Synchronization Strings: Channel Simulations and
Interactive Coding for Insertions and Deletions

Bernhard Haeupler!
Carnegie Mellon University, Pittsburgh, PA, USA
haeupler@cs.cmu.edu

Amirbehshad Shahrasbi?
Carnegie Mellon University, Pittsburgh, PA, USA
shahrasbi@cs.cmu.edu

Ellen Vitercik
Carnegie Mellon University, Pittsburgh, PA, USA
vitercik@cs.cmu.edu

—— Abstract

We present many new results related to reliable (interactive) communication over insertion-
deletion channels. Synchronization errors, such as insertions and deletions, strictly generalize
the usual symbol corruption errors and are much harder to protect against.

We show how to hide the complications of synchronization errors in many applications by
introducing very general channel simulations which efficiently transform an insertion-deletion
channel into a regular symbol corruption channel with an error rate larger by a constant factor
and a slightly smaller alphabet. We utilize and generalize synchronization string based methods
which were recently introduced as a tool to design essentially optimal error correcting codes
for insertion-deletion channels. Our channel simulations depend on the fact that, at the cost
of increasing the error rate by a constant factor, synchronization strings can be decoded in
a streaming manner that preserves linearity of time. Interestingly, we provide a lower bound
showing that this constant factor cannot be improved to 1+¢, in contrast to what is achievable for
error correcting codes. Our channel simulations drastically and cleanly generalize the applicability
of synchronization strings.

We provide new interactive coding schemes which simulate any interactive two-party protocol
over an insertion-deletion channel. Our results improve over the interactive coding schemes
of Braverman et al. [TransInf ‘17] and Sherstov and Wu [FOCS ‘17] which achieve a small
constant rate and require exponential time computations with respect to computational and
communication complexities. We provide the first computationally efficient interactive coding
schemes for synchronization errors, the first coding scheme with a rate approaching one for small
noise rates, and also the first coding scheme that works over arbitrarily small alphabet sizes. We
also show tight connections between synchronization strings and edit-distance tree codes which
allow us to transfer results from tree codes directly to edit-distance tree codes.

Finally, using on our channel simulations, we provide an explicit low-rate binary insertion-
deletion code that improves over the state-of-the-art codes by Guruswami and Wang [TransInf
‘17] in terms of rate-distance trade-off.

2012 ACM Subject Classification Mathematics of computing — Coding theory, Theory of com-
putation — Interactive computation

Keywords and phrases Synchronization Strings, Channel Simulation, Coding for Interactive
Communication

1 Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award CCF-1750808.
2 Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award CCF-1750808.

© Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik;
37 licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Déniel Marx, and Donald Sannella;

Article No. 75; pp. 75:1-75:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

75:2

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

Digital Object ldentifier 10.4230/LIPIcs.ICALP.2018.75
Related Version An extended version is available at https://arxiv.org/pdf/1707.04233.pdf.

Acknowledgements The authors thank Allison Bishop for valuable discussions in the early stages
of this work.

1 Introduction

Communication in the presence of synchronization errors, which include both insertions and
deletions, is a fundamental problem of practical importance which eluded a strong theoretical
foundation for decades. This remained true even while communication in the presence
of half-errors, which consist of symbol corruptions and erasures, has been the subject of
an extensive body of research with many groundbreaking results. Synchronization errors
are strictly more general than half-errors, and thus synchronization errors pose additional
challenges for robust communication.

In this work, we show that one-way and interactive communication in the presence of
synchronization errors can be reduced to the problem of communication in the presence
of half-errors. We present a series of efficient channel simulations which allow two parties
to communicate over a channel afflicted by synchronization errors as though they were
communicating over a half-error channel with only a slightly larger error rate. This allows us
to leverage existing coding schemes for robust communication over half-error channels in
order to derive strong coding schemes resilient to synchronization errors.

One of the primary tools we use are synchronization strings, which were recently introduced
by Haeupler and Shahrasbi in order to design essentially optimal error correcting codes
(ECCs) robust to synchronization errors [19]. For every € > 0, synchronization strings allow
a sender to index a sequence of messages with an alphabet of size e~©() in such a way that k
synchronization errors are efficiently transformed into (1 + €)k half-errors for the purpose of
designing ECCs. Haeupler and Shahrasbi provide a black-box construction which transforms
any ECC into an equally efficient ECC robust to synchronization errors. However, channel
simulations and interactive coding in the presence of synchronization errors present a host of
additional challenges that cannot be solved by the application of an ECC. Before we describe
our results and techniques in detail, we begin with an overview of the well-known interactive
communication model.

Interactive communication. Throughout this work, we study a scenario where there are
two communicating parties, whom we call Alice and Bob. The two begin with some input
symbols and wish to compute a function of their input by having a conversation. Their
goal is to succeed with high probability while communicating as few symbols as possible. In
particular, if their conversation would consist of n symbols in the noise-free setting, then
they would like to converse for at most an symbols, for some small «, when in the presence
of noise. One might hope that Alice and Bob could correspond using error-correcting codes.
However, this approach would lead to poor performance because if a party incorrectly decodes
a single message, then the remaining communication is rendered useless. Therefore, only a
very small amount of noise could be tolerated, namely less than the amount to corrupt a
single message.

