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Intracellular transduction of Hedgehog (Hh) signals in mammals requires functional primary cilia. The Hh signaling effectors,
the Gli family of transcription factors, and their negative regulator, Suppressor of Fused (Sufu), accumulate at the tips of cilia;
however, the molecular mechanism regulating this localization remains elusive. In the current study, we show that the
ciliary localization of mammalian Gli proteins depends on both their N-terminal domains and a central region lying C-
terminal to the zinc-finger DNA-binding domains. Invertebrate Gli homologs Ci and Tral, when over-expressed in ciliated
mouse fibroblasts, fail to localize to the cilia, suggesting the lack of a vertebrate-specific structural feature required for ciliary
localization. We further show that activation of protein kinase A (PKA) efficiently inhibits ciliary localization of Gli2 and Gli3,
but only moderately affects the ciliary localization of Gli1. Interestingly, variants of Gli2 mimicking the phosphorylated or
non-phosphorylated states of Gli2 are both localized to the cilia, and their ciliary localizations are subjected to the inhibitory
effect of PKA activation, suggesting a likely indirect mechanism underlying the roles of PKA in Gli ciliary localization. Finally,
we show that ciliary localization of Sufu is dependent on ciliary-localized Gli proteins, and is inhibited by PKA activation,
suggesting a coordinated mechanism for the ciliary translocation of Sufu and Gli proteins.
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Introduction

Hedgehog (Hh) family of secreted proteins play pivotal roles in
development, adult stem cell maintenance and cancers [l]. In
Drosophila, Hh elicits transcriptional responses in target cells through
a signal transduction pathway comprising its receptor Patched (Ptc), a
serpentine receptor-like protein Smoothened (Smo), and a Hh
signaling complex comprising a Fused kinase (Fu), a kinesin-like
Costal2 (Cos2) and a transcription factor Cubitus interruptus (Ci). Ci is
a dual-functional transcription factor, which, in the absence of Hh, is
proteolytically processed mto a transcriptional repressor. In the
presence of Hh, full-length Ci is converted into a transcriptional
activator that mediates the transcriptional responses of Hh target cells.

In mammals there is conservation of the roles of most Hh
pathway regulators, such as Ptchl, Smo, Kif7 (Cos2 homologue)
and Gli proteins (Glil, 2 and 3, Ci homologue) [1,2]. However,
some aspects of Hh signal transduction are strikingly divergent.
The primary cilium, a surface organelle that is not present in most
Drosophila cells, plays an essential role in mammalian Hh signaling
[3]. Detailed genetic analyses suggest that both the transcriptional
activator and repressor functions of Gli proteins are compromised
in mutant mouse embryos with defective cilia [4,5,6,7]. However,
whether cilia are essential for the activation of all three Gli proteins
remains controversial because over-expression of Gli proteins,
especially Glil, is able to activate a Hh-responsive reporter gene in
cultured cells independent of cilia [4,8,9].
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In mammals, Smo is localized to the cilia in the presence of Hh
and this localization is required, but not sufficient for the
activation of a downstream response to Hh [10,11,12,13]. Ptchl,
which is localized to the cilia only when Hh is absent, appears to
play an important role in regulating Smo localization [14]. All
three mouse Gli proteins are also localized to the cilia in response
to Hh, but the molecular mechanism underlying this localization
and its importance in Gli activation have not been fully addressed
(4,15,16].

Suppressor of Fused (Sufu) plays a negative role in Hh signal
transduction in both Drosophila and mammals, but is essential for
development only in mammals [17,18,19]. Sufu physically
interacts with Ci/Gli proteins and at least part of its function is
to sequester Ci/Gli proteins in the cytoplasm [20,21,22,23,24,25].
In the presence of Hh, Sufu remains associated with Ci and enters
the nuclei with Ci [26]. Additional evidence showed that Sufu
directly influences the transcriptional activity of Gli proteins in the
nucleus by recruiting histone deacetylation complex (HDAC)
[27,28]. However, this nuclear role of Sufu has been challenged in
two recent studies [9,29].

Consistent with the biochemical data showing direct physical
interaction between Gli and Sufu, Sufu is also localized to the tips of
cilia [4]. Importantly, Sufu remains associated with, and represses
the activities of, Gli proteins in the absence of cilia [8,9]. These
studies suggest that the association between Sufu and Gli proteins
does not require cilia. It is plausible that Sufu and Gli proteins are
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assembled into a protein complex prior to their localization to cilia,
but this possibility has not been experimentally tested.

In the current study, we found that both the N-terminal region
and a central region adjacent to the DNA binding zinc finger
domain mediate ciliary localization of Gli2. Of interest, this central
region is required for the ciliary localization of all three Gli proteins,
suggesting a conserved mechanism for their ciliary trafficking.
Invertebrate Gli homologues, such as Ci and Tral, are not localized
to the cilia when introduced into ciliated mammalian cells. We
further show that activation of PKA prevents ciliary localization of
Gli2 and Gli3, and to a lesser extent, Glil. This effect of PKA is not
through direct phosphorylation of the four serine residues in Gli2
that are critical for Gli2 processing and degradation. Finally, we
show that the ciliary localization of Sufu is dependent on its
association with Gli proteins, and is similarly prevented by PKA
activation, providing direct evidence that these proteins are likely to
be localized to the cilia as preassembled complexes.

Materials and Methods

Ethics Statement
All animal work conducted in this report is in accordance of
national and international guidelines and was approved by

TACUC (#29195 and #29214) at Penn State University.

Mice
G2 GE3™T and Sufi mutants are kept on a 12982/
SvPasCrl background and genotyped as reported [17,30,31].

