

A Low Cost Reflect Array for Near-field Millimeter-Wave Beam Focusing Applications

Ali Molaei*, Jose Martinez-Lorenzo*†

*Electrical & Computer Engineering, Northeastern University, Boston, MA, USA

†Mechanical & Industrial Engineering, Northeastern University, Boston, MA, USA

Abstract—A low cost millimeter-wave (mm-wave) electronically reconfigurable Reflect Array (RA) has been presented in this paper. Aperture-Coupled Patch (ACP) elements are used to form a 40×40 element reconfigurable RA operating in the 71-74 GHz range of the mm-wave band. A feeding network, integrated with Single-Pole, Single-Throw (SPST) switches is designed to adjust the phase of the reflected field for the ON/OFF state of the switch. The performance of the reconfigurable RA is evaluated by performing beam focusing at the near-field of the array.

I. INTRODUCTION

Reflect Arrays (RAs) are planar printed surfaces that are excited by an electromagnetic incident field and direct the field in a desired direction or point. RAs have a combined technological features and characteristics of parabolic reflectors and electronically scanned phased array antennas, including the following: low weight, small size, simple feeding system, and low feeding loss [1], [2]. These features make RAs an attractive architecture for both near-field beam focusing and far-field beam steering applications. Dynamically controlled radiation in the RA can be achieved by the use of electronically tunable reflecting elements, such as PIN diodes [3], varactor diodes [4], and MEMS switches [1], [5]. The family of patch antennas is a good candidate for radiating elements of RAs, due to their low cost, light weight, conformability to the host surface, and easy manufacturing process [6]. Among the patch antenna configurations, the Aperture-Coupled Patch (ACP) [7] provides the benefit of isolating spurious feed radiation by adopting a common ground plane.

This paper presents a low cost electronically reconfigurable RA, which employs an 8×1 array of ACPs as its radiating elements. Each 8×1 ACP array is electronically controlled by a Single-Pole, Single-Throw (SPST) switch, to adjust the phase of the reflected field. Near-field beam focusing of an RA consisting of 40×40 reflecting elements is studied in the frequency range of 71-74 GHz.

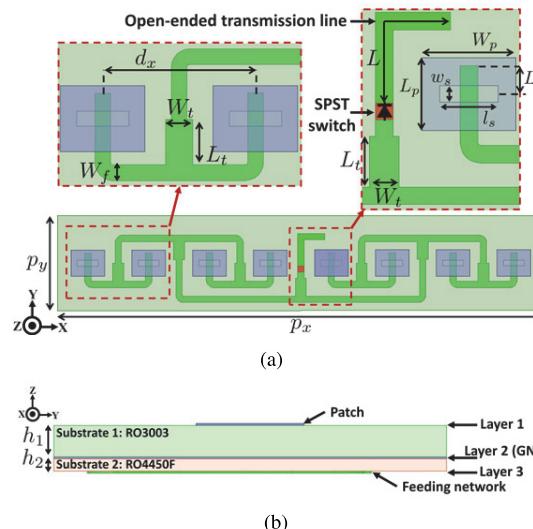


Fig. 1. (a) Top and (b) side view of the 8×1 ACP array used in the reconfigurable RA.

into reflecting elements of the RA to enable dynamic beam focusing for the purpose of this paper. The length of the open-ended transmission line L in the feeding network of the array is adjusted such that the phase of the reflected field changes approximately by π when the diode switches from the ON state to the OFF state, and vice versa.

The 8×1 unit-cell has been simulated using the Ansoft High Frequency Structure Simulator (HFSS). Periodic boundary conditions are defined along the XZ and YZ bounds of the 8×1 array to consider the mutual coupling between adjacent ACP elements. Table I shows the assigned values of the design parameters mentioned in Fig. 1. The RO3003 with dielectric constant of 3 and thickness of $h_1 = 0.254$ mm is used as the top dielectric substrate to support the patches and the RO4450F

TABLE I
OPTIMIZED PARAMETERS OF THE 8×1 ACP ARRAY.

