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—— Abstract

The noisy broadcast model was first studied by [10] where an n-character input is distributed
among n processors, so that each processor receives one input bit. Computation proceeds in
rounds, where in each round each processor broadcasts a single character, and each reception
is corrupted independently at random with some probability p. [10] gave an algorithm for all
processors to learn the input in O(loglogn) rounds with high probability. Later, a matching
lower bound of Q(loglogn) was given by [11].

We study a relaxed version of this model where each reception is erased and replaced with
a ‘7" independently with probability p, so the processors have knowledge of whether a bit has
been corrupted. In this relaxed model, we break past the lower bound of [11] and obtain an
O(log" n)-round algorithm for all processors to learn the input with high probability. We also
show an O(1)-round algorithm for the same problem when the alphabet size is Q(poly(n)).
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1 Introduction

In recent years, it is becoming increasingly common for computational tasks to be performed
by multiple processors in a distributed fashion. The communication channels of these
networks may have imperfections, which introduces noise to the system.

A formal version of a noise model was proposed by [7]: There are n processors: 1,2,...,n
and each processor is given a bit. In each round, every processor broadcasts a bit to all other
processors. Every processor will receive the correct message with some probability, and may
receive a different (corrupted) message independently with probability p < 1/2 (i.e., each
reception gets corrupted with probability p). The goal is for the processors to collectively
compute the XOR of all their inputs. An algorithm that takes O(loglogn) rounds for all
processors to learn the full input (and hence the XOR as well) was found by [10]. A matching
lower bound of Q(loglogn) rounds was proven by [11].

All of the prior works were concerned with substitution errors. In this paper, we study
such networks in the presence of erasure errors, where instead of messages getting corrupted
into other messages, instead messages may get dropped. Specifically, we study the following
model: in a single round each processor can broadcast a single bit b to all other processors.
For each ordered pair (i,7), independently with some probability p, the character that i
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transmitted is not received by j and a ‘?’ is received instead. In other words, there is a
string X € {0,1}" and processor i is given the ith bit of X, called z;, and the goal is for
each processor to learn X using as few rounds of communication as possible. We call our
noise model the erasure model.

1.1 Our results

We show that for any alphabet, each processor can learn the inputs of all other processors
with high probability within O(log" n) rounds. At the high level, the algorithm involves
recursively running the protocol on groups of size logn, and having each group encode its
input using a constant rate and constant relative distance error correcting code. Then, the
group collectively transmits this encoded string within a constant number of rounds. It
can be shown that with high probability every processor receives enough bits to decode the
group’s input. There are groups for which not enough processors learn the full string (i.e.,
the recursive call fails), and some technical steps are needed to handle these ‘failed groups’
The protocol is described in full detail in section 2.

We note that in the presence of substitution errors, it was proven in [11] that Q(loglogn)
rounds are required for all processors to learn the whole input. Since we show a O(log™(n))
algorithm for the problem in the presence of erasure errors, this shows a fundamental
difference between substitution errors and erasure errros in the broadcast model.

We then show that when the alphabet is of polynomial size, there is an O(1) round
algorithm for every processor to learn the full input. The algorithm involves treating the
alphabets as elements of a finite field F,, and simulating multiplying the input vector with
an appropriate random matrix. Then , the processors receive a random system of linear
equations which one can show has a unique solution with high probability.

We then show that any symmetric function of the input can be computed within a
constant number of rounds via computing the Hamming weight.

1.2 Related Work

A related problem was studied in [10] where the broadcast model assumed was sequential,
where in one round only one processor can broadcast a bit. Additionally, the noise model
assumed was that of bit flips instead of erasures. That is, each transmitted bit is independently
flipped with probability p on the receiving end. In their model, [10] shows that all the
processors can learn the entire input within O(loglogn) rounds. However, it left open the
question of whether a faster protocol was possible.

The model of [10] was studied further in [11] where a lower bound of Q(nloglogn) was
proven for the total number of broadcasts, thereby establishing that Gallager’s protocol
is optimal up to constant factors. The lower bound is proved via a reduction to another
model called the generalized noisy decision tree, which is a variant of the noisy decision tree
model introduced in [9]. [11] also studies whether more efficient protocols exist when the
processors only want to compute some specific function on the entire input and shows that
the Hamming weight can be computed with constant probability within O(n) broadcasts.

