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Abstract

The shape of the orbit of a free particle is examined in Friedmann-Lemaître-Robertson-Walker

(FLRW) cosmologies. The spatial projection of the orbit is time-independent and has a simple

geometric description.We relate this description to the expression in terms of standard FLRW

coordinates.

The spacetime of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology consists of a constant curvature

space that evolves in time through a time dependent scale factor. An object in free fall, or a light ray, travels along

a spacetime geodesic, which traces out a path in the constant curvature 3-space. It is a remarkable fact that this

path is also a geodesic of the underlying constant curvature 3-space, and is therefore completely independent of

the behavior of the scale factor. Due to the symmetries of FLRW, there are a variety of geometric and coordinate

based techniques that can be used to study geodesics. The standard textbook approach[1–7] actually uses a

combination of techniques: standard FLRWcoordinates are used, but onemakes use of homogeneity to demand

that the geodesic passes through the point r 0= and is thus a radial geodesic. This is convenient because the

geodesics we aremost interested in are those that reach our position, andwe adopt for ourselves the coordinate

priveleged position r=0.Nonetheless, it is sometimes of interest to consider non-radial geodesics in FLRW, for

example in the Sunyaev-Zeldovich effect[8]where cosmic background photons inverse Compton scatter off the

hot gas in a galaxy cluster; ormore generally when treating the cosmological Boltzmann equation (see e.g. [9]). In

this note wewill look at FLRWgeodesics in general (i.e. not necessarily radial) form, using two different

approaches: (1) a geometric approach and (2) a coordinate based approach.Wewill present and compare these

two approaches.

Themetric gab of the FLRWcosmology can bewritten as

g u u a h 1ab a b ab
2= - + ¯ ( )

Here u a=(∂/∂t)a is the four-velocity of the FLRWfluid, a(t) is the scale factor, and hab
¯ is themetric of a unit

constant curvature space.Note that this constant curvature space can beflat, positively curved (3-sphere), or

negatively curved (hyperbolic space). Let k a be the four-velocity of a timelike or null geodesic (i.e. an object in

free-fall, or a light ray). Then k aka=−κwhereκ=1 formaterial objects andκ=0 for light rays. k a takes
the form

k u v 2a a aa b= + ( )

where v a is a unit vector in themetric hab
¯ . Since u a is a unit timelike vector orthogonal to v a, we have

α=−k aua. From the geodesic equation and the standard result u aah a a g u ua b ab ab a b = = +˙ ¯ ( ˙ )( )we find
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fromwhich it follows that
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It then follows that

c a c a, 50
2 2

0
2a k b= + = ( )

for some constant c0. (As shown in [7] equation (5) can also be derived by first showing that a hab
4 ¯ is a Killing

tensor). Now let ξ a be aKilling vector of hab
¯ . Then it follows that ξ a is also aKilling vector of the FLRW

spacetime. Thus there is a constant c1 such that

c g k u u a h u v c h v 6ab
a b

a b ab
a a b

ab
a b

1
2

0x a b x x= = + + =( ¯ )( ) ¯ ( )

Thus v a, the tangent vector to the spatial projection of the orbit, is a unit vector in the underlying unit constant

curvature spacewhose inner product with every Killing vector of that space is a constant. It then follows that the

orbit is a geodesic of that space.

We nowdescribe the orbits for each possible curvature of space: forflat space, the orbit is a straight line. For

positive curvature, the orbit is a great circle of the 3-sphere. That is, realizing the three sphere as the surface

w2+x2+y2+z2=1 in aflat 4-dimensional Euclidean space, the great circle is the intersection of this surface

with a plane through the origin. The analogous result holds for hyperbolic space. Realizing this space as the

surface (unit hyperboloid)−t2+x2+y2+z2=−1 inMinkowski spacetime, the orbit is the intersection of

this surface with a plane through the origin.