There are three major aspects of coding schemes for interactive communication that
have been extensively studied in the literature. The first is the coding scheme’s maximum

B. Haeupler, A. Shahrasbi, and E. Vitercik

tolerable error-fraction or, in other words, the largest fraction of errors for which the
coding scheme can successfully simulate any given error-free protocol. Another important
quality of coding schemes for interactive communication, as with one-way communication, is
communication rate, i.e., the amount of communication overhead in terms of the error
fraction. Finally, the efficiency of interactive coding schemes have been of concern in the
previous work.

Schulman initiated the study of error-resilient interactive communication, showing how
to convert an arbitrary two-party interactive protocol to one that is robust to a § = 1/240
fraction of adversarial errors with a constant communication overhead [22, 23]. Braverman
and Rao increased the bound on the tolerable adversarial error rate to 6 < 1/4, also with a
constant communication overhead [9]. Brakerski et al. [2] designed the first efficient coding
scheme resilient to a constant fraction of adversarial errors with constant communication
overhead. The above-mentioned schemes achieve a constant overhead no matter the level
of noise. Kol and Raz were the first to study the trade-off between error fraction and
communication rate [21]. Haeupler then provided a coding scheme with a communication
rate of 1 — O(y/dloglog(1/d)) over an adversarial channel [17]. Further prior work has
studied coding for interactive communication focusing on communication efficiency and noise
resilience [18, 7, 14] as well as computational efficiency [4, 3, 2, 12, 13, 14]. Other works have
studied variations of the interactive communication problem [15, 11, 10, 1, 5].

The main challenge that synchronization errors pose is that they may cause the parties to
become “out of sync.” For example, suppose the adversary deletes a message from Alice and
inserts a message back to her. Neither party will know that Bob is a message behind, and if
this corruption remains undetected, the rest of the communication will be useless. In most
state-of-the-art interactive coding schemes for symbol corruptions, the parties communicate
normally for a fixed number of rounds and then send back and forth a series of checks to detect
any symbol corruptions that may have occurred. One might hope that a synchronization error
could be detected during these checks, but the parties may be out of sync while performing
the checks, thus rendering them useless as well. Therefore, synchronization errors require us
to develop new techniques.

Very little is known regarding coding for interactive communication in the presence of
synchronization errors. A 2016 coding scheme by Braverman et al. [8], which can be seen
as the equivalent of Schulman’s seminal result, achieves a small constant communication
rate while being robust against a 1/18 — ¢ fraction of errors. The coding scheme relies on
edit-distance tree codes, which are a careful adaptation of Schulman’s original tree codes [23]
for edit distance, so the decoding operations are not efficient and require exponential time
computations. A recent work by Sherstov and Wu [25] closed the gap for maximum tolerable
error fraction by introducing a coding scheme that is robust against 1/6 — ¢ fraction of errors
which is the highest possible fraction of insertions and deletions under which any coding
scheme for interactive communication can work. Both Braverman et al. [8] and Sherstov and
Wu [25] schemes are of constant communication rate, over large enough constant alphabets,
and inefficient. In this work we address the next natural questions which, as arose with
ordinary corruption interactive communication, are on finding interactive coding schemes
that are computationally efficient or achieve super-constant communication efficiency.

Our results. We present very general channel simulations which allow two parties com-
municating over an insertion-deletion channel to follow any protocol designed for a regular
symbol corruption channel. The fraction of errors on the simulated symbol corruption channel
is only slightly larger than that on the insertion-deletion channel. Our channel simulations

75:3

ICALP 2018

75:4

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

are made possible by synchronization strings. Crucially, at the cost of increasing the error
rate by a constant factor, synchronization strings can be decoded in a streaming manner
which preserves linearity of time. Note that the similar technique is used in Haeupler and
Shahrasbi [19] to transform synchronization errors into ordinary symbol corruptions as a
stepping-stone to obtain insertion-deletion codes from ordinary error correcting codes in a
black-box fashion. However, in the context of error correcting codes, there is no requirement
for this transformation to happen in real time. In other words, in the study of insertion-
deletion codes by Haeupler and Shahrasbi [19], the entire message transmission is done and
then the receiving party uses the entire message to transform the synchronization errors into
symbol corruptions. In the channel simulation problem, this transformation is required to
happen on the fly. Interestingly, we have found out that in the harder problem of channel
simulation, the factor by which the number of synchronization errors increase by being
transformed into corruption errors cannot be improved to 1 + o(1), in contrast to what is
achievable for error correcting codes. This work exhibits the widespread applicability of
synchronization strings and opens up several new use cases, such as coding for interactive
communication over insertion-deletion channels. Namely, using synchronization strings, we
provide techniques to obtain the following simulations of corruption channels over given
insertion-deletion channels with binary and large constant alphabet sizes.

» Theorem 1 (Informal Statement).

(a) Suppose that n rounds of a one-way/interactive insertion-deletion channel over an alpha-
bet ¥ with a § fraction of insertions and deletions are given. Using an e-synchronization
string over an alphabet Xy, it is possible to simulate n (1 — O.(6)) rounds of a one-
way/interactive corruption channel over ¥y, with at most O¢ (nd) symbols corrupted so
long as |Ssim| X [Zeyn| < [X].

(b) Suppose that n rounds of a binary one-way/interactive insertion-deletion channel with
a ¢ fraction of insertions and deletions are given. It is possible to simulate n(1 —
O(y/dlog(1/4))) rounds of a binary one-way/interactive corruption channel with
O(+/dlog(1/8)) fraction of corruption errors between two parties over the given channel.