We note that it follows from the lower bound in [11] that in a variant of our model
where one considers substitution errors instead of erasure errors, any protocol from which all
the processors learn the entire input must take Q(loglogn) rounds. In light of this lower
bound, our result of an O(log™ n) protocol is interesting, as it shows a fundamental difference
between substitution and erasure errors in this broadcast model.
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Recently, a work by Efremenko, Kol, and Saxena [6] showed that under a model where
the processors can adaptively choose which processor will speak in each round, the lower
bound of [11] breaks down.

Note that the work of Gallager [10] shows that in the substitution model where a
single processor broadcasts to the rest in a round, any function can be computed within
O(nloglogn) rounds. A work by Kushilevitz and Mansour [14] studies the question of which
Boolean functions can be computed within O(nloglogn) broadcasts. They determine that
threshold functions can be computed with constant probability within O(n) broacasts.

A paper by Feige and Killian [8] studied a harsher noise model than [10], where an
adversary can arbitrarily ‘uncorrupt’ arbitrary corrupted bits, causing the noise to lose
structure. In this harsher model, they show an O(log™ n) round protocol to compute the OR
of all input bits. Newman [16] studies another noise model where each bit transmitted is
independently flipped with an unknown probability that is at most p and gives algorithms
that use O(n) broadcasts and O(log* n) rounds for certain classes of Boolean functions,
including OR, AND, and functions with linear size ACq formulas.

In [1], the authors show efficient protocols to handle errors in the UCAST model, in which
instead of broadcasting bits, a processor can send a different message to each other processor.
They also show efficient protocols to handle errors when the communication network has
certain expansion properties. For general graphs of low degree, a protocol for handling errors
was found in [17], which was later shown to be optimal in [3].

Our model in the absence of errors is known as the Broadcast Congested Clique, which is a
computational model often studied in distributed computing (see for example, [5, 15, 4, 2, 12].
In this model, n processors each get a piece of the input, and they work together to compute
some function of this shared input. Computation proceeds in rounds, where in each round
each processor can broadcast a short message to all other processors. Our work can be
interpreted as showing that when using messages of constant size, every protocol in the
Broadcast Congested Clique can be made resilient to erasure errors with a blowup of only
O(log™(n)). In the case where messages are of logarithmic size, we show the Broadcast
Congested Clique can be made resilient to erasure errors with only a constant blowup.

1.3 Notation and conventions

In this section, we state some notational conventions we use. First, we describe the computa-
tional model (without erasures), and then we formally define the model we consider with
erasures.

The Computational Model: In a setting with n processors, each processor is identified
with a distinct number in [n]. Given a string X, which we denote using an upper case character,
we write the ith bit as z;, using the corresponding lower case character. To denote the
substring of X starting at position ¢ and ending in position j we write X|; ;). When we wish
to compute some function of a n-bit string X using n processors, assume x; is provided
as input to processor i. In the description of algorithms, ALGO(z1,...,x,) refers to an
algorithm that runs on n processors where the ¢th processor is given x; as input.

In all our algorithms, we assume that each broadcast is repeated v times where «y is some
appropriately chosen constant.

Formally, we have:

» Definition 1. We let the noisy parallel broadcast model be a model of computation where
there are n processors Py, ..., P,, and P; receives input bit z;. In each round of computation,
each processor can broadcast one bit to all other processors. Each reception is corrupted
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)

with some constant probability 0 < p < 1, in which case the character ‘7’ is received instead

of the bit which was sent.

In this paper, we study the complexity of computing certain functions in the above model.
Specifically, for constant erasure probability p we show a bound of O(log*(n)) for computing
any function, and a bound of O(1) for symmetric functions.

As part of our algorithm we use error correcting codes, so we include standard results and
notations for codes below: Error Correcting Codes: An error correcting code is described
by functions Enc : {0,1}" — {0,1}* and Dec : {0,1}* — {0,1}" with the property that
Dec(z) maps to the string y for which Enc(y) is the closest string to « in C = Image(Enc).

The rate of an error correcting code is defined as % and the relative distance is defined as
%Cd(w d(z’y) is referred to as the decoding radius.

