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Abstract—In many compressive imaging applications, it can be
difficult to design sensing matrices with suitable reconstruction
capabilities. In this paper, we presents a novel method, based
upon capacity maximization, for designing sensing matrices with
enhanced block-sparse signal reconstruction capabilities. Numer-
ical results, which demonstrate the design method’s capabilities
in a practical imaging application, are presented.

I. INTRODUCTION

A classical problem in science and engineering is recon-
structing an unknown vector x € CV from a set of linear
measurements y = Ax € CM . When M < N, there exist an
infinite number of solutions satisfying y = Ax; and, therefore,
regularization techniques need to be employed in order to
induce a unique solution. In practice, the regularization term is
selected from prior knowledge of the unknown vector. When
the vector is known to be sparse, then Compressive Sensing
(CS) theory [1]-[3] states that it can be recovered exactly
as the solution to a convex and computationally tractable
¢1—norm minimization problem, provided that the sensing
matrix is “well-behaved” according to a performance metric
such as the mutual coherence [4] or the Restricted Isometry
Property (RIP) [5].

CS theory also considers the case where the unknown vector
is block sparse. When a signal is block sparse, the non-zero
values are distributed over K = N/ L disjoint blocks of size L.
Although block sparse signals can be reconstructed using the
standard techniques, such as ¢; —norm minimization, applied
to general sparse signals, specialized techniques [6]-[11] based
on joint ¢5/¢; minimization have been shown to provide
better reconstruction performance. In practice, it is difficult
to deterministically generate sensing matrices with enhanced
reconstruction capabilities; and, therefore, many researchers
resort to using randomized sensing matrices. Unfortunately,
this approach does not achieve the desired results in many
applications, such as electromagnetic imaging, where the
elements of the sensing matrix are constrained by practical
limitations. In this paper, we introduce a method based upon
maximizing the sensing capacity [12], [13] for designing sens-
ing matrices with enhanced block sparse signal reconstruction
capabilities.
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II. CAPACITY-BASED DESIGN METHOD

Suppose that the sensing matrix A € CM*¥ is a function
of p € CF design variables according to the nonlinear and dif-
ferentiable relationship A = F(p). Without loss of generality,
we will assume that this function outputs the sensing matrix
with normalized columns. We define the projection matrices
&, € {0,1}N*Mrp =1, ..., R for the R blocks on which
the capacity will be evaluated. The design algorithm then
seeks the minimizer to the following non-convex optimization
program:

—logdet (B F (p)F(p)®, + S, u1,)
ey

minimize  max
P r=1,...,R

subject to p € Q)

where (3 is a small positive constant that ensures that the
arguments to det are positive-definite, and @, is the feasible
set for the design variables. In other words, this optimization
program seeks the design vector p that maximizes the smallest
capacity of the sub-matrices F(p)®,, r=1,..., R.

III. NUMERICAL RESULTS

The design algorithm was applied to an electromagnetic
imaging application, in which a single transmitting and re-
ceiving antenna is used to excite a region of interest with a
single frequency. The discretized measurement process for this
system can be modeled as follows:

N N
E —J2k[rm—rnlle, — E
Ym = Tne 72kl rlley = Amnzn (2)

n=1 n=1

where y,, is the m—th scattered field measurement, r,, is
the position of the m—th antenna, r,, is the n—th position
in the imaging region, k is the wavenumber, and z,, is the
reflectivity at the n—th position in the imaging region. Keeping
the wavenumber fixed, the objective is to select the antenna
positions r,, such that the minimum capacity over the set of
blocks is optimized.

Table I displays the design parameters and constraints.
Figure 1 displays the positions of the baseline random antenna
configuration, which was used as the starting point to the opti-
mization procedure, and the positions of the optimized antenna
configuration. The shaded blocks in the background of Figure
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1 represent the nine blocks on which the unknown signal is
block-sparse. The optimization procedure was configured so
that the minimum capacity of block pairs (36 in total) was
maximized. The minimum capacity was increased from —12.6
in the baseline design to —3.3 in the optimized design. This
directly led to an improvement in CS reconstruction accuracy,

Design Parameters and Constraints
Parameter Baseline Value Constraint
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N 144 -
K 9 -
L 16 -
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TABLE T
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS IN THE
OPTIMIZATION PROBLEM.

Antenna Positions
©- © © © ©

[ —O °
" 0
. ]
° ° . u
21 = o - = * 4
% " .
4 ° O
9 o N = . © °
o
1 . s . o
o « ©
- o . =
s u = (<] o °
/\ 0 L] o- - K
f o
= 00 ° o »*
x
" 8 (]
° » © °
« N
-1 o B F.. °
°
] o oOx . .
“w * . ° M g
21 - .
*
% o " ® o « ©
x x .e
o o o o o o o o
-2 -1 0 1 2

X/

Fig. 1. Antenna positions of the baseline (blue) and optimized (red) designs.
The shaded boxes in the background represent the squares on which the
capacity was evaluated.
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Fig. 2. Numerical comparison of the reconstruction accuracies of joint ¢2/¢1
reconstruction and standard ¢; reconstruction using the baseline random (blue)
and optimized (red) designs.

as can be seen in Figure 2. The optimized antenna positions
were able to reconstruct > 90% of block-sparse vectors up to
a block sparsity Sp = 2 (total sparsity S = 32), whereas the
baseline random positions reconstructed < 20%. The fact that
the optimized design performs so well up to the theoretical
maximum sparsity level, M/2 = 32, truly demonstrates the
capabilities of the design method.

IV. CONCLUSION

This paper describes a novel method for designing sensing
matrices with enhanced block-sparse signal recovery capabil-
ities. The numerical results presented for a monostatic imag-
ing application demonstrate the design method’s capabilities.
Although this paper only considered a simple monostatic
imaging application, the design method can be applied to any
compressive sensing application where the unknown signal is
known to be block sparse.
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