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Invariance-like Results for Nonautonomous
Switched Systems

Rushikesh Kamalapurkar, Joel A. Rosenfeld, Anup Parikh, Andrew R. Teel, and Warren E. Dixon

Abstract—This paper generalizes the LaSalle-Yoshizawa The-
orem to switched nonsmooth systems. Filippov and Krasovskii
regularizations of a switched system are shown to be contained
within the convex hull of Filippov and Krasovskii regularizations
of the subsystems, respectively. A common candidate Lyapunov
function (cLf) that has a negative semidefinite generalized time
derivative along the trajectories of the subsystems is shown to
be sufficient to establish LaSalle-Yoshizawa-like results for the
switched system. Of independent interest, are the results on
approximate continuity and Filippov regularization of set-valued
maps, reduction of differential inclusions using Lipschitz contin-
uous regular functions, and comparative remarks on different
generalizations of the time derivative along the trajectories of a
nonsmooth system.

Index Terms—switched systems, differential inclusions, adap-
tive systems, nonlinear systems

I. INTRODUCTION

The focus of this paper is Lyapunov-based stability analysis
of switched nonautonomous systems that admit non-strict
candidate Lyapunov functions (cLfs) (i.e., cLfs with time
derivatives bounded by a negative semidefinite function of
the state). Analysis of adaptive controllers of systems with
discontinuities introduced through discontinuous control de-
sign and/or dynamics motivates the theoretical development.
For example, neuromuscular electrical stimulation applications
such as [1]–[4] involve switching between different muscle
groups during different phases of operation to reduce fatigue
[1], [4], to compensate for changing muscle geometry [3], or to
perform functional tasks that require multi-limb coordination
[2]. Such applications stand to benefit from adaptive methods
where the controller adapts to the uncertain dynamics without
strictly relying on robust control methods prone to overstim-
ulation, such as high gain or high frequency feedback.

Switched dynamics are inherent in a variety of modern
adaptation strategies. For example, in sparse neural networks
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[5], the use of different approximation architectures for dif-
ferent regions of the state-space introduces switching via the
feedforward part of the controller. In adaptive gain scheduling
methods [6], switching is introduced due to changing feedback
gains. Switching is also utilized as a tool to improve the
transient response of adaptive controllers by selecting between
multiple estimated models of stable plants (see, e.g., [7]–[16]).

Lyapunov-based stability analysis of switched adaptive sys-
tems is challenging because the subsystems under adaptive
control typically do not admit strict Lyapunov functions. For
each subsystem, convergence of the error signal to the origin
is typically established using Barbălat’s lemma (e.g., [17,
Lemma 8.2]). In traditional methods that utilize multiple cLfs
to establish stability of switched systems (e.g., [18, Theorem
3.2]), the class of admissible switching signals is restricted
based on the rate of decay of the cLfs (cf. [18, Eq. 3.10]).
Since Barbălat’s lemma provides no information about the rate
of decay of a cLf, it alone is insufficient to establish stability of
a switched system using multiple Lyapunov functions. While
switched systems can be analyzed using a common strict
Lyapunov function, extension to common non-strict Lyapunov
functions is not trivial (cf. [19]–[21] and [18, Example 2.1]).

An adaptive controller for switched nonlinear systems is
developed in [22] using a generalization of Barbălat’s lemma
from [23]. The controller is shown to asymptotically stabilize
a switched system with parametric uncertainties in the sub-
systems. Multiple Lyapunov functions are utilized to analyze
the stability of the switched system. However, the generalized
Barbălat’s Lemma in [23] requires a minimum dwell time, and
in general, minimum dwell time cannot be guaranteed when
the switching is state-dependent.

Results such as [24]–[27] extend the Barbashin-Krasovskii-
LaSalle invariance principle to discontinuous systems. How-
ever, these results are for autonomous systems, whereas the
development in this paper is focused on nonautonomous
systems. An extension of the LaSalle-Yoshizawa Theorem
to nonsmooth nonautonomous systems is provided in [28,
Theorem 2.5]; however, the result requires the cLf to be
continuously differentiable, whereas the approach developed in
this paper uses a more general framework that utilizes locally
Lipschitz-continuous cLfs.

This paper generalizes the LaSalle-Yoshizawa Theorem
(see, e.g., [29] and [17, Theorem 8.4]) and its nonsmooth
extensions (see, e.g., [28, Theorem 2.5] and [30]) to switched
nonsmooth systems and nonregular Lyapunov functions. A
non-strict common Lyapunov function is used to establish
boundedness of the system state and convergence of a positive
semidefinite function of the system state to zero under a mild
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restriction on the switching signal.
The paper is organized as follows. The notation is defined in

Section II. Section III defines the class of systems considered
along with the objectives. Sections IV-VII are dedicated to
the development of the main results of the paper. Section VIII
provides a discussion on the merits of the generalized time
derivatives defined in Section V. Section IX presents illustra-
tive examples, and Section X provides concluding remarks.
The appendix includes supplementary proofs.

II. NOTATION

The n−dimensional Euclidean space is denoted by Rn and
µ denotes the Lebesgue measure on Rn. Elements of Rn are
interpreted as column vectors and (·)T denotes the vector
transpose operator. The set of positive integers excluding 0
is denoted by N, and D denotes an open and connected subset
of Rn. For a ∈ R, the notation R≥a denotes the interval
[a,∞) and the notation R>a denotes the interval (a,∞). For

a relation (·), the notation
a.e.

(·) implies that the relation holds
for almost all t ∈ I, for some interval I. Unless otherwise
specified, an interval I is assumed to be right open, of nonzero
length, and t0 := min I, where t0 ∈ R≥0 denotes the initial
time. The notation F : A⇒ B is used to denote a set-valued
map from A to the subsets of B. The notations coA and coA
are used to denote the convex hull and the closed convex hull
of the set A, respectively and A4B := (A \B) ∪ (B \A).
If a ∈ Rm and b ∈ Rn then the notation [a; b] denotes the

concatenated vector
[
a
b

]
∈ Rm+n. For A ⊆ Rm, B ⊆ Rn

the notations
[
A
B

]
and A × B are interchangeably used to

denote the set {[a; b] | a ∈ A, b ∈ B}. The notations B (x, r)
and B (x, r), for x ∈ Rn and r > 0, are used to denote the
sets {y ∈ Rn | ‖x− y‖ ≤ r} and {y ∈ Rn | ‖x− y‖ < r}, re-
spectively. The notation |(·)| denotes the absolute value if
(·) ∈ R and the cardinality if (·) is a set. The notation
L∞ (A,B) denotes the set of essentially bounded functions
from A to B.

III. PROBLEM FORMULATION

Consider a switched system of the form1

ẋ = fρ(x,t) (x, t) , (1)

where ρ : Rn×R≥t0 → N o denotes a state-dependent switch-
ing signal, N o ⊆ N is the set of all possible switching indices,
and x ∈ Rn denotes the system state. Let f : Rn×R≥t0 → Rn
denote the function (x, t) 7→ fρ(x,t) (x, t) . The main objective
of this paper is to establish asymptotic properties of the
generalized solutions of the system

ẋ = f (x, t) , (2)

using asymptotic properties of the generalized solutions of the
subsystems

ẋ = fσ (x, t) , σ ∈ N o. (3)

1For the case where the subsystems are modeled as differential inclusions,
see Section VII.

The advantage of the aforementioned strategy, as opposed
to directly analyzing (2), is that the analysis can be made
invariant with respect to the switching function over a wide
range of admissible (see Assumption 1) switching functions.
On the other hand, a direct analysis of (2) is valid only for
the specific ρ used to construct (2).

For some classes of switching signals, switched systems
can be modeled and analyzed as hybrid systems (see, e.g.,
[31, Section 1.4.4]). However, when arbitrary state-dependent
switching is allowed, switched systems can have solutions that
flow ∀t ∈ R≥t0 with an uncountable set of switching instances
(e.g., sliding motion). Since hybrid time domains are not rich
enough to describe such solutions while keeping track of the
discrete variable, hybrid models are not suitable for the class
of systems considered in this paper.

In the following, generalized solutions of the systems in (2)
and (3), defined using Filippov and Krasovskii regularization
are analyzed. For a Lebesgue measurable function g : Rn ×
R≥t0 → R, the Filippov regularization is defined as [32, p.
85]

F [g] (x, t) :=
⋂
δ>0

⋂
µ(N)=0

co {g (y, t) | y ∈ B (x, δ) \N} ,

(4)
and the Krasovskii regularization is defined as [33, p. 17]

K [g] (x, t) :=
⋂
δ>0

co {g (y, t) | y ∈ B (x, δ)} . (5)

The following definition introduces the class of switched
systems considered in this paper.

Definition 1. A collection {fσ : Rn × R≥t0 → Rn}σ∈N o is
said to satisfy the weak basic conditions if it is locally
bounded, uniformly in σ and t,2 and the functions t 7→
fσ (x, t) and t 7→ ρ (x, t) are Lebesgue measurable ∀x ∈ Rn
and ∀σ ∈ N o. When a Filippov regularization is considered,
the local boundedness requirement on the map x 7→ fσ (x, t)
is relaxed to essential local boundedness and a stronger
measurability requirement is imposed so that (x, t) 7→ fσ (x, t)
and (x, t) 7→ ρ (x, t) are Lebesgue measurable ∀σ ∈ N o. 4

To achieve the aforementioned main objective, the differen-
tial inclusion that results from regularization of the switched
system in (2) is proven to be contained within the convex
combination of the differential inclusions that result from
regularization of the subsystems in (3), under mild assump-
tions on the switching signal (Proposition 1, Section IV).
To facilitate the discussion that follows, the existence of a
non-strict Lyapunov function is shown to be sufficient to
infer certain asymptotic properties of solutions of differential
inclusions (Theorem 1, Section V). It is then established that
a common non-strict Lyapunov function for the differential
inclusions that result from regularization of (3) is also a non-
strict Lyapunov function for the differential inclusion that
results from regularization of (2) (Proposition 2, Section VI).
The main result of the paper then follows, i.e., conclusions

2A collection of functions
{
fσ : Rn × R≥t0 → Rn | σ ∈ N o

}
is locally

bounded, uniformly in t and σ, if for every compact K ⊂ Rn, there exists
M > 0 such that ‖fσ (x, t)‖2 ≤M, ∀ (x, t) ∈ K × R≥t0 and ∀σ ∈ N o.
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about asymptotic properties of generalized solutions of (2)
can be drawn from the asymptotic properties of generalized
solutions of (3) (Theorem 2, Section VI).

The following section develops a relationship between the
differential inclusions resulting from regularization of (2) and
(3).