PAR.	VAL. [mm]	PAR.	VAL. [mm]	PAR.	VAL. [mm]
W_p	1.13	W_f	0.21	p_x	16.32
L_p	0.88	W_t	0.36	p_y	3.2
w_s	0.2	L_t	0.6	h_1	0.254
l_s	0.7	L	1.9	h_2	0.1
L_o	0.44	d_x	2.04		

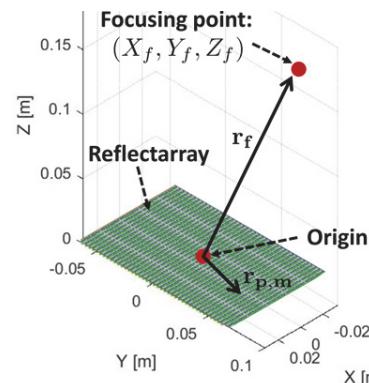


Fig. 2. Schematic representation of the beam focusing system.

to focus the main beam in the focusing point (X_f, Y_f, Z_f) , as shown in Fig. 2. Considering a Uniform-Plane-Wave (UPW) normally incident on the RA, the phase variation associated with the reflected field from the m -th 8×1 array traveling to the focusing point is given by $\Delta\Phi_m = k_0(|\mathbf{r}_{p,m} - \mathbf{r}_f|)$, with k_0 being the wavenumber of the incident UPW. Therefore, to produce a focused beam at point \mathbf{r}_f , the ON/OFF state of the SPST switch at the m -th 8×1 array is dynamically assigned to introduce the following phase correction term

$$F(\Delta\Phi_m) = \begin{cases} \pi & \text{if } \Delta\Phi_m \bmod 2\pi < \frac{\pi}{2}, \\ \pi & \text{if } \Delta\Phi_m \bmod 2\pi > \frac{3\pi}{2}, \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

Figure 3 shows the reflected fields of the designed RA, when it is focused at the point $(0 \text{ cm}, 10 \text{ cm}, 20 \text{ cm})$, for 71 GHz, 72.5 GHz, and 77 GHz.

IV. CONCLUSION

This paper presents the design of a low cost electronically reconfigurable RA for near-field beam focusing applications. An ideal SPST switch is integrated to a microstrip feeding network to adjust the reflected phase from an 8×1 ACP array (unit-cells of the reconfigurable RA). Near-field beam focusing

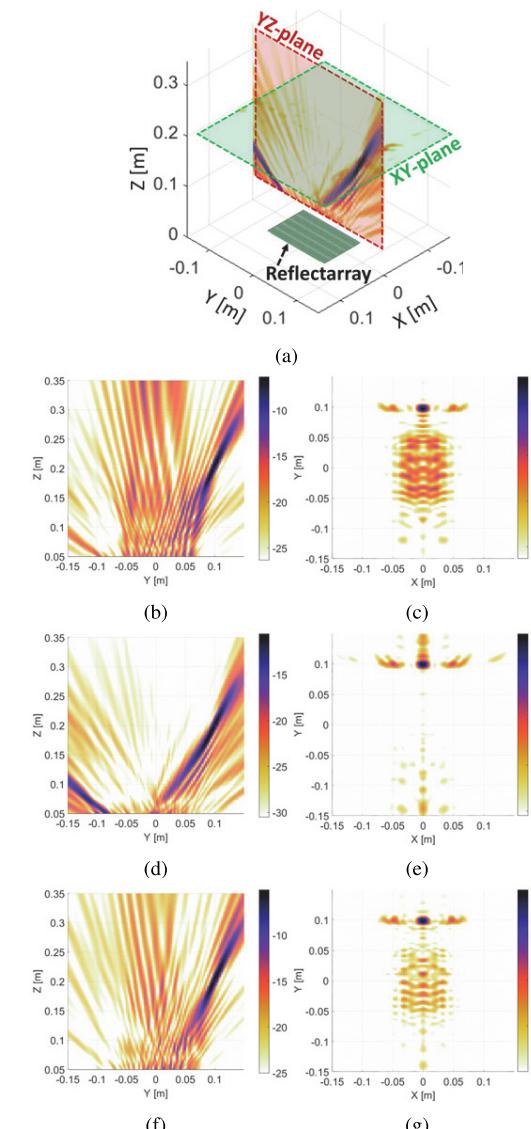


Fig. 3. (a) Beam focusing of the reconfigurable RA at point $(0 \text{ cm}, 10 \text{ cm}, 20 \text{ cm})$: reflected E-field at (b,c) 71 GHz, (d,e) 72.5 GHz, and (f,g) 74 GHz.

- [2] H. Gomez-Sousa and J. A. Martinez-Lorenzo, "Modeling and imaging security threats using a single-frequency adaptable reflect-array," in *Technologies for Homeland Security (HST), 2017 IEEE International Symposium on*. IEEE, 2017, pp. 1–7.
- [3] H. Tanaka and T. Ohira, "Beam-steerable planar array antennas using varactor diodes for 60-ghz-band applications," in *Microwave Conference, 2003. 33rd European*, vol. 3. IEEE, 2003, pp. 1067–1070.
- [4] R. B. Waterhouse and N. Shuley, "Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes," *IEEE transactions*