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Abstract

The noisy broadcast model was first studied by [10] where an n-character input is distributed

among n processors, so that each processor receives one input bit. Computation proceeds in

rounds, where in each round each processor broadcasts a single character, and each reception

is corrupted independently at random with some probability p. [10] gave an algorithm for all

processors to learn the input in O(log log n) rounds with high probability. Later, a matching

lower bound of Ω(log log n) was given by [11].

We study a relaxed version of this model where each reception is erased and replaced with

a ‘?’ independently with probability p, so the processors have knowledge of whether a bit has

been corrupted. In this relaxed model, we break past the lower bound of [11] and obtain an

O(log∗ n)-round algorithm for all processors to learn the input with high probability. We also

show an O(1)-round algorithm for the same problem when the alphabet size is Ω(poly(n)).
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1 Introduction

In recent years, it is becoming increasingly common for computational tasks to be performed

by multiple processors in a distributed fashion. The communication channels of these

networks may have imperfections, which introduces noise to the system.

A formal version of a noise model was proposed by [7]: There are n processors: 1, 2, . . . , n

and each processor is given a bit. In each round, every processor broadcasts a bit to all other

processors. Every processor will receive the correct message with some probability, and may

receive a different (corrupted) message independently with probability p < 1/2 (i.e., each

reception gets corrupted with probability p). The goal is for the processors to collectively

compute the XOR of all their inputs. An algorithm that takes O(log log n) rounds for all

processors to learn the full input (and hence the XOR as well) was found by [10]. A matching

lower bound of Ω(log log n) rounds was proven by [11].

All of the prior works were concerned with substitution errors. In this paper, we study

such networks in the presence of erasure errors, where instead of messages getting corrupted

into other messages, instead messages may get dropped. Specifically, we study the following

model: in a single round each processor can broadcast a single bit b to all other processors.

For each ordered pair (i, j), independently with some probability p, the character that i
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transmitted is not received by j and a ‘?’ is received instead. In other words, there is a

string X ∈ {0, 1}n and processor i is given the ith bit of X, called xi, and the goal is for

each processor to learn X using as few rounds of communication as possible. We call our

noise model the erasure model.

1.1 Our results

We show that for any alphabet, each processor can learn the inputs of all other processors

with high probability within O(log∗ n) rounds. At the high level, the algorithm involves

recursively running the protocol on groups of size log n, and having each group encode its

input using a constant rate and constant relative distance error correcting code. Then, the

group collectively transmits this encoded string within a constant number of rounds. It

can be shown that with high probability every processor receives enough bits to decode the

group’s input. There are groups for which not enough processors learn the full string (i.e.,

the recursive call fails), and some technical steps are needed to handle these ‘failed groups’.

The protocol is described in full detail in section 2.

We note that in the presence of substitution errors, it was proven in [11] that Ω(log log n)

rounds are required for all processors to learn the whole input. Since we show a O(log∗(n))

algorithm for the problem in the presence of erasure errors, this shows a fundamental

difference between substitution errors and erasure errros in the broadcast model.

We then show that when the alphabet is of polynomial size, there is an O(1) round

algorithm for every processor to learn the full input. The algorithm involves treating the

alphabets as elements of a finite field Fq, and simulating multiplying the input vector with

an appropriate random matrix. Then , the processors receive a random system of linear

equations which one can show has a unique solution with high probability.

We then show that any symmetric function of the input can be computed within a

constant number of rounds via computing the Hamming weight.

1.2 Related Work

A related problem was studied in [10] where the broadcast model assumed was sequential,

where in one round only one processor can broadcast a bit. Additionally, the noise model

assumed was that of bit flips instead of erasures. That is, each transmitted bit is independently

flipped with probability p on the receiving end. In their model, [10] shows that all the

processors can learn the entire input within O(log log n) rounds. However, it left open the

question of whether a faster protocol was possible.