DNA Constructs

Human Glil, Gli3, and mouse Gli2, as well as mouse Sufu cDNAs
(gifts of R. Toftgard and B. Wang), Drosophila Ci cDNA (gift of T.
Holmgren) and C. elegans Tral ¢cDNA (gift of D. Zarkower) were
cloned into pEGFPC expression vectors (Clontech). GlLi2P1-4,
Gli2G2-4 and Gli2C1-4, into which Serine-to-Alanine mutations
were introduced at target sites for PKA, GSK3 and CK1, were
kindly provided by B. Wang and cloned into pEGFPC vectors.
Truncated variants of Glil, Gli2, Gli3, as well as Gli2SD1-4 in which
Serine-to-Aspartic Acid mutations were introduced at target sites for
PKA, were generated by a combination of restriction digestion and
PCR strategies. The proper expression of all constructs was
confirmed through immunoblot analyses (Fig. S1, S2, S3).

Immunoblot and immunoprecipitation

Immunoblot and immunoprecipitation analyses were performed
according to previously published protocols [8]. Antibodies used in
this study are: GFP (Invitrogen, A11122), Sufu (Santa Cruz
Biotech, sc-28847), FLAG (Sigma, F3165).

Cell culture and Immunocytochemistry

The establishment, transfection, cilia induction and immuno-
cytochemistry analyses of mouse embryonic fibroblast culture
(MEFs) were performed according to a previously published
protocol [32]. Specifically, MEF cultures were established from
whole E10.5 Gli2~/~;Gk3~’~ mutant, £9.5 Sufi”’~ mutant and
wild type littermate embryos and were immortalized by stably
expressing SV40 Large T Antigen (gift of B. Wang). For
immunocytochemistry analyses, cells were transfected with DNA
constructs expressing GFP-tagged proteins and cultured in
medium containing 0.5% fetal bovine serum for 48 hours to
allow ciliogenesis. Cells were then processed for immunofluores-
cence with antibodies against GFP and acetylated a-tubulin as a
marker for the cilia. Ciliated cells with obvious GFP signal in
cytoplasm or nucleus were scored for ciliary localization of the
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GFP-tagged proteins. For the localization of endogenous Sufu
proteins in Gl mutant cells expressing various GFP-tagged Gli
protein variants, ciliated cells with GIP fluorescent signals were
scored. At least two independent experiments were performed for
each protein. To activate PKA activity, cells are treated with
40 uM forskolin (CalBiochem, 344270) for 4 hours or 18 hours
prior to fixation. 20 uM MG-132 (CalBiochem, 474790) was
added to cells 4 hours prior to fixation to inhibit proteasome-
mediated protein degradation.

Results

The N-terminus of the Gli2 protein plays an important
but not essential role in its ciliary trafficking

Mouse Gli2 protein is a bipartite transcription factor with a
repressor domain at its N-terminus (residues 1 to 416), followed by a
DNA binding domain comprising five zinc fingers (residues 417-569),
and a C-terminally located activator domain (residues 570-1544)
(Fig. 1A) [33]. By generating a series of C-terminally truncated GlLi2
proteins, we found that more than half of the C-terminal region
(968-1544) is not required for the ciliary localization of Gli2
(Fig. 1B-D; Table 1). Further truncation of the C-terminus
completely abolishes the ciliary-localization of Gli2, suggesting that
this region (647-967) constitutes at least part of the domain that
mediates the ciliary localization of Gli2 (Fig. 1E; Table 1).

We then tested whether the N-terminal region of Gli2 is
required for its ciliary localization. Interestingly, we found that the
complete removal of the N-terminal region (the first 413 residues)
reduces the efficiency of, but does not completely block, the Gli2
ciliary localization (Fig. 1F; Table 1; 8/26 cells exhibit ciliary
localization of Gli2). Additional removal of all five zinc-finger
DNA binding domains (residues 414-569) further reduces the
efficiency of Gli2 localization to the cilia (Fig. 1G; Table 1; 5/69
cells exhibit weak ciliary Gli2 signal).

The above truncation analyses suggest that neither the N-
terminus nor the C-terminus is required for the ciliary localization
of Gli2, although the N-terminal region apparently contributes to
the efficient ciliary localization of Gli2. We subsequently tested
whether simultaneous truncation of both ends can completely
block Gli2 ciliary localization. Removing 66 residues from the N-
terminus and 483 residues from the C-terminus has little effect on
Gli2 ciliary localization (Fig. 1H; Table 1; 30/40 cells exhibits
ciliary localization). However, two Gli2 variants with more
extensive truncations from both ends, Gli2 (414-1061) (n=0/51)
and Gli2 (570-1061) (n=0/30), fail to localize to the tips of cilia
(Fig. 1I and J; Table 1). The lack of ciliary localization is not a
result of increased protein degradation because most truncated
Gli2 variants are expressed at higher levels than the wild type
protein (Fig. SIA-C).

Besides the tips of cilia, the full length GFP-Gli2 protein is also
predominantly localized to the cytoplasm, whereas the deletion of
the N-terminal domain or part of the C-terminal domain leads to
the nuclear accumulation of Gli2 (Fig. 1B-J; Table 1). The nuclear
localization of the truncated Gli2 variants does not appear to
correlate with the absence of their ciliary localization. For
example, Gli2 (1-967) and Gli2 (67-1061) are both localized to
the nucleus as well as the tip of the cilium (Fig. 1D, H and Table 1).

