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Sensing Matrix Design via Capacity
Maximization for Block Compressive
Sensing Applications

Richard Obermeier and Jose Angel Martinez-Lorenzo

Abstract—It is well-established in the compressive sensing (CS)
literature that sensing matrices whose elements are drawn from
independent random distributions exhibit enhanced reconstruc-
tion capabilities. In many CS applications, such as electromagnetic
imaging, practical limitations on the measurement system prevent
one from generating sensing matrices in this fashion. Although one
can usually randomize the measurements to some degree, these
sensing matrices do not achieve the same reconstruction perfor-
mance as the aforementioned truly random sensing matrices. This
paper presents a novel method, based upon capacity maximization,
for designing sensing matrices with enhanced block-sparse signal
reconstruction capabilities. Additionally, several numerical exam-
ples are also included to show how the proposed method enhances
reconstruction performance.

Index Terms—Compressive sensing (CS), block compressive
sensing, sensing matrix design, nonconvex optimization.

[. INTRODUCTION

CLASSICAL problem in science and engineering is re-
A constructing an unknown vector x € C from a set of lin-
ear measurements y = Ax € C", When M < N, there exist
an infinite number of solutions satisfying y = Ax and so regu-
larization techniques need to be employed in order to induce a
unique solution. In practice, the regularization term is selected
from prior knowledge of the unknown vector. When the vector
is known to be sparse, then Compressive Sensing (CS) theory
[1]-[3] states that it can be recovered exactly as the solution to
a convex and computationally tractable ¢, —norm minimization
problem, provided that the sensing matrix is “well-behaved” ac-
cording to a performance metric such as the mutual coherence
[4] or the Restricted Isometry Property (RIP) [5].

CS theory also considers the case where the unknown vector
is block sparse. When a signal is block sparse, the non-zero
values are distributed over K = N/L disjoint blocks of size
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L. Although block sparse signals can be reconstructed using the
standard techniques, such as /1 —norm minimization, that are ap-
plied to general sparse signals, specialized techniques based on
joint 5 /¢, minimization have been shown to provide better re-
construction performance [6]—[11]. Unsurprisingly, extensions
to the coherence [11] and RIP [9], [10], [12], [13] determine
whether or not the block sparse recovery techniques will be
successful for a given sensing matrix.

In general, one cannot verify if a given sensing matrix satis-
fies the RIP or the block-sparse variant. Frequently, researchers
resort to random matrix theory in order to generate sensing
matrices that satisfy the RIP condition with high probability.
Unfortunately, this approach cannot be used in many applica-
tions, such as electromagnetic imaging, where the elements of
the sensing matrix are constrained by practical limitations. In
this paper, we introduce a method based upon capacity maxi-
mization for designing sensing matrices with enhanced block
sparse signal reconstruction capabilities.

The remainder of this paper is organized as follows. In
Section II, we introduce the capacity-based design method and
analyze it from two perspectives, one that is deterministic in
nature and one that is probabilistic. We also discuss how our
method relates to existing work in the literature. In Section III,
we describe how the capacity-based design problem can be
solved using the method of multipliers [14]. In Section IV, we
present results for several design scenarios to demonstrate the
effectiveness of the algorithm. Finally, in Section V we conclude
the paper.

II. CAPACITY-BASED DESIGN METHOD
A. Deterministic Perspective

Consider the noise-corrupted linear system y = Ax + w,
wherex € CV,y,w e CM, A € CM*N and M < N.Itis as-
sumed here that A has normalized columns. Suppose that the un-
known vector is known to be block sparse with block size L and
let us denote Pj, € {0,1}2*Y 'k = 1,..., K as the binary pro-
jection matrix that extracts the elements of x in the k—th block.
Note that because Py, is a projection matrix, Py, PAT, =1 1, the
identity matrix, and Py, P;‘»F = 0y, 1, the zero matrix, for k # j.
In order to induce sparsity in the solution vector, one would ide-
ally use a mixed /5 /¢, objective function, where the £y-“norm”
counts the number of non-zeros. Unfortunately, this problem is
N P-hard, and so it cannot be solved even for moderately sized
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Fig. 1. Capacity of a M x 3 matrix with normalized columns.

problems. However, block CS theory states that the vector can
be stably recovered using the following joint 5 /¢; technique

[6]-[11]
K
mini;nize Z (IPr,
=1

Az = yllr, <n (1

provided that the sensing matrix A is “well-behaved” according
to some design metric. The most powerful design metric is the
block RIP [9], [10], [12], [13], which can be defined as follows.
For a fixed block sparsity level T', the block restricted isometry
constant &y, p is the smallest positive constant such that

(1= o)lxill, < lAxill7, < (1 +drr)lxill7, (@)

subject to

where x; = ®,x and A, = A<I>,T, for all projection matrices
®; € {0,1}}7Ni=1,..., (%) obtained by concatenating 7
of the K projection matrices. Generally speaking, the block RIP
requires & 7 to be small. When the block RIP is satisfied, it
guarantees exact reconstruction in the noiseless measurement
scenario and stable reconstruction in the noisy scenario. Note
that if L = 1, then Eq. (1) reduces to ¢; -norm minimization and
Eq. (2) reduces to the standard RIP.