Based on the channel simulations presented above, we present novel interactive coding
schemes which simulate any interactive two-party protocol over an insertion-deletion channel.

We use our large alphabet interactive channel simulation along with constant-rate efficient
coding scheme of Ghaffari and Haeupler [14] for interactive communication over corruption
channels to obtain a coding scheme for insertion-deletion channels that is efficient, has a
constant communication rate, and tolerates up to 1/44 — ¢ fraction of errors. Note that
despite the fact that this coding scheme fails to protect against the optimal 1/6 — ¢ fraction of
synchronization errors as the recent work by Sherstov and Wu [25] does, it is an improvement
over all previous work in terms of computational efficiency as it is the first efficient coding
scheme for interactive communication over insertion-deletion channels.

» Theorem 2. For any constant € > 0 and n-round alternating protocol 11, there is an
efficient randomized coding scheme simulating I1 in presence of § = 1/44 — ¢ fraction of
edit-corruptions with constant rate (i.e., in O(n) rounds) and in O(n®) time that works with
probability 1 — 29" | This scheme requires the alphabet size to be a large enough constant

0:(1).

Next, we use our small alphabet channel simulation and the corruption channel interactive
coding scheme of Haeupler [17] to introduce an interactive coding scheme for insertion-deletion
channels. This scheme is not only computationally efficient, but also the first with super

B. Haeupler, A. Shahrasbi, and E. Vitercik

constant communication rate. In other words, this is the first coding scheme for interactive
communication over insertion-deletion channels whose rate approaches one as the error
fraction drops to zero. Our computationally efficient interactive coding scheme achieves a
near-optimal communication rate of 1 — O(y/dlog(1/6)) and tolerates a ¢ fraction of errors.
Besides computational efficiency and near-optimal communication rate, this coding scheme
improves over all previous work in terms of alphabet size. As opposed to coding schemes
provided by the previous work[8, 25], our scheme does not require a large enough constant
alphabet and works even for binary alphabets.

» Theorem 3. For sufficiently small §, there is an efficient interactive coding scheme for
fully adversarial binary insertion-deletion channels which is robust against § fraction of
edit-corruptions, achieves a communication rate of 1 — ©(y/d1log(1/d)), and works with
probability 1 — 2-9(9)

We also utilize the channel simulations in one-way settings to provide efficient binary
insertion-deletion codes correcting d-fraction of synchronization errors—for § smaller than
some constant—with a rate of 1 — ©(y/dlog(1/d)). This is an improvement in terms of
rate-distance trade-off over the state-of-the-art low-rate binary insertion-deletion codes by
Guruswami and Wang [16]. The codes by Guruswami and Wang [16] achieve a rate of
1— O(Vdlog(1/6)).

Finally, we introduce a slightly improved definition of edit-distance tree codes, a general-
ization of Schulman’s original tree codes defined by Braverman et al. [8]. We show that under
our revised definition, edit-distance tree codes are closely related to synchronization strings.
For example, edit-distance tree codes can be constructed by merging a regular tree code and
a synchronization string. This transfers, for example, Braverman’s sub-exponential time tree
code construction [6] and the candidate construction of Schulman [24] from tree codes to
edit-distance tree codes. Lastly, as a side note, we will show that with the improved definition,
the coding scheme of Braverman et al. [8] can tolerate 1/10 — ¢ fraction of synchronization
errors rather than 1/18 — ¢ fraction that the scheme based on their original definition did.
This improved definition is independently observed by Sherstov and Wu [25].

1.1 Definitions and preliminaries

In this section, we define the channel models and communication settings considered in this
work. We also provide notation and define synchronization strings.

Error model and communication channels. In this work, we study two types of channels,
which we call corruption channels and insertion-deletion channels. In the corruption channel
model, two parties communicate with an alphabet X, and if one party sends a message c € X
to the other party, then the other party will receive a message ¢ € 3, but it may not be the
case that ¢ = ¢.

In the one-way communication setting over an insertion-deletion channel, messages to the
listening party may be inserted, and messages sent by the sending party may be deleted. The
two-way channel requires a more careful setup. We emphasize that we cannot hope to protect
against arbitrary insertions and deletions in the two-way setting because in the message-

” Therefore,

driven model, a single deletion could cause the protocol execution to “hang.
following the standard model of Braverman et al’s work [8] that is employed in all other
previous works on this problem [25], we restrict our attention to edit corruptions, which
consist of a single deletion followed by a single insertion, which may be aimed at either party.

Braverman et al. [8] provide a detailed discussion on their model and show that it is strong

75:5

ICALP 2018

75:6

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

enough to generalize other natural models one might consider, including models that utilize
clock time-outs to overcome the stalling issue.

In both the one- and two-way communication settings, we study adversarial channels
with error rate §. Our coding schemes are robust in both the fully adversarial and the
oblivious adversary models.

Interactive and one-way communication protocols. In an interactive protocol Il over a
channel with an alphabet 3, Alice and Bob begin with two inputs from ¥* and then engage
in n rounds of communication. In a single round, each party either listens for a message
or sends a message, where this choice and the message, if one is generated, depends on
the party’s state, its input, and the history of the communication thus far. After the n
rounds, the parties produce an output. We study alternating protocols, where each party
sends a message every other round and listens for a message every other round. In this
message-driven paradigm, a party “sleeps” until a new message comes, at which point the
party performs a computation and sends a message to the other party. In the presence of
noise, we say that a protocol I’ robustly simulates a deterministic protocol II over a channel
C if given any inputs for II, the parties can decode the transcript of the execution of II on
those inputs over a noise-free channel from the transcript of the execution of IT' over C.
Finally, we also study one-way communication, where one party sends all messages and
the other party listens. Coding schemes in this setting are known as error-correcting codes.

