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Abstract: The use of solid cavities around electromagnetic sources has been recently reported as
a mechanism to provide enhanced images at microwave frequencies. These cavities are used as
measurement randomizers; and they compress the wave fields at the physical layer. As a result of
this compression, the amount of information collected by the sensing array through the different
excited modes inside the resonant cavity is increased when compared to that obtained by no-cavity
approaches. In this work, a two-dimensional cavity, having multiple openings, is used to perform
such a compression for ultrasound imaging. Moreover, compressive sensing techniques are used
for sparse signal retrieval with a limited number of operating transceivers. As a proof-of-concept of
this theoretical investigation, two point-like targets located in a uniform background medium are
imaged in the presence and the absence of the cavity. In addition, an analysis of the sensing capacity
and the shape of the point spread function is also carried out for the aforementioned cases. The cavity
is designed to have the maximum sensing capacity given different materials and opening sizes. It is
demonstrated that the use of a cavity, whether it is made of plastic or metal, can significantly enhance
the sensing capacity and the point spread function of a focused beam. The imaging performance is
also improved in terms cross-range resolution when compared to the no-cavity case.

Keywords: compressive sensing; ultrasound imaging; ultrasound cavity

1. Introduction

According to Compressive Sensing (CS) theory, unknown signals sampled at a rate smaller than
that required by the Shannon–Nyquist theorem [1] may be recovered when certain conditions are
satisfied. Specifically, the CS theory relies on two mathematical principles: sparsity, which imposes
that the unknown signal must accept a sparse representation in a known dictionary or set of base
functions; and incoherence, which requires that the Restricted Isometry Property (RIP) is satisfied by
the sensing matrix that linearly relates the coefficients of the unknown signal and the undersampled
data [2,3]. It can be shown that the smaller the coherence between each of two columns of the sensing
matrix, the more accurately the unknown signal can be recovered [3]. When the sensing matrix is
built through random projections in the undersampled signal space, the resulting coherence between
each of two of its columns is small, with a high probability. This is the reason why measurement
randomization has the potential to enhance the accuracy of the recovered unknown signal [2].

Several sensing and imaging applications [4] have been able to take advantage of CS by
using pseudo-random illumination in the outgoing waves from the transmitters and collecting
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pseudo-random measurements from the incoming waves to the receivers. Carin et al. used random
positions for the elements of a sensing array to make use of CS. They also showed that placing
spherical scattering objects in front of the waves increases the randomness and incoherence of
the measurements [5]. Incoherence between each of two measurements can also be achieved by
using physical structures that exhibit different wave-matter responses at different instantaneous
frequencies, without the need to change the arrangement of the sensing array. For instance, Fromenteze
et al. used a metal cavity with a number of holes and a wave agitator inside the cavity to randomize
the electromagnetic wave patterns for microwave imaging [6]. Later, the same research group fabricated
a metalized cavity with holes arranged in irises following Fibonacci patterns to code the outgoing
waves based on frequency diversity [7].

Metamaterials have also been used to create randomness in the sensing system for applications
such as microwave imaging [8–10], optical imaging [11,12], milliliter-wave imaging [13–16]
and acoustic multichannel separation using a single sensor [17]. The fabrication of holey cavities is
generally simpler than that of metamaterials, and they do not require any alteration in the sensing
array assortment in contrast to the approach adopted in [5]. Other methods of wave randomization
have been proposed in the literature. Specifically for ultrasound imaging, Schiffner introduced
a software-based technique that uses time delays and apodization weights to generate random incident
acoustic fields [18,19]. Other software methods, which usually involve novel sampling methods,
have been proposed, as well [20,21]. Similar to coded masks that are commonly used in compressive
optical imaging [22–24] as a subgroup of hardware-based methods, Kruizinga et al. introduced
a rotating mask of randomly-varying thicknesses throughout its surface to randomize ultrasound
waves, and they were able to retrieve 3D images of objects using a single transducer [25]. In this study,
a static 2D cavity has been selected as a structure that enables randomization of the wave fields in three
generalized dimensions, one spectral and two spatial, thus leading to enhanced ultrasound imaging
via compressive sensing. Other types of ultrasound cavities have also been proposed by Fink et al. to
create images using time-reversal techniques [26–29]. However, they have not been used in the scope
of compressive sensing; and therefore, their method requires a large number of measurements [25].
In the succeeding sections, the performance of several 2D holey cavities are studied, showing how
the cavity-based imaging performance is enhanced when compared to that of a traditional ultrasound
imaging setup.

