compute a quantile in (k25n − ϵ,
k25
n ] using our ϵ/3-

approximate quantile computation algorithm to approximate the

(k25n −
ϵ
2 )-quantile in O(logn) rounds.

4 A LOWER BOUND

We show that it takes at least Ω(log(1/ϵ) + log logn) rounds to
approximate the ϕ-quantile up to ϵ error w.h.p.

Theorem 1.4. Suppose in every round every node fails with a, po-

tentially different, probability bounded by some constant µ < 1. For

any ϕ ∈ [0, 1] there is a gossip algorithm that solves the ϕ quan-

tile problem in O(logn) rounds. For any t and any ϵ(n) > 0, there

furthermore exists a gossip algorithm that solves the ϵ-approximate

ϕ-quantile problem in O(log logn + log 1
ϵ (n) + t) rounds for all but

n
2t

nodes, with high probability.

Proof. Consider the following two scenarios. The first is when

each node is associated with a distinct value from {1, 2, . . . ,n}. The
second is when each node is associated with a distinct value from

{1 + ⌊2ϵn⌋, . . . ,n + ⌊2ϵn⌋}.
A node is able to distinguish between these cases only if it re-

cieves an value from S
def
= {1, 2, . . . , ⌊2ϵn⌋} ∪ {n + 1,n + 2, . . . ,n +

⌊2ϵn⌋}. Otherwise, it can only output a value whose quantile is in

[1/2 − ϵ, 1/2 + ϵ] with probability 1/2, since the difference of the

ϕ-quantile in both scenarios is at least ⌊2ϵn⌋ ≥ ϵn.

Call a node good if it ever received a value from S , and bad

otherwise. Note that a bad node cannot outputs a correct answer

with probability more than 1/2. Initially there are at most 2· ⌊2ϵn⌋ ≤
4ϵn good nodes. We will show that with probability 1 − 1/n there

exists at least one bad node at the end of round t .

LetX0 = 2 · ⌊2ϵn⌋ and letXi denote the number of good nodes at

the end of round i . Given a bad nodev , it can become good if it pulls

from a good node or some good node pushes to it. LetYv denote the

event that v pulls from a good node, we have Pr(Yv | Xi ) = Xi/n.
Also, the pushes from the good nodes can only generate another at

most Xi good nodes. Therefore,

E[Xi+1 | Xi ] ≤ 2Xi + E


∑
v ∈Bi

Yv


≤ 3Xi

since E[∑v ∈Bi Yv | Xi ] ≤ Xi

By Chernoff Bound, we have Pr(∑v ∈Bi Yv > 2Xi | Xi ) ≤
e−Xi /2 ≤ e−5 logn ≤ 1/n5, since Xi ≥ X0 ≥ 10 logn. Therefore,

with probability at least 1 − 1/n5, Xi+1 ≤ 4Xi . By taking a union

bound over such events for the first t ′ = log4(8/ϵ) rounds, we
conclude with probability at least 1 − 1/n4, Xt ′ ≤ (4ϵn)4t

′ ≤ n/2.
Let t0 be the last round such that Xt0 ≤ n/2. Define Zi = |Bi |/n.

A node v remains in Bi if it did not pull from a good node and it
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was not pushed from any good nodes. Denote the event byWv , we

have Pr(Wv | Bi ) ≥ Zi · (1 − 1
n )n−1 ≥ Zi · e−1. Therefore,

E[|Bi+1 | | Bi ] = E

∑
v ∈Bi

Wv | Bi

≥ ©­«

∑
v ∈Bi

Zi · e−1
ª®¬
= |Bi | ·Zi ·e−1

Note that the events {Wv }v ∈Bi are negatively dependent [8]

(the number of empty bins in the balls into bins problem). Suppose

that Zi · |Bi | ≥ 60e logn. By Chernoff Bound,

Pr (|Bi+1 | ≤ |Bi | · Zi/(2e) | Bi ) ≤ e−Zi · |Bi |/(12e) ≤ 1/n5

Therefore, Pr(Zi+1 ≤ Z 2
i /(2e) | Zi ) ≤ 1/n5. Suppose that t1 = O(n).

