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Abstract—In this paper, a new waveguide-fed Antipodal Vi-
valdi Antenna (AVA) for mm-wave imaging applications is
presented. A waveguide-to-broadside coupled Antipodal finline
transition is designed to couple the dominant mode of a WR-
12 waveguide into the AVA. The transition provides a wideband
and low insertion loss in the entire E-band. A dielectric lens
is added in front of the AVA to increase the directivity in the
endfire direction of the antenna. The performance of the designed
antenna is evaluated in the E-band in terms of its return loss,
gain, and radiation pattern.

I. INTRODUCTION

Millimeter-wave imaging has been extensively investigated
and utilized for different applications, such as security screen-
ing and interferometry sensing [1]. High bandwidth anten-
nas are necessary for having high range-resolution for the
aforementioned applications. The family of Vivaldi antennas
are good candidates for high-resolution imaging applications,
as they have a low profile, wide bandwidth, and directional
broadband radiation pattern [2].

To integrate a planar Vivaldi antenna into a rectangular
waveguide, a transitional stage is required. This transition
could be in many forms depending on the feeding of the
Vivaldi antenna. In [3], a compact waveguide-to-microstrip
transition operating in the X-band is presented; however,
the bandwidth of the transition is low (the 15-dB fractional
bandwidth is 37.33%) and the insertion loss is high (larger
than 10 dB) at the end of the X-band.

In this paper, a wideband and low loss waveguide-to-
broadside coupled Antipodal finline transition is presented to
feed an AVA. The performance of the waveguide-fed antenna
is studied in the E-band, in terms of the antennas return loss,
gain and radiation patterns.

II. WAVEGUIDE-TO-BROADSIDE COUPLED LINE
TRANSITION

The perspective view and top view of the presented tran-
sition are depicted in Fig. 1(a) and 1(b), respectively. The
conductor strips on the top and bottom layers of the finline
possess tapered exponential curves, (y;, and 7y in Fig.
1(b)), that merge into a broadside-coupled line outside of
the waveguide. These exponential curves are described by the
following equation [4]:

y; = £(Ae @B 4 ), (H
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Fig. 1. (a) Perspective view and (b) Top view of the presented waveguide-
to-broadside coupled line transition.

The transition transforms the high impedance of the dom-
inant mode of the waveguide to a lower impedance. The
proposed transition uses an RO3003 substrate with a relative
dielectric constant of 3, a dielectric loss tangent equal to
0.0013, and a thickness of h = 0.254 mm. The transition is
optimized to have the best performance in the E-band (70 —77
GHz). The exponential equations of the optimized transition
are the following: y;; = £(0.3e(o~Lt) 4 W, /2 — 0.3),
and y;q = +(Agae?2(=2=Lu) — W, /2 — A;,), in which
Ave = 0.5(Wiq + Wi,)/(e%2Fta — 1), Table T shows the
assigned values of the remaining exponential parameters. The
magnitude of S-parameters of the designed transition are
presented in Fig. 2. The transition has a maximum insertion
loss of 0.73 dB and a minimum return loss of 10 dB in the
whole E-band.

ITII. WAVEGUIDE-FED ANTIPODAL VIVALDI ANTENNA

Figure 3 shows the AVA and the transition. The broadside-
coupled line of the transition extends for a short distance; and,
then, the top and bottom strips flare out in opposite directions
with exponential curves (y, in Fig. 3(b)) to form the aperture
of the antenna. A half elliptical dielectric lens, which has the
same material property as that of the substrate, is added in
front of the antenna’s aperture. This dielectric lens acts as
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Fig. 2. Magnitude of S11 and S2; of the presented waveguide-to-broadside
coupled antipodal finline transition.

a guiding structure; and it enhances the radiation pattern at
the endfire direction [4], [5]. Table I shows the parameters
of the design. The exponential tapers of the AVA follow the
following equation: y; = £(0.23¢%77® + W, /2 — 0.23) and
Yo = £(Ae%15% — W, /2 — A,), in which A, = 0.5(W, +
Wis)/(€%165La —1). Return loss, gain, and radiation pattern of
the designed antenna are studied to evaluate its performance.
The integrated antenna with the transition has a return loss
better than 10 dB for frequencies higher that 67.9 GHz, as
shown in Fig. 4(a). The antenna has a gain varying from 11.2
dB to 14.5 dB through the E-band with the value of 13.7 dB
at the center frequency (Fig. 4(b)). Finally, the E-plane and
H-plane radiation patterns of the antenna are plotted in Fig.
5(a) and Fig. 5(b), respectively, for different frequencies. The
E-plane patterns show side-lobe levels better than 10 dB for
all plotted frequencies.
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Fig. 3. (a) Perspective view and (b) top view of the waveguide-fed AVA.
TABLE I
OPTIMIZED PARAMETERS OF THE TRANSITION AND VIVALDI ANTENNA.

PAR. | VALUE PAR. | VALUE PAR. | VALUE
a 1.55 mm Ly; 1 mm Lg 18.1 mm
b 3.09 mm Liq 3.6 mm We 6.4 mm

h 0.254 mm Wia 3.09 mm Re 4.93 mm
Lys 2 mm Wis 0.24 mm
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Fig. 4. (a) Magnitude of S1; and (b) gain of the designed antenna.
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Fig. 5. Simulated gain pattern of the antenna at (a) E-plane and (b) H-plane.

IV. CONCLUSION

In this paper, a wideband and low loss finline transition has
been proposed to couple a WR-12 waveguide and an AVA
antenna. Due to its large bandwidth, this waveguide-fed AVA
can be used in high resolution mm-wave imaging applications.
The proposed transition has a maximum insertion loss of 0.73
dB through the whole E-band. The waveguide-fed Vivaldi
antenna has a gain of 13.7 dB at the center frequency of the
E-band and a return loss better than 10 dB for frequencies
higher than 67.9 GHz.
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