We use the result of [13] that error correcting code families of constant rate and constant
relative distance exist. In particular, for the sake of this paper, we assume the existence of an
error correcting code family E with relative distance 0.25 and rate some absolute constant K.

. The quantity

2 An O(log" n) algorithm for computing any function

We consider the following message-passing model. There are n processors, and in each round,
every processor transmits a single bit b to all other processors. Each processor receives each
bit independently and at random with probability 1 — p. With probability p, the character
‘7 is received instead. If each processor starts with a single input bit, we ask how many
rounds are required so that every processor knows all input bits with high probability. We
show a bound of O(log™(n)) for this problem. Specifically, we will show:

» Theorem 2. For every 0 < p < 1, there is an algorithm in the noisy broadcast parallel
erasure model that computes ID,, with high probability within O(log"(n)log ﬁ) rounds.

Without loss of generality, we assume that p < 0.01, since for any erasure probability p < 1,
repeating each message O(log ﬁ) times can be used to effectively lower the probability of
receiving ‘?’. We describe our algorithm for the case where the alphabet ¥ = {0,1}. The
protocol generalizes to larger alphabets in a straightforward manner.

We describe a protocol for n processors with the guarantees: at the end of the protocol,
all n processors can output the full string C' with probability at least 1 — #, and if the
protocol fails (that is, there is some processor who cannot output the full string C), then all
n processors can output ‘1’ with probability at least 1 — 2% For the rest of this section, we
assume n > ng for a sufficiently large ng.

We begin by describing algorithms for simpler subproblems.

» Lemma 3. Let b; be the input to processor i, and let the erasure probability p be .01. Then
there is an O(1)-round algorithm and an absolute constant a such that all processors output
the AND of all b; with probability at least 1 — 27",

Proof. Algorithm: The algorithm is as follows: in each round, a processor i broadcasts ‘0’
either if z; = 0 or if processor 7 has received at least one ‘0’ in at least one of the previous
rounds. Otherwise, processor i boradcasts 1. This is repeated for 100 rounds.

Processor j’s output is the AND of all bits it received.

Analysis: First, note that if all of the b; = 1, then all processors must output 1, no
matter what messages were corrupted, since all received bits of all processors must be 1.
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Algorithm 1: EQUALITYTEST(S1, ..., Sn).

Enc is the encoding function of a code C with relative distance 0.25 and constant rate K.

1. Transmit (Enc(S;))[i—1)k+1,ikx] over K rounds

2. Let A:; be the K-bit string received from processor ¢t and A; = Ay ;As;... Ay ;.
Set ¢; to 1 if Hamming distance between A; and Enc(S;) is at most 0.06 Kn and 0
otherwise

3. The processors run the AND protocol from Lemma 3 and output the AND of all ¢;

Now, suppose there is an ¢ for which b; = 0. Let ¢ be the number of processors that
received the transmission of ¢ in the first round. The probability that processor j receives
only 1s in the second round is at most p.

We can use Hoeffding’s inequality to obtain

n ’
P [t<—}< —a'n
r 2 s €

for some constant o/. Thus, the probability that there is some j that received only 1’s even
if there is a processor with a 0 is at most n(e*”‘/" + p™?), bounded above by e~*" for a
constant «. |

We note that the above protocol does not work in the substitution model (the model
where a message may be flipped with small probability, as opposed to being corrupted to a
‘7). In fact, in [11] it was proven that computing the AND function with high probability in
the substitution model requires 2(loglogn) rounds.

We next show an O(1) round algorithm for EQuALITY TESTING. Each processor is given
an n-bit string S; as input, and the goal is for all processors to output 1 if all their inputs
are equal and 0 otherwise with probability at least 1 — 2=2(") Unless otherwise specified,
each step of the algorithm is from the view of processor i. Roughly speaking, this step will
be used in the main algorithm to verify that all processors end up with the same output
string S.

» Lemma 4. When the erasure probability p < .01, Algorithm 1 correctly solves EQUALITY
TESTING with probability at least 1 — 275" for some absolute constant /3.

Proof. Let A be the string collectively transmitted by all processors in Step 1. We know
d(Enc(S;),Enc(S;)) < d(Enc(S;), Ai) + d(A;, A) + d(A, A;) + d(A;, Enc(S;))
< 2(d(Enc(S;), A;) + d(Enc(S;), 4;))

where the second inequality is because d(A, A;) is the number of ‘?’s received, and lower
bounds d(Enc(S;), 4;).