IV. SWITCHING AND REGULARIZATION

Let ẋ ∈ F [f ] (x, t) and ẋ ∈ F [fσ] (x, t) be Filippov
regularizations and ẋ ∈ K [f ] (x, t) and ẋ ∈ K [fσ] (x, t)
be Krasovskii regularizations of (2) and (3), respectively.
The following assumption imposes a mild restriction on the
switching function ρ to establish a relationship between F [f ],
{F [fσ]}, K [f ], and {K [fσ]}.

Assumption 1. For each (x, t) ∈ Rn × R≥t0 , there exists
δ∗ > 0 such that |ρ (B (x, δ∗) , t)| <∞. 4

Assumption 1 is equivalent to the assumption that ρ is lo-
cally bounded in x for each t. Roughly speaking, Assumption
1 restricts infinitely many subsystems from being active in a
small neighborhood of the state space. It does not restrict Zeno
behavior and arbitrary time-dependent switching, and as such,
is not restrictive. For further insight into why Assumption 1
is invoked, see Example 1. The following proposition states
that under general conditions, the set-valued maps F [f ] and
K [f ] are contained, pointwise, within the convex combination
of the collections {F [fσ]} and {K [fσ]}, respectively.

Proposition 1. If ρ : Rn × R≥t0 → N o satisfies Assumption
1, then the set-valued maps K [f ], K [fσ], F [f ], and F [fσ]
satisfy

K [f ] (x, t) ⊆ co
⋃

σ∈N o
K [fσ] (x, t) , (6)

F [f ] (x, t) ⊆ co
⋃

σ∈N o
F [fσ] (x, t) , (7)

∀ (x, t) ∈ Rn × R≥t0 .

Proof for Krasovskii regularization: Fix (x, t) ∈ Rn ×
R≥t0 , select δ∗ > 0 such that |ρ (B (x, δ∗) , t)| <∞,3 and let
N := ρ (B (x, δ∗) , t). Observe that the containment in (6) is
straightforward if the union over σ is placed inside the convex
closure operation. That is,⋂

δ>0

co
{
fρ(y,t) (y, t) | y ∈ B (x, δ)

}
⊆⋂

δ>0

co
⋃
σ∈N

{
fσ (y, t) | y ∈ B (x, δ)

}
. (8)

The rest of the proof shows that the right hand side (RHS) of
(8) is contained within the RHS of (6) in two steps. The first
step is to show that⋂

δ>0

co
⋃
σ∈N

{
fσ (y, t) | y ∈ B (x, δ)

}
⊆⋂

δ>0

co
⋃
σ∈N

co
{
fσ (y, t) | y ∈ B (x, δ)

}
. (9)

3Existence of such a δ∗ is guaranteed by Assumption 1.

The second step is to show that⋂
δ>0

co
⋃
σ∈N

co
{
fσ (y, t) | y ∈ B (x, δ)

}
⊆

co
⋃
σ∈N

⋂
δ>0

co {fσ (y, t) | y ∈ B (x, δ)} . (10)

The result in (6) then follows from (8), (9), and (10).
To prove (9), fix δ ∈ (0, δ∗], let z ∈ co

⋃
σ∈N

{
fσ (y, t) |

y ∈ B (x, δ)
}

, and let {zi}i∈N ∈ Rn be a sequence such
that zi ∈ co

⋃
σ∈N

{
fσ (y, t) | y ∈ B (x, δ)

}
, ∀i ∈ N,

and limi→∞ zi = z. For each i ∈ N, there exists a col-
lection of points

{
z1i , · · · , z

|N |
i

}
⊂ Rn and positive real

numbers
{
a1i , · · · , a

|N |
i

}
, for which

∑|N |
j=1 a

j
i = 1, such that

zi =
∑|N |
j=1 a

j
iz
j
i and zji ∈

{
fσj (y, t) | y ∈ B (x, δ)

}
,

∀j ∈ {1, · · · , |N |}. Hence, z = limi→∞
∑|N |
j=1 a

j
iz
j
i , i.e.,

z = limi→∞ ZiAi, where Ai =
[
a1i ; · · · ; a

|N |
i

]
and

Zi =
[
z1i ; · · · ; z

|N |
i

]T
.

Since the coefficients aji ≥ 0 are bounded, the sequence
{Ai}i∈N is a bounded sequence. Hence, there exists a sub-
sequence {Aik}k∈N such that limk→∞Aik = A, for some
A =

[
a1 ; · · · ; a|N |

]
. Furthermore, continuity of the

function Ai 7→
∑|N |
j=1 a

j
i implies

∑|N |
j=1 a

j = 1. Bounded-
ness of the set

⋃
σ∈N {fσ (y, t) | y ∈ B (x, δ)} implies that

the sequence {Zik}k∈N is bounded, and as a result, there

exists a subsequence
{
Zikl

}
l∈N

such that liml→∞ Zikl = Z,

element-wise, for some Z =
[
z1 ; · · · ; z|N |

]T
. Hence,

z = liml→∞ ZiklAikl = ZA, where the columns zj of the
matrix Z are the limits liml→∞ zjikl

, and zj ∈ co
{
fσj (y, t) |

y ∈ B (x, δ)
}

, ∀j ∈ {1, · · · , |N |}. Therefore, the point z
is a convex combination of points from co

{
fσj (y, t) | y ∈

B (x, δ)
}

. That is, z ∈ co
⋃
σ∈N co {fσ (y, t) | y ∈ B (x, δ)}

∀δ ∈ (0, δ∗], which proves (9).
To establish (10), let z ∈

⋂
δ>0 co

⋃
σ∈N co

{
fσ (y, t) | y ∈

B (x, δ)
}

. Note that if 0 < δ1 ≤ δ2, then

co
⋃
σ∈N

co
{
fσ (y, t) | y ∈ B (x, δ1)

}
⊆

co
⋃
σ∈N

co
{
fσ (y, t) | y ∈ B (x, δ2)

}
.

That is, if z ∈ co
⋃
σ∈N co

{
fσ (y, t) | y ∈ B (x, δ1)

}
for some 0 < δ1, then z ∈

⋂
δ>δ1

co
⋃
σ∈N co

{
fσ (y, t) |

y ∈ B (x, δ)
}

. Hence, ∀k ∈ N, such that k ≥ 1
δ∗ , there

exist
{
zk1, · · · , zk|N |

}
⊂ Rn, nonnegative real numbers{

ak1, · · · , ak|N |
}

for which
∑|N |
j=1 akj = 1, such that zkj ∈⋂

δ≥ 1
k

co
{
fσj (y, t) | y ∈ B (x, δ)

}
and z =

∑|N |
j=1 akjzkj .

That is, z = ZkAk, where Ak =
[
ak1 ; · · · ; ak|N |

]
and Zk =

[
zk1; · · · ; zk|N |

]T
. Boundedness of the se-

quences {Zk}k∈N and {Ak}k∈N implies the existence of
subsequences {Zkl}l∈N and {Akl}l∈N and vectors Z :=[
z1 ; · · · ; z|N |

]T
and A :=

[
a1 ; · · · ; a|N |

]
such that

A = liml→∞Akl ,
∑|N |
j=1 aj = 1, and Z = liml→∞ Zkl . Since

z = ZklAkl , ∀kl ∈ N, it can be concluded that z = ZA.
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It is now claimed that ∀j ∈ {1, · · · , |N |} , zj ∈⋂
δ>0 co

{
fσj (y, t) | y ∈ B (x, δ)

}
. To prove the claim

by contradiction, assume that ∃δ∗ > 0 such that zj /∈
co
{
fσj (y, t) | y ∈ B (x, δ∗)

}
. Since

co
{
fσj (y, t) |y∈B (x, δ1)

}
⊆co

{
fσj (y, t) |y∈B (x, δ2)

}
,
(11)

∀σj ∈ N and ∀δ1 ≤ δ2, zj /∈ co
{
fσj (y, t) | y ∈

B (x, δ)
}

, ∀δ ≥ δ∗. That is, ∃k∗l ∈ N such that zj /∈⋂
δ≥ 1

kl

co
{
fσj (y, t) | y ∈ B (x, δ)

}
, ∀kl ≥ k∗l . From (11)

and the fact that the sets
⋂
δ≥ 1

kl

co
{
fσj (y, t) | y ∈ B (x, δ)

}
are closed, it can be concluded that there exists ε > 0 such
that ∀kl ≥ k∗l ,

B (zj , ε) /∈
⋂
δ≥ 1

kl

co
{
fσj (y, t) | y ∈ B (x, δ)

}
. (12)

Since zklj ∈
⋂
δ≥ 1

kl

co
{
fσj (y, t) | y ∈ B (x, δ)

}
,

∀kl ∈ N, (12) contradicts zj = liml→∞ zklj , and hence,
the proof of the claim that ∀j ∈ {1, · · · , |N |} , zj ∈⋂
δ>0 co

{
fσj (y, t) | y ∈ B (x, δ)

}
is complete. The claim

implies that z ∈ co
⋃
σ∈N

⋂
δ>0 co {fσ (y, t) | y ∈ B (x, δ)},

which proves (10), and hence, (6).
The proof for Filippov regularization involves technical

details related to exclusion of measure-zero sets that are
provided in the appendix.

The following example demonstrates that Assumption 1 is
not vacuous.4

Example 1. Let N o = N and for σ ∈ N o, let fσ be defined
as

fσ (x) :=

{
0 |x| < 1/2σ

1 |x| ≥ 1/2σ
,

so that K [fσ] (0) = F [fσ] (0) = {0} , ∀σ ∈ N o. Let

ρ (x) =

{
σ x ∈

(
− 1

2σ−1 ,− 1
2σ

]
∪
[

1
2σ ,

1
2σ−1

)
1 otherwise

.

Clearly, ρ violates Assumption 1 at x = 0. In this case,

f (x) =

{
1 x 6= 0

0 x = 0
, K [f ] (0) = [0, 1], and F [f ] (0) = {1},

that is, the conclusion of Proposition 1 does not hold without
the switching restriction in Assumption 1. 4

To facilitate the analysis of F [f ] and K [f ] based on the
analysis of F [fσ] and K [fσ], respectively, a stability result
for differential inclusions that relies on non-strict Lyapunov
functions is developed in the following section. While the
results developed in this Section are specific to differential
inclusions that arise from Filippov and Krasovskii regular-
ization of differential equations with discontinuous right-hand
sides, the results developed in the following sections are more
general in the sense that they apply to generic set-valued
maps, not necessarily resulting from Filippov or Krasovskii
regularization.

4The authors thank the anonymous reviewer who suggested this example.