A central region of Gli2 protein is essential for its ciliary
localization

We next examined whether the region lying immediately
C-terminal to the zinc-finger domains is essential for the ciliary
localization of Gli2. We first generated Gli2A(570-967), by
removing residues 570 to 967, and found that this deletion
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Figure 1. A central domain of Gli2 is essential for its ciliary localization. (A) Mouse Gli2 is composed of an N-terminal region (1-416), five
zinc-finger motifs (ZF; 417-569) and a C-terminal region (570-1544). Transcriptional repressor (rep: red box) and activator (act: green box) activities
are found in the N- and C-terminal regions, respectively. Four clusters of phosphorylation (P) target sites are located between residues 785-855.
Schematics are shown for the deletions made in the Gli2 variants used in B-N. (B-N) Immunofluorescent images of MEFs transfected with GFP-tagged
Gli2 variants are shown. Cilia are labeled with acetylated tubulin and nuclei are stained with DAPI. In the merged images, filled arrowheads indicate
GFP-Gli2 at the tips of the cilia, unfilled arrowheads indicate the tips of cilia without GFP-Gli2 accumulation. Numbers at the lower-right corners of
each image indicate numbers of cells with ciliary localization of GFP-tagged proteins over total numbers of transfected cells.
doi:10.1371/journal.pone.0015900.g001
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Table 1. The subcellular localization of various Gli proteins
over-expressed in mouse ciliated fibroblasts.
Cells with ciliary localization Localization of the

Over-expressed  f the protein of interest/ protein of interest
proteins transfected ciliated cells* outside the cilia
GFP-mGli2

1-1544 70/73 cytoplasm

1-1183 37/46 cytoplasm

1-967 35/38 nucleus

1-646 0/30 nucleus

414-1544 8/26 nucleus

570-1544 5/69 nucleus

67-1061 30/40 nucleus

414-1061 1/51 nucleus

570-1061 0/30 nucleus

A(570-967) 0/37 cytoplasm

A(570-776) 11/47 cytoplasm

A(785-855) 29/36 cytoplasm

A(860-907) 30/41 cytoplasm
GFP-hGli1

Full length 28/31 cytoplasm

1-527 1/33 cytoplasm/nucleus

A(391-655) 0/35 cytoplasm
GFP-hGli3

Full length 47/69 cytoplasm/nucleus

1-699 0/30 nucleus

A(633-1018) 0/30 cytoplasm
GFP-Tra1l 0/30 nucleus
GFP-Ci 0/30 cytoplasm
*Cells are considered transfected when nuclear or cytoplasmic GFP signals are
present.
doi:10.1371/journal.pone.0015900.t001

completely abolished ciliary localization of Gli2 (Fig. 1K; Table 1;
n=0/37). To further define the region essential for Gli2 ciliary
localization, we tested three more Gli2 variants with smaller
deletions. We found that deletion of residues 570 to 776 drastically
decreases, but does not abolish, the Gli2 ciliary localization
(Fig. 1L; Table 1; GFP signals are detected in 11/47 cells). In
contrast, deletions of residues 785 to 855 (Fig. 1M; Table 1;
n=29/36), or residues 860-907 (Fig. IN; Table 1; n=30/41), do
not significantly reduce the localization of Gli2 to the cilia. None
of these internal deletions leads to the nuclear localization of the
Gli2 protein (Fig. 1K-N).

In summary, our deletion analysis identified two important regions
in the Gli2 protein that are important for its localization to the tips of
cilia. A central region immediately C-terminal to the zinc-finger
domains is essential for the ciliary localization of the Gli2 protein. The
N-terminal region of Gli2 also plays an important, but not essential
role in Gli2 ciliary localization. Immunoblot analyses showed that all
Gli2 variants we generated are expressed as predicted (Fig. S1).

Ciliary localization of mammalian Gli1 and Gli3 requires
the central domain

All three mammalian Gli family member proteins are localized
to the tips of cilia [4]. We examined whether the same mechanism
underlying Gli2 localization also regulates the ciliary localization
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of Glil and Gli3. We found that full-length GFP-GIil is localized
to the tips of cilia in addition to the cytoplasm (Fig. 2A, B; Table 1;
n=28/31). In contrast, Glil (1-527), equivalent to Gli2 (1-646), is
not localized to the cilia (Fig. 2A, C; Table 1; n=1/33). In
addition, this C-terminally truncated form of Glil appears to be in
both cytoplasm and nucleus. The deletion of the region
immediately C-terminal to the zinc-fingers (residues 391-655)
similarly abolishes Glil ciliary localization, but does not appear to
affect its cytoplasmic localization (Fig. 2A, D; Table 1; n=0/35).

Opver-expressed full-length Gli3 is localized to the tips of cilia, the
cytoplasm and the nucleus (Fig. 2A, E; Table 1; n=47/69). A C-
terminally truncated Gli3 protein similar to the processed Gli3
repressor, Gli3 (1-699), fails to be localized to the tips of cilia
(Fig. 2A, F; Table 1; n=0/30). In addition, Gli3 (1-699) is also
predominantly accumulated in the nucleus (Fig. 2 and Table 1).
Removing the central region immediately C-terminal to the zinc-
finger (residues 633-1018) abolishes Gli3 ciliary-localization and
decreases its level in the nucleus, similar to what we have observed
for Glil and Gli2 (Fig. 2A, G; Table 1; n=0/30). The requirement
for a conserved central region for the ciliary localization of all three
mammalian Gli proteins suggests a conserved molecular mecha-
nism for targeting these proteins to the cilia.