2. Two-Dimensional Cavity

In order to design the cavity, a baseline configuration is defined as shown in Figure 1. It includes
a coupling liquid region that contains the ultrasound sources, an interface region and an imaging
region that contains the unknown targets surrounded by a known homogeneous background. In many
applications, the ultrasound probe is not in direct contact with the imaging domain; therefore,
the interface medium was introduced to take into consideration this fact. One example of a 2D
cavity enclosing the exciting sources is shown in the top layer of Figure 1. As observed, the cavity
is closed from all sides except the bottom, where a number of openings is made for the impinging
waves to pass through. It is assumed that the openings are uniformly distributed along the bottom of
the cavity, and they are symmetric with respect to the y axis.

The parameters listed on the right side of Figure 1 are adjustable. In the next section, the theory
required to solve the acoustic problem is presented; and later, in Section 4, a simulation is carried out
for a selected set of geometrical and physical parameters using the established theory.
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Figure 1. The simulation domain on the left and the geometrical parameters on the right. From the list
of parameters, the size of the openings at the bottom of the cavity and the material used to fabricate
the cavity are subject to change.

3. Compressive Sensing, Imaging and Performance Metrics

In this section, the algorithms used to perform compressive sensing and imaging are introduced.
Specifically, a computational forward model is used to simulate the sensing process and measured
acoustic wave fields, the inverse model is formulated and the first-order Born approximation is used
as a simple approach to linearize the imaging problem. Moreover, the sensing capacity and the Point
Spread Function (PSF) of the system are defined, and they will be used as extra metrics to assess how
the addition of the cavity affects the performance of the imaging system.

3.1. The Forward Model

For an inhomogeneous medium, with its density and speed of sound defined as a function of
the location vector r, the linear wave equation for a time-harmonic pressure field can be expressed as
follows [30]:

ρ(r)∇ ·
(

1
ρ(r)

∇ P(r, ω)

)
+ k2(r, ω)P(r, ω) = F(r, ω), (1)

in which ω = 2π f is the angular frequency with f denoting the frequency, ρ(r) is the density, k(r, ω)

is the wavenumber, P(r, ω) is the pressure field and F(r, ω) is the acoustic source term, all defined in
the medium. The mathematical model of F(r, ω) depends on how the source is defined. If the exciting
source is a monopole, and it is defined based on the Root Mean Square (RMS) of power per unit length,
i.e., Prms, then [31]

F(r, ω) = 2eiφs
√

2ρ(r)ω Prmsδ (r − rs) (2)

where φs and rs are the phase and the location of the source, respectively, and δ (r − rs) is the Dirac
delta function, shifted from the origin to the source location. To excite a delta function having a
magnitude of one (pascals per unit area) and no phase terms, the parameters must be chosen as φs = 0
and Prms(ω) = 1/(8ρ(r)ω). Equation (1) is solved for the complete geometry shown in Figure 1 using
the finite-element software COMSOL Multiphysics (CM), one time with the targets present and one
time when they are absent. The former case gives the background field, and the later one gives the total
field, both of which will be used in the inverse model to retrieve the image of the targets, as will be
discussed in the succeeding subsection. The outer boundaries of the entire simulation domain on all
sides are set to be absorbing. Moreover, since the Pressure Acoustics Module of CM is used, the cavity
and other solids in the medium are viewed as fluids by the module in terms of wave propagation.
In this way, each material in the simulation domain is characterized by its density and longitudinal
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speed of sound. This method offers an approximation of solid behavior without the need to use
the Solid Mechanics Module, and it has been previously used in the literature [32].

3.2. The Inverse Model

The computed total and background fields in the forward modeling inside the imaging domain
can be denoted with P̃b and P̃t. When the targets are small and the density gradient ∇ ρ(r) between
the targets and the homogeneous background medium is relatively small, P̃b and P̃t both satisfy
the homogeneous and approximated version of Equation (1):

(∇2 + k2
b(r, ω))P̃b(r, ω) = 0, (3)

(∇2 + k2
t (r, ω))P̃t(r, ω) = 0, (4)

which are in the form of the linear, homogeneous Helmholtz equations. Here, kb(r, ω) and kt(r, ω)

denote the wavenumbers in the absence and presence of the targets, respectively. If the scattered field
is defined as P̃s(r, ω) = P̃t(r, ω)− P̃b(r, ω), then Equation (3) can be rewritten as:

∇2(P̃t(r, ω)− P̃s(r, ω)) + k2
b(r, ω)(P̃t(r, ω)− P̃s(r, ω)) = 0. (5)

Next, subtracting Equation (5) from Equation (4), one can easily show that:

(∇2 + k2
b(r, ω))P̃s(r, ω) = (k2

b(r, ω)− k2
t (r, ω))P̃t(r, ω), (6)

which is similar to (3) and (4), except the exciting source H(r, ω) = (k2
b(r, ω) − k2

t (r, ω))P̃t(r, ω)

and the subscript s, which stands for the scattered field. The application of the Helmholtz equation in
the background, total and scattered field is summarized in Figure 2. The solution to Equation (6) can
be obtained by superposition as [33]:

P̃s(r, ω) =
∫

Sid

Gb(r, r′, ω)H(r′, ω)dr′ =
∫

Sid

Gb(r, r′, ω)k2
b(r

′, ω)X(r′, ω)P̃t(r
′, ω)dr′, (7)

in which Gb(r, r′, ω) is the solution of the background pressure when the exciting source is an impulse
function −δ(r − r′) at location r′; X(r, ω) = (1/c2

b(r, ω) − 1/c2
t (r, ω))/(1/c2

b(r, ω)) is the contrast
variable and the relationships kb(r, ω) = ω/cb(r, ω) and kt(r, ω) = ω/ct(r, ω) are used with cb(r, ω)

and ct(r, ω) being the speed of sound inside the domain in the presence and the absence of targets,
respectively. The subscript Sid denotes the area on which the integrand is integrated, which is
the imaging domain. It should be noted that inside the imaging domain, X(r, ω) is zero everywhere,
save the inside and on the boundaries of the targets. Green’s function Gb(r, r′, ω) is also calculated
numerically using a full-field simulation for each frequency and for the entire simulation domain,
including the cavity, but without the targets.

The introduced parameter X(r′, ω) is to be solved for in the imaging problem as the unknown.
Provided that the speed of sound does not vary much in the frequency band used [34], the dependence
of the contrast variable on frequency may be neglected, i.e., X(r′, ω) ≈ X(r′). When the contrast
variable is relatively small, causing a small perturbation in the fields, the total field can be
estimated from the background field using the first-order Born approximation [35,36], which turns
Equation (7) into:

P̃s(r, ω) ≈
∫

Sid

Gb(r, r′, ω)k2
b(r

′, ω)X(r′)P̃b(r
′, ω)dr′, (8)

where Pb(r
′, ω) is to be numerically computed and P̃s(r′, ω) is obtained by subtracting the simulated

total field and background field at the position of the receivers.
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Figure 2. The background, total and scattered pressure fields for a monopole acoustic source all satisfy
the Helmholtz equation in the imaging domain, provided that the density of the scattering target is
close to that of the background.

3.3. Distributed Compressive Sensing and Imaging Algorithm

Discretizing Equation (8) into P pixels in the imaging domain and having M noiseless
measurements on the receivers leads to the following matrix-form equation:

A(M×P)x̂(P×1) = b(M×1), (9)

in which b is the measurement vector, A is the sensing matrix and x̂ is the estimated unknown
vector—the column-wise stacking of the values of the contrast parameter at each pixel in the imaging
domain that will be later reshaped into the actual size of the that domain to give the 2D image.
The number of pixels P is determined by the mesh grid in which the fields are exported; and it
equals nxny, where nx and ny are the size of the grid in the x and y direction, respectively (Figure 1).
If the number of transmitters, receivers and the frequencies used in the measurements are respectively
denoted by NT , NR and Nf , the number of measurements equals M = NT NRNf , which is explained
in details in the Appendix. The system of equations in (9) is underdetermined, since the number of
measurements M is usually much smaller than the number of unknowns P. Therefore, an optimization
method is needed to find an optimal solution for the system out of infinitely many solutions,
particularly in this case where compressed sensing is considered. A norm-one optimization technique
called the Alternating Direction Method of Multipliers (ADMM) is employed to find an optimized
solution for x̂ in a fully-distributed fashion. The version of the ADMM used in this study makes use of
parallel computing [37] in Q levels, and it is formulated as follows [38,39]:

minimize
Q
∑

i=1
‖Aix̂i − bi‖2

2 + η ‖z‖1

subject to x̂i − z = 0 ∀i = 1, ..., Q;
(10)

in which matrix A has been segmented based on rows into Q submatrices Ai, x̂i is the solution provided
by the submatrix Ai, bi is the subvector of b that is associated with Ai, η is the norm-one regularization
parameter and z is the consensus solution obtained after combining all solutions x̂i. The Lagrangian
form of Equation (10) is as follows [37] (§3.1):

Lρ

(
x̂1, · · · , x̂Q, ẑ, û1, · · · , ûQ

)
=

1
2

Q

∑
i=1

‖Aix̂i − bi‖2
2 + η ‖ẑ‖1

+
ρ

2

Q

∑
i=1

‖x̂i − ẑ + ûi‖2
2 −

ρ

2

Q

∑
i=1

‖ûi‖2
2 ,

(11)
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where ρ is the augmented Lagrangian parameter and ûi is the scaled form of the Lagrangian
multiplier [37] (§3.1.1). This problem can be optimized iteratively as presented in Algorithm 1.