V. NON-STRICT LYAPUNOV FUNCTIONS FOR
DIFFERENTIAL INCLUSIONS

Let F : Rn ×R≥t0 ⇒ Rn be a set-valued map. Consider a
differential inclusion of the form

ẋ ∈ F (x, t) . (13)

A locally absolutely continuous function x : I → Rn is called
a solution of (13) over the closed interval I provided

ẋ (t) ∈ F (x (t) , t) , (14)

for almost all t ∈ I [32, p. 50]. The following analysis focuses
on Lyapunov-based analysis of maximal solutions (see [24,
Definition 2.1]) of set-valued maps that admit local solutions.5

Definition 2. The set-valued map F : Rn×R≥t0 ⇒ Rn is said
to admit local solutions over D ×J , where J is an interval,
if ∀ (y, t) ∈ D × J , ∃T > t such that a solution x : I → Rn
of (13), starting from x (t) = y exists over I := [t, T ). 4

To facilitate the analysis, generalized time derivatives and
non-strict Lyapunov functions are defined as follows.

Definition 3. Let F : Rn × R≥t0 ⇒ Rn have nonempty and
compact values. The generalized time derivative of a locally
Lipschitz-continuous function V : Rn × R≥t0 → R with
respect to F is the function ˙̄VF : Rn × R≥t0 → R defined
as (cf. [34])

˙̄VF (x, t) := max
p∈∂V (x,t)

max
q∈F (x,t)

pT [q; 1] , (15)

where ∂V denotes the Clarke gradient of V [35, p. 39]. 4

For a detailed comparison of Definition 3 with more popular
set-valued notions of generalized time derivatives (i.e., [36, eq.
13] and [37, p. 364]), see Section VIII.

Definition 4. Let Ω := D × I for some interval I. Let F :
Rn × R≥t0 ⇒ Rn have nonempty and compact values over
Ω. Let V : Ω→ R be a locally Lipschitz-continuous positive
definite function. Let W ,W : D → R be continuous positive
definite functions and let W : D → R be a continuous positive
semidefinite function. If

W (x) ≤ V (x, t) ≤W (x) , ∀ (x, t) ∈ Ω, (16)

and

˙̄VF (x, t) ≤ −W (x) , (17)

∀x ∈ D and for almost all t ∈ R≥t0 , then V is called a non-
strict Lyapunov function for F over Ω with the bounds W ,
W , and W . 4

The following theorem establishes the fact that the existence
of a non-strict Lyapunov function implies that t 7→ W (x (t))
asymptotically decays to zero.

Theorem 1. Let 0 ∈ D, r > 0 be selected such that
B (0, r) ⊂ D, and Ω := D ×R≥t0 . Let F : Rn ×R≥t0 ⇒ Rn
be a map that admits local solutions over Ω and is locally

5Sufficient conditions for existence of local solutions can be found in, e.g.,
[32, p. 83, Theorem 5].
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bounded, uniformly in t, over Ω.6 If V : Ω→ R is a non-strict
Lyapunov function for F over Ω with the bounds W : D → R,
W : D → R, and W : D → R, then all maximal solutions
of (13) with x (t0) ∈

{
x ∈ B (0, r) |W (x) ≤ c

}
, for some

c ∈
(
0,min‖x‖2=rW (x)

)
, are complete, bounded, and satisfy

limt→∞W (x (t)) = 0. In addition, if D = Rn and the sets
{x ∈ Rn |W (x) ≤ c} are compact for all c ∈ R>0, then all
maximal solutions of (13), regardless of the initial condition,
are complete, bounded, and satisfy limt→∞W (x (t)) = 0.
Furthermore, if the non-strict Lyapunov function is regular
[35, Definition 2.3.4], then (17) can be relaxed to V̇ F (x, t) ≤
−W (x), where

V̇ F (x, t) := min
p∈∂V (x,t)

max
q∈F (x,t)

pT [q; 1] . (18)

Proof: See the appendix.
The following section utilizes the results of Sections IV and

V to develop the main results of this paper.

VI. INVARIANCE-LIKE RESULTS FOR SWITCHED SYSTEMS

The following proposition states that a common non-strict
Lyapunov function for a family of differential inclusions is
also a non-strict Lyapunov function for the closure of their
convex combination.7

Proposition 2. Let Ω := D × I for some interval I. Let
{Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N o} be a family of set-valued
maps with compact and nonempty values that is locally
bounded, uniformly in σ, over Ω × N o.8 If V : Ω → R is
a common non-strict Lyapunov function for the family {Fσ}
over Ω with the bounds W : D → R, W : D → R, and
W : D → R (i.e., V is a non-strict Lyapunov function for
Fσ for each σ ∈ N o and the bounds W , W , and W in (16)
are independent of σ), then V is also a non-strict Lyapunov
function for co

⋃
σ∈N o Fσ (x, t) over Ω with the bounds W ,

W , and W .

Proof: Since the maps {Fσ} are locally bounded, uni-
formly in σ, over Ω × N o, co

⋃
σ∈N o Fσ (x, t) is nonempty

and compact ∀ (x, t) ∈ Ω. Since V is a common non-strict
Lyapunov function, maxp∈∂V (x,t) maxq∈Fσ(x,t) p

T [q; 1] ≤
−W (x), ∀σ ∈N o. Let q∗ ∈ F (x, t) := co

⋃
σ∈N o Fσ (x, t).

There exists a sequence {qj}j∈N such that limj→∞ qj = q∗

and qj ∈ co
⋃
σ∈N o Fσ (x, t). By Carathéodory’s theorem [38,

p. 103], qj =
∑m
i=1 a

j
iz
j
i , where m ≤ n + 1,

∑m
i=1 a

j
i = 1,

aji ≥ 0, and zji ∈ Fσji (x, t) , ∀i ∈ {1, · · · ,m}.

6A set valued map F : Rn × R≥0 ⇒ Rn is locally bounded, uniformly
in t, over Ω, if for every compact K ⊂ D, there exists M > 0 such that
∀ (x, t, y) such that (x, t) ∈ K × R≥t0 , and y ∈ F (x, t), ‖y‖2 ≤M .

7The observation that a common (strong) continuously differentiable Lya-
punov function for a family of finitely many differential inclusions is also a
Lyapunov function for the closure of their convex combination is stated in
[19, Proposition 1]. In this paper, it is proved and extended to families of
countably infinite differential inclusions and semidefinite locally Lipschitz-
continuous Lyapunov functions.

8A collection of set valued maps
{
Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N o

}
is

locally bounded, uniformly in σ, over Ω×N o, if for every compact K ⊂ Ω,
there exists M > 0 such that ∀ (x, t, σ, y) such that (x, t, σ) ∈ K × N o
and y ∈ Fσ (x, t), ‖y‖2 ≤M .

For any fixed p ∈ ∂V (x, t), pT
[
zji ; 1

]
≤

maxq∈F
σ
j
i
(x,t) p

T [q; 1] , ∀i ∈ {1, · · · ,m} and ∀j ∈ N.
Hence,

max
p∈∂V (x,t)

pT
[
zji ; 1

]
≤ max
p∈∂V (x,t)

max
q∈F

σ
j
i
(x,t)

pT [q; 1]≤−W (x) .

∀i ∈ {1, · · · ,m} and ∀j ∈ N. Since
∑m
i=1 a

j
i =

1, maxp∈∂V (x,t) p
T [qj ; 1] ≤ −W (x) , ∀j ∈ N.

Now, since (p, q) 7→ pT [q; 1] is continuous, and
∂V (x, t) and co

⋃
σ∈N o Fσ (x, t) are compact, the func-

tion q 7→ max
{
pT [q; 1] | p ∈ ∂V (x, t)

}
is continuous

on co
⋃
σ∈N o Fσ (x, t). Hence, maxp∈∂V (x,t) p

T [q; 1] ≤
−W (x) , ∀q ∈ co

⋃
σ∈N o Fσ (x, t).

The following corollary demonstrates that if V is regular
and the set-valued maps {Fσ} are continuous, then the bound
(17) in Proposition 2 can be relaxed to utilize V̇ F instead of
˙̄VF .

Corollary 1. Let the family of set-valued maps
{Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N o} satisfy the conditions of
Proposition 2. If a regular [35, Definition 2.3.4] function
V : Ω → R is a common non-strict Lyapunov function for
the family {Fσ}, over Ω, with the bounds W : D → R,
W : D → R, and W : D → R, and with (17) in Definition 4
relaxed to V̇ Fσ (x, t) ≤ −W (x), ∀ (x, σ) ∈ Rn × N o and
for almost all t ∈ R≥t0 , then V̇ co

⋃
σ∈No Fσ

(x, t) ≤ −W (x),
∀ (x, σ) ∈ Rn × N o and for almost all t ∈ R≥t0 , provided
the set-valued maps {Fσ} are continuous (in the sense of
[39, Definition 1.4.3]) and convex valued.9

Proof: See the appendix.
The main result of the paper can now be summarized in the

following theorem.

Theorem 2. Let 0 ∈ D, Ω := D × R≥t0 , and
let r > 0 be selected such that B (0, r) ⊂ D. Let
{fσ : Rn × R≥t0 → Rn}σ∈N o be a collection that satisfies
the weak basic conditions in Definition 1. If Assumption 1
holds and the (Filippov) Krasovskii regularizations of the sub-
systems in (3) admit a common non-strict Lyapunov function
V : Ω → R, over Ω, with the bounds W : D → R,
W : D → R, and W : D → R, then every maximal solution
of the (Filippov) Krasovskii regularization of the switched
system in (2) such that x (t0) ∈

{
x ∈ B (0, r) |W (x) ≤ c

}
,

for some c ∈
(
0,min‖x‖2=rW (x)

)
, is complete, bounded,

and satisfies limt→∞W (x (t)) = 0. In addition, if D =
Rn and the sets {x ∈ Rn |W (x) ≤ c} are compact for all
c ∈ R>0, then every maximal solution of the (Filippov)
Krasovskii regularization of the switched system in (2), re-
gardless of the initial condition, is complete, bounded, and
satisfies limt→∞W (x (t)) = 0.

Proof: The first step is to show that under the weak
basic conditions in Definition 1, the maps K [f ], K [fσ],
F [f ], and F [fσ] admit local solutions ∀σ ∈ N o. Since
the collection {fσ}σ∈N o is locally bounded, uniformly in

9Example 2 demonstrates that there are collections of upper semicontinuous
set-valued maps for which Corollary 1 fails to hold, i.e., the continuity
condition in Corollary 1 is not vacuous.
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σ and t, the function f is locally bounded, uniformly in
t. To establish Lebesgue measurability of f , consider the
representation f (x, t) =

∑
σ∈N o Iσ (ρ (x, t)) fσ (x, t), where

Iσ (i) :=

{
1, i = σ,

0, i 6= σ.

