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Jumping out of water is a phenomenon exhibited by a variety of aquatic and
semi-aquatic animals. Yet, there is no common groundwork that clarifies the
physical constraints required to jump out of water. In this study, we elucidate
the physical conditions required for an animal to jump out of water. More than
100 jumps are analysed over five taxonomic groups. By balancing the power
produced by animals with drag-induced dissipation, we expect that maximum
jumping height, H, scales with body length, L, as H/L ~ L™'/% ~ Fr?, where
the Froude number, Fr, is a ratio of inertia to gravity. To identify jumping
regimes, simplified experiments are conducted by shooting axisymmetric
bodies through the water surface. Here, we see a transition in which partial
exits scale as H/L ~ Fr and complete exits scale as H/L ~ Fr”. A bioinspired
robotic flapping mechanism was designed to mimic the fast motion of impul-
sive jumping animals. When exiting water, the robot carries a large volume of
fluid referred to as an entrained mass. A theoretical model is developed to pre-
dict the jumping height of various water-exiting bodies, which shows that the
mass of the entrained fluid relative to the mass of the body limits the maximum
jumping height. We conclude that the lack of entrained fluid allows animals to
reach extraordinary heights compared to our water-exiting robots.

1. Introduction

In nature, many animals across five different taxa leap out of water to escape
from predators, capture prey, breathe, communicate or even recreationally. It
is often used as a survival mechanism, particularly for smaller animals. The
copepod (figure 1a), for example, performs the so-called aerial escape mechan-
ism to evade predators [1]. Some fish and frogs (figure 1b) jump out to capture
insects on low hanging branches [2,3] or to escape from external stimulii such as
motorboats [4]. Many other fish jump to overcome obstacles during migrations
[5-7]. Larger animals among a wide range of taxa have also been observed to
leap out of water, such as penguins jumping onto ice shelves [8,9], dolphins
[10-14], sharks [15] and whales (figure 1c) [16]. Even humans leap partially
out of water during various water sports [17,18]. While literature exists for indi-
vidual animals jumping out of water, there appears to be no common
groundwork that clarifies the physical constraints among different animals
for leaping out of water.

The mechanics of swimming in animals has been a topic of interest for many
years [19-22]. A great deal of work has gone into scaling animal swimming
speed. Bainbridge has empirically determined that the swimming speed of
steady swimming fish scales with its frequency as f~ U/L [23]. Only recently
was there a mechanistic rationale for this scaling [24,25]. However, there is a
limit to how fast an animal can swim relative to its body size. When incorpor-
ating a time scale for which muscles can maintain acceleration, a constraint is
placed on the speed of larger animals [26]. The allometry and scaling of swim-
ming animals are well studied, but to the best of our knowledge, few studies
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Figure 1. Aquatic animals jumping out of water. (a) Copepod with a thin line tracing its trajectory (H/L ~ 10, where H is the jump height and L is the body
length). Photo courtesy of Brad Gemmell. (b) A frog (H/L ~ 1.1). (Photo courtesy of Jake Socha and Talia Weiss.) (c) An orca whale (H/L ~ 0.7). (d) Copepod
inspired robot (H/L ~ 2.6). (e) Normalized jumping height of various animals relative to body length. This follows a slope of H/L ~ L~ (solid line), with a line of
best fit —0.35 + 0.12 (dotted lined, r* = 0.57, 95% Cl). It is interesting to note that the copepod does not entrain fluid when it completely exits water, whereas

the frog, whale and robot entrains fluid. (Online version in colour.)

have been conducted on the commonality of hydrodynamic
forces that govern the leap height for aquatic animals.