Suppose that the sensing matrix can be expressed as a
function of p € C” design variables, i.e., A = F(p), where
F:CP — CM>*N_ From the RIP perspective, the optimal de-
sign method should determine the design variables p such that
the restricted isometry constant ¢y, 7 is minimized. There are
two issues with this approach. First, it is impractical to com-
pute the block restricted isometry constant J; p for general
matrices, as the number of sub-matrices (IT< ) that must be as-
sessed grows exponentially with K. This issue can be addressed
by optimizing d;, » instead, as it only requires one to assess
(2) = K (K — 1)/2 sub-matrices. In practice, one hopes that
this will lead to a decrease in d; r, although one can only
guarantee that the lower bound for éz 1 is decreased due to
the inequality 07 7 < 61, 74 1. This relaxation is similar to that
taken by coherence minimization in standard CS problems [4].

Fig. 2.
columns.

Restricted isometry constant ; of a M x 3 matrix with normalized

The second issue is that it is impractical (if even pos-
sible) to directly optimize the maximum deviation §; =
max,,—1,....r |02, ; — 1| of asingle sub-matrix A; € CM LT,
Instead of directly optimizing that quantity, we desire a more
practical cost function that indirectly decreases the restricted
isometry constant. One design metric can be realized through
an analysis of the singular values o, ; of the sub-matrix A;,
which has normalized columns. Assuming that LT < M, the
following two relationships are easy to prove:

LT
> op,=LT 3)
m=1
LT
> log(ay, ;) <0 )
m=1

where equality in Eq. (4) holds only when all of the singu-
lar values equal one. Intuitively, one expects that increasing
SOET log(o?, i) will decrease d;. This result is not guaranteed,
but is likely, as can be seen in Figs. 1 and 2, which display the
capacity and restricted isometry constant for a M x 3 matrix
(M > 3) with normalized columns. While the level curves of
the capacity are relatively smooth, and those of the restricted
isometry constant are diamond shaped, the optimal values for
each are achieved at the same location. As a result, an appropri-
ately sized step in the direction of the gradient of the capacity is
guaranteed to bring the result closer to an optimal solution (i.e.,
25111 o2, s — 1] gets closer to zero).

Taking this analysis into consideration, we propose solving
the following optimization problem to design sensing matrices
with enhanced block CS reconstruction capabilities:

minimize max  — logdet (®IF* (p)F(p)®, + BLu, u1,)
P r=1,...,
subjectto  p € @, 5)

where ®, € {0, 1}VMr r=1.... R, R=K(K —1)/2, 3
is a small positive constant that ensures that the arguments to det
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are positive-definite, and @), is the feasible set for the design
variables. For appropriately conditioned problems, § can be
made arbitrarily small (we use 3 = 107°%), such that it has a
minuscule affect on the final solution.

B. Probabilistic Perspective

Now consider the noise-corrupted linear system y = Ax +
w from a probabilistic viewpoint. Suppose that w ~ N(0, X,,)
and x is distributed according to a Gaussian Mixture Model
(GMM) such that

R R
fex) =) mfxlf=r)=> mNOZ,) (6
r=1 r=1

where 0 is a hidden random variable that determines which
Gaussian mixture is active. We assume that x and w are in-
dependent. The success of any reconstruction algorithm in this
case is limited by the amount of information that is conveyed
through the linear projection y = Ax:

I(x;y) = I(x; Ax +w)
= h(Ax +w) — h(Ax + W|x) (7

where I(+) is the mutual information and /(+) is the entropy rate.
It is difficult to evaluate I(x;y) because x follows a GMM, and
so we instead turn our attention to the conditional mutual infor-
mation, I(x; Ax + w|@ = r), which has the following closed-
form solution:

I(x; Ax + w|0 =)
=h(Ax+w|0 =71) — h(Ax+ w|x,0 =)

_ % (log det (AS, AT + %, — logdet (£,))

= % log det (AET A 2;1 + IM,M) (8)
Eq. (8) can easily be used to compute I(x;Ax+ w|f) =
Zle . I(x; Ax + w|f = r), however we are more interested
in the worst-case scenario. Therefore, we propose designing the
sensing matrix A such that the worst-case conditional mutual in-
formation is maximized. Once again assuming that A = F(p),
this can be achieved by solving the following optimization prob-
lem:

minimize max — log det (F(p)ZTFH (p)E;1 + IM‘M)
p r=1,....R
subjectto  p € Q, )

Block CS problems can be described as a specific version
of the GMM problem. In this version, the hidden variable 6
defines the support of the variable x, so that the diagonal of
3%, has LT non-zero values and N — LT values equal to zero,
depending on whether or not the element is part of the support
for 6 = r. The values in the support set can have non-zero off-
diagonal elements, or they can be independent of each other.
Assuming that 3,, = (I, )y and 2, = &, ®7, where ®, €

{0,1}¥*M ' = 1,..., R, the objective functions of Eq. (5)
and 9 differ only by a constant.