Since Iσ : N → R is continuous ∀σ ∈ N o, t 7→ Iσ (ρ (x, t))
is Lebesgue measurable ∀ (σ, x) ∈ N o × Rn (and (x, t) 7→
Iσ (ρ (x, t)) is Lebesgue measurable ∀σ ∈ N o in the Filippov
case). Lebesgue measurability of t 7→ f (x, t), ∀x ∈ Rn (and
of (x, t) 7→ f (x, t) in the Filippov case) then follows from that
of t 7→ fσ (x, t), ∀ (σ, x) ∈ N o×Rn (and of (x, t) 7→ fσ (x, t),
∀σ ∈ N o in the Filippov case). Since f is locally bounded,
uniformly in t, F [f ] and K [f ] are also locally bounded,
uniformly in t. In the Krasovskii case, since the functions
(x, t) 7→ fσ (x, t) and (x, t) 7→ f (x, t) are locally bounded
and the functions t 7→ fσ (x, t) and t 7→ f (x, t) are Lebesgue
measurable, the maps K [f ] and K [fσ] admit local solutions
[40, p. 101]. In the Filippov case, since the functions (x, t) 7→
fσ (x, t) and (x, t) 7→ f (x, t) are essentially locally bounded
and the functions (x, t) 7→ fσ (x, t) and (x, t) 7→ f (x, t) are
Lebesgue measurable, the maps F [f ] and F [fσ] admit local
solutions [32, p. 85].

Since the collection {fσ | σ ∈ N o} is locally bounded,
uniformly in t and σ, over Ω × N o, the collections
{F [fσ] | σ ∈ N o} and {K [fσ] | σ ∈ N o} are also locally
bounded, uniformly in t and σ, over Ω × N o. Hence, by
Proposition 2, V is also a non-strict Lyapunov function for the
set-valued maps (x, t) 7→ co

⋃
σ∈N o F [fσ] (x, t) and (x, t) 7→

co
⋃
σ∈N o K [fσ] (x, t), over Ω, with the bounds W , W , and

W . From Proposition 1, F [f ] (x, t) ⊆ co
⋃
σ∈N o F [fσ] (x, t)

and K [f ] (x, t) ⊆ co
⋃
σ∈N o K [fσ] (x, t). Hence, V is also a

non-strict Lyapunov function for F [f ] and K [f ], over Ω, with
the bounds W , W , and W . The conclusion then follows by
Theorem 1.

Remark 1. The geometric condition in (17) can be relaxed
to the following trajectory-based condition. For all gener-
alized solutions xσ : I → Rn to (3), if the subsys-
tems in (3) satisfy ˙̄VFσ (xσ (t) , t) ≤ −W (xσ (t)), ∀σ ∈
N o and for almost all t ∈ I, and for a specific max-
imal generalized solution x∗ : I → Rn of (2), if the
set {t ∈ I | ρ (x∗ (·) , ·) is discontinuous at t} is countable for
every I ⊆ R≥t0 , then weak versions of Theorem 1 and
Proposition 2 that establish the convergence of W (x∗ (t)) to
the origin as t → ∞ can be proven using techniques similar
to [30, Corollary 1].

Remark 2. If the subsystems are autonomous, and if they admit
a common non-strict Lyapunov function that is regular, then
by applying the invariance principle (e.g., [37, Theorem 3])
to the differential inclusions ẋ ∈ co

⋃
σ∈N o F [fσ] (x) and

ẋ ∈ co
⋃
σ∈N o K [fσ] (x), it can be shown that all maximal

generalized solutions of (2) that start in the set Cl converge
to the largest weakly forward invariant set contained within
Cl∩E, where E := {x ∈ D |W (x) = 0} and Cl is a bounded
connected component of the level set {x ∈ D | V (x) ≤ l}.
Hence, Propositions 1 and 2 also generalize results such as

[26] to switched nonsmooth systems. A similar result can also
be obtained for the case where the subsystems are periodic.

VII. SWITCHING BETWEEN DIFFERENTIAL INCLUSIONS

The results in Section IV, and hence, those in Section VI
can be generalized to switched systems of the form

ẋ ∈ Fρ(x,t) (x, t) . (19)

Let F : Rn × R≥t0 ⇒ Rn denote the set valued map
(x, t) 7→ Fρ(x,t) (x, t) . Asymptotic properties of the gener-
alized solutions of the system

ẋ ∈ F (x, t) , (20)

can then be inferred using asymptotic properties of the gener-
alized solutions of the subsystems

ẋ ∈ Fσ (x, t) , (21)

where generalized solutions of a system of the form ẋ ∈
F (x, t) are defined as the solutions of the differential inclusion
ẋ ∈ K [F ] (x, t) in the Krasovskii case and ẋ ∈ F [F ] (x, t)
in the Filippov case. The operators F and K are defined as in
(4) and (5), respectively, where for a set A ∈ Rn, the notation
co {F (y, t) | y ∈ A} denotes the set co ∪y∈A F (y, t).

Definition 5. The collection {Fσ : Rn × R≥t0 ⇒ Rn}σ∈N o
is said to satisfy the weak basic conditions if: (a) it is locally
bounded in the Krasovskii case and essentially locally bounded
in the Filippov case, uniformly in σ and t and (b) the maps
t 7→ Fσ (x, t) and the functions t 7→ ρ (x, t) are Lebesgue
measurable ∀ (x, σ) ∈ Rn × N o in the Krasovskii case and
the maps (x, t) 7→ Fσ (x, t) and (x, t) 7→ ρ (x, t) are Lebesgue
measurable ∀σ ∈ N o in the Filippov case. 4

The following theorem generalizes Theorem 2 to switched
differential inclusions.

Theorem 3. Let 0 ∈ D, r > 0 be selected such that B (0, r) ⊂
D, and let Ω := D×R≥t0 . Let {Fσ : Rn × R≥t0 ⇒ Rn}σ∈N o
be a collection that satisfies the weak basic conditions
in Definition 5. If Assumption 1 holds and the (Filippov)
Krasovskii regularizations of the subsystems in (21) admit
a common non-strict Lyapunov function V : Ω → R,
over Ω, with the bounds W : D → R, W : D → R,
and W : D → R, then every maximal solution of the
(Filippov) Krasovskii regularization of the switched system
in (20) with x (t0) ∈

{
x ∈ B (0, r) |W (x) ≤ c

}
, for some

c ∈
(
0,min‖x‖2=rW (x)

)
, is complete, bounded, and satisfies

limt→∞W (x (t)) = 0. In addition, if D = Rn and the
sets {x ∈ Rn |W (x) ≤ c} are compact for all c ∈ R>0,
then every maximal solution of the (Filippov) Krasovskii
regularization of the switched system in (20), regardless
of the initial condition, is complete, bounded, and satisfies
limt→∞W (x (t)) = 0.

Proof: The first step is to show that under the weak basic
conditions, the maps K [Fσ], K [F ], F [Fσ], and F [F ] admit
local solutions ∀σ ∈ N o. Since the collection {Fσ}σ∈N o is
(essentially) locally bounded, uniformly in σ and t, the map
F is (essentially) locally bounded, uniformly in t. To establish



7

measurability of F , consider the representation F (x, t) =
∪σ∈N oIσ (ρ (x, t)) ∩ Fσ (x, t), where

Iσ (i) :=

{
Rn, i = σ,

∅, i 6= σ.

Since Iσ : N → R is a step mapping [41, p. 643] ∀σ ∈ N o,
t 7→ Iσ (ρ (x, t)) is Lebesgue measurable ∀ (σ, x) ∈ N o×Rn.
Using [41, Proposition 14.11], it can be concluded that t 7→
F (x, t) is Lebesgue measurable ∀x ∈ Rn if t 7→ Fσ (x, t)
is Lebesgue measurable ∀ (σ, x) ∈ N o × Rn and (x, t) 7→
F (x, t) is Lebesgue measurable if (x, t) 7→ Fσ (x, t) is
Lebesgue measurable ∀σ ∈ N o.

In the Krasovskii case, it is clear that the maps K [F ] and
K [Fσ] are locally bounded, upper semicontinuous in x for
each t, and have compact, nonempty, and convex values. Since
F (x, t) ⊆ K [F ] (x, t) and Fσ (x, t) ⊆ K [Fσ] (x, t), ∀ (x, t) ∈
Rn ×R≥t0 , and since F and Fσ are Lebesgue measurable in
t for all x, the maps K [F ] and K [Fσ] admit selections that
are Lebesgue measurable in t for all x [41, Corollary 14.6],
and as a result, admit local solutions [32, Theorem 5, p. 83].

In the Filippov case, using Rockafeller and Wets’ general-
ization of Lusin’s theorem [41, Theorem 14.10], the proof of
[40, Proposition 1, p. 102] can be extended to show that the
maps F [F ] and F [Fσ] are locally bounded, upper semicon-
tinuous in x for all t, have compact, nonempty, and convex
values, and for each fixed t ∈ R≥t0 , F (x, t) ⊆ F [F ] (x, t)
and Fσ (x, t) ⊆ F [Fσ] (x, t) for almost all x ∈ Rn.
Since F and Fσ admit Lebesgue measurable selections [41,
Corollary 14.6], there exist Lebesgue measurable functions
g : Rn × R≥t0 → Rn and gσ : Rn × R≥t0 → Rn such
that g (x, t) ∈ F [F ] (x, t) and gσ (x, t) ∈ F [Fσ] (x, t) almost
everywhere. Therefore, F [F ] and F [Fσ] admit Lebesgue
measurable selections, and as a result, admit local solutions.

Since the maps the maps K [F ], K [Fσ], F [F ], and F [Fσ]
satisfy all the conditions of Theorem 1, Proposition 2, and
Corollary 1, similar arguments as the proof of Theorem 2 can
be used to prove Theorem 3 if Proposition 1 can be generalized
to Filippov and Krasovskii regularization of set-valued maps.
The proof of Proposition 1 in the Krasovskii case does not rely
on any properties of f and {fσ} other then local boundedness,
uniformly in σ. Therefore, it can be trivially generalized to
include Krasovskii regularization of set-valued maps.

In the Filippov case, the proof of Proposition 1 relies on
Lemma 1 from [42]. Using Rockafeller and Wets’ general-
ization of Lusin’s theorem [41, Theorem 14.10], Lemma 1
from [42] can be extended to include Lebesgue measurable
set-valued maps (see Theorem 4 in the appendix), and hence,
Proposition 1 can be generalized to include Filippov regular-
ization of set-valued maps.