Invertebrate Gli homologues are not localized to the cilia
when expressed in mammalian cells

Although Hh signaling in mammals requires cilia, cilia are not
present in most cells and do not play a role in Hh signal
transduction in Drosophila [34,35,36]. This evolutionary divergence
may have resulted in protein-protein interactions that are specific
to the mammalian Gli proteins, but absent in their Drosophila
homologue. To determine whether Ci, the Drosophila homolog of
Gli proteins, has the structural features that allow for ciliary
localization, we expressed GFP-Ci in ciliated mouse MEFs. We
found that Ci is predominantly localized to the cytoplasm, but not
to the cilia, suggesting that it is structurally diverged from
vertebrate Gli proteins (Fig. 3A; Table 1; n=0/30).

To further study the potential for other Gli homologues to be
localized to the cilia, we examined the subcellular localization of
Tral, the Gli homolog in nematode C. elegans. Some important Hh
pathway components such as Smo and Sufu appear to be missing
in C. elegans, suggesting a more divergent relationship between
Tral and vertebrate Gli proteins [37]. We found that when
expressed in ciliated MEFs, GFP-Tral was predominantly
localized in the nucleus and did not accumulate in the cilia
(Fig. 3B; Table 1; n=0/30). The failure of Ci and Tral to be
localized to the cilia when they are expressed in ciliated MEFs
suggests that ciliary localization requires structural features specific
to vertebrate Gli proteins.

Protein kinase A negatively regulates ciliary localization

of all Gli proteins

A recent study suggested that protein kinase A (PKA) negatively
regulates the ciliary localization of Gli3 [16]. We confirmed that
activating PKA with a small molecule agonist forskolin for 4 hours
or 18 hours completely abolishes the ciliary localization of full-
length Gli3 (Fig. 4A, Table 2, n=0/30 for 4 hr treatment and 1/31
for 18 hr treatment). We further examined whether PKA activation
similarly regulates the ciliary localization of Glil and Ghi2.
Interestingly, we found that forskolin treatment greatly diminishes
the ciliary localization of Gli2 (Fig. 4A, Table 2, n=0/60 for 4 hr
treatment and 10/95 for 18 hr treatment), but only moderately
reduces the ciliary localization of Glil (Fig. 4A, Table 2, n=14/30
for 4 hr treatment and 26/43 for 18 hr treatment).
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Figure 2. The central regions of Gli1 and Gli3 are essential for their ciliary localization. (A) Schematic illustrations of the three Gli proteins.
The repressor domains (rep: red box) are present in Gli2 and Gli3, but not Gli1, although the activator domains (act: green box) are present in all three
Gli proteins. The central regions immediately C-terminal to the zinc fingers (ZF) are shown as striped boxes. (B) GFP-GIi1 is localized to the tips of cilia
when over-expressed in the ciliated mouse MEFs. (C) Gli1(1-527) is not localized to the cilia. (D) GFP-Gli1A(391-655) is not localized to the cilia.
(E) Gli3 is localized to the tips of cilia. (F) Gli3 (1-699) is not localized to the cilia. (G) Gli3A(633-1018) is not localized to the cilia. Immunofluorescent
images of MEFs transfected with GFP-tagged Gli1 and Gli3 variants are shown. Cilia are labeled with acetylated tubulin and nuclei are stained with
DAPIL. In the merged images, filled arrowheads indicate GFP-Gli proteins at the tips of the cilia, unfilled arrowheads indicate the tips of cilia without
GFP-Gli protein accumulation. Numbers at the lower-right corners of each image indicate numbers of cells with ciliary localization of GFP-tagged

proteins over total numbers of transfected cells.
doi:10.1371/journal.pone.0015900.g002

The absence of Gli proteins in the cilia is unlikely the result of
increased protein degradation in forskolin-treated cells. First, the
levels of GFP-Gli proteins are not grossly affected by forskolin
treatment, indicated by both normal GFP signal in the cytoplasm
(Fig. 4A), as well as by immunoblot analyses (Fig. S3A).
Furthermore, blocking proteasome-mediated protein degradation
with MG132 does not rescue the ciliary localization of Gli2 in the
presence of forskolin (Table 2). Our immunoblot analysis also
indicates that the lack of ciliary localization of Gli2 and Gli3 in
forskolin-treated cells is not the result of increased proteolytic
processing because the over-expressed Gli2 and Gli3 are both
present predominantly in their full-length forms (Fig. S3A). This is
further supported by the fact that the ciliary localization of Gli2
variants resistant to proteolytic processing is also efficiently
inhibited by forskolin treatment (Fig. 4C, see below).

PKA-mediated phosphorylation of Gli2 does not appear

to play a direct role in its ciliary localization
Based on the fact that PKA activation prevents ciliary
localization of Gli3, it was proposed that the phosphorylation of
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Gli3 by PKA prevents its ciliary accumulation [16]. This model is
particularly attractive because the phosphorylation of four Serine
residues in a ~70 amino acid stretch in Gli2 and Gli3 by PKA has
been shown to be critical for their proteolytic processing and
degradation, likely by priming them for further phosphorylation
by CKI1 and GSK3B and subsequent association of these two
proteins with SCFF'™P (Fig. 4B) [38,39]. We thus addressed
whether the phosphorylation of these four Serine residues by PKA
leads to the lack of ciliary localization of Gli2.