C. Comparison With Previous Work

Measurement matrix design is a widely researched area in the
CS literature. Many methods have been developed for standard
CS problems [15]-[20] and block CS problems [21]-[25] us-
ing coherence-based design metrics. These techniques (with the
exception of [20]) are limited in that they can only be applied
to sensing matrices that are linear projections of a dictionary,
ie., A = ®D, where the elements of ® are the design vari-
ables. Our method, like the one described in [20] for standard
CS problems, can be used to design sensing matrices that are
nonlinear functions of the design variables, provided that the
relationship is differentiable over the feasible set. This property
makes our capacity-based method available to a wider range of
applications.

There are also many design methods in the literature that
are motivated by information theory. Several papers [26]-[29]
consider the mutual information between the unknown solution
vector and the measurements, I(x;y). As we discussed in the
previous sub-section, it is not possible to optimize I(x;y) for
block CS problems, at least without making significant approxi-
mations to the objective function or its derivative, like is done in
[28]. This was the motivation, in the probabilistic viewpoint, for
optimizing the conditional mutual information I(x;y|6 = r).
However, the two quantities are undeniably related. Indeed, the
following inequalities hold for the block CS problem:

min I(x;y|0 =7) < I(x:ylf)

=I(x;y) + H(0|x) + H(0]y)

— H(0x,y) — H(0)
=I(x;y)+ H(bly) — H(0)
=I(x;y) — I(y;0)

<I(xy) (10)

where we have used the fact that H(|x) = H(0|x,y) = 0 for
the block CS problem (the non-zero elements of x defines its
support set, which maps to a unique value of #). There are
also more specialized techniques that adaptively construct the
sensing matrix using an greedy information theoretical approach
[30] and jointly reconstruct the sensing matrix and the unknowns
[31]. Once again, these methods can only be applied to prob-
lems where the sensing matrix is a linear function of the design
variables.

Finally, we would like to discuss the method presented in [32],
which maximizes the mutual information of a nonlinear sensing
systemy = A1p(x) + w by directly optimizing the elements of
the matrix A. While this method considers a nonlinear sensing
system in which the measurement functions are a linear function
of the design variables A, our method considers a linear sensing
problem in which the measurement functions are a nonlinear
function of the design variables A = F(p). So, although both
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methods consider nonlinearity, they do so in different ways, and
S0 it is not possible to directly compare them.

D. The Argument for Normalizing the Sensing Matrix

In the most general block CS problems, the only prior in-
formation we have about the unknown vector is that it is block
sparse, so it may not be appropriate to consider the GMM of
Eq. (6). One can instead consider the deterministic viewpoint
and the design problem of Eq. (5), which requires the sensing
matrix to behave like an approximate isometry. In most prob-
lems, one cannot guarantee that this condition is satisfied by
the “raw” sensing matrix, as the norms of each column can
vary widely. This issue can be overcome by instead consid-
ering the normalized sensing matrix A=A diag(e)~!, where
the elements of e € RV are the ¢, —norms of each column of
A.If A is used, one must also replace x with the scaled de-
sign variables x = diag(e)x. This is equivalent to minimizing
i, [Py diag(e)x||s, in Eq. (1) instead of S, [ Prx]ls, .
While this scaling does not affect the ¢ /¢, optimization prob-
lem that we would ideally solve, it can have a significant effect
on the solution generated by the ¢5/¢; problem of Eq. (1). As
a result, when the deterministic perspective of Sec. II-A is the
primary motivation for the design technique, one should opti-
mize over the normalized sensing matrix A. However, if the
probabilistic perspective of Sec. II-B is the primary motivation
for the design technique, one should optimize over A instead of
A, as the solutions to Eq. (9) can greatly vary with the structure
of, and especially the trace of the noise covariance X, .

III. SOLVING THE DESIGN PROBLEM

As we discussed in the previous section, the deterministic
design problem of Eq. (5) is a special case of the general design
problem of Eq. (9). As a result, we only consider the latter in
this section. The general design problem is a nonlinear, non-
convex optimization problem, even when F(p) is linear. This
property makes it difficult to find globally optimal solutions.
Nevertheless, in many applications it is sufficient to simply
find solutions that are “good enough”. This section describes
how Eq. (9) can be solved using the method of multipliers
[14]. Applying this technique requires a minor modification
to the problem. To start, we introduce the auxiliary variable
c=(c1,..., cR)T € R¥ (o represent the capacities of the sub-
matrices, so that the problem be expressed in the equivalent
form:

minimize max — ¢,
D,C1 s CR r=1,...,R
subjectto  p €@,
Cp = log det (F(p)E,FH (p)E;l + IM,M)

Y

Eq. (11) has a very similar form to the coherence minimization
algorithm displayed in Eq. 11 of [20]; it simply replaces the
coherence equality constraints with the capacity equality con-
straints. As a result, the method of multipliers [14] approach
described in [20] can also be used to solve Eq. (11), provided

that the feasible set (), has an easy to compute proximal opera-
tor. Formally, the scaled Augmented Lagrangian can be written
as follows:

R

Dy — ax p
La(p,e,v;p) = (rnllde c7~) +1o,(P)+ > 3

""" r=1

e, —log det (F(p)=, F¥ (p)2," + Tarar) + /0|
(12)

where v € R¥ are the Lagrange multipliers and I, is the
indicator function for the feasible set. The method of multipliers
solves Eq. (11) by solving a series of unconstrained problems of
the form of Eq. (12), where - is held fixed. The unconstrained
sub-problems can be solved using an alternating minimization
procedure, in which c is updated by evaluating the proximal
operator for max and p is updated using a proximal gradient
update. This procedure is described in the Appendix. When a
given instance of Eq. (12) is solved, the Lagrange multipliers
are updated as follows:

D =64 (9~ tog et

(Fip)=. F'(p)=,' + L) ) (13)

where the superscripts indicate the iteration number, i.e., the
Lagrange multiplier %(k) is used on the k—th instance of Eq.
(12). To improve the convergence rate of the algorithm, it is
often necessary to increase the penalty parameter p based upon
the convergence level. Our design method utilizes an update
approach based upon the one described in [ 14]. The optimization

procedure is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we present design results for several sensing
problems. All results were generated by solving Eq. (5) using
the normalized sensing matrix A.

A. Pulse Reconstruction Problem

In the first example, the design algorithm is applied to a pulse
reconstruction problem. Consider the scenario in which a dis-
crete time-series signal z,,, where n =0, ..., N — 1, needs to
be reconstructed from a set of incomplete Fourier measurements
Ym > Wwhere m = 0,..., M — 1. Formally, the m—th measure-
ment can be expressed as follows:

N-1
Y = E ,CUn e IPm
n=0

where w,, is the normalized digital frequency of the m—th mea-
surement. The pulses were known to be distributed on K = 16
non-overlapping segments of a fixed width L = 32 samples.
This is a simplified example of a communication network that
uses the Time Division Multiple Access (TDMA) channel ac-
cess method. The objective, then, is to select the normalized
digital frequencies w,, such that the minimum capacities over

(14)
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Algorithm 1 : Summary of the Augmented Lagrangian Update
Procedure for the Capacity Maximization Problem of Eq. (11).

1 Choose the initial values for p(®), p(1)

2 Choose convergence rate tolerances 7x and wsy ;

3 Choose parameter 7 > 1 ;

4 Set w® =1/pM and M) = 1/(p(1)0-1 ;

s Set i) = —logdet (F(p()S,F7 (p(©)25! +Tar ).

1
7 =o0;
6 for k = 1,2,3... do
7 Approximately solve the unconstrained subproblem

(p(k-)’c(k)) _ ar%r’rclin L4 (p’ c,~y<k);p(k>)

so that after m iterations
k k k k ;
max([p’ = PhL llews et — el o) < w®

8 Test for convergence ;

R 2\ 0.5
(k) = <Z [c&k)—log det (F(pUC))ETFH(p(k))E;l + IM,M) :| )

r=1

if e(F) < (%) then

10 if (k) <, and
max(|[p®) —pE=D |, [e®) —cE=D ) <w.
then

11 | stop with solution p(*)

AEED =B 4 o) <C$’“L

log det (F(p™) =, F7 (p*) 25! + Tng ) )

14 (k+1) = p(k)

15 wk+1) — w(k)/p(kJrl) ;

16 | plk+1) — n(k)/(p(k+l))0»9 ;
17 else

s (k1) _ (k)

19 plk+1) — 7 (k)

20 wkt1) = 1/p(k+1)

21 7](k+1) — 1/(p<k+1)>0‘1 ;

TABLE I
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS FOR THE PULSE
RECONSTRUCTION SENSING MATRIX DESIGN PROBLEM

Design parameters and constraints
Parameter baseline value Constraint
M 256 —
N 512 —
K 16 -
L 32 —
. Randomly distributed
wm betweeny—ﬂ and 7 Unbounded

all (126) = 120 pairs of blocks are maximized according to the
design parameters and constraints displayed in Table I. Note
that, due to the 27 modulo nature of @,,, it was considered
unbounded.

Fig. 3 displays the capacities of all of the sub-matrices
evaluated in the optimization procedure, and Fig. 4 displays
the bounds on the singular values of the sub-matrices, i.e.,
0= maxm:17..‘_yLT|agl'i — 1|. The optimized sensing matrix
outperforms the random matrix according to both metrics, which
suggests that it will provide better block CS reconstruction per-
formance. This result is confirmed by Fig. 5 which displays the
CS reconstruction accuracies achieved by the baseline and opti-

Capacities of the Sub-matrices
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Fig. 3. Capacities of the sub-matrices evaluated during the optimization

procedure for the pulse reconstruction problem.