The model of [10] was studied further in [11] where a lower bound of Ω(n log log n) was

proven for the total number of broadcasts, thereby establishing that Gallager’s protocol

is optimal up to constant factors. The lower bound is proved via a reduction to another

model called the generalized noisy decision tree, which is a variant of the noisy decision tree

model introduced in [9]. [11] also studies whether more efficient protocols exist when the

processors only want to compute some specific function on the entire input and shows that

the Hamming weight can be computed with constant probability within O(n) broadcasts.

We note that it follows from the lower bound in [11] that in a variant of our model

where one considers substitution errors instead of erasure errors, any protocol from which all

the processors learn the entire input must take Ω(log log n) rounds. In light of this lower

bound, our result of an O(log∗ n) protocol is interesting, as it shows a fundamental difference

between substitution and erasure errors in this broadcast model.
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Recently, a work by Efremenko, Kol, and Saxena [6] showed that under a model where

the processors can adaptively choose which processor will speak in each round, the lower

bound of [11] breaks down.

Note that the work of Gallager [10] shows that in the substitution model where a

single processor broadcasts to the rest in a round, any function can be computed within

O(n log log n) rounds. A work by Kushilevitz and Mansour [14] studies the question of which

Boolean functions can be computed within O(n log log n) broadcasts. They determine that

threshold functions can be computed with constant probability within O(n) broacasts.

A paper by Feige and Killian [8] studied a harsher noise model than [10], where an

adversary can arbitrarily ‘uncorrupt’ arbitrary corrupted bits, causing the noise to lose

structure. In this harsher model, they show an O(log∗ n) round protocol to compute the OR

of all input bits. Newman [16] studies another noise model where each bit transmitted is

independently flipped with an unknown probability that is at most p and gives algorithms

that use O(n) broadcasts and O(log∗ n) rounds for certain classes of Boolean functions,

including OR, AND, and functions with linear size AC0 formulas.

In [1], the authors show efficient protocols to handle errors in the UCAST model, in which

instead of broadcasting bits, a processor can send a different message to each other processor.

They also show efficient protocols to handle errors when the communication network has

certain expansion properties. For general graphs of low degree, a protocol for handling errors

was found in [17], which was later shown to be optimal in [3].

Our model in the absence of errors is known as the Broadcast Congested Clique, which is a

computational model often studied in distributed computing (see for example, [5, 15, 4, 2, 12].

In this model, n processors each get a piece of the input, and they work together to compute

some function of this shared input. Computation proceeds in rounds, where in each round

each processor can broadcast a short message to all other processors. Our work can be

interpreted as showing that when using messages of constant size, every protocol in the

Broadcast Congested Clique can be made resilient to erasure errors with a blowup of only

O(log∗(n)). In the case where messages are of logarithmic size, we show the Broadcast

Congested Clique can be made resilient to erasure errors with only a constant blowup.

1.3 Notation and conventions

In this section, we state some notational conventions we use. First, we describe the computa-

tional model (without erasures), and then we formally define the model we consider with

erasures.

The Computational Model: In a setting with n processors, each processor is identified

with a distinct number in [n]. Given a string X, which we denote using an upper case character,

we write the ith bit as xi, using the corresponding lower case character. To denote the

substring of X starting at position i and ending in position j we write X[i,j]. When we wish

to compute some function of a n-bit string X using n processors, assume xi is provided

as input to processor i. In the description of algorithms, Algo(x1, . . . , xn) refers to an

algorithm that runs on n processors where the ith processor is given xi as input.

In all our algorithms, we assume that each broadcast is repeated γ times where γ is some

appropriately chosen constant.

Formally, we have:

I Definition 1. We let the noisy parallel broadcast model be a model of computation where

there are n processors P1, . . . , Pn, and Pi receives input bit xi. In each round of computation,

each processor can broadcast one bit to all other processors. Each reception is corrupted

ICALP 2018
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with some constant probability 0 ≤ p < 1, in which case the character ‘?’ is received instead

of the bit which was sent.