We first examined whether the phosphorylation of Gli2 by PKA
is sufficient to inhibit Gli2 ciliary localization. We constructed a
series of phosphomimetic forms of Gli2 and examined the
localization of two, Gli2SD1-3 and Gli2SD1-4 (Fig. 4B). Striking-
ly, we found that both Gli2 variants are localized to the cilia
(Fig. 4C and Table 2; n=32/32 for Gli2SD1-3 and 31/34 for
Gli2SD1-4). Furthermore, forskolin treatment can greatly reduce
the ciliary localization of these two proteins (Fig. 4C, Table 2,
n=2/32 for Gli2SD1-3 and 0/31 for Gli2SD1-4). The decreased
ciliary localization of these two proteins is not due to increased
protein degradation because addition of MG132 does not rescue
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Figure 3. Invertebrate Gli homologues are not localized to cilia upon their introduction into vertebrate cells. (A) GFP-Ci is localized to
the cytoplasm when over-expressed in the ciliated mouse MEFs. (B) GFP-Tra1 is localized to the nuclei when over-expressed in the ciliated mouse
MEFs. Neither Ci nor Tra1 is localized to the tips of cilia. Immunofluorescent images of MEFs transfected with GFP-tagged proteins are shown. Cilia are
labeled with acetylated tubulin and nuclei are stained with DAPI. In the merged images, filled arrowheads indicate GFP signals at the tips of the cilia,
unfilled arrowheads indicate the tips of cilia without GFP signals. Numbers at the lower-right corners of each image indicate numbers of cells with
ciliary localization of GFP-tagged proteins over total numbers of transfected cells.

doi:10.1371/journal.pone.0015900.g003

their ciliary localization (Table 2 and Fig. S3B; n=0/32 for
Gli2SD1-3 and 0/35 for Gli2SD1-4).

Next we examined whether the phosphorylation of Gli2 by PKA
is required for the decrease of Gli2 ciliary localization. In Gli2P1-4,
the four Serine residues targeted by PKA phosphorylation are
replaced with Alanine; therefore, it can no longer be phosphorylated
by PKA (Fig. 4B). Surprisingly, we found that Gli2P1-4 is localized
to the tips of cilia in the presence of DMSO (Fig. 4C, Table 2;
n=30/30 for 4 hr treatment and 30/33 for 18 hr treatment), but
not in the presence of forskolin (Fig. 4C, Table 2; n=1/31 for 4 hr
treatment and 11/68 for 18 hr treatment). Gli2C1-4 and Gli2G2-4,
in which Serines in all target sites for CK1 and GSK3p are mutated
to Alanines, respectively, are also localized to the tips of cilia (Fig. 4B,
C and Table 2; n=30/31 for Gli2C1-4 and 30/32 for Gli2G2-4).
Forskolin treatment similarly decreased the ciliary localization of
these two Gli2 variants (Fig. 4B, C and Table 2; n=1/31 for both
Gli2C1-4 and Gli2G2-4). Consistent with these findings, the ciliary
localization of Gli2A(785-855), in which all the target sites for the
three kinases and SCFPT™CP hinding are deleted, is also affected
by PKA activation (Table 2; n=1/32 after 18 hr treatment with
forskolin).

In summary, although PKA directly phosphorylates multiple
serine residues on Gli2, the phosphorylation of four such residues
is neither required, nor sufficient, for the inhibition of Gli2 ciliary
localization. The fact that PKA activation can prevent ciliary
trafficking of both phosphomimetic and non-phosphorylatable
forms of Gli2 suggests that either additional PKA target sites exist
in Gli2 and are critically important for its ciliary localization, or
PKA regulates Gli ciliary localization indirectly through the
phosphorylation of other molecules.

Gli proteins play critical roles in Sufu ciliary translocation

Sufu is an essential negative regulator of Hh signaling in
mammals [17,18]. Sufu physically interacts with and represses the
transcriptional activities of Gli proteins in the absence of cilia,
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raising the possibility that these proteins may form a complex prior
to their ciliary localization [8,9]. Although previous studies
suggested an important role of Sufu in sequestering Ci/Gli
proteins in the cytoplasm, it is not required for the ciliary
localization of Gli proteins ([9]; and data not shown). Interestingly,
a recent report suggested that in Drosophila, Ci is essential for the
nuclear import of Sufu in the presence of Hh [26]. We therefore
examined whether Gli proteins play an important role in the
ciliary localization of Sufu.

To address the roles of Gli proteins in Sufu ciliary localization,
we transiently expressed GFP-Sufu in MEFs derived from
GlL2;Gh3 double mutant mouse embryos. A recent report
suggested that Gl is not transcribed in these cells, essentially
making them Gl1;Gl2;Gl3 triple mutants [40]. We will refer to
these cells as Gl mutant cells. As reported previously, GFP-Sufu
accumulated at the tips of cilia in wild type MEFs, in addition to its
predominantly cytoplasmic localization ([4]; Fig. 5A and Table 3;
n=27/35 cells). In contrast, GFP-Sufu never accumulates at the
tips of cilia in G& mutant cells, even when it is expressed at a high
level as indicated by strong cytoplasmic signals (Fig. 5B and
Table 3; n=0/30 cells).