Studies have shown that certain species of copepods are able
to leap out more than 25 times their own body length [1,27,28].
Here, two dimensionless quantities determine the jumping:
Froude number (ratio of inertia to gravity) and Weber number
(ratio of inertia to surface tension). By generating a high
enough velocity, copepods can break through the water surface
[27], which is not a small feat due to their sub-capillary length
scale. Looking at animals larger than the capillary length
scale, a small fish like the Trinidadian guppy can jump
around 3.5body lengths [7]. A detailed analysis of the archerfish
kinematics show they can jump around 2.5 body lengths [29].
While the caudal fin appears to produce the most thrust, this
study also showed the importance of the anal, pectoral and
dorsal fins during thrust production using particle image velo-
cimetry. It is hypothesized that penguins release air that is
trapped under their feathers to reduce drag before exiting the
water when they leap onto ice shelves [9]. Presumably, this air
layer allows them to reach higher speeds in order for them to
leap approximately one body length. Moreover, one study has
systematically explored hydrodynamic forces acting on bio-
inspired bluff bodies exiting water [30]. While jumping out
of water has been studied for individual animals, a mechanis-
tic understanding of jumping height relative to body size
throughout a range of taxa remains unknown.

In this study, we investigate the hydrodynamic mechanisms
and geometry that will allow aquatic and semi-aquatic animals
to leap out of water. Animals leaping out of water are first classi-
fied into three categories: impulsive jumpers (initially at rest
near water surface)) momentum jumpers (begin building
speed far from water surface) and mixed jumpers (a combi-
nation of the other two). By analysing videos of aquatic
animals jumping out of water, the jump height per body
length was determined to scale as H/L ~ L3 (figure 1le),
which is mechanistically equivalent to H/L ~ Fr?. To further
understand different jumping regimes, axisymmetric bodies
are shot through the water surface. Finally, a simple, bioinspired
flapping robotic system (figure 1d) was designed to mimic the
jumping height to Froude number relationship.

2. Results
2.1. Animal scaling

The animals are divided into three groups based on their kin-
ematics: impulsive jumpers, momentum jumpers and mixed
jumpers (electronic supplementary material, figure S1). Impul-
sive jumpers are characterized by their quick jump, in which
they initially start at rest close to the free surface and then
flap their appendage with a single stroke. Momentum jumpers
first build up momentum, typically far from the water surface,
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Figure 2. (a) Relation between power production and animal mass. The dashed line is the best fit with a 1.08 + 0.07 (r* = 0.94, 95% () power law exponent,
and the solid line is our 1.00 power law assumption. (b) The normalized jumping height as a function of Froude number. The dashed line is the best fit line with a
1.05 + 035 (r* = 0.57, 95% () power law exponent. The solid line is based on our assumption that H/L ~ Fr?, where Fr? = Ué /(2gL) is the ratio of inertia at

the time of water exit and gravity. (Online version in colour.)

by continuously stroking their appendage, to reach a steady
swimming speed prior to exiting the water. A mixed jumper
exhibits behaviours from the other two groups, in which jump-
ing occurs near the free surface by using only a few strokes. For
example, the archerfish starts from rest near the free surface
(similar to an impulsive jumper) but undulates its body several
times before exiting the free surface (like a momentum jumper).
A simple terrestrial jumping analogy would be that impulsive
jumpers are standing jumps, momentum jumpers are a run-
ning jump, and mixed jumpers are a running jump with only
a few strides taken before the jump. Figure le compares the
experimental data from animals with our theoretical line of
H/L~L7'3

The power produced by some aquatic animals is shown in
figure 2a and covers nearly 12 orders of magnitude of animal
mass. An approximate power law for the power produced is
P~ (169 W kg™ "M (line of best fit has a power of 1.08 + 0.07,
1* = 0.94, 95% CI). The power data are collected from previous
works, either provided directly or calculated as P ~ M a,x Up
or P ~ F Uy, where a,,,, is the maximum acceleration, U, is the
maximum (impulsive jumpers) or steady (momentum jumpers)
velocity and F is the thrust production (Neopepod = 23, Nericket = 1,
Ntog = 3, Nish = 10, Nhrimp = 2, Naolphin = 13, Nywhale = 9; see
electronic supplementary material, table S1). Considering the
power to overcome drag as Pyrg = 1 /2prdUSS, a balance
between power production and drag-induced dissipation
is expressed as kM ~1/2p,,Cq USS, where k is the best fit
prefactor 16.9 W kgfl, Uy is the swimming velocity as defined
earlier, p,, is the water density, C4 is the drag coefficient and S is
the projected area of the animal. We assume an average value
of 0.05 for the drag coefficient, which is the case for non-lifting
streamlined bodies of revolution [31].