In this paper, we study the complexity of computing certain functions in the above model.

Specifically, for constant erasure probability p we show a bound of O(log∗(n)) for computing

any function, and a bound of O(1) for symmetric functions.

As part of our algorithm we use error correcting codes, so we include standard results and

notations for codes below: Error Correcting Codes: An error correcting code is described

by functions Enc : {0, 1}n → {0, 1}k and Dec : {0, 1}k → {0, 1}n with the property that

Dec(x) maps to the string y for which Enc(y) is the closest string to x in C = Image(Enc).

The rate of an error correcting code is defined as k
n and the relative distance is defined as

minx,y∈C d(x,y)
k . The quantity d(x,y)

2 is referred to as the decoding radius.

We use the result of [13] that error correcting code families of constant rate and constant

relative distance exist. In particular, for the sake of this paper, we assume the existence of an

error correcting code family E with relative distance 0.25 and rate some absolute constant K.

2 An O(log∗

n) algorithm for computing any function

We consider the following message-passing model. There are n processors, and in each round,

every processor transmits a single bit b to all other processors. Each processor receives each

bit independently and at random with probability 1 − p. With probability p, the character

‘?’ is received instead. If each processor starts with a single input bit, we ask how many

rounds are required so that every processor knows all input bits with high probability. We

show a bound of O(log∗(n)) for this problem. Specifically, we will show:

I Theorem 2. For every 0 ≤ p < 1, there is an algorithm in the noisy broadcast parallel

erasure model that computes IDn with high probability within O(log∗(n) log 1
1−p ) rounds.

Without loss of generality, we assume that p ≤ 0.01, since for any erasure probability p < 1,

repeating each message O(log 1
1−p ) times can be used to effectively lower the probability of

receiving ‘?’. We describe our algorithm for the case where the alphabet Σ = {0, 1}. The

protocol generalizes to larger alphabets in a straightforward manner.

We describe a protocol for n processors with the guarantees: at the end of the protocol,

all n processors can output the full string C with probability at least 1 − 1
n5 , and if the

protocol fails (that is, there is some processor who cannot output the full string C), then all

n processors can output ‘⊥’ with probability at least 1 − 1
27n . For the rest of this section, we

assume n ≥ n0 for a sufficiently large n0.

We begin by describing algorithms for simpler subproblems.

I Lemma 3. Let bi be the input to processor i, and let the erasure probability p be .01. Then

there is an O(1)-round algorithm and an absolute constant α such that all processors output

the AND of all bi with probability at least 1 − 2−αn.

Proof. Algorithm: The algorithm is as follows: in each round, a processor i broadcasts ‘0’

either if xi = 0 or if processor i has received at least one ‘0’ in at least one of the previous

rounds. Otherwise, processor i boradcasts 1. This is repeated for 100 rounds.

Processor j’s output is the AND of all bits it received.

Analysis: First, note that if all of the bi = 1, then all processors must output 1, no

matter what messages were corrupted, since all received bits of all processors must be 1.
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Algorithm 1: EqualityTest(S1, . . . , Sn).

Enc is the encoding function of a code C with relative distance 0.25 and constant rate K.

1. Transmit (Enc(Si))[(i−1)K+1,iK] over K rounds

2. Let At,i be the K-bit string received from processor t and Ai = A1,iA2,i . . . An,i.

Set ci to 1 if Hamming distance between Ai and Enc(Si) is at most 0.06Kn and 0

otherwise

3. The processors run the AND protocol from Lemma 3 and output the AND of all ci

Now, suppose there is an i for which bi = 0. Let t be the number of processors that

received the transmission of i in the first round. The probability that processor j receives

only 1s in the second round is at most pt.