If both d(Enc(S;), A;) and d(Enc(S;), A;) are at most 0.06 Kn, then d(Enc(S;), Enc(S;))
is at most 0.24Kn, but since they are codewords of a code with relative distance 0.25,
Enc(S;) = Enc(S;), implying S; = S;. So if there is a pair 7, j with S; # S}, then either ¢; or
c; must be 0. And then from Lemma 3, with probability at least 1 — e~*", the processors
correctly detect that there is a ¢; equal to 0.

On the other hand, if all the strings are indeed equal, then c; is 0 only if processor j
receives fewer than 0.94Kn bits. We upper bound the probability that this happens by using
Chernoff bound along with a union bound over all processors.

nPr[processor i receives fewer than 0.88Kn bits] < ne™® " < e~

where o’ is some constant. We let § = min{a, o'} <
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Let X = x122... 2, be the input string and processor i is given x; and is required to
output a tuple (X;,s;), where X; an n-bit string and s either 1, indicating success or 0,
indicating failure, with the goal of having all X; = X and all s; = 1. We say that an
algorithm on a group of processors succeeded if X; = X and s; = 1 for all 4, failed with
knowledge if r; = 0 for all 4, and failed without knowledge otherwise. We describe an
algorithm for this problem where each step is from the view of processor i unless otherwise
specified. Recall that each broadcast is repeated v times to effectively reduce the erasure
probability p to be at most .01. For simplicity, we assume that n is a power of 2, and so
logn is an integer. It is easy to generalize the algorithm to all values of n.

At the high level, the algorithm proceeds as follows. We partition the processors into
n/logn sets of size logn each (Step 2a). Then, we recursively compute the input on each of
these subsets. Now, some of these subsets will have succeeded, and some will have failed.
For the ones that failed, we now recompute the input, but this time we add more processors
to be “helper processors'. That is, the processors which succeeded in the recursive calls will
now be used to aid the processors who failed in the recursive call by sending messages on
their behalf. This can be seen in Step 2g, where the processor sends x,,, which is the input
to a processor which failed on the recursive call. This idea of using successful processors
to help others who failed helps ensure that within a constant number of tries, with high
probability all input bits will be known.

We now prove the following proposition, from which Theorem 2 immediately follows.

» Proposition 5. Algorithm 2 runs in O(log™ n) rounds, succeeds (i.e., each processor outputs

y , wnere 18 € impu 0 ALt Processors) wi prooaovity at teas — == an als withou
X, 1), where X is the input to all ith probability at least 1 — & and fails without

nd
knowledge with probability at most 2%

Proof. We list conditions under which the protocol definitely succeeds, and show all these
1

no"

Step 2a. Define M as all j such that @ < j < % where z is the number of 0’s in R.
The protocol definitely succeeds if the following conditions hold:

1. All but at most log’é, — groups succeed in the recursive call of Step 2a.

. No group fails without knowledge in the recursive call of Step 2a, and R; = R for all i.

3. For all j such that (R); = 0, for all 4, processor ¢ receives at least one transmission from
a processor in My, ; in Step 2g where the £;th 0 in R occurs at (R);.

4. Each processor receives at least 0.88K logn bits from each successful group in at least

one transmission in Step 2d of the algorithm.

conditions hold with probability at least 1 —

Define R as rirh...r}, from the output of

N

Indeed, for any j in a successful group, all processors correctly learn the input to processor
j because Condition 4 is met. By Condition 2, for fixed s, M;; is the same for all i since
M, ; depends on R;. For any j in a failed group, by Condition 2, (R); = (R;); = 0, and by
Condition 3, each processor receives at least one transmission of processor j’s input in Step
2g and so all processors correctly learn the input to processor j.

We now proceed with showing a lower bound on the probability that all of these conditions
hold.

