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Abstract

The shape of the orbit of a free particle is examined in Friedmann-Lemaitre-Robertson-Walker
(FLRW) cosmologies. The spatial projection of the orbit is time-independent and has a simple
geometric description. We relate this description to the expression in terms of standard FLRW
coordinates.

The spacetime of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology consists of a constant curvature
space that evolves in time through a time dependent scale factor. An object in free fall, or a light ray, travels along
a spacetime geodesic, which traces out a path in the constant curvature 3-space. It is a remarkable fact that this
path is also a geodesic of the underlying constant curvature 3-space, and is therefore completely independent of
the behavior of the scale factor. Due to the symmetries of FLRW, there are a variety of geometric and coordinate
based techniques that can be used to study geodesics. The standard textbook approach[1-7] actually uses a
combination of techniques: standard FLRW coordinates are used, but one makes use of homogeneity to demand
that the geodesic passes through the point r = 0 and is thus a radial geodesic. This is convenient because the
geodesics we are most interested in are those that reach our position, and we adopt for ourselves the coordinate
priveleged position r = 0. Nonetheless, it is sometimes of interest to consider non-radial geodesics in FLRW, for
example in the Sunyaev-Zeldovich effect[8] where cosmic background photons inverse Compton scatter off the
hot gas in a galaxy cluster; or more generally when treating the cosmological Boltzmann equation (see e.g. [9]). In
this note we will look at FLRW geodesics in general (i.e. not necessarily radial) form, using two different
approaches: (1) a geometric approach and (2) a coordinate based approach. We will present and compare these
two approaches.

The metric g,;, of the FLRW cosmology can be written as

Sy = — Ually + a*hap (D

Here u® = (9/0t)"is the four-velocity of the FLRW fluid, a(#) is the scale factor, and f,y, is the metric of a unit
constant curvature space. Note that this constant curvature space can be flat, positively curved (3-sphere), or
negatively curved (hyperbolic space). Let k“ be the four-velocity of a timelike or null geodesic (i.e. an object in
free-fall, or alight ray). Then k“k, = —rx where k = 1 for material objects and x = 0 for light rays. k“ takes
the form

k* = au® + Bv? (2)

where v“is a unit vector in the metric 1. Since 1 * is a unit timelike vector orthogonal to v*, we have
o = —k“u,. From the geodesic equation and the standard result V,u;, = adh,, = (a / a)(g,, + uaup) wefind
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k*Noo = k*N,(—kbuy)
= —k“kauub
= kK2 (g,, + auy)
a
= E(n - a?)
a
K — a?
= k*V,a, (3)
ao
from which it follows that
k*Vy(a? — k) = fg(az — K)kVa. 4)
a

It then follows that

a=k+ci/a®, B=cy/a’ (5)

for some constant c,. (As shown in [7] equation (5) can also be derived by first showing that ahy isaKilling
tensor). Now let £ be a Killing vector of h,p,. Then it follows that £ is also a Killing vector of the FLRW
spacetime. Thus there is a constant ¢, such that

6 = 8 k€ = (uquy + @) (au® + Br) €t = cohapv€? ©)

Thus v*, the tangent vector to the spatial projection of the orbit, is a unit vector in the underlying unit constant
curvature space whose inner product with every Killing vector of that space is a constant. It then follows that the
orbit is a geodesic of that space.

We now describe the orbits for each possible curvature of space: for flat space, the orbit is a straight line. For
positive curvature, the orbit is a great circle of the 3-sphere. That is, realizing the three sphere as the surface
w? + x* + y* + 22 = linaflat4-dimensional Euclidean space, the great circle is the intersection of this surface
with a plane through the origin. The analogous result holds for hyperbolic space. Realizing this space as the
surface (unit hyperboloid) —* + x* 4+ y* + zZ> = —1in Minkowski spacetime, the orbit is the intersection of
this surface with a plane through the origin.

We now consider the coordinate description of the orbit. It is both convenient and usual in treating FLRW
spacetimes to use a single expression, subsuming all three possibilities for the curvature, to describe the
spacetime. The line element is given by the expression

2
ds? = —di® + az(t)[ drk 5+ r2(d6? + sin’6 dsoz)], @
r

1 —
where k = 0 (flat space), k = 1 (3-sphere), or k = —1 (hyperbolic space). The geodesic equation is
d>xH o dx dx’?
ax A dx
where \is an affine parameter. Without loss of generality, we specialize to orbits in the § = 7/2 plane. The
geodesic equation then yields