We can take an union bound over the subsequent t1 rounds to show

that with probability at least 1 − 1/n4, Zi+1 ≥ Z 2
i /(2e) holds for

these rounds, as long as Z 2
t0+t1

≥ (60 logn)/n.
Let zt0 = 1/2 and zi+1 = z2i /(2e). If z

2
t0+t1

≥ (60 logn)/n, with
probability at least 1 − 1/n4, we have Zt0+t1 ≥ zt0+t1 . Let t1 =
1
2 lg logn, by definition of zi , we have

zt0+t1 =

(
1

2e

)t1
· z2t1t0

≥
(
1

2e

)t1+2t1
zt0 = 1/2 ≥ 1/(2e)

=

(
1

2e

)(lg logn)/2+√logn

≥
(
1

2e

)2√logn
for sufficiently large n

Since (2e)−2
√
logn

= Ω((logn)/n), zt0+t1 ≥ 2−2
√
logn ≥

(60 logn)/n for sufficiently large n. Therefore, with probability at

least 1 − 1/n4, Zt0+t1 > 0.

Since with probability 1−1/n4, t0 ≥ log4 8/ϵ . By taking an union
bound over these two events, we conclude with probability at most

2/n4, all nodes are good by the end of round t0 + t1.

Therefore, the probability that every node computes a correct

output at the end of round t0 + t1 is at most 1/2 + 2/n4. �

5 ROBUSTNESS

In this section, we show that our algorithm is robust against failures.

We consider the following model of failures: Let 0 < µ < 1 be

a constant. Every node v in every round i is associated with a

probability 0 ≤ pv ,i ≤ µ. Note that pv ,i is pre-determined before

the execution of the algorithm. During the execution of round i ,

each node v fails with probability pv ,i to perform its operation

(which may be either push or pull). We show how to modify the

algorithm and the analysis for the tournament algorithms and the

exact quantile computation algorithms in the following.

5.1 The Tournament Algorithms

First consider the 2-TOURNAMENT algorithm. Initially, every node

is good. Consider node v , instead of only pulling from 2 neighbors

each iteration, now pull from Θ( 1
1−µ · log(

1
1−µ )) neighbors. We say

a pull is good if the node performing the pull operation did not fail

and it pulls from a node who is good at the end of iteration i − 1.
A node remains good at the end of iteration i if there are at least

two good pulls. Then, v uses the first two good pulls to execute the

tournament procedure. Also, note that in the last iteration, we let a

good node to have probability of δ to do the two tournament using

the first two good pulls and probability 1 − δ to set the value equal

to the first good pull. We show that the good nodes always consists

of a constant fraction of nodes.

Lemma 5.1. For 0 ≤ i ≤ t − 1, w.h.p. at the end of each iteration i

of 2-TOURNAMENT , there are at least n/2 good nodes if every node

pulls from k = Θ( 1
1−µ · log(

1
1−µ )) other nodes.

Proof. We will prove by induction. Initially, every node is good.

Suppose that there are at leastn/2 good nodes at the end of iteration
i − 1. During iteration i , a node with more than k − 2 bad pulls will

become bad at the end of iteration i .