§ of the Sub-matrices
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T
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T
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Fig. 4. Bounds on the singular values of the sub-matrices evaluated during
the optimization procedure for the pulse reconstruction problem.
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Fig.5. Numerical comparison of the reconstruction accuracies of joint ¢ /{1
reconstruction and standard ¢; reconstruction, using the baseline random and
optimized designs for the pulse reconstruction problem.

mized sensing matrices when joint ¢ /¢; and standard ¢; recon-
struction techniques are applied to noiseless data. These results
were generated by reconstructing 100 vectors at each sparsity
level S = 1,..., M/2 (block sparsity Sp = %) and comparing
the solutions to the ground truth vectors. The ¢ -norm minimiza-
tion results were included to provide a comparison with the joint
{5 /¢y results. Unsurprisingly, joint 5 /¢; minimization outper-
formed ¢; minimization for each of the sensing matrices. Re-
markably, the optimized sensing matrix was able to reconstruct
>90% of block-sparse vectors up to a block sparsity S = 4 (to-
tal sparsity S = 128) using joint £, /¢; minimization, whereas
the baseline random sensing matrix reconstructed < 50%. It is
important to note that exact reconstruction cannot be guaranteed
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Average Normalized Reconstruction Error
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Fig. 6. Numerical comparison of the reconstruction accuracies of joint 5 /{1
reconstruction and standard ¢; reconstruction, using the baseline random and
optimized designs for the pulse reconstruction problem using noisy measure-
ments (SNR = 20 dB). The error bars denote the first standard deviation.

TABLE II
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS FOR THE
ELECTROMAGNETIC IMAGING SENSING MATRIX DESIGN PROBLEM

Design Parameters and Constraints
Parameter Baseline Value Constraint
M 64 —
N 144 —
K 9 —
L 16 _
. 5\ by 5\ grid centered at _
" origin
v Uniformly spaced over 5\ ||$m‘| 2 g gf\\
m by 5\ grid at z = 5\ Yml = 2
Zm = DA

for total sparsity levels greater than M /2 (128 for this problem).
Although it does not achieve the theoretical limit, the optimized
sensing matrix achieves a level of performance that is signifi-
cantly better than that of the randomized sensing matrix. The
improvement in block CS reconstruction performance is also
confirmed by Fig. 6, which displays the averaged normalized
reconstruction errors (||X — Xyue||e, /|| Xuue ||, » With error bars)
achieved by the baseline and optimized sensing matrices when
joint ¢5 /¢; minimization is applied to noisy measurement data

(SNR = 201og( ”A"l"“ ) =20 dB).

B. Electromagnetic Imaging Problem

In this example, the design algorithm is applied to a linearized
inverse electromagnetic problem, in which multiple monostatic
antennas are used to image a region of interest using a single
frequency. The simplified discrete measurement model for this
system is given as follows [20]:

Ym = E T e*j2k”r,,, “rulley = E Amnxn

n=0 n=0

15)

where y,, is the m—th scattered field measurement, r,, is the
position of the m—th antenna, r,, is the n—th position in the
imaging region, k is the wavenumber, and x,, is the reflectiv-
ity at the n—th position in the imaging region. Keeping the
wavenumber fixed, the objective in this case is to select the
antenna positions r, .
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Fig. 7. Antenna positions of the baseline (blue) and optimized (red) designs.
The shaded boxes in the background represent the squares on which the capacity
was evaluated.
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Fig. 8. Capacities of the sub-matrices evaluated during the optimization
procedure for the electromagnetic imaging problem.

Table II displays the design parameters and constraints for the
optimization problem, and Fig. 7 displays the positions of the
baseline random antenna configuration, which was used as the
starting point to the optimization procedure, and the positions of
the optimized antenna configuration. The colored regions in the
background of Fig. 7 represent the nine blocks on which the un-
known signal was known to be block-sparse. The optimization
procedure was configured to maximize the minimum capacity
of all 36 pairs of blocks. Figs. 8 and 9 display the capacities
and singular value bounds for the evaluated sub-matrices. Once
again, the optimized sensing matrix shows clear improvement
over the randomized starting point. This directly led to an im-
provement in CS reconstruction accuracy, as shown in Figs. 10
and 11, which display noiseless and noisy reconstruction results.
In the noiseless case, ¢» /¢; minimization reconstructed >90%
of block-sparse vectorsup to a block sparsity Sp = 2 (total spar-
sity S = 32) using the optimized sensing matrix, whereas it
only reconstructed <20% using the random sensing matrix.
Once again, the fact that the optimized design performs so well
up to the theoretical maximum sparsity level, M /2 = 32, truly
demonstrates the capabilities of the design method. A specific
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Fig. 9. Bounds on the singular values of the sub-matrices evaluated during
the optimization procedure for the electromagnetic imaging problem.

Fig. 12.  Magnitude of the ground-truth reflectivity.
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Fig. 10. Numerical comparison of the reconstruction accuracies of joint {2 /{1
reconstruction and standard ¢; reconstruction using the baseline random and
optimized designs for the electromagnetic imaging problem.
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Fig. 11. Numerical comparison of the reconstruction accuracies of joint £ /{1
reconstruction and standard ¢; reconstruction using the baseline random and
optimized designs for the electromagnetic imaging problem using noisy mea-
surements (SNR = 20 dB). The error bars denote the first standard deviation.

instance of the noiseless planar reconstruction problem is dis-
played in Figs. 12—14, which display the ground-truth reflectiv-
ity, the reflectivity reconstructed by the baseline random sensing
matrix, and the reflectivity reconstructed by the optimized sens-
ing matrix.