We can use Hoeffding’s inequality to obtain

Pr
[
t <

n

2

]
≤ e−α′n

for some constant α′. Thus, the probability that there is some j that received only 1’s even

if there is a processor with a 0 is at most n(e−α′n + pn/2), bounded above by e−αn for a

constant α. J

We note that the above protocol does not work in the substitution model (the model

where a message may be flipped with small probability, as opposed to being corrupted to a

‘?’). In fact, in [11] it was proven that computing the AND function with high probability in

the substitution model requires Ω(log log n) rounds.

We next show an O(1) round algorithm for Equality Testing. Each processor is given

an n-bit string Si as input, and the goal is for all processors to output 1 if all their inputs

are equal and 0 otherwise with probability at least 1 − 2−Ω(n). Unless otherwise specified,

each step of the algorithm is from the view of processor i. Roughly speaking, this step will

be used in the main algorithm to verify that all processors end up with the same output

string S.

I Lemma 4. When the erasure probability p ≤ .01, Algorithm 1 correctly solves Equality

Testing with probability at least 1 − 2−βn for some absolute constant β.

Proof. Let A be the string collectively transmitted by all processors in Step 1. We know

d(Enc(Si), Enc(Sj)) ≤ d(Enc(Si), Ai) + d(Ai, A) + d(A, Aj) + d(Aj , Enc(Sj))

≤ 2(d(Enc(Si), Ai) + d(Enc(Sj), Aj))

where the second inequality is because d(A, Ai) is the number of ‘?’s received, and lower

bounds d(Enc(Si), Ai).

If both d(Enc(Si), Ai) and d(Enc(Sj), Aj) are at most 0.06Kn, then d(Enc(Si), Enc(Sj))

is at most 0.24Kn, but since they are codewords of a code with relative distance 0.25,

Enc(Si) = Enc(Sj), implying Si = Sj . So if there is a pair i, j with Si 6= Sj , then either ci or

cj must be 0. And then from Lemma 3, with probability at least 1 − e−αn, the processors

correctly detect that there is a ci equal to 0.

On the other hand, if all the strings are indeed equal, then cj is 0 only if processor j

receives fewer than 0.94Kn bits. We upper bound the probability that this happens by using

Chernoff bound along with a union bound over all processors.

nPr[processor i receives fewer than 0.88Kn bits] ≤ ne−α′′n ≤ e−α′n

where α′ is some constant. We let β = min{α, α′}. J

ICALP 2018
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Let X = x1x2 . . . xn be the input string and processor i is given xi and is required to

output a tuple (Xi, si), where Xi an n-bit string and s either 1, indicating success or 0,

indicating failure, with the goal of having all Xi = X and all si = 1. We say that an

algorithm on a group of processors succeeded if Xi = X and si = 1 for all i, failed with

knowledge if ri = 0 for all i, and failed without knowledge otherwise. We describe an

algorithm for this problem where each step is from the view of processor i unless otherwise

specified. Recall that each broadcast is repeated γ times to effectively reduce the erasure

probability p to be at most .01. For simplicity, we assume that n is a power of 2, and so

log n is an integer. It is easy to generalize the algorithm to all values of n.

At the high level, the algorithm proceeds as follows. We partition the processors into

n/ log n sets of size log n each (Step 2a). Then, we recursively compute the input on each of

these subsets. Now, some of these subsets will have succeeded, and some will have failed.

For the ones that failed, we now recompute the input, but this time we add more processors

to be “helper processors". That is, the processors which succeeded in the recursive calls will

now be used to aid the processors who failed in the recursive call by sending messages on

their behalf. This can be seen in Step 2g, where the processor sends x`i
, which is the input

to a processor which failed on the recursive call. This idea of using successful processors

to help others who failed helps ensure that within a constant number of tries, with high

probability all input bits will be known.

We now prove the following proposition, from which Theorem 2 immediately follows.