Algorithm 1 Consensus ADMM.

Inputs:

A ← sensing matrix

b ← measurement vector

nmax ← maximum number of iterations

Q ← number of rows divisions

ρ ← augmented Lagrangian parameter

η ← norm-one regularization parameter

Initialize x̂
(0)
1 = x̂

(0)
2 = · · · = x̂

(0)
Q = ẑ(0) = û

(0)
1 = û

(0)
2 = . . . û

(0)
Q = 0 � Initialization

Compute the inverse factor Ψi = (A∗
i Ai + ρI)−1 for i = 1, . . . , Q

k ← 0 iteration number

repeat

x̂
(k+1)
i = Ψi ×

(
A∗

i bi + ρ
(

ẑ(k) − û
(k)
i

))
for i = 1, . . . , Q � Update x̂

(k+1)
i

x̄(k+1) = 1
N

Q
∑

i=1
x̂
(k+1)
i � Mean of x̂

(k+1)
i

ū(k) = 1
N

Q
∑

i=1
x̂
(k)
i � Mean of x̂

(k)
i

ẑ(k+1) = Sη/ρQ

(
x̄(k+1) + ū(k+1)

)
� Update z(k+1)

û
(k+1)
i = û

(k)
i +

(
x̂
(k+1)
i − ẑ(k+1)

)
for i = 1, . . . , Q � Update u

(k+1)
i

k ← k + 1 � Increment k

until k > nmax � Check for convergence

Output: z(k+1)

In the algorithm, I denotes the identity matrix, x̄ and ū are, respectively, the mean values of
x̂i and ûi for all i and S η

ρQ
(·) is the soft thresholding operator, which is applied on each element of

the vector. When it applies on a scalar β, it functions as [39,40]:

S η
ρQ
(β) =

{
β − η

ρQ sign(β) |β| > η
ρQ ,

0 |β| ≤ η
ρQ .

(12)

To calculate the inversion of Ψi = A∗
i Ai + ρI, where A∗

i denotes the Hermitian of the sensing
matrix, more efficiently, the matrix inversion lemma can be used, as described in [38].

When there is noise in the measurements, Equation (9) can be rewritten as:

Ax̂n = b̃ = b + ñ, (13)

where ñ is the noise column vector, having the same size as b, b̃ is the measurement vector including
noise and x̂n is signal retrieved from noisy measurements. The imaging results using both noiseless
measurements and measurement including noise will be presented in the Section 4.

3.4. Beam Focusing

The performance of the sensing array with and without the cavity can be seen through its
PSF, which is the field distribution that results from coherently adding up the pressure field of
each transmitter (or receiver), multiplied by a phase term that produces a constructive interference
at the focusing point, when the transmitter (or receiver) is excited by a unit impulse function.
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The described procedure is named phase-based beam focusing, and the resulting PSF for transmitters
is given by the following equation [13,41]:

BFp(r) =
NT

∑
i=1

Nf

∑
l=1

Pb,il(r, fl)e
−jψp,il , (14)

in which Pb,il(r, fl) is the background field due to transmitter i at location r at frequency fl and ψp,il is
the phase of the background field at the location of the focus point rp = (xp, yp), i.e., �Pb,il(rp, fl).

3.5. Sensing Capacity

Another metric that will be used to assess the performance of the imaging system is the so-called
sensing capacity. This metric determines the amount of information that can be transferred from
the imaging domain into the sensors; and the larger the sensing capacity is, the better the image
reconstruction will be. The sensing capacity, expressed in bits/s/Hz, is computed as follows [41,42]:

C = Σq
i=1 log2(1 + rζ2

i ), (15)

where r is the Signal-to-Noise Ratio (SNR), ζi is the i-th nonzero singular value of the sensing
matrix—when the values are arranged in ascending order, and q is the number of active transceivers.
As observed, C is closely related to the singular values of the sensing matrix, which itself is contingent
upon the sensing array and how it has been configured.

4. Simulation Results and Discussion

The goal of this section is to compare the performance of the imaging system with and without
the cavity. Specifically, the performance will be assessed in terms of the sensing capacity, the PSF of
a focused beam and the image quality. A typical ultrasound imaging medium, which satisfies both
the density and contrast conditions, is used as a case study in this paper according to the geometry
shown in Figure 1; see Table 1 and the references therein for material properties. As shown in
Figure 1, a small number of transceivers (only two) are considered here to show the general concept
and the imaging capability using compressive sensing. What is more, two point-like targets are
selected to be imaged. Based on the values in Table 1, one can observe that: (i) the contrast variable
takes a relatively small value (about 7.84%) at the location of the targets, and it is equal to zero in
the background medium; (ii) the targets are comparatively small compared; and (iii) the density
difference between the targets and the background medium is about 4%. Thus, the approximations
made to obtain Equation (8) can be assumed to be valid and it will be shown that this is indeed the
case in the imaging results.