We next examined the localization of endogenous Sufu in wild
type and Gh mutant cells. Using a Sufu-specific antibody, we
detected ciliary localization of endogenous Sufu in wild type
(Fig. 5C and Table 3; n=20/60 cells. The lower percentage of
cells exhibiting ciliary-localization of Sufu is likely due to the
detection limit of the antibody), but not in Sufu mutant cells
(Fig. 5D), indicating that the staining is highly specific.
Interestingly, we observed no ciliary accumulation of Sufu in Gk
mutant cells, suggesting that Gli proteins are essential for the
ciliary localization of endogenous Sufu (Fig. S5E and Table 3;
n=0/30). The lack of ciliary localization of Sufu is not due to a
decrease in Sufu protein level because immunoblot analysis
indicates no significant decrease of Sufu in Gl mutant cells
compared to the wild type cells (Fig. S4).
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Figure 4. Protein kinase A negatively regulates the ciliary localization of Gli and Sufu proteins. (A) The ciliary localization of GFP-tagged
Gli1, Gli2, Gli3 and Sufu are inhibited by a treatment (4 hours for Gli proteins and 18 hours for Sufu) with 40 uM forskolin, but not the solvent (DMSO)
alone. The reduction of Gli1 ciliary localization is relatively moderate compared to Gli2 and Gli3 and weak ciliary signal is shown in the image. (B) Peptide
sequence of mouse Gli2 protein in the region of residues 785-855, as well as its alignment with Gli1 and Gli3. In SD1-3 and SD1-4, the first three or all four
Serine residues targeted by PKA are mutated to Aspartic acids. In P1-4, C1-4 and G2-4, Serine-to-Alanine mutations are created for all PKA, CK1 and GSK3
target sites, respectively. (C) Variants of GFP-GIli2 with mutations in their kinase sites are localized to the cilia in the presence of the solvent (DMSO), but
not 40 uM forskolin (FSK) (4 hours of treatment for SD1-3, SD1-4 and P1-4; 18 hours of treatment for C1-4 and G2-4). Inmunofluorescent images of MEFs
transfected with GFP-tagged Gli proteins are shown. Cilia are labeled with acetylated tubulin and nuclei are stained with DAPI. Filled arrowheads indicate
GFP signal at the tips of the cilia, unfilled arrowheads indicate the tips of cilia without GFP signal. Numbers at the lower-right corners of each image
indicate numbers of cells with ciliary localization of GFP-tagged proteins over total numbers of transfected cells.
doi:10.1371/journal.pone.0015900.9g004

The dependence of Sufu ciliary localization on Gli proteins To confirm a direct role for Gli proteins in ciliary localization of
suggests that PKA activation may similarly inhibit Sufu ciliary Sufu, we expressed either GFP-Gli1 or GFP-Gli2 in Gl mutant cells.
localization. Indeed, in the presence of forskolin, the ciliary We found that the expression of either gene efficiently restores the

localization of GFP-Sufu is inhibited (Fig. 4A, Table 2; n=1/31). ciliary localization of endogenous Sufu in G/ mutant cells (Fig. 6A,
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B and Table 3; only cells exhibiting Gli expression are counted.
14/30 cells expressing Glil and 13/30 cells expressing Gli2 show
cilia-localization of Sufu). Two Gli2 variants, Gli2 (1-646) and
Gli2A(570-967), interact with Sufu but are not localized to the tips
of cilia (Fig. 1E, K and Fig. 6E). We found that expression of these
non-ciliary variants of Gli2 fails to restore Sufu ciliary localization,
suggesting that ciliary localization of Gli proteins is a prerequisite
for the ciliary localization of Sufu (Fig. 6C, D and Table 3; 30 cells
were counted for both variants, none showed cilia-localization of

Sufu).

Discussion

Primary cilia play important roles in Hh signaling and Gli
protein activation [41]. Here, we investigated the mechanisms
underlying the ciliary localization of mammalian Gli and Sufu
proteins. First, we identified a universal requirement for a central
region immediately C-terminal to the zinc fingers for the ciliary
localization of all three mammalian Gli proteins. Consistent with
the evolutionary divergence in regulation of Hh signaling between
vertebrates and invertebrates, we found that Drosophula and C.
elegans Gli homologues are not localized to the cilia when expressed
in ciliated mouse fibroblasts. We further show that activation of
PKA inhibits the ciliary localization of Gli2, Gli3, and to a lesser
degree, Glil. Using Gli2 variants mimicking the phosphorylated
and non-phosphorylated forms of Gli2, respectively, we found that
direct phosphorylation of Gli2 at four target sites for PKA is not
responsible for the lack of Gli2 ciliary localization upon PKA
activation. This suggests that PKA may regulate Gli2 ciliary
localization through additional target sites on Gli2 or indirectly
through the phosphorylation of other proteins. Finally, we show
that the ciliary localization of Sufu is dependent on the presence
and the ciliary localization of Gli proteins, and is inhibited by PKA
activation, suggesting a coordinated ciliary translocation mecha-
nism for Sufu and Gli family of proteins.

The molecular mechanism of Gli ciliary translocation

All three members of mammalian Gli family are localized to the
tips of primary cilia, and at least in the case of Gli2 and Gli3, their
ciliary accumulation appears to be regulated by Hh signaling
[4,15,16]. How this dynamic ciliary localization is regulated at the

@ PLoS ONE | www.plosone.org

Table 2. The effects of PKA mediated phosphorylation on the ciliary localization of Gli and Sufu proteins.
Over-expressed proteins Cells with ciliary localization of the protein of interest/transfected ciliated cells*
Forskolin plus MG132
DMSO Forskolin (4 hr)
4 hr 18 hr 4 hr 18 hr
GFP-Gli1 30/31 30/31 14/30 26/43 =
GFP-Gli2 30/31 86/92 0/60 10/95 0/40
GFP-GIi3 27/30 32/42 0/30 1/31 —
GFP-Sufu — 23/31 — 1/31 —
Gli2SD1-3 32/32 = 2/32 = 0/32
Gli2SD1-4 31/34 — 0/31 — 0/35
GFP-mGli2P1-4 30/30 30/33 1/31 11/68 =
GFP-mGli2C1-4 — 30/31 — 1/31 —
GFP-mGli2G2-4 = 30/32 = 1/31 =
Gli2A(785-855) — 30/31 — 1/32 —
*Cells are considered transfected when nuclear or cytoplasmic GFP signals are present.
doi:10.1371/journal.pone.0015900.t002

molecular level remains a mystery. Our data suggest that the central
region immediately downstream of the DNA binding domains
(residues 391-655 in Glil; 570-967 in Gli2; and 633-1018 in Gli3)
is critically important for the ciliary localization of all of these
mammalian Gli proteins. Interestingly, neither the entire N-
terminus nor the ~600 amino acid region at the C-terminus of
Gli2 is essential for the ciliary localization; however, loss of both
prevents the ciliary localization of Gli2. It is possible that the proper
folding of the central region depends on the presence of at least one
terminal region. Alternatively, the two terminal regions may play
redundant roles in mediating the interaction between Gli2 and a
factor important for Gli2 localization. A systematic screen for the
Gli interacting proteins and X-ray based structural analysis will be
helpful to distinguish between these two possibilities.