I Proposition 5. Algorithm 2 runs in O(log∗ n) rounds, succeeds (i.e., each processor outputs

(X, 1), where X is the input to all processors) with probability at least 1− 1
n5 and fails without

knowledge with probability at most 1
27n .

Proof. We list conditions under which the protocol definitely succeeds, and show all these

conditions hold with probability at least 1 − 1
n5 . Define R as r′

1r′
2 . . . r′

n from the output of

Step 2a. Define Ms as all j such that n(s−1)
z < j ≤ ns

z where z is the number of 0’s in R.

The protocol definitely succeeds if the following conditions hold:

1. All but at most n
log3 n

groups succeed in the recursive call of Step 2a.

2. No group fails without knowledge in the recursive call of Step 2a, and Ri = R for all i.

3. For all j such that (R)j = 0, for all i, processor i receives at least one transmission from

a processor in M`j ,i in Step 2g where the `jth 0 in R occurs at (R)j .

4. Each processor receives at least 0.88K log n bits from each successful group in at least

one transmission in Step 2d of the algorithm.

Indeed, for any j in a successful group, all processors correctly learn the input to processor

j because Condition 4 is met. By Condition 2, for fixed s, Ms,i is the same for all i since

Ms,i depends on Ri. For any j in a failed group, by Condition 2, (R)j = (Ri)j = 0, and by

Condition 3, each processor receives at least one transmission of processor j’s input in Step

2g and so all processors correctly learn the input to processor j.

We now proceed with showing a lower bound on the probability that all of these conditions

hold.

We can see that Condition 1 holds with probability at least 1 − 1
n6 since by Chernoff

bounds, the number of failed groups exceeds n
log3 n

with probability at most 1
n6 .

Now suppose Condition 1 holds. A group fails without knowledge with probability at

most 1
n7 by the guarantees of the protocol. The probability that there exists a group that

failed without knowledge, by the union bound, is therefore at most 1
n6 . If no group failed

without knowledge, the only way Ri cannot equal R is if there is a group Mj,i that processor

i did not receive a single bit from. The probability that processor i does not receive a single
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Algorithm 2: LearnInput(x1, . . . , xn).

Enc is the encoding function of a code C with relative distance 0.25 and constant rate K

1. Base Case: If n < 100

a. Transmit xi repeatedly 100 times, and set string Si as per

(Si)j =

{
b if b was received in any transmission from j

random bit if all transmissions from j are ‘?’

and go to Step 3a.

2. Recursive Step:

a. Recursively obtain (X ′
i, r′

i) = LearnInput

(
xb i

log n c log n+1, . . . , xb i
log n c log n+log n

)
.

We call this set of processors the group of i.

b. Broadcast r′
i

c. Set Ri by setting (Ri)j to 1 if only 1’s were received from j’s group (i.e., from

the processors which j computed the recursive call with) and 0 otherwise, for each

j ∈ [n].

d. Let i′ = i mod log n and transmit Enc(X ′
i)[(i′−1)K+1,i′K] over the next K rounds.

e. Let zi be the number of zeros in Ri and let j =
⌈

izi

n

⌉
and let `i be the index of

the jth zero in Ri. Create set Ms,i to be all t such that

n(s − 1)

zi
< t ≤ ns

zi

f. Transmit xi.

g. Broadcast what was received from `i, which is either ‘?’ or x`i
. Let M ′

j,i be the

set of characters received from Mj,i.

h. Set Xi by setting (Xi)j to xi if j = i, by decoding the bits received in Step 2d

if (Ri)j = 1 and at least 0.88K log n bits were received from the group of j, to a

random bit if (Ri)j = 1 and fewer than 0.88K log n bits were received from group

j in Step 2d, and to 11∈M ′
j,i

if (Ri)j = 0. Proceed to Step 3a.