With the isometric arguments M ~ pol® and S~ 7L?
and assuming a neutrally buoyant animal (p,/pf >~ 1), we
find that U, ~ (2kL/(Cq))"/°. This is a useful scaling for cal-
culating the Froude number since we are unable to directly
measure the exit velocity of animals jumping out of water.
Here, we defined the Froude number, ratio of inertia to
gravity, as

_ 0

2 —_—
= 29L’

@1

which is derived from simple projectile motion, U? = 2¢H
and gives the relationship between jumping height and
Froude number as H/L = U}/2¢L = Fr*. Therefore, the
Froude number for animals leaping out of water is scaled
as Fr? =~ (1/2¢)(2k/mC4)*/®> L~/ This leads to our final
solution as

H 1 /2k\*°
:—( ) L3, (2.2)

i3 29 E
The above equation is plotted in figure 1e as a solid black line
and agrees well with experimental data. In figure 2b, we plot
the jumping height of marine animals against Fr?, which
agrees well with experimental data (best fit slope of 1.05 +
035, r2=0.57, 95% CI). The animals include amphibians,
arthropods, fishes, marine birds and mammals with a body
size covering five orders of magnitude (see electronic sup-
plementary material, table S1). Examples of impulsive
jumpers are copepods and frogs. Momentum jumpers tend to
be larger animals such as penguins, dolphins and whales.
Most fish are considered as mixed jumpers, but humans and
crocodiles are also included in this category. One may note
that as an animal leaps out of water, it carries some volume
of water. While the animal scaling neglects any effect of the
entrained water, equation (1.2) still matches well with the bio-
logical results. This suggests that the entrained water has no
influence on the jumping height of aquatic animals, regardless
of jumping style. To test this hypothesis, we designed physical
experiments with an axisymmetric body and a bioinspired
robot. Through these experiments, we are able to deduce that
entrained fluid has little effect on animals, therefore allowing
them to jump with projectile motion.

2.2. Axisymmetric bodies

To gain a better understanding of the physics governing animal
jump height, axisymmetric bodies were forced out of water
using a spring system (see Methods, electronic supplementary
material, figure S2). Figure 3a shows a time sequence of a
spheroid exiting water. Experimental results of maximum
jumping height normalized by major diameter, H/L, versus
the Froude number are shown in figure 3b, in which U is the
velocity of the body when it reaches the free surface. Two
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Figure 3. (a) Water exit of a prolate spheroid (major diameter is 6 cm, minor diameter is 2 cm, Uy = 1.72m s ). At t = 0 ms, the top of the spheroid reaches
the undisturbed free surface line, but creates a deformation at the free surface prior to the exit. Upon exit, a water column is formed, and eventually pinches off. The
maximum height of the spheroid is at t = 172 ms. (b) Normalized jumping height (where L is the length of the axisymmetric body and 2R is the diameter) as a
function of Froude number for the case of prolate spheroidal bodies. Bodies that are treated with a hydrophobic coating are marked as HP. The solid lines are
numerical solutions from the theoretical model testing the influence of the water column. The testing parameter is defined as B = r,,/R, where r,, is the water
column radius. (c) Snapshots of the robot leaping out of water. The measured mass of this robot is m, = 0.013 kg, exiting at a speed of Uy = 2.7 ms™ . (d) The
robot’s normalized jumping height as a function of Froude number in black dots. Numerical results are shown for increasing mass ratio -y = m,/my, where m, is the
robot mass and my is the entrained fluid mass. Small body masses are strongly influenced by the mass of the entrained water, and therefore cannot jump as high.
A larger body mass would overcome the entrained mass effect. Zoomed in versions of this figure is shown in electronic supplementary material, figure S8. (Online

version in colour.)

distinct regimes appear. For low Froude numbers Fr <1, we
find that the body jump height scales as H/L ~ Fr and predo-
minantly performs partial exits. For high Froude numbers Fr >
1, we find that body jump height scales as H/L ~ Fr? and per-
forms complete exits. This regime has the same scaling as seen
in animals.