Table 1. The acoustic properties of the materials used in the simulations.

Material Density Longitudinal Speed of Sound Reference

Acrylic (PMMA) 1200 kg/m3 2730 m/s [43,44]
Background 1035 kg/m3 1487 m/s [45,46]

Target 1077 kg/m3 1549 m/s [47,48]
Steel 7700 kg/m3 5050 m/s [49]

Aluminum 2730 kg/m3 6800 m/s [49]
VeroWhitePlus 1175 kg/m3 2539 m/s [50,51]

To export the fields, the simulation domain is discretized into a mesh grid size of 501 × 501.
The imaging domain has a grid size of nx = 501 and ny = 120 in the x and y direction, in order, leading
to a vector signal size of P = 60120 elements. The frequency band is 2–10 MHz, and the frequency steps
in the sweeping are 0.1 MHz. The number of transmitters NT , receivers NR, and frequencies Nf used
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in the simulations is 2, 2 and 81, which yields a total measurement number of M = NT NRNf = 324.
It is lucid that these values for M and P make the system in (9) underdetermined since P 
 M.

4.1. The Effect of the Cavity Design on Sensing Capacity

As introduced in Section 2, there are a number of parameters that can be adjusted in the cavity
design. Thus, before any imaging or beam focusing is performed, the cavity parameters are required
to be selected. In this study, maximizing the sensing capacity was selected as the design goal, and two
parameters of the cavity were adjusted to achieve this end: the opening size and the material of
the cavity. The numeric values of the geometric parameters used in the simulations, except do and db,
which are variable in the cavity design, are given in Table 2.

Table 2. The geometric values used in the simulations.

Parameter Value Parameter Value

WD 6 mm hD 6 mm
tcl 2 mm tim 2 mm
tid 2 mm tc 0.05 mm
dt 0.1 mm (xs,1, ys,1) (−0.5, 2.9) mm

(xs,2, ys,2) (0.5, 2.9) mm (xt,1, yt,1) (−0.6, −2) mm
(xt,2, yt,2) (0.8, −2) mm nx 501

ny 120

4.1.1. The Size of the Openings

To have the ability to sample all the cavity modes, the size of the openings in the cavity needs to be
smaller than the minimum guided wavelength [6]. The frequency band for the simulations in this study
is selected to be 2–10 MHz, which covers the typical frequencies used in high resolution ultrasound
devices [52]. Hence, the opening size is limited by the lowest wavelength in water corresponding to
the highest frequency, that is λmin = cwater/ fmax = 1490/1 × 106 = 0.149 mm, with cwater being in m/s
and fmax in Hz. On the other hand, the hardships in fabrication and micromachining set a limit on
how small the openings can be.

Eight different cases are studied, in which the cavity thickness and its material (steel) are kept
constant as the size of the holes at the bottom of the cavity was changed. The number of holes
is maximized in each case by fitting as many openings as possible at the bottom of the cavity,
with the assumption that do = db. Moreover, the openings are generated symmetrically with respect to
the y axis, as mentioned before. The results of the sensing capacity versus SNR are shown in Figure 3.
It is evident that the addition of the cavity to the simulation domain has increased the sensing capacity;
however, the alterations in the opening sizes have not made a significant difference, at least in the
dB units used in the plots. With this setup, the largest opening size (λmin) has resulted in the largest
sensing capacity among other opening sizes, and at the same time, it is the easiest to fabricate in terms
of feature size.
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Figure 3. (a) Sensing capacity in bits/s/Hz and (b) the amplitude of the singular values of the sensing
matrix in dB for different opening sizes, in terms of λmin, in the cavity against the case where no cavity
is used. SNR is also represented in dB.

4.1.2. Material Selection

3D printing technology has made prototype fabrication much easier for many applications [53–55].
Hence, it is of interest to inspect whether using a 3D printing material such as VeroWhitePlus, which is
not as stiff and dense as steel, can adequately randomize the wave fields for compressive sensing.
Furthermore, another material, aluminum, is tested as the cavity material, and its effect on the sensing
capacity is studied, alongside with that of steel. The results, in terms of sensing capacity difference
with the no-cavity case, are illustrated in Figure 4. The sensing capacity difference is defined as below:

Ccavity − Cno cavity

Cno cavity
× 100 (16)

in which Ccavity and Cno cavity are the sensing capacity values obtained by (15) in the presence
and absence of the cavity, respectively.

Figure 4. Comparing the sensing capacity difference (%) of the steel, aluminum and VeroWhitePlus
cavities with the no-cavity case in the setup shown in Figure 1. SNR is in dB.