VIII. COMMENTS ON THE GENERALIZED TIME
DERIVATIVE

If V is regular then the generalized time derivative obtained
using Definition 3 is generally more conservative than (i.e.,
greater than or equal to) the maximal element of the more
popular set-valued generalized derivatives defined in [36] and

[37]. The motivation behind the use of the seemingly restric-
tive definition is that the invariance-like results in Section
VI do not hold if the time derivative of the cLf is inter-
preted in the set-valued sense (see Example 2). Furthermore,
through a reduction of the admissible directions in F using
locally Lipschitz-continuous regular functions, a generalized
time derivative that is less conservative than the set-valued
derivatives in [36] and [37] can be obtained (see Lemma 1
and Corollary 2).

Lemma 1. Let Ω := D×R≥t0 , V : Ω→ R be a locally Lip-
schitz continuous function, and V := {Vi : Ω→ R}i∈M⊆N be
a countable collection of locally Lipschitz-continuous regular
[35, Definition 2.3.4] functions. Let F : Rn ×R≥t0 ⇒ Rn be
a map that admits local solutions over Ω and let G,Gi, F̃ :
Rn × R≥t0 ⇒ Rn be defined as

Gi (x, t) :=
{
q ∈ F (x, t) |∃af |pT [q; 1] = af , ∀p ∈ ∂Vi (x, t)

}
,

F̃ (x, t) := F (x, t) ∩ (∩∞i=1Gi (x, t)) , ∀ (x, t) ∈ Ω.

If
V̇ F̃ (x, t) ≤ −W (x) , ∀ (x, t) ∈ Ω, (22)

where V̇ (·) is introduced in (18) and V̇ F̃ (x, t) is under-
stood to be −∞ when F̃ (x, t) is empty, then each solu-
tion of (13), such that x (t0) ∈ D, satisfies V̇ (x (t) , t) ≤
−W (x (t)), for almost all t ∈ [t0, T ), where T :=
min (sup I, inf {t ∈ I | x (t) /∈ D}).

Proof: See the appendix.
Instead of maximizing over F̃ , the upper bound of the

generalized time derivative ˙̄V (F ), introduced in [37, p. 364],
is computed using maximization over the set G (x, t) :={
q ∈ F (x, t) |∃af |pT [q; 1] = af , ∀p ∈ ∂V (x, t)

}
, i.e.,10

max ˙̄V (F ) (x, t) = min
p∈∂V (x,t)

max
q∈G(x,t)

pT [q; 1] .

Note that if V ∈ V then V̇ F̃ = ˙̄VF̃ , F̃ ⊆ G, and hence,
V̇ F̃ (x, t) = ˙̄VF̃ (x, t) ≤ max ˙̄V (F ) (x, t) , ∀ (x, t) ∈ Ω. Thus,
depending on the functions V selected to reduce the inclusions,
the notions of the generalized time derivative introduced here
can be less conservative than the set-valued derivative in [37]
(and hence, the set-valued derivative in [36]). Naturally, if V =
{V } then the notions introduced here are equivalent to [37].

A function V that satisfies the conditions of Lemma 1 is
hereafter called a V−non-strict Lyapunov function for F :
Rn × R≥t0 ⇒ Rn over Ω with the bounds W , W , and W .
The following corollary is a straightforward consequence of
Theorem 1 and Lemma 1.

Corollary 2. Let 0 ∈ D and Ω := D × R≥t0 . Assume
that the differential inclusion in (13) admits a V−non-strict
Lyapunov function over Ω with the bounds W : D → R,
W : D → R, and W : D → R. If F : Rn × R≥t0 ⇒
Rn admits local solutions over Ω and is locally bounded,
uniformly in t, over Ω, then every maximal solution of
(13) with x (t0) ∈

{
x ∈ B (0, r) |W (x) ≤ c

}
, for some

10The minimization here serves to maintain consistency of notation, but is
in fact, redundant.
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c ∈
(
0,min‖x‖2=rW (x)

)
, is complete, bounded, and satisfies

limt→∞W (x (t)) = 0. 4

At this juncture, it would be natural to ask whether the
result in Theorem 2 can be established using the set-valued
derivatives in [36] and [37] or a common V−non-strict Lya-
punov function. The following example demonstrates that a
common V−non-strict Lyapunov function is not sufficient to
establish the results in Section VI and neither are the set-
valued derivatives in [36] or [37]. Furthermore, the example
also demonstrates that the continuity assumption in Corollary
1 is not vacuous.

Example 2. Let g1, g2, g3 : R2 → R2 be defined as g1 (x) :=
[x1; 0] , g2 (x) := [0;x2] , and g3 (x) := [−x1;−x2]. Let the
subsystems be defined by f1, f2 : R2 → R2 as

f1(x)=

{
g1 (x) |x1|< |x2|
g3 (x) |x1| ≥|x2|

, f2 (x)=

{
g2 (x) |x1|< |x2|
g3 (x) |x1| ≥|x2| ,

The subsystems have identical Krasovskii and Filippov regu-
larizations, given by

F1 (x) =

{
co {g1 (x) , g3 (x)} |x1| = |x2|
f1 (x) otherwise,

F2 (x) =

{
co {g2 (x) , g3 (x)} |x1| = |x2|
f2 (x) otherwise.

The function V : R2 → R, defined as V (x) :=
max (|x1| , |x2|), is a locally Lipschitz-continuous regular
function11 that satisfies (16) and

∂V (x) =


v1 (x) |x1| < |x2|
v2 (x) |x1| > |x2|
co {v1 (x) , v2 (x)} |x1| = |x2| ,

where v1 (x) = [sgn (x1) ; 0] and v2 (x) = [0; sgn (x2)].

Hence, with V = {V }, F̃i (x) =

{
{0} |x1| = |x2|
Fi (x) otherwise

, for

i = 1, 2.
In this case, (v1 (x))

T
f2 (x) = (v2 (x))

T
f1 (x) = 0,

(v1 (x))
T
f3 (x) = − |x1|, and (v2 (x))

T
f3 (x) = − |x2|. It

follows that V̇ Fi (x) ≤ 0 and V̇ F̃i (x) = ˙̄VF̃ (x) ≤ 0, ∀x ∈ R2

and i = 1, 2. It is also easy to see that max ˙̄V (Fi) (x) ≤ 0

and max ˙̃V (Fi) (x) ≤ 0, ∀x ∈ R2 and i = 1, 2, where ˙̃V (Fi)

is defined in [36, eq. 13]. Thus, V is a common non-strict
Lyapunov function for the subsystems according to all the
notions of generalized time derivatives discussed above.

Let F := x 7→ co (F1 (x) ∪ F2 (x)). For any x ∈
R2 such that |x1| = |x2|, q := 1

2 [x1;x2] ∈
co {g1 (x) , g2 (x) , g3 (x)} = F (x). Thus, whenever |x1| =
|x2| = V (x) > 0, minp∈∂V (x) p

T q = 0.5V (x) > 0,
i.e., Proposition 2 does not hold. Furthermore, a solution of
ẋ ∈ F (x), starting at x = [1; 1], is x (t) = e0.5t [1; 1], i.e.,
Theorem 2 does not hold.

Thus, Proposition 2 and Theorem 2 may not hold if the
generalized time derivative is understood in the sense of

11Pointwise maxima of locally Lipschitz-continuous regular functions is
locally Lipschitz-continuous and regular.

Lemma 1, ˙̄V (·) in [37], or ˙̃V (·) in [36]. Furthermore, if V̇ F
is used as the generalized time derivative instead of ˙̄VF then
Corollary 1 may not hold if the set-valued maps {Fσ} are not
continuous. 4

IX. DESIGN EXAMPLES

Many of the applications discussed in the opening para-
graphs of Section I can be represented by the following
example problems. The first example demonstrates the utility
of the developed technique on an adaptive control problem
where only the regression matrices are discontinuous. In the
second example, an adaptive controller for a switched system
that exhibits arbitrary switching between subsystems with
different parameters and disturbances is analyzed.

Example 3. Consider the nonlinear dynamical system

ẋ = Yρ(x,t) (x) θ + u+ d (t) , (23)

where x ∈ Rn denotes the state, u ∈ Rn denotes the control
input, d : R≥t0 → Rn denotes an unknown disturbance,
ρ : Rn × R≥t0 → N denotes a switching signal that satisfies
Assumption 1, Yσ : Rn → Rn×L, for each σ ∈ N, is a known
continuous function, and θ ∈ RL is the vector of constant
unknown parameters. The control objective is to regulate the
system state to the origin. The disturbance is assumed to be
bounded, with a known bound d such that ‖d (t)‖∞ ≤ d, for
almost all t ∈ R≥t0 . Furthermore, t 7→ d (t) is assumed to be
Lebesgue measurable.

One example of an adaptive controller designed to satisfy
the control objective is u = −kx − Yρ(x,t) (x) θ̂ − β sgn (x) ,

where θ̂ : R≥t0 → RL denotes an estimate of the vector
of unknown parameters, θ, k, β ∈ R>0 are positive constant
control gains, and sgn (·) is the signum function. The estimate,
θ̂, is obtained from the update law ˙̂

θ =
(
Yρ(x,t) (x)

)T
x. For

each σ ∈ N, the closed-loop error system can be expressed as

ẋ = −kx+ Yσ (x) θ̃ + d (t)− β sgn (x) , (24)
˙̃
θ = − (Yσ (x))

T
x, (25)

where θ̃ := θ − θ̂ denotes the parameter estimation error.
The closed-loop system in (24) and (25) is discontinuous, and
hence, does not admit classical solutions. Thus, the analysis
will focus on generalized solutions of (24) and (25). Since
Filippov and Krasovskii regularizations of the closed-loop
system in (24) and (25) are identical, they are denoted by K [·]
and the solutions of the corresponding differential inclusions
are hereafter referred to as generalized solutions.

To analyze the developed controller, consider the cLf V :
Rn+L → R≥t0 , defined as

V (z) :=
1

2
xTx+

1

2
θ̃T θ̃, (26)

where z :=
[
x; θ̃
]
. Since the cLf is continuously differentiable,

the Clarke gradient reduces to the standard gradient, i.e,
∂V (z, t) = {z}. Using the calculus of K [·] from [43], a
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bound on the regularization of the system in (24) and (25)
can be computed as Fσ (z, t) ⊆ F ′σ (z, t), where

F ′σ (z, t) =

[{
−kx+ Yσ (x) θ̃ + d (t)

}
− βK [sgn] (x){

−Y Tσ (x)x
} ]

.

Using Definition 3 and the fact that xT K [sgn] (x) = {‖x‖1},
a bound on the generalized time derivative of the cLf can be
computed as

˙̄Vσ (z, t) = max
q∈Fσ(z,t)

zT q,

≤ max
q∈F ′σ(z,t)

zT q,

= −k ‖x‖22 + xT d (t)− β ‖x‖1 .