3. Verification of output

a. Obtain vi = EqualityTest(X1, . . . , Xn) and output (Xi, vi).

bit from this group is pγ log n, which for appropriate γ is at most 1
n8 . Thus, the probability

that there is some i, j pair such that processor i does not receive a single bit from group j is

at most 1
n6 by a union bound. So the probability that Condition 2 is not met (given that

Condition 1 is met) is at most 2
n6 .

Note that Ri = R means Ms = Ms,i for all i. It follows from Chernoff bounds that the

number of processors in Ms that receive the bit transmitted by processor s is at least log n

with probability at least 1 − 1
n6 . The probability that processor i does not receive any bits

from processors in Ms in any of the repetitions of Step 2g is at most pγ log n, which can be

made smaller than 1
n8 by setting γ to be large enough. Now by taking a union bound over

all pairs (i, s) we can conclude that Condition 3 does not hold with probability at most 1
n6 .

The probability that processor i receives fewer than 0.88K log n bits from group j in all

repetitions of Step 2d is at most 1
ncγ for some constant c by Chernoff bounds. A union bound

across all processor-group pairs tells us that Condition 4 does not hold with probability at

most 1
ncγ−2 which can be made smaller than 1

n6 with large enough γ.

ICALP 2018
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Algorithm 3: LearnInputLargeAlphabet(x1, . . . , xn).

Let F be a function that encodes subsets of [6 log n] as elements of Fq

1. Let k = b6 log nc and determine Bi = { nj
k + 1, . . . , n(j+1)

k }, where j is chosen such

that i ∈ Bi

2. Broadcast xi for 10 rounds

3. For each t from 1 to 10 and for each processor in Bi from which an entry was received

in round t of Step 2, choose the processor with probability 1
2(1−p) and choose i with

probability 1
2 . Let Tt,i be the set of chosen elements.

4. For the next 20 rounds, processor i transmits all the
∑

b∈Tt,i
xb (where the xb are

added as elements of Fq) and F (Tt,i)

5. Output Xi consistent with all received pairs
(∑

b∈Tt,i
xb, F (Tt,i)

)
. If there is more

than one possibility for such an Xi, pick one at random.

Based on the bounds we obtained on the probability that each of Conditions 1, 2, 3,

4 don’t hold, we can conclude that the probability that all the conditions hold is at least

1 − 1
n5 .

It remains to show that the probability that the processors failed without knowledge is at

most 2−7n. If there is Xi such that Xi 6= X, then it differs from X in some index j, which

means (Xi)j 6= (Xj)j by construction of Xj implying Xi 6= Xj . Thus, a failure without

knowledge happens only if Step 3a fails, which happens with probabilty at most e−βn, which

can be made smaller than 2−7n by choosing the number of repetitions γ to be a large enough

constant.

The number of rounds this algorithm takes is given by T (n), which satisfies the recurrence

relation T (n) = T (log n) + L where L is a constant and with base case T (100) = O(1), which

solves to T (n) = O(log∗ n). J

3 An O(1) algorithm for large alphabets

For large alphabets, in the regime where the alphabet Σ is Fq and q = poly(n), we give a

constant round algorithm to have all processors learn the input X with probability at least

1 − 1
poly(n) . Unless otherwise specified, the algorithm is from the view of processor i. While

our algorithm works for any q that is polynomial in n, for simplicity of exposition we assume

q ≥ n6 and that q is a prime.

I Theorem 6. With probability at least 1 − 1
poly(n) , after running Algorithm 3, all processors

will know all other processors’ inputs. Furthermore, the algorithm terminates within O(1)

rounds.

As a first ingredient towards proving Theorem 6, we prove the following lemma.

I Lemma 7. If A is a 5k × k random binary matrix where each entry is i.i.d. generated by

flipping a fair coin, then with probability at least 1 − e−0.4k, A is full rank.

