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Abstract—Norm-1 regularized optimization algorithms are
commonly used for Compressive Sensing applications. In this
paper, an optimization algorithm based on the Alternating
Direction Method of Multipliers (ADMM) together with the
Elastic Net regularization is presented. This type of regularization
is a linear combination of the norm-1 and norm-2 regularizations,
allowing a solution between the sparsest and the minimum energy
solutions, but still enforcing some sparsivity. The combination of
these two regularizations and the distributive capabilities of the
ADMM algorithm enables a fast sparse signal recovering with
minimum error.

I. INTRODUCTION

Compressive Sensing (CS) techniques have been success-
fully used to recover sparse signals from a much smaller
number of measurements than those required by the Nyquist
sampling criterion, [1]-[3]. The signal recovery can be repre-
sented by solving the following matrix equation:

g=Hu+w, (1)

where g € CN is the vector of measurements, H € CNm*Np

is the sensing matrix, u € C"» is the unknown sparse signal
to recover, and w € CMm is the noise collected. N, is
the number of points in the signal to recover and N,, the
number of measurements. Finding the sparsest solution does
not ensure that the smallest error is achieved. This paper
proposes an algorithm for fast signal reconstruction based
on the Alternating Direction Method of Multipliers (ADMM)
with Elastic Net regularization [4]. Since this regularization is
a linear combination of the norm-1 and norm-2 regularizations,
it possesses the property of recovering sparse signals with
minimum energy. The ADMM algorithm has shown quasi real
time signal reconstruction for imaging application in a dis-
tributive scenario [3], [5]. The use of the ADMM with Elastic
Net regularization enables a fast sparse signal reconstruction
while minimizing the error.
II. ELASTIC NET REGULARIZED ADMM
The ADMM [6] is a method for optimizing convex func-
tions. Its general representation takes the following form:
minimize f(u) +g(v) st. Pu+Qv=c 2)

where f and g are convex, closed, and proper functions over
the unknown vectors u € C" and v € C™. A constraint, which
relates the variables u and v, is determined by the known
matrices P € CP*™ and Q € CP*™, and vector ¢ € CP.
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Equation (1) may be solved by minimizing the convex
function f(u) = ||[Hu — g||2 together with the Elastic Net
regularization go(v) = A((1—a)[v|, +a} ||V||§), with
0 < a < 1. The proposed approach finds the optimal solution
via the consensus-based ADMM algorithm [3], dividing the
sensing matrix and the vector of measurments in M submatri-
ces by rows, and solving the problem in a distributed fashion
by minimizing the following expression:

M
S 2 2
minimize ~ § 21 |Hyu; —gll; + A ((1 —a)|vll; + o3 ||v||2>

s.t. w=v, Vi=1,...M
3)
where the new variable v is the consensus variable that
imposes the agreement of all the partial solutions u;.
This problem is solved by the following iterative scheme:

wit = (HH + D) (g +p (V- s0)), @)
1
ka1 =k+1 Sk
VL — Hi‘us(lfa)‘%” (uh ! + 57, ©)
pM
sl — gF puftt vkt ©)

where s; is the dual variable for each constraint ¢ and p is the
augmented parameter. S, (a) is the soft thresholding operator,
interpreted element-wise [7]. For the case of the Elastic Net
regularization, this operator can be interpreted as two step
shrinkage, as shown in Fig. 1: first, forcing small input values
to be zero (due to the norm-1 regularization); and second,
decreasing the amplitude of the non-zero output values (due
to the norm-2 regularization). The matrix inversion lemma [8]
may be applied once to the term (HH; + pI)~", since only

M matrices of reduced size &= % have to be inverted.

M
III. NUMERICAL RESULTS

The Elastic Net regularized ADMM has been tested in a
simple 2D problem of source reconstruction. The geometry is
defined as described in Fig. 2. Five point sources of unit value
are located in a 5 x 5 square normalized over the wavelength
Ao. Ng, receivers are placed in a circular position of radius
10, with an angular separation of 6§ = ]\?—; The measured
field is described by the following equation:

NP
gm =Y upe M, ™

n=1
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Fig. 1. Graphical representation of the soft-thresholding operator. Small input
values are set to zero due to the influence of the norm-1, and non-zero output
values are reduced due to the norm-2. For o = 0 there is norm-1 regularization
only, and for o = 1, there is norm-2 regularization only.

where k = i—’; and d,,, is the distance between the n—th pixel

and the m—th receiver. This can be expressed in the linear ma-
trix equation proposed in Eq. (1), where H = {e=7Fdnm},
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Fig. 2. System configuration. Yellow points represent the sources over the
dark blue square region of interest. Red circles represent the receivers. All
distances are normalized by the wavelength Ag.

Figure 3 depicts the reconstruction error when varying
the parameter o for different number of measurements for
a SNR = 50dB. Two cases are analyzed: (a) making use
of the computed sensing matrix H (Fig. 3(a)), and (b) when
multiplying the sensing matrix by random values from a
Gaussian distribution of zero mean and standard deviation
v Ng, (Fig. 3(b)), to enhance the restricted isometry constant.
The parameters used for the configuration and for the ADMM
algorithm are shown in Table I. The reconstruction error is
defined as

_ g —uf
[[ug |2

-100 (%), 3)

where ug is the desired source to recover. The results show that
a linear combination of the norm-1 and norm-2 regularizations
can reduce the reconstruction error when trying to recover a
sparse signal with a limited number of measurements. The
distributive capabilities of the consensus-based ADMM allows
to solve the problem in 1.6s for 200 iterations in a Matlab 2017
code using a Titan V 5120 cores GPU with double precision.
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Fig. 3. Reconstruction error varying the parameter « for different numbers

of receivers with a SNR of 50dB, for (a) regular sensing matrix, and (b)
sensing matrix multiplied by random gaussian values.

TABLE I
PARAMETERS FOR THE NUMERICAL EXAMPLE.
Parameter Description Value

Np Number of pixels 441
N, Number of measurements Npm = NpRa
S Sparsivity level 5

p Augmented parameter 0.01

A Regularization parameter 0.01

M Number of rows divisions 5

IV. CONCLUSION

This paper has presented the mathematical formulation of a
new distributed algorithm based on the Elastic Net regularized
ADMM. This technique reduces the reconstruction error of
sparse signals due to the combined properties of the norm-1
and norm-2 regularizations. The method has been tested in
2D source reconstruction. The distributive capabilities of the
ADMM allows minimum error fast sparse signal recovery.
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