Let k = 4
1−µ log 4

1−µ + 1. The probability that there are at least

k − 1 bad pulls is at most:(
k

k − 1

)
·
(
1 − (1 − µ)

2

)k−1
≤ k · e−

(1−µ )
2 ·(k−1)

≤
(

4

1 − µ log
4

1 − µ + 1
)
·
(
1 − µ
4

)2
≤ 1/e + 1/16 ≤ 0.44

x log(1/x) maximized at 1/e

Therefore, the expected number of bad nodes is at most 0.44n for

iteration 1 ≤ i ≤ t − 1. Since each node becomes bad independently

of other nodes, by Chernoff Bound, w.h.p. there are at most 0.5n

bad nodes at the end of iteration i . �

At the end of iteration t − 1, there are at least n/2 good nodes

w.h.p. The expected number of bad nodes at the end of iteration t is

at most
∑
v ∈V δ · 0.44+ (1−δ )/2 ≤ 0.5n. By Chernoff Bound again,

we can conclude that w.h.p. there are at least n/3 good nodes.

We can also modify the process in the same way for the

3-TOURNAMENT algorithm. That is, in each iteration each node pulls

fromΘ( 1
1−µ log 1

1−µ ) other nodes. If there are less than 3 good pulls,
then the node becomes bad. Otherwise, it uses the first 3 good pulls

to do the tournament procedure. We can show similarly that there

are at most a constant fraction bad nodes in each iteration.

Consider a node v in the modified processes. Suppose that v is

good in iteration i , then v must have at least two (or three) good

pulls. Note that the probability that v pulls from a particular good

node, conditionedv is good at the end of iteration, is uniform among

all nodes that are good at the end of iteration i − 1.
Let Vi denote the set of good nodes and ni = |Vi |. Given any

subset of good nodes S ⊆ Vi−1, the probability of choosing a node

in |S | is therefore |S |/ni . Therefore, we can replace
|Li |
n ,

|Hi |
n , and

|Mi |
n in our proofs in the previous section with

|Li |
ni

,
|Hi |
ni

, and
|Mi |
ni

and observe that all the statements hold. Note that ni ≥ n/3 = Ω(n)
for 0 ≤ i ≤ t w.h.p. Thus, all the concentration inequalities also

hold.

In the last step of Algorithm 2, all nodes pulls from

Θ( K
1−µ log K

1−µ ) nodes. If there are K good pulls, then each node

outputs the median directly. Otherwise, it becomes bad and outputs

nothing. We can similarly show that there are at least constant
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fraction of good nodes. Therefore, at least a constant fraction of no-

des output a correct answer and all the others output nothing. Note

that we can use additional O(t) rounds of pulling from valueless

nodes to have all but n
2t

nodes learn a correct answer.

5.2 Exact Quantile Computation

Consider Algorithm 3. We know Step 3 (Section 5.1), Step 4 [9], and

Step 5 [24] tolerate such failures with a constant factor delay on

the running time.

The only step that remains to discuss is Step 7. We run the same

algorithm described. Initially each valued node v generates a token

(xv ,mi ). In the first O(logn) phases, each node tries to split every

token whose weight is larger than 1 into two tokens with halved

weight, and push one of them to a random node. If the push succeed,

the token has been pushed is considered a new token and the one

with halved weight remaining at the same node is considered as

the old one. If the push fails, then we will merge them back to the

original one.

We will show that at the end of O(logn) phase, each node holds

at most O(1) tokens and their weights are 1. In each subsequent

phases, if a node has more than one tokens, then it will push every

token except one to a random neighbor.We argue that afterO(logn)
phases, every node contains exactly one token.

First, we show that the number of tokens at each node is bounded

by a constant w.h.p. so that each phase can be implemented inO(1)
rounds. Recall that N (v, i) is the number of tokens atv at the end of

i’th phase. Suppose the total number of phases is C logn for some

constant C > 0. For a token (except the one that is initially at v)

to be at node i , it must be the case that it was pushed to i during

one of the phase. Note that at any phase, there are at most n0.99

tokens. By taking an union bound over all possible set of tokens of

size 200K and all possible combinations of phases on when each of

the token was pushed to i , we have

Pr(N (v, i) ≥ 200K + 1) ≤
(
n0.99

200K

)
· (C logn)200K · 1

n200K

≤
(
Cn0.99 logn

n

)200K
≤ 1/nK .