We can see that Condition 1 holds with probability at least 1 — # since by Chernoff
bounds, the number of failed groups exceeds longn with probability at most #

Now suppose Condition 1 holds. A group fails without knowledge with probability at
most % by the guarantees of the protocol. The probability that there exists a group that
failed without knowledge, by the union bound, is therefore at most # If no group failed
without knowledge, the only way R; cannot equal R is if there is a group M; ; that processor

1 did not receive a single bit from. The probability that processor ¢ does not receive a single
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Algorithm 2: LEARNINPUT(z1,...,2y).
Enc is the encoding function of a code C with relative distance 0.25 and constant rate K

1. Base Case: If n < 100
a. Transmit z; repeatedly 100 times, and set string S; as per

(s {b if b was received in any transmission from j
i)j =

random bit if all transmissions from j are ‘7’

and go to Step 3a.
2. Recursive Step:
a. Recursively obtain (X/, ;) = LEARNINPUT (xL

R

@J logn+17° " ’xbo;nJ logn+logn>'

We call this set of processors the group of i.

b. Broadcast 7

c. Set R; by setting (R;); to 1 if only 1’s were received from j’s group (i.e., from
the processors which j computed the recursive call with) and 0 otherwise, for each
Jj € [n].

d. Let i’ = i modlogn and transmit Enc(X])(i—1)x+1,# k] over the next K rounds.

e. Let z; be the number of zeros in R; and let j = [%W and let ¢; be the index of
the jth zero in R;. Create set M ; to be all ¢ such that

n(s—1) <t< ns
Zq Zi

f. Transmit z;.

g. Broadcast what was received from #¢;, which is either ‘?’ or x,. Let MJ’I be the
set of characters received from M ;.

h. Set X; by setting (X;); to ; if j =4, by decoding the bits received in Step 2d
if (R;); =1 and at least 0.88K logn bits were received from the group of j, to a
random bit if (R;); = 1 and fewer than 0.88K logn bits were received from group
j in Step 2d, and to 11€My/\i if (R;); = 0. Proceed to Step 3a.

3. Verification of output
a. Obtain v; = EQUALITYTEST(X1,...,X,) and output (X;, v;).

bit from this group is p?'°8™, which for appropriate v is at most % Thus, the probability
that there is some 14, j pair such that processor i does not receive a single bit from group j is
at most n% by a union bound. So the probability that Condition 2 is not met (given that
Condition 1 is met) is at most 3.

Note that R; = R means M, = M, ; for all i. It follows from Chernoff bounds that the
number of processors in My that receive the bit transmitted by processor s is at least logn
with probability at least 1 — n% The probability that processor i does not receive any bits
from processors in M, in any of the repetitions of Step 2g is at most p?'°8™, which can be
made smaller than % by setting v to be large enough. Now by taking a union bound over

all pairs (¢, s) we can conclude that Condition 3 does not hold with probability at most %

The probability that processor 7 receives fewer than 0.88K logn bits from group j in all
repetitions of Step 2d is at most nlw for some constant ¢ by Chernoff bounds. A union bound
across all processor-group pairs tells us that Condition 4 does not hold with probability at

most ﬁ which can be made smaller than n% with large enough ~.
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Algorithm 3: LEARNINPUTLARGEALPHABET(Z1, ..., Zy).

Let F' be a function that encodes subsets of [6logn| as elements of F,

1. Let k = [6logn] and determine B; = {2 +1,..., %}, where j is chosen such
that i € B;

2. Broadcast x; for 10 rounds

3. For each t from 1 to 10 and for each processor in B; from which an entry was received

in round t of Step 2, choose the processor with probability and choose 7 with

1
2(1-p)
probability % Let T} ; be the set of chosen elements.
4. For the next 20 rounds, processor i transmits all the >, 7. ~x (where the x} are

added as elements of F,;) and F(T; ;)
5. Output X; consistent with all received pairs (ZbeTm Ty, F(Tt,i)). If there is more
than one possibility for such an X;, pick one at random.

Based on the bounds we obtained on the probability that each of Conditions 1, 2, 3,
4 don’t hold, we can conclude that the probability that all the conditions hold is at least
1— 4.

It remains to show that the probability that the processors failed without knowledge is at
most 277", If there is X; such that X; # X, then it differs from X in some index j, which
means (X;); # (X;); by construction of X; implying X; # X;. Thus, a failure without
knowledge happens only if Step 3a fails, which happens with probabilty at most e=#", which
can be made smaller than 2~7" by choosing the number of repetitions « to be a large enough
constant.