The growth of the water column begins when the position
of the body is at least halfway out, or z(t) > L/2, where z(t) is
defined as the vertical position of the top most point of the
body. Between L/2 < z(t) < L, there is very little volume of
entrained fluid. If the body completely escapes water, we
see that the entrained water column grows vertically. In the
theoretical model, the entrained water column is modelled
as a cylinder with a fixed radius (independent of time). We
systematically decrease the radius of the entrained water,
compare the results with experiments, and deduce that the
contribution of the water column has no effect on the maxi-
mum height of water exiting spheroids (figure 3b). The
contribution of hydrodynamic forces is discussed in further
detail in §2.4.

2.3. Bioinspired robot

A robot inspired by the flapping appendage of the best water-
jumping animals (e.g. a copepod or a frog) was built (electronic
supplementary material, figure S6). We denote two phases of

the robot when it leaps out of water, as depicted in figure
3c: (i) the thrust phase and (ii) the drag phase. During
the thrust phase, a rubber band pulls the wings together,
which produces an angular velocity that pushes the robot
upward. Once the rubber band reaches its original,
unstretched length, the elastic energy no longer acts on the
wings. This is the beginning of the drag phase, where no pro-
pulsive mechanism is present. In this paper, we will focus on
the drag phase during water exit.

Experimental results of the robot’s maximum jump height
relative to the Froude number are shown in figure 3d. Consid-
ering the low Froude number regime, the robot performs
partial exits and the normalized maximum jump height
scales as H/L ~ Fr. However, there are subtleties involved in
the jumping behaviour for large Fr related to the formation
of the entrained water. In comparison to the axisymmetric
bodies, the robot entrains far more water while z(t) <L.
When z(t) > L, the entrained water generally breaks up, or
gets squeezed out, in which case gravity dominates the
system. By increasing the exit velocity, less time is spent par-
tially submerged with entrained fluid and more time is spent
in a gravity dominated regime. This explains why there is
not a sharp transition at Fr = 1. Instead, the numerical solution
for the robot (with a measured mass of m, = 0.013 kg) slowly
approaches H/L ~ Fr’>. More details are discussed in the
theoretical medelling section.
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2.4, Theoretical model

When a body exits water, two distinct regimes exist. The first
regime occurs while part of the body is still submerged under-
water, or z(t) < L. As the body exits further out of water,
buoyancy force acting on the submerged portion of the body
decreases as Fsyp = (pp — Py)Vsub § With time, where p, and
pw are the body and water density, respectively, ¥, is the sub-
merged volume and g is the gravity. While buoyancy force
decreases, the weight of the body above the water surface
increases approximately as Fou = my(z/L)g, where my,, is the
total body mass. The body will experience additional forces
from entrained fluid as Fr = mg(2)g + (d/dt)(msz), where m(z)
is the mass of the entrained fluid as a function of height, and
dots are time derivatives. Finally, there is a drag force acting
on the body that is expressed as Fyq = (1/ 2)pWCdAsub22,
where Cjy is the drag coefficient [32], and Ay, is the projected
area of the submerged portion. Therefore, when z(t) <L, the
equation of motion may be expressed as

(mb + ma)'.z. = _Fout - Fsub - Ff - Fd/ (23)

where m, is the added mass acting on the submerged portion of
the body [33]. If the body has enough inertia to completely exit
the water, z > L, then fluid forces begin to vanish. The weight
of the body becomes evenly distributed as Fg, = m,g and
Foup = 0. Effects of drag and added mass become negligible
since the resisting fluid is predominantly air. The resulting
equation of motion when z(t) > L is

mbi = —Fout — Ft. (24)

Surface tension effects are neglected because of large Weber
numbers, We > 1. Both equations (2.3) and (2.4) are solved
numerically using Matlab’s ODE23 function.