Although the addition of the plastic cavity to the domain has increased the sensing capacity,
its effect is not as strong as that of the steel or the aluminum cavity. Since aluminum is lighter than
steel, it can be made into thin layers, and its effect in the cavity is close to that of steel, so it was
selected as the material for the cavity. It is noteworthy to remark that the maximum capacity difference
occurs when the SNR is about 40 dB. Figure 5 shows the wave pattern randomization at four different
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frequencies in the 2–10-MHz interval for the aluminum-cavity case. It is easy to observe that the field
patterns have a reduced correlation as a result of pseudo-random illumination of the scene.

Figure 5. Wave pattern coding using the aluminum cavity around the transceivers. Different
and psuedo-random modes are excited at each frequency due to the presence of the holey cavity
and the interaction of the waves with it. The pressure units are in pascals, and the amplitude of
the source excitation was set to be 1 Pa. X and Y are in mm.

4.2. The Effect of the Cavity on Imaging and Point Spread Function

The cavity effect on the PSF of a focused beam is shown for three cases in Figure 6: (i) without
the cavity, (ii) when a plastic cavity encloses the sources and (iii) when an aluminum cavity encloses
the sources. The PSF of the imaging system improves considerably when the aluminum cavity was
used. Specifically, the cross-range aliasing effects are eliminated, and the cross-range resolution is
enhanced; nevertheless, this enhancement is not as significant when the plastic cavity is employed.

Figure 7 illustrates the images created from noiseless measurements for the same three cases,
alongside the ADMM input parameter values for each case. The maximum number of iterations
nmax is selected such that the convergence is ensured, and the number of row divisions Q is selected
such that a relatively quick consensus-based solution is achieved. Selecting Q to be relatively small
increases the computational speed in the variable convergence while increasing the computation
time in the initial matrix inversions; yet, selecting it to be relatively large could unnecessarily elevate
the computational load and time in overall, as many parameters must reach consensus.

The selection of ρ generally depends on factors such as the numerical values of the elements of A,
and η is chosen to sparsify the obtained image. These values are chosen with the prior knowledge of
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the ground truth and using a trial-and-error approach, while the most sparse, converging solution is
sought. Looking at the first step of the iteration in Algorithm 1 shows that for ρ to have an effect on
the value of Ψi, its value should be comparable to the absolute value of A∗

i Ai elements on the main
diagonal. Thus, the absolute value of the largest element of A∗

i Ai, which lies on the main diagonal
(Figure 8), can be used as a first guess for the order of ρ. Then, several values for ρ, multiple orders of
magnitude below or above the absolute value of the largest element of A∗

i Ai, are tested, while η is set
to zero. Next, the value of η is tuned, and later fine-tuned, so that the most sparse solution is achieved,
while making sure the peaks of the sought signal, which come from the targets, are kept.

To better show how well the imaging in each case has performed, the normalized signals restored
by the ADMM at the line passing through y = −1.98 mm are plotted separately in Figure 9, alongside
the known ground truth. The normalization is done with respect to the maximum value of each signal,
and the horizontal axis shows the signal index or the pixel number in the x direction. The Relative
Half-Power Width (RHPW) (equivalent to a −3-dB width when the signals are presented in decibels)
of each main lobe of all the signals is also computed with respect to the width of the main lobes in
the ground truth. The relative error in the prediction of the center of the targets for the no-cavity,
plastic-cavity and aluminum-cavity case respectively were 5.47%, 1.49% and 0.497% for the left target
and 3.46%, 1.26% and 0.314% for the right target. The RHPW of the signal retrieved when the aluminum
cavity was used is the narrowest among the signals reconstructed from other methods. In this case,
the fact that the main lobe widths have fallen below the ground truth is due to the high value of η that
was required to make the solution as sparse as possible, without losing the signal from each target.

The results generated by the ADMM are also compared to those provided by traditional Hermitian
matrix imaging in Figure 7. The Hermitian imaging is based on approximating the solution to
Equation (9) by x̂ ≈ A∗b, where A∗ is the complex-conjugate transpose or Hermitian of matrix A.
In this imaging technique, it is assumed that A∗A ≈ γ I, where I is the identity matrix and γ is
a constant. The extent to which this assumption is valid needs to be determined by evaluating how
close the magnitude of A∗A, when normalized, is to the identity matrix, which will be shown below.
Since the results of this approximation provide an additional insight into the imaging performance of
the system, they are presented besides the images retrieved by the ADMM.