The number of rounds this algorithm takes is given by T'(n), which satisfies the recurrence
relation T'(n) = T'(logn) + L where L is a constant and with base case T'(100) = O(1), which
solves to T'(n) = O(log™ n). <

3 An O(1) algorithm for large alphabets

For large alphabets, in the regime where the alphabet ¥ is Fy and ¢ = poly(n), we give a
constant round algorithm to have all processors learn the input X with probability at least
1-— ﬁ(n)' Unless otherwise specified, the algorithm is from the view of processor i. While
our algorithm works for any ¢ that is polynomial in n, for simplicity of exposition we assume

g > n% and that ¢ is a prime.

» Theorem 6. With probability at least 1 — m, after running Algorithm 3, all processors
will know all other processors’ inputs. Furthermore, the algorithm terminates within O(1)
rounds.

As a first ingredient towards proving Theorem 6, we prove the following lemma.

» Lemma 7. If A is a 5k X k random binary matriz where each entry is i.i.d. generated by
flipping a fair coin, then with probability at least 1 — e~ A is full rank.

Proof. Suppose V is a subspace of IF’; that is not equal to all of IF’;, then we can find standard
basis vector e; that is not in V. Then for any binary vector v, consider v’ with the bit at the
i-th coordinate flipped. Either v or v’ is not in V, which means at least half of the binary
vectors are not in V', which means each new vector has probability at least % of not being in
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V. If we let V = span{vectors drawn so far}, then each draw has a probability at least % of
increasing the dimension. Suppose we flip 5k coins, the probability that the number of heads
is at most k is an upper bound on the probability of the span of 5k randomly drawn vectors
not being the whole space.

By Chernoff bounds, this probability is at most e~04%. <

Proof of Theorem 6. Each T} ; is a uniformly random subset of input bits of set B;. Let xp,
be a k-dimensional vector of the inputs to processors in B;, then the transmitted characters
in Round 5 are of the form ((ap,,zp,), F'(T},)) where ap, is a random binary vector, and
F(T};) is an encoding of ap,. The transmitted characters can be viewed as elements in the
vector Axp,, where A is a matrix whose rows are the ap,. A single processor’s output of
xp, is given by sampling rows of the equation Ayp, = Axp, where yp, is indeterminate
and solving for yp,. If the number of sampled rows is at least 5k, then from Lemma 7 the
probability that the sampled rows span IE'"; and hence give a unique solution to yp, is at least
1— 3.

The probability that the number of sampled rows for a group is less than 5k can be upper
bounded by 25 using Chernoff bounds.

nb

So by union bound over all group-processor pairs (i.e., all pairs (¢, B;)), we get a m
upper bound on the failure probability. |
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A An O(1) protocol for computing any symmetric function

We show that any symmetric function can be computed within O(1) rounds in the model.
Symmetric functions are functions whose value doesn’t change under permutation of the
input bits. In other words, these functions only depend on the Hamming weight of the input
string. Hence, an algorithm for every processor to learn the Hamming weight of the string
leads to an algorithm to compute any symmetric function. Our algorithm is inspired by a
similar algorithm (for a different model) of [11].

» Theorem 8. There is an O(1) round algorithm in the noisy broadcast parallel erasure
model that computes Hamming Weight(X) with probability at least 0.75.

Our algorithm proceeds in two phases:

1. Divide the interval [0,n] into subintervals of length ¢y/n and find which interval the
Hamming weight belongs to.

2. Figure out exactly which integer in the interval is the Hamming weight.

More precisely, the first step will give us three intervals, and we will show for at least two
of these intervals, with high probability all processors will end up with the same interval.
Then, we will run the second step (where we pinpoint the exact Hamming weight) on each of
the three intervals, and take a majority vote to compute the final output.

We describe the first step below:

» Lemma 9. With probability at least 1 — exp(—Q(n)), for at least two t in {1,2,3}, all
Ci+ outputted in Step 4 of Algorithm 4 are equal and correspond to an interval containing
Hamming Weight(X).

Proof. By Chernoff bounds, the probability that h; deviates from the truth by ¢\/n is at
most e~C*” for an absolute constant C. This can be made smaller than 0.01 with appropriate
choice of a constant t. Then for at least two values of s, h; lies in the correct interval in B
with probability at least 0.99. Without loss of generality, say this happens for s = 0 and
s = 1. Using Chernoff bounds, we can show that for some constant ¢, with probability at
least 1 — exp(—Q(n)), at least 0.95 fraction of the processors decode the correct interval in
Bo and Bl.
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Algorithm 4: DETERMINEINTERVAL(Z1, . .., Zp).