Synchronization Strings. In short, synchronization strings [19] allow communicating parties
to protect against synchronization errors by indexing their messages without blowing up
the communication rate. We describe this technique by introducing two intermediaries, C4
and Cp, that conduct the communication over the given insertion-deletion channel. Cjy4
receives all symbols that Alice wishes to send to Bob, C4 sends the symbols to Cpg, and
Cp communicates the symbols to Bob. C'4 and Cp handle the synchronization strings and
all the extra work that is involved in keeping Alice and Bob in sync by guessing the actual
index of symbols received by Cg. In this way, Alice and Bob communicate via C4 and Cp
as though they were communicating over a half-error channel.

Unfortunately, trivially attaching the indices 1,2,...,n to each message will not allow us
to maintain a near optimal communication rate. If C 4 attaches an index to each of Alice’s
messages, it would increase the size of ¥ by a factor of n and the rate would increase by a factor
of 1/logn, which is far from optimal. Synchronization strings allow the communicating
parties to index their messages using an alphabet size that is independent of the total
communication length n.

Suppose that with each of Alice’s n messages, C'4 sends an encoding of her index using a
symbol from ¥. Let S be a “synchronization string” consisting of all n encoded indices sent
by C4. Further, suppose that the adversary injects a total of nd insertions and deletions,
thus transforming the string S to the string S,. Let some element of S like S[i] pass through
the channel without being deleted by the adversary and arrive as S;[j]. We call S;[j] a
successfully transmitted symbol.

We assume that C'4 and C'g know the string S a priori. The intermediary Cg will receive
a set of transmitted indices S;[1],...,S-[n]. Upon receipt of the jth transmitted index, Cp
guesses the actual index of the received symbol when sent by C'4. We call the algorithm
that C'p runs to determine this an (n,d)-indexing algorithm. The algorithm can also return
a symbol T which represents an “I don’t know” response. Any successfully transmitted
symbols that is decoded incorrectly is called a misdecoding. The number of misdecodings that

B. Haeupler, A. Shahrasbi, and E. Vitercik

an (n,0)-indexing algorithm might produced is used as a measure to valuate its quality. An
indexing algorithm is streaming if its guess for a received symbol only depends on previously
arrived symbols.

Haeupler and Shahrasbi [19] defined a family of synchronization strings that admit an
(n, §)-indexing algorithm with strong performance.

» Definition 4 (e-Synchronization String). A string S € X" is an e-synchronization string if
for every 1 <1i < j <k <n+ 1 we have that ED (S[i, j),S[j,k)) > (1 —¢e)(k —).

Haeupler and Shahrasbi [19, 20] prove the existence and provide several fast constructions
for e-synchronization strings and provide a streaming (n, d)-indexing algorithm that returns
a solution with %= + {45 misdecodings. The algorithm runs in time O(n®), spending O(n*)
on each received symbol.

2 Channel Simulations

In this section, we show how e-synchronization strings can be used as a powerful tool to
simulate corruption channels over insertion-deletion channels. In Section 3, we use these
simulations to introduce coding schemes resilient to insertion-deletion errors.

2.1 One-way channel simulation over a large alphabet

Assume that Alice and Bob have access to n rounds of communication over a one-way insertion-
deletion channel where the adversary is allowed to insert or delete up to nd symbols. In this
situation, we formally define a corruption channel simulation over the given insertion-deletion
channel as follows:

» Definition 5 (Corruption Channel Simulation). Let Alice and Bob have access to n rounds of
communication over a one-way insertion-deletion channel with the alphabet 3. The adversary
may insert or delete up to nd symbols. Intermediaries C4 and Cp simulate n’ rounds of a
corruption channel with alphabet ¥;,, over the given channel as follows. First, the adversary
can insert a number of symbols into the insertion-deletion channel between C4 and Cp.
Then for n’ rounds i = 1,...,n’, the following procedure repeats:

1. Alice gives X; € g to Ca.

2. Upon receiving X; from Alice, C'4 wakes up and sends a number of symbols (possibly
zero) from the alphabet ¥ to Cp through the given insertion-deletion channel. The
adversary can delete any of these symbols or insert symbols before, among, or after them.

3. Upon receiving symbols from the channel, Cs wakes up and reveals a number of symbols
(possibly zero) from the alphabet X, to Bob. We say all such symbols are triggered by
Xi.

Throughout this procedure, the adversary can insert or delete up to nd symbols. However,

C'p is required to reveal exactly n’ symbols to Bob regardless of the adversary’s actions. Let

Xl, e ,Xn/ € Ygim be the symbols revealed to Bob by Cg. This procedure successfully

simulates n’ rounds of a corruption channel with a ¢’ fraction of errors if for all but n'4’

elements i of the set {1,...,n'}, the following conditions hold: 1) X; = X;; and 2) X is

triggered by X;.

When X; = X; and X; is triggered by X;, we call X; an uncorrupted symbol. The second
condition, that X; is triggered by X;, is crucial to preserving linearity of time, which is the
fundamental quality that distinguishes channel simulations from channel codings. It forces
C4 to communicate each symbol to Alice as soon as it arrives. Studying channel simulations

75:7

ICALP 2018

75:8

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

satisfying this condition is especially important in situations where Bob’s messages depends
on Alice’s, and vice versa.