C. General Linear System

In the final example, the design algorithm is tested in a general
linear system, y = Ax. The objective for this problem is to  Fig. .14. M.agniFude' qf the reﬂect'iv'ity' rec'onstructed t?y the baseline random
optimize the M - N coefficients a,,, € C of the sensing matrix. sensing matrix using joint 5 /¢; minimization. Normalized error = 0.0.
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TABLE III
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS FOR THE GENERAL
LINEAR SYSTEM SENSING MATRIX DESIGN PROBLEM

Design Parameters and Constraints
Parameter Baseline Value Constraint
M 64 —
N 192 -
K 24 —
L 8 —
Randomly distributed
Amn according to i.i.d. complex Unbounded
Normal distribution
05 Capacities of the Sub-matrices
’ ‘ ‘ I ‘ =—Random
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Fig. 15. Capacities of the sub-matrices evaluated during the optimization

procedure for the general linear system problem.
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Fig. 16. Bounds on the singular values of the sub-matrices evaluated during
the optimization procedure for the general linear system problem.

This is the ideal design scenario, since complete control over the
sensing matrix is given. The initial values of the sensing matrix
coefficients are drawn from i.i.d. complex Normal distributions.
The full set of design parameters and constraints are displayed
in Table III.

Figs. 15 and 16 display the capacities and singular value
bounds for the evaluated sub-matrices in the linear design prob-
lem. While the increase in capacity is smaller than in the previ-
ous examples, the singular value bounds improved significantly.
In fact, the optimized sensing matrix satisfies the block restricted
isometry constant with value dg » =~ 0.53. As one would expect,
this leads to an improvement in reconstruction accuracy, as
shown in Figs. 17 and 18. In the noiseless case, 2 /¢; minimiza-
tion reconstructed > 90% of block-sparse vectors up to a block
sparsity Sp = 4 (total sparsity S = 32) using the optimized
sensing matrix, whereas it only reconstructed 75 — 80% using
the random sensing matrix. Of the three examples presented
in this paper, the reconstruction accuracy is (unsurprisingly)

Reconstruction Accuracy with Tolerance 1e-06

o o
) ©
T T

Fraction Recovered
o
=
;
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0 5 10 15 20
Sparsity Level

35

Fig. 17.  Numerical comparison of the reconstruction accuracies of joint £3 /¢
reconstruction and standard ¢; reconstruction using the baseline random and
optimized designs for the general linear system problem.
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Fig. 18.  Numerical comparison of the reconstruction accuracies of joint £5 /(1
reconstruction and standard ¢; reconstruction using the baseline random and op-
timized designs for the general linear system problem using noisy measurements
(SNR = 20 dB). The error bars denote the first standard deviation.

increased the least in the last one. This is due to the significant
control that the designer has over the sensing matrix. Therefore,
running the optimization procedure in such scenarios may not
be worth the effort when compared to the random solution.

V. CONCLUSION

This paper describes a novel method for designing sensing
matrices with enhanced block-sparse signal recovery capabili-
ties. By maximizing the minimum capacity over a set of sub-
matrices selected from columns of the full sensing matrix, the
design method is capable of significantly improving the recon-
struction results obtained using joint ¢ /¢; minimization. Our
technique was motivated from two perspectives, a deterministic
one seeking to satisfy the block RIP, and an information theo-
retical one. The proposed design method is intimately related to
many existing techniques, but differentiates itself in that it opti-
mizes worst-case performance and can be applied to problems
where the sensing matrix is a nonlinear function of the design
variables.

The design method’s ability to improve the joint ¢5 /¢; mini-
mization reconstruction performance was demonstrated in three
applications: a sparse pulse reconstruction problem, an electro-
magnetic imaging problem, and a general linear system. These
results showed that the design method can be extremely ben-
eficial in applications where the measurement system is con-
strained by practical limitations, but less beneficial when one
has greater control over the sensing matrix.
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Algorithm 2: Summary of the Alternating Minimiza-
tion Procedure for Solving the Augmented Lagrangian
Subproblem of Eq. (12).

. k k . .
1 Given pp), cly), ¥, p® ;

2 form=0,1,2,... do
3 Update ¢ while holding p fixed

k . k
CE,,B_H) = argznm LA (pgnz), e, v, p(k))

4 Update p while holding u fixed

pEnZH) = argzl)mn L4 (P,an2+1)77(k);ﬂ(k))

APPENDIX A
AUGMENTED LAGRANGIAN SUBPROBLEM

In Section III, we described an Augmented Lagrangian
method for solving the sensing matrix design problem. One
of the key steps in this procedure solves the unconstrained sub-
problem of Eq. (12), which is repeated here for convenience:

R
P
R CT>+IQ1)(p>+;2

e, —log det (F(p)=, F¥ (p)2," + Tarar) + 70 /0|
(12)

La(p,c,v;p) = ( max

r=1,...,

This subproblem can be solved using an alternating minimiza-
tion procedure, in which c is updated while p is held fixed
and vice versa. The alternating minimization procedure is sum-
marized in Algorithm 2. Note that the subscript (m) denotes
the value of the variable at the m-th iteration of the uncon-
strained subproblem, while the superscript (k) denotes the value
of the variable at the k-th iteration of the outer loop defined in
Algorithm 1. Consequently, Cgﬁ,),) denotes the value of c at the m-
th inner iteration of the k-th outer iteration, and by convention,

ch) = czil)k‘), where my, is the last iteration of the k-th sub-

problem. The c and p update steps displayed in Algorithm 2 are
described in detail in Appendix B and Appendix C respectively.