It is interesting that the repressor forms of Gli2 and Gli3 are not
accumulated in the cilia, despite the requirement of cilia for the
efficient processing of Gli3 [4,5,6,7]. It is possible that once full-length
Gli proteins arrive at the tips of cilia, they are processed into repressor
forms, which exit cilia because of the lack of a mechanism for their
retention in the cilia. It was also suggested recently that phosphor-
ylated Gli3 may exit cilia prior to its processing [16]. In either model,
Gli repressors may bear modifications acquired while they were
inside the cilia that are important for their full activities. Such a
scenario would probably be mmportant for our understanding of
surprising symptoms of some human diseases. For example, Pallister-
Hall Syndrome (PHS) results from a C-terminal truncation of Gli3
protein that renders it a constitutive repressor [42]. Surprisingly, PHS
patients and a mouse model of PHS show polydactyly, seemingly
inconsistent with a traditional view that Gli3 repressor limits the
number of digits in the limbs [43]. A recent report suggested that digit
formation may not be directly correlated with the levels of Gli3
repressor activity [44]. Based on our result that Gli3 (1-699), the PHS
mutant form of Gli3, fails to be localized to the tips of cilia, we
speculate that polydactyly in PHS patients and mutant mice may
result from insufficient activation of the Gli3 repressor activity in
some context.

It was recently suggested that Kif7, a mammalian orthologue of
Cos2, mediates ciliary translocation of Gli3 through direct
interaction with the N-terminal region of Gli3 [45]. Our results
show that the C-terminally truncated Gli proteins which retain the

N-terminal region, Glil (1-527), Gli2 (1-646) and Gli3 (1-699),
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Figure 5. Sufu ciliary localization depends on Gli proteins. (A, B) GFP-Sufu is localized to the cilia in wild type (A), but not in Gli mutant cells.
(C-E) Endogenous Sufu is localized to the tips of cilia in wild type (C), but not in Gli2;Gli3 double mutant cells (E). The specificity of the Sufu antibody is
confirmed by the loss of Sufu signal in the cilia of Sufu mutant MEFs (D). The localization of over-expressed GFP-Sufu is visualized with an anti-GFP antibody
(greenin A, B), whereas endogenous Sufu is visualized with an anti-Sufu antibody (green in C-E). Cilia are labeled with acetylated tubulin (red) and nuclei are
stained with DAPI. In the merged images, filled arrowheads indicate GFP or Sufu signal at the tips of the cilia, unfilled arrowheads indicate the tips of cilia
without GFP-Sufu or Sufu accumulation. Numbers at the lower-right corners of each image indicate numbers of cells with ciliary localization of GFP-tagged
proteins over total numbers of transfected cells (A, B), or the number of cells with ciliary localization of Sufu over total number of ciliated cells (C, E).

doi:10.1371/journal.pone.0015900.g005

fail to be localized to the cilia, suggesting that interaction with Kif7
is not sufficient for Gli ciliary localization.

The Hh pathway plays pivotal roles in the development of both
vertebrate and invertebrate animals, and previous studies have
shown conserved roles for many pathway components during
evolution. For example, human and frog Gli proteins, when
introduced into Drosophila wing discs, exhibit transcriptional
activities [46,47]. More importantly, the vertebrate Gli proteins

@ PLoS ONE | www.plosone.org

undergo proteolytic processing and are under the control of
Drosophila pathway components (Hh, Fu, etc), suggesting that
vertebrate Gli proteins contain the domains that mediate physical
interactions with Drosophila Hh pathway components. In contrast,
we found that neither Drosophila Ci nor nematode Tra-1
accumulates at the tips of cilia when expressed in ciliated
mammalian cells, suggesting that additional structural features
have evolved in mammalian Gli proteins (or have been lost in fruit
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Table 3. Subcellular localization of over-expressed and endogenous Sufu in ciliated fibroblasts.

Cells with ciliary localization Sufu localization

Proteins examined cells of Sufu/total transfected cells* outside the cilia
GFP-Sufu Wild type 27/35 cytoplasmic
GFP-Sufu Gli mutant 0/30 cytoplasmic
Endogenous Sufu Wild type 20/60%* ND***
Endogenous Sufu Gli mutant 0/30%* ND***
Endogenous Sufu Gli mutant plus GFP-Gli1 14/30 cytoplasmic
Endogenous Sufu Gli mutant plus GFP-Gli2 13/30 cytoplasmic
Endogenous Sufu Gli mutant plus GFP-GIi2A(570-967) 0/30 cytoplasmic
Endogenous Sufu Gli mutant plus Gli2(1-646) 0/30 cytoplasmic

**In these two experiments, all ciliated cells are counted toward the total.
***No obvious signal was detected outside cilia for endogenous Sufu.
doi:10.1371/journal.pone.0015900.t003

flies and nematodes) that allows the interactions that lead to Gli
protein localization in the cilia.