Next, we show that for a token (xv ,mi ), it takesO(logn) rounds
to split into tokens of weight 1 w.h.p. Let Tv (i) denote the set of
all v’s tokens with weight at least 2 at the end of Phase i . Let

Φ(i) = ∑
(xv ,w )∈Tv (i)w

2 be a potential function. Consider a token

(xv ,w) ∈ Tv (i), since with probability at most µ it fails to split, the

expected contribution of the token to the Φ(i + 1) is at most:

µw2
+ (1 − µ)2 · (w/2)2 =

(
1 − 1 − µ

2

)
·w2

Therefore, E[Φ(i + 1) | Φ(i)] ≤ (1− (1− µ)/2) · Φ(i). Since Φ(0) ≤ n,

after t = 2K
1−µ logn rounds, we have

E[Φ(t)] ≤
(
1 − 1 − µ

2

) 2K
1−µ logn

· n ≤ e−K logn · n ≤ 1/nK−1

Since Φ(t) must be an integer, we conclude that with probability

at least 1 − 1/nK−1, Φ(t) = 0 by Markov’s inequality. Therefore,

after t rounds w.h.p. every token of value v has weight 1. We can

further take an union over all tokens to show that it holds for all

tokens w.h.p.

Therefore, w.h.p. the weight of all tokens are 1 at the end of

O(logn) round. In the subsequent phases, the probability a token

fail to be pushed to a node without any other tokens is at most

µ +n0.99/n = O(1). Therefore, the probability a token fails in the all

of the next O(logn) phases is at most 1/poly(n). Thus, w.h.p. after
O(logn) phases, every node has at most one token. Since each phase

can be implemented using O(1) rounds, we conclude that Step 7

can be done in O(logn) rounds in our failure model.
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A TOOLS

Lemma A.1. (Chernoff Bound) Let X1, . . . ,Xn be indicator varia-

bles such that Pr(Xi = 1) = p. Let X = ∑n
i=1 Xi . Then, for δ > 0:

Pr(X ≥ (1 + δ )E[X ]) <
[

eδ

(1 + δ )(1+δ )

]E[X ]

Pr(X ≤ (1 − δ )E[X ]) <
[

eδ

(1 − δ )(1−δ )

]E[X ]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X ≥ (1 + δ )E[X ]) < e−δ
2
E[X ]/3

Pr(X ≤ (1 − δ )E[X ]) < e−δ
2
E[X ]/2

.

Lemma A.2. Suppose that for any δ > 0,

Pr (X > (1 + δ )np) ≤
[

eδ

(1 + δ )(1+δ )

]np

then for anyM ≥ np and 0 < δ < 1,

Pr (X > np + δM) ≤
[

eδ

(1 + δ )(1+δ )

]M

≤ e−δ
2M/3

Proof. Without loss of generality, assume M = tnp for some

t ≥ 1, we have

Pr (X > np + δM)

≤
[

etδ

(1 + tδ )(1+tδ )

]np

=

[
eδ

(1 + tδ )(1+tδ )/t

]M

≤
[

eδ

(1 + δ )(1+δ )

]M
(∗)

≤ e−δ
2M/3 eδ

(1+δ )(1+δ ) ≤ e−δ
2/3 for 0 < δ < 1

Inequality (*) follows if (1 + tδ )(1+tδ )/t ≥ (1 + δ )(1+δ ), or equi-
valently, ((1 + tδ )/t) ln(1 + tδ ) ≥ (1 + δ ) ln(1 + δ ). Letting
f (t) = ((1 + tδ )/t) ln(1 + tδ ) − (1 + δ ) ln(1 + δ ), we have f ′(t) =
1
t 2
(δt − ln(1 + δt)) ≥ 0 for t > 0. Since f (1) = 0 and f ′(t) ≥ 0 for

t > 0, we must have f (t) ≥ 0 for t ≥ 1. �
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