Ay, As, ..., Ay are disjoint intervals of size & 2¢\/n covering [0, n|, with ¢ chosen later.
Let A; be @ifi<1lori>k.

Bi = 14Z @] Ai+1 @] Ai+2.

Bs:={B;:i=smod 3}.

Enc is the encoding function of a code with relative distance 0.25 and constant rate K.

1. Transmit x;
2. Compute h; :=
3. For s =0,1,2:
a. Find interval in B, containing h;, called I. I is encoded as a string s; (of size
O(logn)).
b. Let i’ =i modlogn and transmit Enc(ss)(x(i'—1)+1,x4] over K rounds

number of 1’s received
1-p

€ O St if at least .88K logn bits were received in Step 3b
B decoded string if fewer than .88K logn bits were received in Step 3b

4. Return Ci,(), Ci,l and Ci72.

And assuming at least 0.95 fraction of the processors decode the correct intervals in By
and B;, we can show once again using Chernoff bounds and union bound, that the number
of bits from the encoded string of the correct interval received by each processor is more
than 0.9Kn with probability at least 1 — exp(—(n)), which means with exponentially high
probability, every processor decodes the correct interval in By and Bj. |

For the second step, our goal is the following: given that every processor knows an interval
[a,b] in which the Hamming weight of the input string lies, it can recover the value of the
Hamming weight in O(1) rounds.

» Lemma 10. On running Algorithm 5, all processors return the Hamming weight s of X
with probability at least 0.9.

Proof. Define 675 to be the fraction of §; transmitted in Step 3 that are 1.
We can lower bound 6,11 — 6y for x < ¢ < y by ﬁ where ¢ is some constant [11,

Lemma 41]. The probability that |0 — §5| is at most ﬁ can be made at least 0.99 with an

appropriate choice of the number of repetitions . Similarly, we can ensure that |§5 - 5371-\ is

at most ﬁ with probability at least 0.99.

By Chernoff bounds, the fraction of processors for which |§5 — §“| < S\C/ﬁ is at least 0.95

with probability at least 1 — exp(—£(n)). Thus, conditioned on |6; — 8] < g we have

that for at least 0.95 of the processors, |05 — 5“| < 4%/5. Further, the string 51.55....5,
transmitted in Step 6 with random erasures has distance less than the decoding radius of C
of Enc(s) with probability at least 1 — exp(—Q(n)), in which case all processors can correctly
output s.

Since the condition |0, — §é| < <%= holds with probability at least 0.99, the required

8v/n
guarantees of the Lemma hold. <

Proof of Theorem 8. The processors run Algorithm 4 to obtain 3 candidate intervals Iy, I
and I3, and with exponentially high probability, at least two of these candidate intervals
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Algorithm 5: PINPOINTWEIGHT(21, 2, . . . , Zn; [a, b]).

[a, b] is the interval of length up to 3/n where the Hamming weight is promised to lie
Enc is the encoding function of a code C with relative distance 0.25 that maps logn bit
strings to K logn bit strings

Let 65 be defined as the probability that when flipping s coins, each coming up heads
with probability 1 — p, at least (1 — p) (C‘T'H’) come up heads.

1. Transmit x;
Let Y be the number of 1’s received.
2. 8, = 1 if number of 1’s received is greater than (1 — p) (%£2)
S 0 otherwise

3. Transmit j3;

4. Let 55,2- be the fraction of received bits from Step 3 that are 1 (i.e., the total number
of 1’s received, divided by the total number of 1’s or 0’s received).

5. 5, = argming |0, — §SZ|

6. Let i’ =i modlogn and transmit Enc(5;)(x(i—1)+1,k] over K rounds

7 3 {decoded string if at least .88 K logn bits were received in Step 6

S; if fewer than .88K logn bits were received in Step 6

contain the Hamming weight. The processors run Algorithm 5 on each of the three intervals
and processor ¢ obtains outputs ng,n; and ns respectively. With constant probability, at
least two of ng,n; and ngy are the same and equal to the correct Hamming weight, and hence
outputting the majority of the three matches the guarantee. |