Conditions (1) and (2) also require that Cp conveys at most one uncorrupted symbol
each time he wakes up. As the adversary may delete nd symbols from the insertion-deletion
channel, C'p will wake up at most n(1 — §) times. Therefore, we cannot hope for a corruption
channel simulation where Bob receives more than n(1 — d) uncorrupted symbols. In the
following theorem, we prove something slightly stronger: no deterministic one-way channel
simulation can guarantee that Bob receives more than n(1 — 46/3) uncorrupted symbols and
if the simulation is randomized, the expected number of uncorrupted transmitted symbols is
at most n(1l — 74/6). This puts channel simulation in contrast to channel coding as one can
recover 1 — ¢ — ¢ fraction of symbols there (as shown in [19]).

» Theorem 6. Assume that n uses of a one-way insertion-deletion channel over an arbit-
rarily large alphabet 2 with a § fraction of insertions and deletions are given. There is no
deterministic simulation of a corruption channel over any alphabet X4, where the simulated
channel guarantees more than n (1 — 46/3) uncorrupted transmitted symbols. If the simulation
is randomized, the expected number of uncorrupted transmitted symbols is at most n(1—"75/6).

We now provide a channel simulation using e-synchronization strings. Every time C4
receives a symbol from Alice (from an alphabet X;,,), Ca appends a new symbol from a
predetermined e-synchronization string over an alphabet X, to Alice’s symbol and sends
it as one message through the channel. On the other side of channel, suppose that Cp has
already revealed some number of symbols to Bob. Let Ip be the index of the next symbol C'p
expects to receive. Upon receiving a new symbol from C4, Cp uses the part of the message
coming from the synchronization string to guess the index of the message Alice sent. We will
refer to this decoded index as I 4 and its actual index as T4. If T4 < Ip, then Cp reveals
nothing to Bob and ignores the message he just received. Meanwhile, if T4 = I, then Cp
reveals Alice’s message to Bob. Finally, if T4>1 B, then C'p sends a dummy symbol to Bob
and then sends Alice’s message.Theorem 7 details the simulation guarantees.

» Theorem 7. Assume that n uses of a one-way insertion-deletion channel over an alphabet 3
with a & fraction of insertions and deletions are given. Using an e-synchronization string over
an alphabet Yy, it is possible to simulate n(1 — &) rounds of a one-way corruption channel
over Ygipm with at most 2n8(2+ (1 —e)~1) symbols corrupted so long as |Ssim| X [Ssyn| < 3]
and § < 1/7.

2.2 Interactive channel simulation over a large alphabet

We now turn to channel simulations for interactive channels. As in Section 2.1, we formally
define a corruption interactive channel simulation over a given insertion-deletion interactive
channel. We then use synchronization strings to present one such simulation.

» Definition 8 (Corruption Interactive Channel Simulation). Let Alice and Bob have access
to n rounds of communication over an interactive insertion-deletion channel with alphabet
3. The adversary may insert or delete up to nd symbols. The intermediaries Cy and Cp
simulate n' rounds of a corruption interactive channel with alphabet X;,, over the given
channel as follows. The communication starts when Alice gives a symbol from g, to Ca.
Then Alice, Bob, C'4, and Cp continue the communication as follows:

1. Whenever Cy4 receives a symbol from Alice or Cp, he either reveals a symbol from ¥;,,

to Alice or sends a symbol from ¥ through the insertion-deletion channel to Cp.

B. Haeupler, A. Shahrasbi, and E. Vitercik

2. Whenever Cg receives a symbol from Bob or C4, he either reveals a symbol from X;,,
to Bob or send a symbols from ¥ through the insertion-deletion channel to C4.

3. Whenever C'g reveals a symbol to Bob, Bob responds with a new symbol from Y;,,.

4. Whenever C4 reveals a symbol to Alice, Alice responds with a symbol in X;,, except for
the %/th time.

Throughout this procedure, the adversary can inject up to nd edit corruptions. However,

regardless of the adversary’s actions, C4 and Cp have to reveal exactly n’/2 symbols to

Alice and Bob respectively.

Let Xi,...,X, be the symbols Alice gives to C'4 and Xi1,..., X € Ysim be the
symbols Cp reveals to Bob. Similarly, Let Y7,...,Y, be the symbols Bob gives to Cp
and Yi,...,Y, € S.m be the symbols C4 reveals to Alice. We call each pair of tuples
(X;, X;) and (Y;,Y;) a round of the simulated communication. We call a round corrupted if
its elements are not equal. This procedure successfully simulates n’ rounds of a corruption
interactive channel with a ¢’ fraction of errors if for all but n’d’ of the rounds are corrupted.

The protocol and analysis in this large alphabet setting are similar to the harder case
where the alphabet is binary. We cover interactive communication for the binary setting in
the next section.

» Theorem 9. Assume that n uses of an interactive insertion-deletion channel over an
alphabet X with a § fraction of insertions and deletions are given. Using an e-synchronization
string over an alphabet Xy, it is possible to simulate n —2nd(1 + (1 —e)™1) uses of an
interactive corruption channel over g, with at most a % fraction of symbols
corrupted so long as |SXgim| X |Zsyn| < |X| and 6 < 1/14.