We investigate the influence of the entrained fluid after
the body has completely exited. Using the axisymmetric
bodies, the entrained fluid mass is medelled as a cylinder
growing vertically, m¢(z) = p,,(¥i(z, 1w) — ¥5(z, 1w)), where
Y1z, rw) is a cylindrical volume of water growing vertically
and ¥(z, ry) is the volume of the solid body that contacts
water (see electronic supplementary material, figures S3
and S4). We define the wetted radius (or the entrained
water column radius) as r,, = BR, where B is a testing par-
ameter and R is the original radius of the body. By varying
B between 0 and 1, we test how much influence the entrained
water column mass has on the final jumping height. The
entrained fluid only begins to grow when z(t) = L/2. When
L/2 < z(t) <L, there is no appreciable difference in solutions
between B=0 and B =1, which signifies that the growing
water column has minimal effect on the jump height. This is
because the effective mass of the body (amount of mass that is
out of water) is initially higher and grows faster than the mass
of the entrained water (see electronic supplementary material,
figure S5a). Therefore, we fixed the parameter to B=1 to
remain consistent with later simulations with the robot.

All numerical solutions with Fr <1 approach H/L ~ Fr.
When z(t) > L, we vary the testing parameter as 8= [0, 0.25,
0.5, 0.75, 1]. Decreasing f3 represents decreasing influence of
the entrained water column, revealing solutions that approach
H/L ~ Fr* when Fr>1 (figure 3b). This means that the
entrained water has little to no effect on the overall jumping
height of the bodies. Considering the triviality of the entrained
fluid, an analytical solution for both regimes can be found

102 -
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Figure 4. Summary of results including data from animals, all axisymmetric
bodies and robot experiments.

when neglecting the entrained fluid as H/L =
(Fr < 1) and H/L = Fr? (Fr > 1) (see Methods).
For the bioinspired robot, the entrained fluid mass is geo-
metrically estimated as m(z) = (1/2)pw(So Wo/ L0)z(t)?, where
Sp is the length of opening between the wings (which we

Po/ Py Fr

assume to be constant), Ly is the height of the robot and W
is the width of the robot (see electronic supplementary
material, figures S6 and S7). Different from the axisymmetric
bodies, the entrained fluid mass begins to grow as soon as the
body leaves water. When z(t) < L, most of the effective mass
of the robot mainly comes from the mass of the entrained
water between two wings (see electronic supplementary
material, figure S5b). Therefore, the entrained fluid plays a
significant role on the robot jump height when z(t) < L.

From the axisymmetric bodies, we found that influence of
the entrained fluid is not important when the body has com-
pletely exited water. This is more apparent in the robotic
experiments when the entrained water breaks up during
z(t) > L. Therefore, we neglect the growing fluid mass term
in equation (2.4), which simply leads to m,Z = —myg.

Experimental robot data in figure 3d are compared with
numerical solutions with changing mass ratio, y=m,/m;,
while keeping the geometry constant (Lo =6.5cm, W,=
3.5cm). Each line in the plot signifies different simulated
robot masses of m, = [0.013, 107, 10°, 10°] kg. The measured
mass of the robot shown in figure 3c is 0.013 kg, which was
used as an input for our model (as shown in figure 34) and
agrees well with our experiments. This solution approaches
H/L ~ Fr? for Fr > 1, but lower by a prefactor difference of
about 20 compared to the axisymmetric case. This is due to
the strong influence of the entrained water when z(t) < L. By
increasing Fr, less time is spent attached to water and more
time is spent in the gravity dominated regime.