Figure 8 shows that the matrix A∗A, when normalized, is closest to I when the aluminum
cavity used, thus leading to the best imaging of all configurations. It is also important to note
that, for the ADMM imaging, the residual error in the first iteration for the no-cavity, plastic cavity
and aluminum cavity case is 1.35 × 10−11, 6.312 × 10−11 and 2.98 × 10−9, respectively. In spite of
these challenging initial conditions, the ADMM algorithm can retrieve the signal and it shows that
the aluminum cavity case leads to the best imaging performance after 100 iterations. The main reason
why the ADMM method produces solutions that are 20 orders of magnitude smaller than those
of the Hermitian method is because the former inverts the linear system of equations described in
Equation (10), while the latter just multiplies both sides of the equation by the transposed conjugate
matrix—in other words, the linear system of equations is not inverted. This can also be seen from
the fact that in the Hermitian method, A∗A is not approximately equal to the identity matrix I,
but a scaled version of it, γ I. The constant γ makes the solution of both methods different. In addition
to that, the regularization parameters impose a solution that is sparse; and depending on the sparsity
level, the amplitude of the reconstructed contrast function changes. In any case, the normalized images
from both methods would be a suitable reconstruction of the size and location of the targets.

The imaging results discussed so far did not account for any noise in the measurements. Figure 10
shows the results when noise is included for different signal-to-noise ratios. The noise was generated
with MATLAB’s awgn function, which adds a white Gaussian noise of a certain power in dB,
as specified by the user, to the measurements. The imaging algorithm properly reconstructs the
signal when the the SNR is of the order of 20 dB; however, for SNR of 10 dB or below, the targets in
the image cannot be distinguished. At an SNR of 15 dB, only the plastic cavity has yielded the correct
results, whereas the images from the regular setup and the aluminum cavity include one or multiple



Sensors 2018, 18, 1674 12 of 19

strong artifacts. Therefore, it appears that the plastic cavity, in addition to improving the cross-range
resolution, is the most adaptive case to noise.

Figure 6. The PSF when the phase-based focused beam is formed at (−0.6,−2) mm and (0.8,−2) mm
on the left and right side, respectively: without a cavity, with the plastic cavity and with the aluminum
cavity (from top to bottom). Focusing is strongly improved in the case of the aluminum cavity. The unit
of focused beams is in pascals, and X and Y are in mm. It should be noted, as described in Section 3.4,
that these PSFs are formed using the background fields without any targets present.

Figure 7. Imaging of the point-like targets with the Hermitian of the sensing matrix and with
the ADMM: without the cavity, with the plastic cavity and with the aluminum cavity. Measurement
randomization has enhanced the cross-range resolutions in both cases of the plastic and aluminum
cavity, but more effectively in the later case than the former. The addition of the aluminum cavity
has introduced a weak artifact beside the left target; yet, the location of both targets is clear, showing
the maximum intensity. These graphs illustrate the retrieval results of the contrast variable, which is
unitless. X and Y are in mm. The ADMM input parameters (Algorithm 1) are also presented at the top
of each ADMM image.
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Figure 8. (a) The multiplication of the sensing matrix by its Hermitian, normalized to have a maximum
value of one (as the criterion for the quality of approximation), and (b) the convergence plot of
the ADMM images presented in semi-log format for a better view of the values. The convergence plots
show that the difference between the absolute value of z(k−1) and z(k) (refer to Algorithm 1) quickly
decreases to relatively minute values, which ensures reaching the convergent solution. The convergence
of the solution of the cavities case shows some noticeable oscillations, which are permissible, as they
are small relative to the final error value.

Figure 9. Inspection of the retrieved signals at y = −1.98 mm and their comparison with the known
ground truth. The relative half-power width of the signals’ main lobes on the left and right are
computed with respect to the width of the main lobes of the ground truth signal. The outcomes are
presented at the top-left of the plot, showing that the aluminum cavity, despite having side lobes, leads
to the best cross-range resolution among the others. Using this cavity has also outperformed other
methods in terms of the relative error generated in the target center position.
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Figure 10. The study of adding noise to the measurements: rows showing the ADMM imaging results
with different SNRs of 20 dB, 15 dB and 10 dB and columns showing different case studies. With this
configuration, the plastic cavity is the most adaptive to noise.