2.3 Binary interactive channel simulation

We now show that with the help of synchronization strings, a binary interactive insertion-
deletion channel can be used to simulate a binary interactive corruption channel, inducing a
5(\/3) fraction of bit-flips. In this way, the two communicating parties may interact as though
they are communicating over a corruption channel. They therefore can employ corruption
channel coding schemes while using the simulator as a black box means of converting the
insertion-deletion channel to a corruption channel.

The key difference between this simulation and the one-way, large alphabet simulation is
that Alice and Bob communicate through C'4 and Cp for blocks of r rounds, between which
Cy4 and Cp check if they are in sync. Due to errors, there may be times when Alice and Bob
are in disagreement about which block, and what part of the block, they are in. Cy and Cp
ensure that Alice and Bob are in sync most of the time.

When Alice sends C'4 a message from a new block of communication, C'4 holds that
message and alerts Cp that a new block is beginning. C'4 does this by sending Cp a header
that is a string consisting of a single one followed by s — 1 zeros (10°~1). Then, C4 indicates
which block Alice is about to start by sending a synchronization symbol to C'gz. Meanwhile,
when Cp receives a 10°~! string, he listens for the synchronization symbol, makes his best
guess about which block Alice is in, and then communicates with Bob and C4 accordingly.
This might entail sending dummy blocks to Bob or C4 if he believes that they are in different
blocks. To describe the guarantee that our simulation provides, we first define block corruption
channels.

» Definition 10 (Block Corruption Channel). An n-round adversarial corruption channel is
called a (8, r)-block corruption channel if the adversary is restricted to corrupt nd symbols
which are covered by nd/r blocks of r consecutively transmitted symbols.

75:9

ICALP 2018

75:10

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

» Theorem 11. Suppose that n rounds of a binary interactive insertion-deletion channel
with a 6 fraction of insertions and deletions are given. For sufficiently small §, it is
possible to deterministically simulate n(1 — ©(y/d1log(1/8))) rounds of a binary interactive
(©(/01og(1/5)),/(1/6)log(1/4))-block corruption channel between two parties, Alice and
Bob, assuming that all substrings of form 10°~! where s = clog(1/8) that Alice sends can be
covered by nd intervals of \/(1/0)log(1/0) consecutive rounds. The simulation is performed
efficiently if the synchronization string is efficient.

Proof Sketch. Suppose Alice and Bob communicate via intermediaries C4 and Cg who
act according to the algorithm described above. In total, Alice and Bob will attempt
to communicate ng bits to one another over the simulated channel, while C'4 and Cp
communicate a total of n bits to one another. The adversary is allowed to insert or delete up
to nd symbols and C4 sends n/2 bits, so Cp may receive between n/2 —nd and n/2 + nd
symbols. To prevent Cp from stalling indefinitely, Cp only listens to the first n(1 — 24)/2
bits he receives.

For r = 1/(1/0)log(1/6), we define a chunk to be r. := (s + |Zsyn| + r/2) consecutive
bits that are sent by C4 to Cp. In particular, a chunk corresponds to a section header
and synchronization symbol followed by 7/2 rounds of messages sent from Alice. As Cp

cares about the first n(1 — 20)/2 bits it receives, there are ”(%125) chunks in total. Hence,
ng = w -r since C'g and C4’s communication is alternating.

Note tchat if Alice sends a substring of form 10°~! in the information part of a chunk,
then Bob mistakenly detects a new block. With this in mind, we say a chunk is good if:
1. No errors are injected in the chunk or affecting C'g’s detection of the chunk’s header,
2. Cp correctly decodes the index that C'4 sends during the chunk, and
3. C4 does not send a 10°~! substring in the information portion of the chunk.

If a chunk is not good, we call it bad. If the chunk is bad because C'p does not decode
C4’s index correctly even though they were in sync and no errors were injected, then we call
it decoding-bad. If it is bad because Alice sends a 10°~! substring, we call it zero-bad and
otherwise, we call it error-bad. Throughout the protocol, Cp uses the variable Ig to denote
the next index of the synchronization string C'p expects to receive and we use I4 to denote
the index of the synchronization string C4 most recently sent. Notice that if a chunk is good
and I4 = Ip, then all messages are correctly conveyed.

We now bound the maximum number of bad chunks that occur over the course of the
simulation. Suppose the adversary injects errors into the i*” chunk, making that chunk bad.
The (i + 1)!* chunk may also be bad, since Bob may not be listening for 10°~! from Cx
when Cy4 sends them, and therefore may miss the block header. However, if the adversary
does not inject any errors into the (i + 1) and the (i + 2)** chunk, then the (i + 2)**
chunk will be good. In effect, a single error may render at most two chunks useless. Since
the adversary may inject nd errors into the insertion-deletion channel, this means that the
number of chunks that are error-bad is at most 2nd. Additionally, by assumption, the number
of zero-bad chunks is also at most nd.

We also must consider the fraction of rounds that are decoding-bad. In order to do this,
we appeal to Theorem 6.24 from [19], which guarantees that if an e-synchronization string
of length N is sent over an insertion-deletion channel with a ¢’ fraction of insertions and
deletions, then the receiver will decode the index of the received symbol correctly for all but
2N§' /(1 — €) symbols. In this context, N is the number of chunks, i.e. N =n(1 —2§)/(2r.),
and the fraction of chunks corrupted by errors is ¢’ = 4nd/N. Therefore, the total number
of bad chunks is at most 46n + 2N¢' /(1 —¢) = 4dn(3 —)/(1 —¢).