Increasing the robot mass parameter in the simulation
from 10~% to 10~ ' kg creates a solution that quickly converge
to a similar behaviour seen in the axisymmetric bodies, in
which H/L ~ Fr when Fr <1 and H/L ~ Fr* when Fr > 1.
Very little difference is seen in the curves between robot
masses of 10° and 10°kg. On the other hand, lowering the
robot mass to m, = 107 kg shows the lower bound curve in
which the entrained fluid effect dominates the system (see
electronic supplementary material, figure S8).

Depending on the maximum jump height, H/L, a differ-
ent ratio of fluid mass is entrained. By increasing Fr?, the
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entrained fluid mass increases, and therefore the mass ratio,
v, is smaller. If the robot leaps more than one body length,
z(t) > L, we assume that the entrained fluid no longer affects
the trajectory, as evidenced by the axisymmetric bodies.
Therefore, y remains constant past H/L =1. Larger robot
masses are less sensitive to the effects of the entrained
water mass, and therefore show higher vy values.

3. Discussion

In this paper, we investigated the dynamics of animals leaping
out of water. An allometric law for the power produced
by aquatic animals was empirically found as P ~ M. By balan-
cing the power allometry with the power of drag, we find
that the jumping height of animals scale as H/L ~ Fr?, i.e.
H/L ~ L~'/3. This scaling differs from what is known about
terrestrial jumpers. Jumping height for terrestrial animals is
nearly independent of body size, or H/L ~ L' [34-36]. This
means something as small as a flea can leap nearly as high as
a human. In the present study, we find that aquatic animals
do not follow the same jumping rules as terrestrial animals.

Through simplified experiments in which axisymmetric
bodies were shot through the water surface, we find a transition
in which the scaling is H/L ~ Fr for partial jumps (H/L < 1)
and H/L ~ Fr* for complete jumps (H/L > 1). Additionally,
a flapping robot was developed to mimic the impulsive jump-
ing behaviour of aquatic animals. By developing a theoretical
model, we systematically found that the entrained fluid has
no effect on the maximum jumping height when z(t) > L,
likely due to the fluid breaking up. However, the entrained
fluid just begins to form when z(t) < L and the robot entrains
far more water for a longer period of time than the axisym-
metric bodies. This creates a delayed transition to the H/L ~
Fr? scaling for the robot. But by systematically increasing the
robot’s mass in the model, we find that effects of the entrained
fluid become negligible. Then, only buoyancy dominates the
system when H/L <1 since the bodies are able to jump
higher than what projectile motion would predict, and when
H/L >1, the body follows projectile motion. Furthermore,
we find that treatments of hydrophobic coatings have no
effect on the jumping performance of either the axisymmetric
bodies or the robot.

Animals appear to carry an insignificant amount of the
entrained fluid based on both qualitative observations and
quantitative deduction. Qualitatively, we see that the volume
of entrained water is small compared to the volume of the
animal. Additionally, most of the entrained water breaks up
into a spray of small droplets for larger animals. For smaller
animals, close observations show that when copepods or fish
leap out of water, little to no fluid is entrained behind them
[1,7,28], which suggests that there is no entrained mass effect
for small animals. This explains why the copepod’s jumping
performance still exceeds that of the robot at a similar Froude
number. However, it is worth noting that a relatively large
volume of water can sometimes be attached to the copepod
after the water column breaks up [28], which may be the
cause of significant speed decrements past the interface. Quan-
titatively, from our physical experiments and modelling, we
show that the water column has little effect on axisymmetric
bodies, a geometry that is similar to most animals. In the
case of the asymmetric robot, we theoretically confirm the
importance of the ratio of body mass to entrained water

mass. As a result, asymmetric shaped animals that entrain n

water still jump higher if they have a large enough body
mass. Therefore, the main strategy aquatic animals use to
jump out of water with projectile motion is to reduce the
effect of the entrained fluid.

The above provides design considerations for robotics and
vehicles transitioning between the air—water interface. There
has been recent developments in systems that can perform
both water-entry and -exit tasks, such as the AquaMAV
[37,38] and the RoboBee [39]. However, both rely on using jet
propulsion mechanisms to propel the body out of water. The
robot presented here may inspire future robotic platforms
that use a simple energy storage mechanism to leap out of
water and the development of environment detection systems.
Future works include designing a self-propelling robot
inspired by a momentum jumper.