APPENDIX B
c UPDATE STEP

In the c update step, we seek the minimizer of Eq. (12) with
respect to ¢ while keeping p, p, and « constant. By introducing
the auxiliary variables z, = —logdet(F(p)%, F¥ (p)=,' +
Iy a) + - /pand d = —c, this subproblem can be reduced to
the proximal operator for max, i.e.:

(16)

,,,,,,

S P 2
minimize ( max Rdr> —|—§||d—z||@2

By introducing the auxiliary variable ¢, this problem can be
recast as follows:

L. 14 9
t+ Z|ld—
minimize + 5 I z|7,

subjectto d =<t (17)

Algorithm 3: Summary of the Procedure Used to Solve
Eq. (16).
1 Compute
2 =7 /p —logdet (F(p)=, F (p)=," + Iy ar)
2 Compute d = —c;
3 Sort z in descending order ;
4 Find t* by finding the smallest value of m such that
Eq. (24) is satisfied ;
5: Compute d* = min(z, t*);
6: Unsort d* so that the elements are arranged in
their original order ;
7: Compute c* = —d*;

The Lagrangian for this problem can be written in terms of a
single dual variable c:

P
L(d,t.a) =t+Zd~ zf, + Y on(d. —t)  (18)
and the Karush Kuhn Tucker (KKT) conditions [33] mandate
that the following relationships are satisfied at the optimal point
d " t*, o™

d'=z—-a"/p (19)

> ar=1 (20)

@i (dE—t)=0 Vi (21)
a =0 (22)

It is clear from Eq. (19) and Eq. (21) that the Lagrange multi-
pliers satisfy the following relationship:

ay =max(p(z, —t),0) (23)

Therefore, one only needs to find the m non-zero elements of
o where the constraints are active. Assuming that z is sorted
in descending order, we can combine Eq. (23) and Eq. (20) to
reveal the following condition:
t*:_l/p+zzr > Zm+1 (24)
r=1
One therefore needs only to find the smallest value of m that
satisfies Eq. (24) in order to solve Eq. (17). In total, the steps
for solving Eq. (16) are summarized in Algorithm 3.

APPENDIX C
p UPDATE STEP

In the p update step, we seek the minimizer of Eq. (12) with
respect to p while keeping u, p, and ~y constant. By introduc-
ing the auxiliary variable z = ¢ + 7/ p, this subproblem can be
reduced to the following non-convex optimization program:

minimize I, (p)+
P
R

2.3

r=1

2
(25)

B

log det (F(p)Z,»FH (p)E;1 + I]\,LM) — 2
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The optimal solution to Eq. (25) is difficult to compute, even
when F(+) takes a simple form. Instead, we consider an approx-
imate update using the proximal gradient, provided that F(p)
is differentiable over (),,. Assuming this condition holds, the
derivative of the log det terms can be written as follows:

)

0 ! P
(24
R
= Z g <log det (F(p)ETFH (p)Z,' + I]\,“u) — zr)
r=1

log det (F(P)Er F'(p)=,' +IM,M> -z

r=1

_1
(F(P)ErFH (P)Z, + IM,M)

H
(2w v (o) + Py, 2 (P )

Expressing this gradient as the vector g, the proximal gradi-
ent method updates p by solving the following optimization
program:

(26)

L 1 2
minimize I, (p) + %HP —(z—rg) |7, 27

where the step size x is computed using an inexact line search
method. Our implementation of the design method uses the
inexact proximal gradient line search method described in [34].
This line search method ensures that the objective function of
Eq. (12) decreases on each iteration.

REFERENCES

[1] E.J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

[2] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207-1223, 2006.

[3] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289-1306, Apr. 2006.

[4] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic de-
composition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845-2862,
Nov. 2001.

[5] E.J. Candes, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematigue, vol. 346, no. 9,
pp. 589-592, 2008.

[6] M. Stojnic, “l5 /¢; -optimization in block-sparse compressed sensing and
its strong thresholds,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2,
pp. 350-357, Apr. 2010.

[7] Z. Zeinalkhani and A. H. Banihashemi, “Iterative reweighted ¢5 /¢ re-
covery algorithms for compressed sensing of block sparse signals,” IEEE
Trans. Signal Process., vol. 63, no. 17, pp. 4516-4531, Sep. 2015.

[8] R.Garg and R. Khandekar, “Block-sparse solutions using kernel block rip
and its application to group lasso,” in Proc. 14th Int. Conf. Artif. Intell.
Statist., 2011, pp. 296-304.

[9] Y.C.Eldar and H. Rauhut, “Average case analysis of multichannel sparse
recovery using convex relaxation,” IEEE Trans. Inf. Theory, vol. 56, no. 1,
pp. 505-519, Jan. 2010.

[10] Y.C. Eldar and M. Mishali, “Robust recovery of signals from a structured
union of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302—
5316, Nov. 20009.