2 2 2
at + aa 1 (ﬂ) + rz(di) =0, ©)]
AN 1 — kr2\dx dx
d’r kr dr ) do '\ adr dt
AL S iy 1—k2(—)+2———:0, 10
1o krz(d)\) = RO 2 d\dX (10)
2 .
dp  ,adpdt  2dpdr _ (11)

A Tadxdx o rdidn
Definingd/d¢ = a°d/d\along the geodesics, one obtains from equations (10)—(11)

d*r kr dr ) do V'
ar &[4y 1—k2(—):0, 12
e l—krz(df) A b7 (12
d*o  2dpdr
+ —_—— = 0) 13
de? rde de (13)

thus demonstrating that the shape of the orbit is independent of the scale factor. And, in fact, equations (12)—
(13) are precisely the geodesic equations for the metric /1, with £ as the length in that metric. One solution of
equation (13)is dy /d¢ = 0which corresponds to radial geodesics. In this case, the first integral of equation (12)
leadsto d? = dr/ V1 — kr?.This standard result, which can also be read off directly from equation (7), in turn
leads to the standard result that
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r=¢(k=0), r=sinf(k=1), r=sinh? (k = —1). (14)
If dp/d¢ = 0 (non-radial geodesics) then using equation (13) and the chain rule in equation (12) we obtain
2 . 2 2
A 2= 3k fdr )G ey —o, (15)
de?  r(1 — kr5)\dy
Defining u = ri—k equation (15) becomes
) 2
dpe?  2uldp
from which it follows that
2
4 u! au + 4u|=0. (17)
dp de
Therefore there is an integration constant ¢, for which
2
ul(d—u) + 4u = o. (18)
dp

Note thatsince r < 1fork = 1, itfollows that u > 0 for any value of k, and thus using equation (18) it follows
that ¢ > 0. Now definingw = u —c,/8 we find that equation (18) is equivalent to

(j—g)z + 4w? = %. (19)
Now differentiating equation (19) with respect to ¢ we obtain
Zz—;; + 4w = 0. (20)
The general solution to equation (20) is
w = Acos(p + B)) (21)

where A is a nonnegative constant, and Jis a constant. Now using equation (21) in equation (19) we find that the
integration constant is given by ¢, = 8A (where we have also used the fact that ¢, is nonnegative). It then follows
from the definition of w that

u = 2A cos*(p + B3), (22)
And thus from the definition of u that
1

T \/k + 2A cos’(p + 3) .

(23)

We now compare equation (23) to the results of the geometric approach for the three cases: k = 0,1, —1.
For k = 0thespaceisflatand (r, ) are plane polar coordinates. However, in this case equation (23) is easily seen
to be the equation for a straight line in plane polar coordinates, so the geometric result agrees with the coordinate
result.

For k = 1, the geometric result is that the orbit is a circle. However, equation (23) does not look like the
equation for a circle. In fact, if (, ) were plane polar coordinates, then equation (23) would be the equation of
an ellipse (see figure 1). The coordinates (w, x, y, z) for the embedding of the 3-sphere in 4 dimensional flat space
are related to the FLRW coordinates (r, ¢) by

W, x,9,2) =K1 — r2, r cos @, sin @, 0) (24)

where we have also used the condition # = 7/2. The equation for a plane through the originisw = ¢z x + ¢, ¥
for some constants c; and ¢, which becomes using equation (24)

V1 =2 = Breos(e + ) (25)
for some constants Band (3. Solving for r we obtain
. 1
B \/1 + B?cos*(p + B) .

r (26)

which agrees with equation (23).
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Figure 2. The orbit in the k = —1 case using coordinates (x = r cos ¢, y = rsin ). Here A = 1.1and § = 7/4.

Corresponding results hold for k = —1 (see figure 2). We have
(t %y, 2) = (W1 + r2, rcos @, rsin @, 0) (27)

where we have also used the condition # = 7/2. The equation for a plane through the originist = ¢sx + c5y
for some constants cs and ¢g, which becomes using equation (27)

V1 + 12 = Brcos(p + ) (28)

for some constants Band (3. Solving for r we obtain

1
= . 29
' \/—1 + B2cos* (¢ + ) @9

which agrees with equation (23).




I0P Publishing

. Phys. C .2(2018) 111001
J. Phys. Commin. 2 (2018) P Letters

Thus we see that for a given value of k all the FLRW orbits are the same geometrically, and are therefore
equivalent to orbits of the standard radial geodesics of equation (14). However, these orbits look very different for
non-radial geodesics expressed in standard FLRW coordinates. This is completely analogous to the well known
phenomenon (familiar to airplane travelers) that though all great circles of the Earth are geometrically equivalent
to the equator, theylook very different when expressed in terms of longitude and latitude.
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