B. Haeupler, A. Shahrasbi, and E. Vitercik

In the rest of the proof, which is available in the extended version of this paper, we show
that all but 12?:6 - 0n chunks are good chunks and have I4 = Ig upon their arrival on

13
Bob’s side and we conclude that the simulated channel is a (?:g 12%357"0, r) -block corruption

channel. For the asymptotically optimal choice of r = 4/(1/9)log(1/§), we derive the
simulation described in the theorem statement. <

The simulation stated in Theorem 11 burdens an additional condition on Alice’s stream of
bits by requiring it to have a limited number of substrings of form 10°~1. We now introduce
a high probability technique to modify a general interactive communication protocol in a
way that makes all substrings of form 10°~! in Alice’s stream of bits fit into nd intervals of

length » = /(1/9) log(1/4).

» Lemma 12. Assume that n rounds of a binary interactive insertion-deletion channel with
an oblivious adversary who is allowed to inject nd errors are given. There is a pre-coding
scheme that can be utilized on top of the simulation introduced in Theorem 11. It modifies the
stream of bits sent by Alice so that with probability 1 — e~ Fne Iog%(“o(l)), all substrings of
form 105~ where s = clog(1/d) in the stream of bits Alice sends over the simulated channel
can be covered by nd intervals of length r = \/(1/6)1log(1/0). This pre-coding scheme comes
at the cost of a ©(4/d1log(1/0)) fraction of the bits Alice sends through the simulated channel.

Proof sketch. In the simulation process, each r/2 consecutive bits Alice sends forms one of
the chunks C4 sends to Cp alongside some headers. The idea of this pre-coding scheme is
simple. Alice uses the first s/2 data bits (and not the header) of each chunk to share s/2
randomly generated bits with Bob (instead of running the interactive protocol) and then
both of them extract a string S’ of /2 (s/2)-wise independent random variables. Then,
Alice XORs the rest of data bits she passes to C'4 with S’ and Bob XORs those bits with S’
again to retrieve the original data. In the extended version, we show that this pre-coding
scheme guarantees the requirements mentioned in the theorem statement. <

Applying this pre-coding for ¢ > 3 on top of the simulation from Theorem 11 implies the
following.

» Theorem 13. Suppose that n rounds of a binary interactive insertion-deletion channel
with a § fraction of insertions and deletions performed by an oblivious adversary are given.
For sufficiently small 6, it is possible to simulate n(1 — ©(1/dlog(1/0))) rounds of a binary
interactive (©(1/81og(1/9)),/(1/8)1og1/8)-block corruption channel between two parties
over the given channel. The simulation works with probability 1 — exp(—O(ndlog(1/9))) and
1s efficient if the synchronization string is efficient.

» Lemma 14. Suppose that n rounds of a binary, interactive, fully adversarial insertion-
deletion channel with a & fraction of insertions and deletions are given. The pre-coding
scheme proposed in Lemma 12 ensures that the stream of bits sent by Alice contains fewer than
nd substrings of form 105~ for s = clog(1/8) and ¢ > 5 with probability 1 — e~ ©(nd10s(1/9))

Theorem 11 and Lemma 14 allow us to conclude that one can perform the simulation
stated in Theorem 11 over any interactive protocol with high probability. Note that one
can trivially extend the results of Theorems 11 and 13 to one-way binary communication by
ignoring the bits Bob sends.

75:11

ICALP 2018

75:12

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

3 Applications: New Interactive Coding Schemes

Efficient Coding Scheme Tolerating 1/44 Fraction of Errors. In this section, we will
provide an efficient coding scheme for interactive communication over insertion-deletion
channels by first making use of large alphabet interactive channel simulation provided in
Theorem 9 to effectively transform the given channel into a simple corruption interactive
channel and then use the efficient constant-rate coding scheme of Ghaffari and Haeupler [14]
on top of the simulated channel. This will give an efficient constant-rate interactive commu-
nication over large enough constant alphabets as described in Theorem 2. We review the
following theorem of Ghaffari and Haeupler [14] before proving Theorem 2.

» Theorem 15 (Theorem 1.1 from [14]). For any constant € > 0 and n-round protocol II there
is a randomized non-adaptive coding scheme that robustly simulates I1 against an adversarial
error rate of p < 1/4 — e using N = O(n) rounds, a near-linear nlogo(l) n computational
complexity, and failure probability 2=

Proof of Theorem 2. For a given insertion-deletion interactive channel over alphabet X
suffering from § fraction of edit-corruption errors, Theorem 9 enables us to simulate n —
2n6(1 + (1 — &’)~1) rounds of ordinary interactive channel with %
symbol by designating log [¥y,| bits of each symbol to index simulated channel’s symbols

with an &’-synchronization string over Ysyn-

fraction of

One can employ the scheme of Ghaffari and Haeupler [14] over the simulated channel as
26(5—3¢’) _ 106 1 1
Tert2e—5 | ,_, — 146 <190 <1

Hence, as long as § = 1/44 — € for € > 0, for small enough &’ = O.(1), the simulated channel
has an error fraction that is smaller than 1/4. Therefore, by running the efficient coding
scheme of Theorem 15 over this simulated channel one gets a constant rate coding scheme for
interactive communication that is robust against 1/44 — ¢ fraction of edit-corruptions. Note

long as error fraction is smaller than 1/4. Note that

that this simulation requires the alphabet size to be large enough to contain synchronization
symbols (which can come from a polynomially large alphabet in terms of ¢’) and also meet
the alphabet size requirements of Theorem 15. This requires the alphabet size to be Q.(1),
i.e., a large enough constant merely depending on €. The success probability and time
complexity are direct consequences of Theorem 15 and Theorem 6.24 from [19]. |

Efficient Coding Scheme with Near-Optimal Rate over Small Alphabets. In this section
we present another insertion-deletion interactive coding scheme that achieves near-optimal
communication efficiency as well as computation efficiency by employing a similar idea as in
Section 3.