Provided β > d,

˙̄Vσ (z, t) ≤ −W (z) , (27)

∀ (z, σ) ∈ Rn+L × N and for almost all t ∈ R≥t0 , where
W (z) = k ‖x‖22 is a positive semidefinite function. Using
(26), (27), and Theorem 2, all maximal generalized solutions
of the switched nonsmooth system in (24) and (25) are
complete, bounded, and satisfy ‖x (t)‖2 → 0 as t→∞. 4

Example 4. Arbitrary switching between systems with dif-
ferent parameters and disturbances can be achieved in the
case where the number of subsystems is finite. For example,
consider the nonlinear dynamical system

ẋ = Zρ(x,t) (x, t) θρ(x,t) + dρ(x,t) (x, t) + u, (28)

where ρ : Rn × R≥t0 → N o such that N o is a finite set,
Zσ : Rn × R≥t0 → Rn×L, are known functions, θσ ∈ RL
are vectors of constant unknown parameters corresponding to
each σ ∈ N o, and dσ : Rn × R≥t0 → Rn are unknown
disturbances such that for each σ ∈ N o, ‖dσ (x, t)‖∞ ≤ dσ,
∀ (x, t) ∈ Rn × R≥t0 and some dσ > 0. Furthermore, for
each σ ∈ Rn, (x, t) 7→ dσ (x, t) and (x, t) 7→ Zσ (x, t) are
continuous in x, uniformly in t and Lebesgue measurable in
t, ∀x ∈ Rn. Let θ :=

[
θ1; θ2; · · · ; θ|N o|

]
∈ RL|N o| and let

Yσ := 1σ ⊗ Zσ , where 1σ ∈ R1×L is a matrix defined by

(1σ)1,j =

{
1, j = σ.

0, otherwise.

The adaptive controller designed to satisfy the control objec-
tive is

u = −kρ(x,t)x− Yρ(x,t) (x, t) θ̂ − βρ(x,t) sgn (x) ,

where βσ ∈ R>0 and kσ ∈ R>0 are control gains correspond-
ing to σ ∈ N o and θ̂ : R≥t0 → RL|N o| is updated according to
˙̂
θ =

(
Yρ(x,t) (x, t)

)T
x. A stability analysis similar to Example

3 can then be utilized to conclude asymptotic convergence of
the state x to the origin provided βσ > dσ, ∀σ ∈ N o. 4

X. CONCLUSION

Motivated by applications in switched adaptive control, the
generalized LaSalle-Yoshizawa corollary in [30] is extended
to switched nonsmooth systems. The extension facilitates the
analysis of the asymptotic characteristics of a switched system

based on the asymptotic characteristics of its subsystems
where a non-strict common Lyapunov function can be con-
structed for the subsystems. Application of the developed
extension to a switched adaptive system is demonstrated
through simple examples. Motivated by results such as [44],
further research could potentially extend the developed method
to utilize indefinite Lyapunov functions.

In Lemma 1, it is shown that arbitrary locally Lipschitz-
continuous regular functions can be used to reduce the dif-
ferential inclusion to a smaller set of admissible directions.
This observation indicates that there may be a smallest set
of admissible directions corresponding to each differential
inclusion. Further research is needed to establish the existence
of such a set and to find a representation of it that facilitates
computation.

The developed method requires a strong convergence result
for the subsystems, i.e., the existence of a common cLf that
satisfies (17) implies that all maximal generalized solutions
of the subsystems are bounded and asymptotically converge
to the origin. Future research will focus on the development
of results for switched nonsmooth systems where only weak
convergence results (that is, only a subset of the maximal
generalized solutions of the subsystems are bounded and
asymptotically converge to the origin) are available for the
subsystems.
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APPENDIX

Proof of Theorem 1: Similar to the proof of [30, Corol-
lary 1], it is established that the bound on ˙̄VF in (15) implies
that the cLf is nonincreasing along all maximal solutions of
(13). The nonincreasing property of the cLf is used to establish
boundedness of x, which is used to prove the existence and
uniform continuity of complete solutions. Barbălat’s lemma
[17, Lemma 8.2] is then used to conclude the proof.

To show that the cLf is nonincreasing, let x :
I → Rn be a maximal solution of (13) such that
x (t0) ∈ Ωc :=

{
x ∈ B (0, r) |W (x) ≤ c

}
. Define T >

t0 be the first exit time of x from D, i.e., T :=
min (sup I, inf {t ∈ I | x (t) /∈ D}), where inf ∅ is assumed
to be ∞. If V is locally Lipschitz-continuous but not regular,
then [45, Proposition 4] (see also, [46, Theorem 2]) can be
used to conclude that, for almost every t ∈ [t0, T ), the time
derivative V̇ (x (t) , t) exists, and ∃p0 ∈ ∂V (x (t) , t) such
that V̇ (x (t) , t) = pT0 [ẋ (t) ; 1]. Thus, (15) and (17) imply
that V̇ (x (t) , t) ≤ −W (x (t)) for almost every t ∈ [t0, T ).
If V is regular, then the relaxation in Footnote 8 and [36,
Equation 22] can be used to conclude that for almost ev-
ery t ∈ [t0, T ), the time derivative V̇ (x (t) , t) exists and
V̇ (x (t) , t) ≤ −W (x (t)). The conclusion that

V (x (t0) , t0) ≥ V (x (t) , t) , ∀t ∈ [t0, T ) (29)

then follows from [30, Lemma 2].
Using (29), it can be shown that (see, e.g., [17, Theorem

4.8]) every solution of (13) that starts in Ωc stays in B (0, r) on
every interval of its existence. Therefore, all maximal solutions
of (13) such that x (t0) ∈ Ωc are precompact [24, Definition
2.3] and T = sup I. In the following, arguments similar to
[47, Proposition 2] are used to show that precompact maximal
solutions are complete.

For the sake of contradiction, assume that T <∞. Since F
is locally bounded, uniformly in t, over Ω, and x (t) ∈ B (0, r)
on [t0, T ), the map t 7→ F (x (t) , t) is uniformly bounded
on [t0, T ). Hence, (14) implies that ẋ ∈ L∞ ([t0, T ) ,Rn).
Local absolute continuity of t 7→ x (t) implies that ∀t1, t2 ∈
[t0, T ), ‖x (t2)− x (t1)‖2 =

∥∥∥´ t2t1 ẋ (τ) dτ
∥∥∥
2
. Since ẋ ∈
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L∞ ([t0, T ) ,Rn),
∥∥∥´ t2t1 ẋ (τ) dτ

∥∥∥
2
≤
´ t2
t1
Mdτ , for some

M > 0. Thus, ‖x (t2)− x (t1)‖2 ≤ M |t2 − t1|, and hence,
t 7→ x (t) is uniformly continuous on [t0, T ). Therefore, x
can be extended into a continuous function x′ : [t0, T ]→ Rn.
Invoking [32, p. 83, Theorem 5], x′ can be extended into a
solution of (13) on the interval [t0, T

′) for some T ′ > T ,
which contradicts the maximality of x. Hence, T = ∞, i.e.,
all precompact maximal solutions of (13) are complete.

Continuity of x 7→ W (x) and compactness of B (0, r)
imply that x 7→ W (x) is uniformly continuous on B (0, r).
Since t 7→ x (t) is uniformly continuous on R≥t0 , t 7→
W (x (t)) is uniformly continuous on R≥t0 . Furthermore,
t 7→

´ t
t0
W (x (τ)) dτ is monotonically increasing and from

(17) and the fact that V is positive definite,
tˆ

t0

W (x (τ)) dτ≤V (x (t0) , t0)− V (x (t) , t)≤V (x (t0) , t0) .

Hence, limt→∞
´ t
t0
W (x (τ)) dτ exists and is finite. By

Barbălat’s Lemma [17, Lemma 8.2], limt→∞W (x (t)) = 0.

Proof of Proposition 1 for Filippov regularization: Fix
(x, t) ∈ Rn×R≥t0 , select δ∗ > 0 such that |ρ (B (x, δ∗) , t)| <
∞, and let N := ρ (B (x, δ∗) , t). Similar to the proof for
Krasovskii regularization, the proof proceeds in three steps.
First, it is observed that⋂

δ>0

⋂
µ(N)=0

co
{
fρ(y,t) (y, t) | y ∈ B (x, δ) \N

}
⊆
⋂
δ>0

⋂
µ(N)=0

AδN (x, t) , (30)

where AδN := co
⋃
σ∈N

{
fσ (y, t) | y ∈ B (x, δ)\N

}
. Second,

it is established that⋂
δ>0

⋂
µ(N)=0

AδN (x, t) ⊆
⋂
δ>0

⋂
µ(N)=0

BδN (x, t) , (31)

where BδN (x, t) := co
⋃
σ∈N BNδσ (x, t) and BNδσ (x, t) :=

co {fσ (y, t) | y ∈ B (x, δ) \N} . Finally, it is shown that
∀x ∈ Rn and almost all t ∈ R≥t0 ,⋂

δ>0

⋂
µ(N)=0

BδN (x, t) ⊆ co
⋃
σ∈N

⋂
δ>0

⋂
µ(N)=0

BNδσ (x, t) .

(32)
The conclusion of the proposition then follows. Apart from the
technical detail required to handle the exclusion of measure-
zero sets in the Filippov inclusion, the methods utilized to
prove (31) and (32) are similar to those used in the proof
for Krasovskii inclusions. Thus, in the following, only the
techniques used to handle the exclusion of measure-zero sets
are illustrated.

The containment in (30) is self-evident. To prove (31), de-
fine N (δ) := {N ⊂ B (x, δ) | µ (N) = 0}, and let N∗ (δ) ⊂
2B(x,δ) be a collection of sets of zero measure such that
sup

{
‖θ‖ | θ ∈ AδN

}
<∞, ∀N ∈ N∗ (δ). Since the functions

fσ (x, t) are locally essentially bounded, uniformly in t and
σ, the collection N∗ (δ) is nontrivial. Fix N ∈ N∗ (δ) and

z ∈ AδN . Using arguments similar to Part 1 of the proof it can
be shown that the point z is a convex combination of points
from BNδσj (x, t). That is, z ∈ coBδN (x, t), and hence,⋂

N∈N∗(δ)

AδN (x, t) ⊆
⋂

N∈N∗(δ)

BδN (x, t) . (33)

To establish (31) the intersection in (33) needs to include all of
N (δ), not just the subset N∗ (δ). Since N∗ (δ) ⊆ N (δ), the
inclusion

⋂
N∈N∗(δ)A

δ
N (x, t) ⊆

⋂
N∈N (δ)A

δ
N (x, t) follows.