Proof. Suppose V is a subspace of Fk
q that is not equal to all of Fk

q , then we can find standard

basis vector ei that is not in V . Then for any binary vector v, consider v′ with the bit at the

i-th coordinate flipped. Either v or v′ is not in V , which means at least half of the binary

vectors are not in V , which means each new vector has probability at least 1
2 of not being in
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V . If we let V = span{vectors drawn so far}, then each draw has a probability at least 1
2 of

increasing the dimension. Suppose we flip 5k coins, the probability that the number of heads

is at most k is an upper bound on the probability of the span of 5k randomly drawn vectors

not being the whole space.

By Chernoff bounds, this probability is at most e−0.4k. J

Proof of Theorem 6. Each Tt,i is a uniformly random subset of input bits of set Bi. Let xBi

be a k-dimensional vector of the inputs to processors in Bi, then the transmitted characters

in Round 5 are of the form (〈aBi
, xBi

〉, F (Tt,i)) where aBi
is a random binary vector, and

F (Tt,i) is an encoding of aBi
. The transmitted characters can be viewed as elements in the

vector AxBi
, where A is a matrix whose rows are the aBi

. A single processor’s output of

xBi
is given by sampling rows of the equation AyBi

= AxBi
where yBi

is indeterminate

and solving for yBi
. If the number of sampled rows is at least 5k, then from Lemma 7 the

probability that the sampled rows span F
k
q and hence give a unique solution to yBi

is at least

1 − 1
n2.4 .

The probability that the number of sampled rows for a group is less than 5k can be upper

bounded by 1
n5 using Chernoff bounds.

So by union bound over all group-processor pairs (i.e., all pairs (i, Bj)), we get a 1
poly(n)

upper bound on the failure probability. J
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A An O(1) protocol for computing any symmetric function

We show that any symmetric function can be computed within O(1) rounds in the model.

Symmetric functions are functions whose value doesn’t change under permutation of the

input bits. In other words, these functions only depend on the Hamming weight of the input

string. Hence, an algorithm for every processor to learn the Hamming weight of the string

leads to an algorithm to compute any symmetric function. Our algorithm is inspired by a

similar algorithm (for a different model) of [11].

I Theorem 8. There is an O(1) round algorithm in the noisy broadcast parallel erasure

model that computes Hamming Weight(X) with probability at least 0.75.

Our algorithm proceeds in two phases:

1. Divide the interval [0, n] into subintervals of length c
√

n and find which interval the

Hamming weight belongs to.

2. Figure out exactly which integer in the interval is the Hamming weight.

More precisely, the first step will give us three intervals, and we will show for at least two

of these intervals, with high probability all processors will end up with the same interval.

Then, we will run the second step (where we pinpoint the exact Hamming weight) on each of

the three intervals, and take a majority vote to compute the final output.

We describe the first step below:

I Lemma 9. With probability at least 1 − exp(−Ω(n)), for at least two t in {1, 2, 3}, all

Ci,t outputted in Step 4 of Algorithm 4 are equal and correspond to an interval containing

Hamming Weight(X).

Proof. By Chernoff bounds, the probability that hi deviates from the truth by t
√

n is at

most e−Ct2

for an absolute constant C. This can be made smaller than 0.01 with appropriate

choice of a constant t. Then for at least two values of s, hi lies in the correct interval in Bs

with probability at least 0.99. Without loss of generality, say this happens for s = 0 and

s = 1. Using Chernoff bounds, we can show that for some constant c, with probability at

least 1 − exp(−Ω(n)), at least 0.95 fraction of the processors decode the correct interval in

B0 and B1.
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Algorithm 4: DetermineInterval(x1, . . . , xn).

A1, A2, . . . , Ak are disjoint intervals of size ≈ 2t
√

n covering [0, n], with t chosen later.

Let Ai be ∅ if i < 1 or i > k.

Bi := Ai ∪ Ai+1 ∪ Ai+2.

Bs := {Bi : i ≡ s mod 3}.

Enc is the encoding function of a code with relative distance 0.25 and constant rate K.