The roles of PKA in the ciliary localization of Gli and Sufu

proteins
Our results suggested a negative role for PKA in the ciliary
localization of Gli2, Gli3, Sufu, and to a lesser extent, Glil.

Gli2"Gli3"

ace-tub + GFP

Gliz”;Gli3"
GFP-Gli2A(570-967)

*Cells are considered transfected when nuclear or cytoplasmic GFP signals are present.

Consistent with an important role of PKA in regulating ciliary
localization of these critical components of Hh signaling pathway,
a recent study found that PKA is localized to the base of cilia [48].

Gli2 and Gli3 are direct targets of PKA, and sequential
phosphorylation of four clusters of Serine residues by PKA, CK1
and GSK3 has been shown to be essential for the proteolytic
processing of these two proteins [38,39]. A recent study suggested that

E
FLAG-IP lysates
FLAG-Sufu + + + + - + + + +
GFP-Gli2 A
GFP-Gli2 (1-646) - - + - - - - + - -
GFP-Gli2(1967) - - =~ + - - - =~ + -
GFP-Gli2A(570967) - - =~ =~ + - ~- = =~ +
250—— —
—
L]
100— GFP
75—

Figure 6. Only ciliary-localized Gli proteins can rescue Sufu ciliary localization. Over-expression of Gli1 (A) and Gli2 (B) rescues ciliary
localization of endogenous Sufu. In contrast, over-expression of Gli2A(570-967) (C) and Gli2 (1-646) (D), two Gli variants that are not localized to the
cilia, fails to rescue the ciliary localization of Sufu. The localization of endogenous Sufu is visualized with an anti-Sufu antibody (red). The over-
expressed Gli proteins are visualized through GFP fluorescent signals (green). Cilia are labeled with acetylated tubulin (green) and nuclei are stained
with DAPL. In the merged image, filled arrowheads indicate Sufu at the tips of the cilia, unfilled arrowheads indicate the tips of cilia without Sufu
accumulation. (E) A co-immunoprecipitation analysis shows that all four Gli2 protein variants physically interact with Sufu. Lysate of cells transfected
with FLAG-Sufu and GFP-tagged Gli2 variants was immunoprecipitated with a FLAG antibody and blotted with GFP and Sufu antibodies.

doi:10.1371/journal.pone.0015900.g006
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PKA prevent ciliary accumulation of Gli3 by direct phosphorylation
because only non-phosphorylated Gli3 can be retained in the cilia
[16]. To directly address the effects of PKA-mediated phosphoryla-
tion of Gli proteins on their ciliary localization, we examined Gli2
variants that mimic either the phosphorylated (Gli2SD1-3 and
Gli2SD1-4) or non-phosphorylated (GL2P1-4; Gli2C1-4 and
Gli2G2-4) form of Gli2. To our surprise, both variants mimicking
phosphorylated and non-phosphorylated forms of Gli2 are efficiently
localized to the cilia and their ciliary localization can both be
inhibited by PKA. Consistently, Gli2A(785-855), a Gli2 variant
missing all these phosphorylation sites plus the binding sites for
SCFPI™CP " retains  its ciliary localization and response to PKA
activation. These results suggest that either PKA regulates GL2 ciliary
localization indirectly through the phosphorylation of another
protein, or there are additional target sites on Gli2 that can mediate
the effect of PKA on Gh2 ciliary localization.

The coordinated ciliary translocation of Sufu and Gli
proteins

Sufu is an essential negative regulator of Hh signaling in mammals
[17,18]. Sufu directly interacts with, and appears to sequester Gli
proteins in the cytoplasm [21,29,49]. Despite co-localization of Sufu
and Gli proteins at the tips of primary cilia, Sufu inhibits Gli activator
function in the absence of cilia [4,8,9]. The cilia-independent
interaction between Sufu and Gli proteins suggests that the assembly
of a Sufu-Gli complex occurs prior to their ciliary translocation.
Alternatively, this phenomenon can be interpreted as a cilia-
independent interaction between Sufu and Gli in the nucleus,
although a nuclear role for Sufu has been challenged recently
[9,27,28,29]. In the current study, we first showed that Sufu is not
localized to the cilia in cells lacking all Gli proteins; second, when
PKA activation inhibits the ciliary localization of Gli2 and Gli3, Sufu
ciliary localization is similarly inhibited. Finally, re-introduction of
ciliary-localized Gli proteins, but not the non-ciliary localized Gli2
variants, can rescue the ciliary localization of Sufu in Gli mutant cells.
These results strongly suggest that the ciliary localization of Sufu is
dependent on the presence of ciliary-localized Gli proteins and
strongly suggest that the assembly of a Sufu-Gli containing protein
complex must occur before ciliary translocation. It is interesting that
the ciliary-localization of Gli proteins does not require Sufu, ruling
out an active role of Sufu in Gli ciliary localization ([9]; and data not
shown). We hypothesize that a Sufu-Gli complex is translocated to
the cilia through an interaction between Gli proteins and intracellular
transport proteins allowing local interactions that relieve the
inhibitory effects of Sufu on Gli proteins.

Supporting Information

Figure S1 Immunoblots of cells over-expressing GFP-
Gli2 variants shown in Figure 1 with an anti-GFP
antibody. (A) Gli2 variants with C-terminal truncation. (B)
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(TIF)
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anti-Sufu antibody. Note that the overall levels of endogenous
Sufu are comparable between these cells. Sufu mutant cells serve as
a negative control to show the specificity of the Sufu antibody.
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