Let M ∈ N (δ). There exist N1 ∈ N (δ) \ N∗ (δ) and
N0 ∈ N∗ (δ) such that M = N1 ∪ N0. Since N0 ⊆ M ,
AδM (x, t) ⊆ AδN0 (x, t). Therefore,

⋂
N∈N (δ)A

δ
N (x, t) ⊆⋂

N∈N∗(δ)A
δ
N (x, t), which implies

⋂
N∈N∗(δ)A

δ
N (x, t) =⋂

N∈N (δ)A
δ
N (x, t). A similar reasoning for BδN (x, t) yields⋂

N∈N∗(δ)B
δ
N (x, t) =

⋂
N∈N (δ)B

δ
N (x, t), ∀δ ∈ (0, δ∗],

which proves (31).
As an intermediate step towards proving (32), the contain-

ment⋂
µ(N)=0

BδN (x, t) ⊆ co
⋃
σ∈N

⋂
µ(N)=0

BNδσ (x, t) , ∀δ > 0, (34)

is established in the following. Let z ∈
⋂
µ(N)=0B

δ
N (x, t).

The objective now is to show that

z ∈ co

 ⋂
µ(N)=0

BNδ1 (x, t) ∪
⋂

µ(N)=0

BNδ2 (x, t) ∪ · · ·

 .

Since the functions (x, t) 7→ fσ (x, t) are Lebesgue measur-
able, the functions x 7→ fσ (x, t) are Lebesgue measurable
∀ (σ, t) ∈ N×R≥t0 . Using [42, Lemma 1], it can be concluded
that ∀ (x, t, δ, σ) ∈ Rn × R≥t0 × R>0 × N , there exists
a measure-zero set Nσ such that,

⋂
µ(N)=0BNδσ (x, t) =

BNσδσ (x, t). Define N∗ :=
⋃
σ∈N Nσ . Since N∗ is a count-

able union of measure-zero sets, µ (N∗) = 0. The fact that z ∈⋂
µ(N)=0B

δ
N (x, t) implies that z ∈ BδN∗ (x, t) and hence, by

Carathéodory’s Theorem [38, p. 103], there exist {z1, · · · , zm}
such that each zj ∈ BN∗δσj (x, t) for some σj ∈ N , and
positive real numbers {a1, · · · , am} with

∑m
j=1 aj = 1, such

that z =
∑m
j=1 ajzj . By definition of N∗, Nσ ⊆ N∗, ∀σ ∈ N .

As a result, BN∗δσ (x, t) ⊆ BNσδσ (x, t), ∀σ ∈ N , and hence,
BN∗δσ (x, t) ⊆

⋂
µ(N)=0BNδσ (x, t), ∀σ ∈ N . Hence, for

each j ∈ {1, · · · ,m}, zj ∈
⋂
µ(N)=0BNδσj (x, t) for some

σj ∈ N , which implies (34). Using a nesting argument similar
to the proof for Krasovskii inclusions, the containment in (32)
follows ∀ (x, t) ∈ Rn × R≥t0 .

Proof of Lemma 1: The proof closely follows the proof
of Lemma 1 in [37]. Let x : I → Rn be a solution of (13)
such that x (t0) ∈ D. Consider the set of times T ⊆ [t0, T )
where ẋ (t) is defined, ẋ (t) ∈ F (x (t) , t), and V̇i (x (t) , t) is
defined ∀i ≥ 0. Since x is a solution of (13) and the functions
Vi are locally Lipschitz-continuous, µ ([t0, T ) \ T ) = 0, where
µ denotes the Lebesgue measure on R. The idea is to show
that ẋ (t) ∈ F̃ (x (t) , t), not just F (x (t) , t). Indeed since Vi
is locally Lipschitz-continuous, for t ∈ T its time derivative
can be expressed as

V̇i (x (t) , t) = lim
h→0

(Vi (x (t) + hẋ (t) , t+ h)− Vi (x (t) , t))

h
.
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Since each Vi is regular, for i ≥ 1, V̇i (x (t) , t) =
V ′i+ ([x (t) ; t] , [ẋ (t) ; 1]) = V oi ([x (t) ; t] , [ẋ (t) ; 1]) =

max
(
pT [ẋ (t) ; 1] , p ∈ ∂Vi (x (t) , t)

)
, and V̇i (x (t) , t) =

V ′i− ([x (t) ; t] , [ẋ (t) ; 1]) = V oi ([x (t) ; t] , [ẋ (t) ; 1]) =
min

(
pT [ẋ (t) ; 1] , p ∈ ∂Vi (x (t) , t)

)
, where V ′+ and V ′− de-

note the right and left directional derivatives and V o de-
notes the Clarke-generalized derivative [35, p. 39]. Hence,
pT [ẋ (t) ; 1] = V̇i (x (t) , t) , ∀p ∈ ∂Vi (x (t) , t), which
implies ẋ (t) ∈ Gi (x (t) , t) for each i. Therefore,
ẋ (t) ∈ F̃ (x (t) , t). Hence, (22), along with the fact that
V̇ (x (t) , t) = pT [ẋ (t) ; 1] , ∀p ∈ ∂V (x (t) , t), implies that
∀t ∈ T , V̇ (x (t) , t) ≤ −W (x (t)). Since µ ([t0, T ) \ T ) = 0,
V̇ (x (t) , t) ≤ −W (x (t)) for almost all t ∈ [t0, T ).

In the following, three technical Lemmas are stated to
facilitate the proof of Corollary 1.

Lemma 2. If {Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N} is a collection
of locally bounded, continuous, compact-valued, and convex-
valued maps, then the set-valued map F := (x, t) 7→
co
⋃
σ∈N Fσ (x, t) is continuous.

Proof: Let H : Rn×R≥t0 ⇒ Rn be defined as H (x, t) =
co (F1 (x, t) ∪ F2 (x, t)). If N ⊆ Rn is an open set containing
H (x, t), then ∃ε > 0 such that H (x, t) + B ((x, t) , ε) ⊂ N .
Since F1 and F2 are upper semicontinuous (USC), there
exist open sets M1,M2 ⊆ Rn × R≥t0 such that (x, t) ∈
M1 ∩M2, F1 (M1) ⊂ H (x, t) + B ((x, t) , ε), and F2 (M2) ⊂
H (x, t) + B ((x, t) , ε). Therefore, F1 (x, t) ∪ F2 (x, t) ⊂
H (x, t)+B ((x, t) , ε). Since H (x, t)+B ((x, t) , ε) is convex,
co (F1 (x, t) ∪ F2 (x, t)) ⊂ H (x, t)+B ((x, t) , ε). Thus, H is
USC.

It is easy to see that (x, t) 7→ F1 (x, t) ∪ F2 (x, t) is lower
semicontinuous (LSC). Using [41, Theorem 5.9 (c)], H is
also LSC. Inductively, the map (x, t) 7→ co∪Kk=1Fk (x, t)
is continuous ∀K < ∞. Thus, the collection {Fk}k∈N
defined as Fk (x, t) = co∪kσ=1Fσ (x, t) is a collection of
nondecreasing continuous set-valued maps. By [41, Exercise
4.3], the sequence {Fk}k∈N converges pointwise to the map
(x, t) 7→ ∪k∈NFk (x, t). Since the sets {Fk} are nested,
∪k∈NFk (x, t) = co∪σ∈NFσ (x, t). Hence, by [41, Theorem
5.48 (a)], the map (x, t) 7→ co∪σ∈NFσ (x, t), is continuous.12

Lemma 3. Let g : Rn → R be continuous and let F : Rn ×
R≥t0 ⇒ Rn be a locally bounded, continuous, and compact-
valued map. If φ := (x, t) 7→ maxq∈F (x,t) g (q), then φ is
continuous at (x, t), ∀ (x, t) ∈ Rn × R≥t0 .

Proof: If not, then ∃ε > 0 such that ∀δ > 0,
∃ (y, τ) ∈ B ((x, t) , δ) such that |φ (y, τ)− φ (x, t)| ≥ ε. If
φ (y, τ) − φ (x, t) ≥ ε then arg maxq∈F (y,τ)∪F (x,t) g (q) ⊆
F (y, τ) \ F (x, t). If φ (x, t) − φ (y, τ) ≥ ε, then
arg maxq∈F (y,τ)∪F (x,t) g (q) ⊆ F (x, t) \ F (y, τ). That is,
arg maxq∈F (y,τ)∪F (x,t) g (q) ⊆ F (x, t)4F (y, τ). Let β > 0.
If {(yk, τk)}k∈N ⊂ B ((x, t) , β) is a sequence converging

12By [41, Theorem 5.7 (c)], the notion of LSC in this paper is equivalent
to the notion of inner semicontinuity in [41]. Since the all the maps under
consideration are locally bounded and compact valued, by [41, Theorem
5.19], the notion of USC in this paper is equivalent to the notion of outer
semicontinuity in [41].

to (x, t) such that |φ (yk, τk)− φ (x, t)| ≥ ε, then, ∀k ∈
N, maxq∈F (yk,τk)∪F (x,t) g (q) = maxq∈F (x,t)4F (yk,tk) g (q).
Since g and F are continuous and F is locally bounded,
the sequence

{
maxq∈F (yk,τk)∪F (x,t) g (q)

}
k∈N is a bounded

sequence. On the other hand, since F is continuous, the
sequence {F (x, t)4F (yk, τk)}k∈N converges to the null
set, and hence, the sequence

{
maxq∈F (yk,τk)∪F (x,t) g (q)

}
k∈N

converges to −∞, which is a contradiction.

Lemma 4. Let g : Rn × Rn → R be a continuous
function and let F : Rn × R≥t0 ⇒ Rn be a locally
bounded, USC, and compact-valued map. Let h := (p, x, t) 7→
maxq∈F (x,t) g (p, q). If Cx ⊂ Rn × R≥t0 and Cp ⊂ Rn are
compact, then h is continuous in p, uniformly in (x, t) over
Cp × Cx.

Proof: Since g is continuous, and F (Cx) and Cp are com-
pact,13 it is uniformly continuous on Cp×F (Cx). Thus, given
ε > 0, ∃δ > 0, independent of (p, x, t), such that ∀p, p0 ∈ Cp
and ∀q, q0 ∈ F (Cx), ‖p− p0‖ < δ ∧ ‖q − q0‖ < δ
=⇒ g (p0, p0) < g (p, q)+ε. In particular, ‖p− p0‖ < δ =⇒
g (p0, p0) < g (p, q0) + ε. For any fixed p0 ∈ Cp and (x, t) ∈
Cx, ∃q0 ∈ F (x, t) such that h (p0, x, t) = g (p0, p0), and
hence, h (p0, x, t) < g (p, q0) + ε. Since g (p, q0) ≤ h (p, x, t)
by definition, h (p0, x, t) < h (p, x, t)+ε. That is, ∀p, p0 ∈ Cp
and ∀ (x, t) ∈ Cx, ‖p− p0‖ < δ =⇒ h (p0, x, t) <
h (p, x, t) + ε. By symmetry, |h (p0, x, t)− h (p, x, t)| < ε.