We now consider the coordinate description of the orbit. It is both convenient and usual in treating FLRW

spacetimes to use a single expression, subsuming all three possibilities for the curvature, to describe the

spacetime. The line element is given by the expression

ds dt a t
dr

kr
r d d

1
sin , 72 2 2

2

2

2 2 2 2q q j= - +
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where k 0= (flat space), k=1 (3-sphere), or k=−1 (hyperbolic space). The geodesic equation is
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whereλ is an affine parameter.Without loss of generality, we specialize to orbits in the θ=π/2 plane. The
geodesic equation then yields
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Defining d/dℓ=a2d/dλ along the geodesics, one obtains from equations (10)–(11)
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thus demonstrating that the shape of the orbit is independent of the scale factor. And, in fact, equations (12)–
(13) are precisely the geodesic equations for themetric hab

¯ withℓ as the length in thatmetric. One solution of

equation (13) is dj /dℓ=0which corresponds to radial geodesics. In this case, the first integral of equation (12)

leads to d dr kr1 2= -ℓ . This standard result, which can also be read off directly from equation (7), in turn

leads to the standard result that

2

J. Phys. Commun. 2 (2018) 111001



r k r k r k0 , sin 1 , sinh 1 . 14= = = = = = -ℓ ℓ ℓ( ) ( ) ( ) ( )

If d d 0j ¹ℓ (non-radial geodesics) then using equation (13) and the chain rule in equation (12)we obtain

d r

d

kr

r kr

dr

d
r kr

2 3

1
1 0. 15

2

2

2

2

2

2

j j
-

-
-

- - =
⎛

⎝
⎜

⎞

⎠
⎟

( )
( ) ( )

Defining u≡ r−2−k, equation (15) becomes
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Therefore there is an integration constant c2 for which
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Note that since r 1 for k=1, it follows that u 0 for any value of k, and thus using equation (18) it follows

that c 02  . Nowdefiningw≡u−c2/8wefind that equation (18) is equivalent to

dw

d
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Nowdifferentiating equation (19)with respect tojwe obtain

d w

d
w4 0. 20

2

2j
+ = ( )

The general solution to equation (20) is

w A cos 2 21j b= +( ( )) ( )

whereA is a nonnegative constant, andβ is a constant. Nowusing equation (21) in equation (19)wefind that the

integration constant is given by c2=8A (wherewe have also used the fact that c2 is nonnegative). It then follows

from the definition ofw that

u A2 cos , 222 j b= +( ) ( )

And thus from the definition of u that

r
k A

1

2 cos
. 23

2 j b
=

+ +( )
( )

Wenow compare equation (23) to the results of the geometric approach for the three cases: k=0, 1,−1.

For k=0 the space is flat and (r,j) are plane polar coordinates. However, in this case equation (23) is easily seen

to be the equation for a straight line in plane polar coordinates, so the geometric result agrees with the coordinate

result.

For k=1, the geometric result is that the orbit is a circle. However, equation (23) does not look like the

equation for a circle. In fact, if (r,j)were plane polar coordinates, then equation (23)would be the equation of

an ellipse (see figure 1). The coordinates (w, x, y, z) for the embedding of the 3-sphere in 4 dimensional flat space

are related to the FLRWcoordinates (r,j) by

w x y z r r r, , , 1 , cos , sin , 0 242 j j= -( ) ( ) ( )

wherewe have also used the condition θ=π/2. The equation for a plane through the origin isw=c3 x+c4 y
for some constants c3 and c4, which becomes using equation (24)

r Br1 cos 252 j b- = +( ) ( )

for some constantsB andβ. Solving for rwe obtain

r
B

1

1 cos
. 26

2 2 j b
=

+ +( )
( )

which agrees with equation (23).
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Corresponding results hold for k=−1 (see figure 2).We have

t x y z r r r, , , 1 , cos , sin , 0 272 j j= +( ) ( ) ( )

wherewe have also used the condition θ=π/2. The equation for a plane through the origin is t=c5 x+c6 y
for some constants c5 and c6, which becomes using equation (27)

r Br1 cos 282 j b+ = +( ) ( )

for some constantsB andβ. Solving for rwe obtain

r
B

1

1 cos
. 29

2 2 j b
=

- + +( )
( )

which agrees with equation (23).

Figure 1.The orbit in the k=1 case using coordinates x r y rcos , sinj j= =( ). HereA=3 andβ=π/4.

Figure 2.The orbit in the k=−1 case using coordinates x r y rcos , sinj j= =( ). HereA=1.1 andβ=π/4.
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Thuswe see that for a given value of k all the FLRWorbits are the same geometrically, and are therefore

equivalent to orbits of the standard radial geodesics of equation (14). However, these orbits look very different for

non-radial geodesics expressed in standard FLRWcoordinates. This is completely analogous to thewell known

phenomenon (familiar to airplane travelers) that though all great circles of the Earth are geometrically equivalent

to the equator, they look very different when expressed in terms of longitude and latitude.
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