1. Transmit xi

2. Compute hi := number of 1’s received
1−p

3. For s = 0, 1, 2:

a. Find interval in Bs containing hi, called I. I is encoded as a string sI (of size

O(log n)).

b. Let i′ = i mod log n and transmit Enc(sI)[K(i′−1)+1,Ki′] over K rounds

c. Ci,s :=

{
sI if at least .88K log n bits were received in Step 3b

decoded string if fewer than .88K log n bits were received in Step 3b

4. Return Ci,0, Ci,1 and Ci,2.

And assuming at least 0.95 fraction of the processors decode the correct intervals in B0

and B1, we can show once again using Chernoff bounds and union bound, that the number

of bits from the encoded string of the correct interval received by each processor is more

than 0.9Kn with probability at least 1 − exp(−Ω(n)), which means with exponentially high

probability, every processor decodes the correct interval in B0 and B1. J

For the second step, our goal is the following: given that every processor knows an interval

[a, b] in which the Hamming weight of the input string lies, it can recover the value of the

Hamming weight in O(1) rounds.

I Lemma 10. On running Algorithm 5, all processors return the Hamming weight s of X

with probability at least 0.9.

Proof. Define θ̂s to be the fraction of βi transmitted in Step 3 that are 1.

We can lower bound θ`+1 − θ` for x ≤ ` < y by c√
n

where c is some constant [11,

Lemma 41]. The probability that |θs − θ̂s| is at most c
8

√
n

can be made at least 0.99 with an

appropriate choice of the number of repetitions γ. Similarly, we can ensure that |θ̂s − θ̂s,i| is

at most c
8

√
n

with probability at least 0.99.

By Chernoff bounds, the fraction of processors for which |θ̂s − θ̂s,i| < c
8

√
n

is at least 0.95

with probability at least 1 − exp(−Ω(n)). Thus, conditioned on |θs − θ̂s| < c
8

√
n

, we have

that for at least 0.95 of the processors, |θs − θ̂s,i| < c
4

√
n

. Further, the string S1S2 . . . Sn

transmitted in Step 6 with random erasures has distance less than the decoding radius of C
of Enc(s) with probability at least 1 − exp(−Ω(n)), in which case all processors can correctly

output s.

Since the condition |θs − θ̂s| < c
8

√
n

holds with probability at least 0.99, the required

guarantees of the Lemma hold. J

Proof of Theorem 8. The processors run Algorithm 4 to obtain 3 candidate intervals I1, I2

and I3, and with exponentially high probability, at least two of these candidate intervals
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Algorithm 5: PinpointWeight(x1, x2, . . . , xn; [a, b]).

[a, b] is the interval of length up to 3
√

n where the Hamming weight is promised to lie

Enc is the encoding function of a code C with relative distance 0.25 that maps log n bit

strings to K log n bit strings

Let θs be defined as the probability that when flipping s coins, each coming up heads

with probability 1 − p, at least (1 − p)
(

a+b
2

)
come up heads.

1. Transmit xi

Let Y be the number of 1’s received.

2. βi :=

{
1 if number of 1’s received is greater than (1 − p)

(
a+b

2

)

0 otherwise

3. Transmit βi

4. Let θ̂s,i be the fraction of received bits from Step 3 that are 1 (i.e., the total number

of 1’s received, divided by the total number of 1’s or 0’s received).

5. ŝi = arg min` |θ` − θ̂s,i|
6. Let i′ = i mod log n and transmit Enc(ŝi)[K(i′−1)+1,Ki′] over K rounds

7. s̃i =

{
decoded string if at least .88K log n bits were received in Step 6

ŝi if fewer than .88K log n bits were received in Step 6

contain the Hamming weight. The processors run Algorithm 5 on each of the three intervals

and processor i obtains outputs n0, n1 and n2 respectively. With constant probability, at

least two of n0, n1 and n2 are the same and equal to the correct Hamming weight, and hence

outputting the majority of the three matches the guarantee. J