In order to derive a rate-efficient interactive communication coding scheme over small
alphabet insertion-deletion channels, simulations described above can be used to simulate
a corruption channel and then the rate-efficient interactive coding scheme for corruption
channels introduced by Haeupler [17] can be used on top of the simulated channel.

» Theorem 16 (Interactive Coding against Block Corruption). By choosing an appropriate
block length in the Haeupler [17] coding scheme for oblivious adversaries, one obtains a robust
efficient interactive coding scheme for (8y,1p)-block corruption channel with communication
rate 1 — ©(y/d max {0y, 1/m,}) that works with probability 1 — 27 9(d%/7s),

Applying the coding scheme of Theorem 16 over the simulation from Theorem 13 implies
the following.

B. Haeupler, A. Shahrasbi, and E. Vitercik

» Theorem 17. For sufficiently small §, there is an efficient interactive coding scheme over
binary insertion-deletion channels which, is robust against § fraction of edit-corruptions by
an oblivious adversary, achieves a communication rate of 1 — ©(1/d1og(1/0)), and works
with probability 1 — 2-©("9)

Moreover, in the extended version, we show that this result is extendable for the fully
adversarial setup, as summarized in Theorem 3.

This insertion-deletion interactive coding scheme is, to the best of our knowledge, the
first to be computationally efficient, to have communication rate approaching one, and to
work over arbitrarily small alphabets.

——— References

1 Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive commu-
nication. In Information Theory (ISIT), 2016 IEEE International Symposium on, pages
595-599, 2016.

2 Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast interactive coding against
adversarial noise. Journal of the ACM (JACM), 61(6):35, 2014.

3 Zvika Brakerski and Moni Naor. Fast algorithms for interactive coding. In Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 443-456, 2013.

4 Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 160-166, 2012.

5 Gilles Brassard, Ashwin Nayak, Alain Tapp, Dave Touchette, and Falk Unger. Noisy inter-
active quantum communication. In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), pages 296-305, 2014.

6 Mark Braverman. Towards deterministic tree code constructions. In Proceedings of the
ACM Conference on Innovations in Theoretical Computer Science (ITCS), pages 161-167,
2012.

7 Mark Braverman and Klim Efremenko. List and unique coding for interactive communic-
ation in the presence of adversarial noise. STAM Journal on Computing, 46(1):388-428,
2017.

8 Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for interactive
communication correcting insertions and deletions. IEEE Transactions on Information
Theory, 63(10):6256-6270, 2017.

9 Mark Braverman and Anup Rao. Toward coding for maximum errors in interactive com-
munication. IEEE Transactions on Information Theory, 60(11):7248-7255, 2014.

10 Klim Efremenko, Gelles Ran, and Haeupler Bernhard. Maximal noise in interactive com-
munication over erasure channels and channels with feedback. IEEE Transactions on In-
formation Theory, 62(8):4575-4588, 2016.

11 Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman. Optimal
coding for streaming authentication and interactive communication. IEEE Transactions
on Information Theory, 61(1):133-145, 2015.

12 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 768-777, 2011.

13 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication.
IEEFE Transactions on Information Theory, 60(3):1899-1913, 2014.

14 Mohsen Ghaffari and Bernhard Haeupler. Optimal error rates for interactive coding ii:
Efficiency and list decoding. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS), pages 394-403, 2014.

75:13

ICALP 2018

75:14

Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

15

16

17

18

19

20

21

22

23

24

25

Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for interactive
coding i: Adaptivity and other settings. In Proceedings of the Annual Symposium on Theory
of Computing (STOC), pages 794-803, 2014.

Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961-1970, 2017.

Bernhard Haeupler. Interactive channel capacity revisited. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS), pages 226-235, 2014.

Bernhard Haeupler and Ran Gelles. Capacity of interactive communication over erasure
channels and channels with feedback. In Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1296-1311, 2015.

Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for in-
sertions and deletions approaching the singleton bound. In Proceedings of the Annual
Symposium on Theory of Computing (STOC), 2017.

Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Explicit con-
structions, local decoding, and applications. In Proceedings of the Annual Symposium on
Theory of Computing (STOC), 2018.

Gillat Kol and Ran Raz. Interactive channel capacity. In Proceedings of the Annual Sym-
posium on Theory of Computing (STOC), pages 715-724, 2013.

Leonard J. Schulman. Communication on noisy channels: A coding theorem for compu-
tation. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 724-733, 1992.

Leonard J. Schulman. Deterministic coding for interactive communication. In Proceedings
of the Annual Symposium on Theory of Computing (STOC), pages 747-756, 1993.
Leonard J. Schulman. Postscript to “Coding for interactive communication”. [Online; ac-
cessed 17-March-2017], 2003. URL: http://users.cms.caltech.edu/~schulman/Papers/
intercodingpostscript.txt.

Alexander A. Sherstov and Pei Wu. Optimal interactive coding for insertions, deletions,
and substitutions. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 240-251, 2017.