Proof of Corollary 1: Rademacher’s theorem [48, The-
orem 3.2] and [35, Proposition 2.3.6 (d)] imply that ∂V is
single-valued for almost all (x, t) ∈ Rn × R≥t0 . As a result,
for almost all (x, t) ∈ Rn × R≥t0 , ˙̄VF (x, t) = V̇ F (x, t). By
Proposition 2, for any (x, t) ∈ Rn × R≥t0 and β > 0, there
exists a sequence {(yk, τk)}k∈N ⊂ B ((x, t) , β), converging
to (x, t) such that ∂V (yk, τk) = {∇V (yk, τk)} =: {pk} and
maxq∈F (yk,τk) p

T
k [q; 1] ≤ −W (yk) .

Let qk ∈ arg maxq∈F (yk,τk)
pTk [q; 1] . Since the set-valued

map F is locally bounded and USC, the sequence {qk}k∈N
is bounded, and hence, admits a convergent subsequence
{qkl}l∈N converging to some q∗ ∈ Rn×R≥t0 . Since ∂V is lo-
cally bounded and USC (cf. [49, p. 4]), the sequence {pkl}l∈N
is bounded. Hence, there exists a subsequence

{
pklm

}
m∈N

converging to some p∗ ∈ Rn. Hence,

(p∗)
T

[q∗; 1] ≤ lim
m→∞

−W
(
yklm

)
= −W (x) . (35)

Using the characterization of the generalized gradient from
[35, p. 11, eq. (4)], p∗ ∈ ∂V (x, t). From Lemma 2, F is
continuous, and hence, q∗ ∈ F (x, t).

Let h := (p, x, t) 7→ maxq∈F (x,t) p
T [q; 1]. To prove

the corollary, it needs to be established that h (p∗, x, t) =
(p∗)

T
[q∗; 1]. The inequality h (p∗, x, t) ≥ (p∗)

T
[q∗; 1] is

immediate from the definitions. Also,

h (p∗, x, t)− (p∗)
T

[q∗; 1] = h (p∗, x, t)− h
(
p∗, yklm , τklm

)
+ h

(
p∗, yklm , τklm

)
− h

(
pklm , yklm , τklm

)
+ h

(
pklm , yklm , τklm

)
− (p∗)

T
[q∗; 1] . (36)

13F (Cx) is bounded by [32, Lemma 15, p. 66], and since F is USC and
Cx is compact, F (Cx) is also closed by [41, Theorem 5.25 (a)].
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Let ε > 0. By definition of p∗ and q∗, ∃M1 ∈ N such that
∀m ≥ M1,

∣∣∣h (pklm , yklm , τklm )− (p∗)
T

[q∗; 1]
∣∣∣ < ε

3 . Since

∂V and F are USC, ∂V
(
B ((x, t) , β)

)
and F

(
B ((x, t) , β)

)
are closed by [41, Theorem 5.25], and hence, compact. Since
(p, q) 7→ pT [q; 1] is continuous, Lemma 4 implies that
the function h is continuous in p, uniformly in (x, t), over
∂V
(
B ((x, t) , β)

)
×B ((x, t) , β). Hence, ∃M2 ∈ N such that

∀m ≥ M2,
∣∣h (p∗, yklm , τklm )− h (pklm , yklm , τklm )∣∣ < ε

3 .
Lemma 3 implies that the function (x, t) 7→ h (p∗, x, t)
is continuous. Hence, ∃M3 > 0 such that ∀m ≥ M3,∣∣h (p∗, x, t)− h

(
p∗, yklm , τklm

)∣∣ ≤ ε
3 .

Thus, for m ≥ max {M1,M2,M3}, h (p∗, x, t) ≤
(p∗)

T
[q∗; 1] + ε. Since ε was arbitrary, h (p∗, x, t) =

(p∗)
T

[q∗; 1]. Hence, from (35) and the definition of h, ∃p∗ ∈
∂V (x, t) such that maxq∈F (x,t) (p∗)

T
[q; 1] ≤ W (x), and

hence, minp∈∂V (x,t) maxq∈F (x,t) p
T [q; 1] ≤ −W (x) .

In the following, [42, Lemma 1] is generalized to set-valued
maps using the generalized Lucin’s Theorem [41, Theorem
14.10]. To that end, the notion of approximate continuity and
its relation to Lebesgue measurability are generalized to set-
valued maps.

Definition 6. A Lebesgue measurable set-valued map F :
Rn ⇒ Rn is called approximately continuous at x ∈ Rn if
there exists a measurable set G ⊆ Rn such that x is a point
of density 1 for G [48, Definition 1.25] and the map F

G
is

continuous at x.

Lemma 5. A Lebesgue measurable closed-valued map F :
Rn ⇒ Rn is approximately continuous at x for almost all
x ∈ Rn.

Proof: Let ε > 0. The generalized Lusin’s Theorem
[41, Theorem 14.10] implies that there exists a set E with
µ (Ec) < ε such that F

E
is continuous. By the Lebesgue

density theorem [48, Theorem 1.35], almost every point of E
is a point of density 1 for E. As a result, F is approximately
continuous at almost every point of E. Since ε was arbitrary,
F is approximately continuous almost everywhere.

Using Lemma 5, the results of [42, Lemma 1] can be
generalized to closed-valued maps as follows.

Theorem 4. If F : Rn ⇒ Rn is Lebesgue measurable and
closed-valued, and if E ⊆ Rn is Lebesgue measurable, then
there exists N0 ⊂ Rn such that µ (N0) = 0 and⋂

µ(N)=0

coF (E \N) = coF (E \N0) .

Proof: If µ (E) = 0 then the conclusion of the theorem
trivially follows with N0 := E. In the case where µ (E) > 0,
let N1 ⊂ Rn denote the set of points where F is not
approximately continuous and let N2 denote the set of points
in E that are not points of density 1 for E. By Lemma
5, µ (N1) = 0 and by the Lebesgue Density Theorem [48,
Theorem 1.35], µ (N2) = 0. Let N0 := N1 ∪N2.

For all N ⊂ Rn with µ (N) = 0, coF (E \ (N ∪N0)) ⊆
coF (E \N0). As a result,

⋂
µ(N)=0 coF (E \ (N ∪N0)) ⊆

coF (E \N0), and since µ (N0) = 0,⋂
µ(N)=0

coF (E \N) ⊆ coF (E \N0) .

To prove the reverse inclusion, let z ∈ coF (E \N0). Then,
by Carathéodory’s Theorem [38, p. 103], there exist points{
zj1, · · · , zjm

}
such that zji ∈ F (E \N0), ∀i = 1, · · · ,m,

and positive real numbers {a1, · · · , am} with
∑m
j=1 aj = 1,

such that limj→0

∑m
i=1 a

j
iz
j
i = z. Fix N ⊂ Rn such that

µ (N) = 0.

Claim. For each j ∈ N, we can select
{
zji

}m
i=1

⊂

F (E \ (N0 ∪N)) such that
∥∥∥∑m

i=1 a
j
iz
j
i −

∑m
i=1 a

j
iz
j
i

∥∥∥ ≤ 1
j .

Proof of Claim: Fix j ∈ N. If ∃i ∈ {1, · · · ,m} such that
zji ∈ F (E \N0)\F (E \ (N0 ∪N)), then ∃xji ∈ (N \N0)∩
(E \N0) such that zji ∈ F

(
xji

)
. By the definition of N0, xji

is a point of density 1 for E. As a result, ∀ε > 0, ∃K ∈ N
such that ∀k ≥ K,

1−
µ
(

B
(
xji ,

1
k

)
∩ E

)
µ
(

B
(
xji ,

1
k

)) < ε.

Particularly, ∀k ≥ K, µ
(

B
(
xji ,

1
k

)
∩ E

)
>

(1− ε)µ
(

B
(
xji ,

1
k

))
> 0, which implies that

∀k ∈ N, µ
((

B
(
xji ,

1
k

)
∩ E

)
\ (N1 ∪N2 ∪N)

)
> 0.

For each k ∈ N, if xjk i is selected such that
xjk i ∈

(
B
(
xji ,

1
k

)
∩ E

)
\ (N0 ∪N), then limk→∞ xjk i = xji .

Since F is approximately continuous on E \ N0,
limk→∞ F

(
xjk i

)
= F

(
xji

)
, in the sense of Painlevé-

Kuratovski convergence [39, Definition 1.1.1]. Since F
(
xji

)
is the set of limits of sequences

{
zjk i

}
such that zjk i ∈

F
(
xjk i

)
, ∀k ∈ N [39, Proposition 1.1.2], there exists a

sequence
{
zjk i

}
such that limk→∞ zjk i = zji and zjk i ∈

F
(
xjk i

)
, ∀k ∈ N. Hence, ∀γ > 0, ∃K ∈ N such that

zji := zjK i satisfies
∥∥∥zji − zji∥∥∥ < γ. Since the collection{

zji

}m
i=1

is finite, the claim is established.
By the triangle inequality,∥∥∥∥∥
m∑
i=1

ajiz
j
i − z

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

ajiz
j
i −

m∑
i=1

ajiz
j
i +

m∑
i=1

ajiz
j
i − z

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
i=1

ajiz
j
i −

m∑
i=1

ajiz
j
i

∥∥∥∥∥+

∥∥∥∥∥
m∑
i=1

ajiz
j
i − z

∥∥∥∥∥ .
Given ε > 0, if J ∈ N is selected large enough
such that 1

j < ε
2 and ∀j > J ,

∥∥∥∑m
i=1 a

j
iz
j
i − z

∥∥∥ <

ε
2 , then

∥∥∥∑m
i=1 a

j
iz
j
i − z

∥∥∥ < ε, ∀j > J . That

is, limj→0

∑m
i=1 a

j
iz
j
i = z. Therefore, z is the limit

of a sequence comprised of elements that are con-
vex combinations of points from F (E \ (N0 ∪N)). That
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is, z ∈ coF (E \ (N0 ∪N)). Since N was an arbi-
trary set of Lebesgue measure zero, coF (E \N0) ⊆
coF (E \ (N0 ∪N)), ∀N such that µ (N) = 0. Hence,
coF (E \N0) ⊆

⋂
µ(N)=0 coF (E \ (N0 ∪N)), and since

µ (N0) = 0, coF (E \N0) ⊆
⋂
µ(N)=0 coF (E \N).
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