[11] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Un-
certainty relations and efficient recovery,” IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3042-3054, Jun. 2010.

[12] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-
sparse signals with an optimal number of measurements,” /EEE Trans.
Signal Process., vol. 57, no. 8, pp. 3075-3085, Aug. 2009.

[13] Y. Gaoand M. Ma, “A new bound on the block restricted isometry constant
in compressed sensing,” J. Inequalities Appl., vol. 2017, no. 1, 2017, Art.
no. 174.

[14] J.Nocedal and S. J. Wright, “Numerical optimization,” 2nd ed. New York,
NY, USA: Springer, 2006.

[15] G.Li, Z.Zhu, D. Yang, L. Chang, and H. Bai, “On projection matrix opti-
mization for compressive sensing systems,” IEEE Trans. Signal Process.,
vol. 61, no. 11, pp. 2887-2898, Jun. 2013.

[16] W. Chen, M. R. Rodrigues, and I. J. Wassell, “Projection design for sta-
tistical compressive sensing: A tight frame based approach,” IEEE Trans.
Signal Process., vol. 61, no. 8, pp. 20162029, Apr. 2013.

[17] C.Lu, H. Li, and Z. Lin, “Optimized projections for compressed sensing
via direct mutual coherence minimization,” Signal Process., vol. 151,
pp. 45-55, 2018.

[18] Q. Bao, C. Jiang, Y. Lin, W. Tan, Z. Wang, and W. Hong, “Measurement
matrix optimization and mismatch problem compensation for DLSLA 3-
D SAR cross-track reconstruction,” Sensors, vol. 16, no. 8, 2016, Art. no.
1333.

[19] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On optimiza-
tion of the measurement matrix for compressive sensing,” in Proc. 18th
IEEE Eur. Signal Process. Conf., 2010, pp. 427-431.

[20] R. Obermeier and J. M. Lorenzo, “Sensing matrix design via mutual
coherence minimization for electromagnetic compressive imaging appli-
cations,” IEEE Trans. Comput. Imag., vol. 3, no. 2, pp. 217-229, Jun.
2017.

[21] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Sensing matrix opti-
mization for block-sparse decoding,” IEEE Trans. Signal Process., vol. 59,
no. 9, pp. 43004312, Sep. 2011.

[22] L.Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Dictionary optimization
for block-sparse representations,” IEEE Trans. Signal Process., vol. 60,
no. 5, pp. 2386-2395, May 2012.

[23] S.Li,Z. Zhu, G. Li, L. Chang, and Q. Li, “Projection matrix optimization
for block-sparse compressive sensing,” in Proc. IEEE Int. Conf. Signal
Process., Commun. Comput., 2013, pp. 1-4.

[24] Z.Li,J. Xie, G.Zhu, X. Peng, Y. Xie, and Y. Choi, “Block-based projection
matrix design for compressed sensing,” Chin. J. Electron., vol. 25, no. 3,
pp. 551-555, 2016.

[25] L. Qin, S. Zhang, X. Guo, and G. Wang, “A novel framework of measure-
ment matrix optimization for block sparse recovery,” in Proc. IEEE Int.
Conf. Inf. Automat., 2017, pp. 58-64.

[26] W. R. Carson, M. Chen, M. R. Rodrigues, R. Calderbank, and L. Carin,
“Communications-inspired projection design with application to compres-
sive sensing,” SIAM J. Imag. Sci., vol. 5, no. 4, pp. 1185-1212, 2012.

[27] A. Ashok, L.-C. Huang, and M. A. Neifeld, “Information optimal com-
pressive sensing: Static measurement design,” JOSA A, vol. 30, no. 5,
pp- 831-853, 2013.

[28] Y. Gu, N. A. Goodman, and A. Ashok, “Radar target profiling and recog-
nition based on TSI-optimized compressive sensing kernel,” IEEE Trans.
Signal Process., vol. 62, no. 12, pp. 3194-3207, Jun. 2014.

[29] L. Wang, M. Chen, M. R. Rodrigues, D. Wilcox, A. R. Calderbank, and L.
Carin, “Information-theoretic compressive measurement design,” /EEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1150-1164, Jun.
2017.

[30] G. Braun, S. Pokutta, and Y. Xie, “Info-greedy sequential adaptive com-
pressed sensing,” in Proc. 52 Annu. Allerton Conf. Commun., Control,
Comput., 2014, pp. 858-865.

[31] L. Wang et al., “Signal recovery and system calibration from multiple
compressive poisson measurements,” SIAM J. Imag. Sci., vol. 8, no. 3,
pp- 1923-1954, 2015.

[32] L. Wang, A. Razi, M. Rodrigues, R. Calderbank, and L. Carin, “Nonlin-
ear information-theoretic compressive measurement design,” in Proc. Int.
Conf. Mach. Learn., 2014, pp. 1161-1169.

[33] H. Kuhn and A. Tucker, “Nonlinear programming,” in Proc. 2nd Berkeley
Symp. Math. Statist. Probability, 1951, pp. 481-491.

[34] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp- 183-202, 2009.

Authors’ photographs and biographies not available at the time of publication.