5. Conclusions

In this work, a theoretical study of using solid cavities enclosing ultrasound sources to randomize
the measurements was presented. Such a novel measurements scheme was combined with CS theory
to retrieve the image of two objects using a reduced number of transmitters. It was shown that
the sensing capacity and the PSF of the focused beam were significantly improved when a cavity,
made of aluminum or plastic, was utilized. The recovered images of two point-like targets inside
a uniform medium showed that the use of the cavity enhances the cross-range resolution, but they
might still possess some weak artifacts when the SNR decays below 10 dB. The novelty of this work
is the introduction of spectral coding cavities into ultrasound imaging. This work was limited by
the simplified simulation layout that considered a small two-dimensional imaging domain, a reduced
number of transceivers and a small number of targets to reduce the computational burden and to
keep the assumptions valid. In future studies, a three-dimensional model, including the interactions
between solids and acoustic waves, and a more complicated imaging domain with a heterogeneous
background medium and larger targets will be considered. Furthermore, the effect of the sensor line
array design or using a single sensor, as well as lower SNR values should be studied fully.
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Abbreviations

The following abbreviations are used in this manuscript:

CS Compressive Sensing
SNR Signal-to-Noise Ratio
ADMM Alternating Direction Method of Multipliers
PSF Point Spread Function

Appendix A

Here, the method adopted to construct the sensing matrix in this work is presented. Equation (8)
can be transformed into a matrix equation for a certain number of pixels P in the imaging domain
and an available number of measurements M. If each pixel p has an infinitesimal small area dAp

and the background fields PT,i
b , originated from the i-th transmitter, are measured at the location of

the j-th receiver, i.e., rR,j, then (8) turns into:

Ps(rR,j, ω) ≈
P

∑
p=1

Gb(rR,j, rp, ω)k2
b(rp, ω)PT,i

b (rp, ω)dAp X(rp), (A1)

in which Gb(rR,j, rp, ω) is Green’s function due to the j-th receiver, when it acts in transmission
mode. The total number of transmitters and receivers is respectively denoted by NT and NR and thus
i ∈ {1, · · · , NT} and j ∈ {1, · · · , NR}. The number of frequencies by which the medium is insonified
is Nf , and q ∈ {1, · · · , Nf } is a counter for each frequency. Assuming noiseless simulations, the matrix
form of the above equation (when all transmitters, receivers and frequencies at which the medium is
insonified are considered) can be expressed as:

b(M×1) = A(M×P)x̂(P×1), (A2)

where A is the sensing matrix, x̂ is the unknown vector (the discretized version of X(r) at each pixel)
and b is the measurement vector. In other words, x̂ is the column-wise stacking of the values of
the contrast parameter, in 2D space, at each pixel in the imaging domain. It will be shown below that
M = NRT × Nf , where NRT = NR × NT . The sensing matrix for a homogeneous background can be
constructed by separating the terms in (A1) that correspond to transmitters and receivers, individually,
as is shown in the following:

A = diagM×M(dAp, · · · , dAp)AT ◦ AR (A3)

where:

AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ÃT,1
...

ÃT,i
...

ÃT,NT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ÃT,i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AT,i
...

AT,i
...

AT,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

NR×1

, (A4a)

AT,i =

⎛
⎜⎜⎜⎜⎝

k2
b(r1, ω1)PT,i

b (r1, ω1) · · · k2
b(rP, ω1)PT,i

b (rP, ω1)

k2
b(r1, ω2)PT,i

b (r1, ω2) · · · k2
b(rP, ω2)PT,i

b (rP, ω2)
...

. . .
...

k2
b(r1, ωNf )PT,i

b (r1, ωNf ) · · · k2
b(rP, ωNf )PT,i

b (rP, ωNf )

⎞
⎟⎟⎟⎟⎠ , (A4b)
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AR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ÃR
...

ÃR
...

ÃR

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

NT×1

, ÃR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AR,1
...

AR,j
...

AR,NR

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A4c)

and

AR,j =

⎛
⎜⎜⎜⎜⎝

Gb(rR,j, r1, ω1) Gb(rR,j, r2, ω1) · · · Gb(rR,j, rP, ω1)

Gb(rR,j, r1, ω2) Gb(rR,j, r2, ω2) · · · Gb(rR,j, rP, ω2)
...

. . .
...

Gb(rR,j, r1, ωNf ) Gb(rR,j, r2, ωNf ) · · · Gb(rR,j, rP, ωNf )

⎞
⎟⎟⎟⎟⎠ , (A4d)

with diagV×V(α, · · · , α) denoting a diagonal matrix of size V × V, where the arbitrary parameter α is
placed on the main diagonal and S ◦ Z denoting Hadamard or entry-wise multiplication of arbitrary
matrices S and Z.

It can be noticed that each row of AT,i is formed by reshaping the numerically-calculated
background pressure field times the wavenumber squared at each frequency ωq, generated by the
i-th transmitter, and over a geometrical domain of size nx × ny into a row vector of size 1 × P,
where P = nx.ny. Similarly, each row of AR,i is generated by turning the numerically-computed
Green’s function in the background over the same domain of size nx × ny into a row vector of size
1 × P, when the receivers act as transmitters. In this study, only the exponential phase term of each
element of the sensing matrix is used for imaging, similar to the method used in [56], and as shown,
it generated the correct imaging results.
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