4. Methods
4.1. Animal videos

The jumping height from various animals was acquired either
from Youtube (N = 26) or the literature (N = 10) (see electronic
supplementary material, table S1). From the videos, jumping
height was normalized by the body length. Clips in which the
animals jump toward or away from the camera were avoided
to minimize kinematic errors and inconsistent scales. Over 100
jumps were analysed spanning a total of 35 different species
among arthropods, amphibians, birds, mammals and reptiles.

4.2. Axisymmetric body experiments

A spring mechanism was designed to shoot spheres, spheroids
and axisymmetric streamlined bodies through the water surface.
However, the object would stray from the straight vertical path
or fall over when resting on the spring loader. Therefore, the
objects were 3D printed (100% fill) with a small hole through the
centre, which allows a thin fishing wire to pass through. This fish-
ing wire acts as a guide so that the object will exit water vertically.
For the sphere, the jump height was tested with and without the
wire. While the spheres without the wire tended to jump slightly
higher, the difference was very small (see electronic supplemen-
tary material, figure S10). This is likely to be because the sphere
produces large wakes behind it, which makes it oscillate [40,41].
By attaching a wire, some of those oscillations transfer energy to
the wire which in turn produces some friction. Simple dropping
tests were conducted with and without the string to see the effect
of friction on the rate of falling. They all fall close to 9.8 ms 2,
regardless of having a string constraint (see electronic
supplementary material, figure S11).

All axisymmetric bodies had a fixed minor diameter of 2 cm.
They were forced through the interface at various speeds ranging
from 0.1 to 3.2ms ™', A high speed camera (Edgertronic SC2+ or
Photron FastCam Mini) records the trajectory between 1000 and
2000 fps. To test the effect of hydrophobicity on the jumping
height, a hydrophobic spray coating (Rust-Oleum NeverWet) was
applied. Results for spheres, spheroids and streamlined bodies
are shown in electronic supplementary material, figure S9, with
respective simulations.

4.3. Simplified analytical solutions

As shown in the main text, bodies that generate enough velocity
for complete exits (H/L > 1) follow
H

= Fr?  (Fr>1), 4.1)
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which is projectile motion simply derived from z = —g, where
dots are a time derivative and z is the highest position of the
object above the undisturbed water surface. This equation
neglects effects from the entrained fluid, which we justify in
the main text.

However, projectiles that have partial exits (H/L <1) jump
higher than what ballistic motion predicts. This is due to gravity
acting on the portion of the body that is out of water. Since the
entrained fluid effects are neglected, we model the system as
MpZ = —Moyt § — Aigyp §, Where 1, = pr2 L is the total mass of
the body, My ~ pr2 z(t) is the portion of the mass that escapes
water, and Anigy, ~ (pp — pw)R? (L — z(t)) is the portion of the
mass that remains submerged accounting for buoyancy. Our
model is simplified to Z+ Az + B =0, where A= (pw/pp)(g/L)
and B=g(1 — pw/py). The order of magnitude for A and B is
10*s™2 and 10°m s~ 2, respectively. The solution to the second
order linear ODE is z(t) = Cj cos (VAt) + Cysin (VAt) — B/A,
where the constants C; and C, become B/A and U/ VA based
on the initial conditions of z(t = 0) = 0 and z(t = 0) = U, respect-
ively. The time to reach the maximum height is 7= A~*tan
71( &), where ¢ = U VA /B. Finally, the maximum height is calcu-
lated for partial jumps to be H=(C;+C8/VE +1. An
approximation for this solution simply becomes H = C,, which

leads to
H_ [Pop <) “.2)
L Py

This agrees with our experimental observations in that bodies with
partial jumps scale as H/L ~ Fr as seen in figure 3b and electronic
supplementary material, figures S5 and S6.
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