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CrossMark
Abstract

We use the tangent method of Colomo and Sportiello to investigate the
arctic curve in a model of non-intersecting lattice paths with arbitrary fixed
starting points aligned along some boundary and whose distribution is
characterized by some arbitrary piecewise differentiable function. We find
that the arctic curve has a simple explicit parametric representation depending
of this function, providing us with a simple transform that maps the arbitrary
boundary condition to the arctic curve location. We discuss generic starting
point distributions as well as particular freezing ones which create additional
frozen domains adjacent to the boundary, hence new portions for the arctic
curve. A number of examples are presented, corresponding to both generic
and freezing distributions. Our results corroborate already known expressions
obtained by more involved methods based on bulk correlations, hence
providing more evidence to the validity of the tangent method.

Keywords: non-intersecting lattice paths, continuum limit, arctic curve
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1. Introduction

Many tiling problems of finite plane domains of large size are known to exhibit the so-called
arctic curve phenomenon, namely the existence of a sharp phase separation between ‘crys-
talline’ (i.e. regularly tiled) phases often induced by boundary corners and ‘liquid’ (i.e. dis-
ordered) phases away from the influence of boundaries. For instance, the celebrated problem
of tiling the Aztec diamond with dominoes is known to display an arctic circle separating fro-
zen phases induced by the corners of the domain from an entropic phase in the center [CEP96,
JPS98]. Typically, one studies the asymptotics of tilings of scaled domains whose limits are
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polygons. More generally, dimer models on regular graphs, which are a dual version of til-
ing problems, exhibit the same arctic phenomenon, which received a fairly general treatment
in the recent years [KO06, KO07, KOS06]. Free boundary conditions, where portions of the
boundary are allowed to fluctuate were also studied [DFR12].

The general method to obtain the arctic curve location is the asymptotic study of bulk
expectation values, which requires a certain amount of technology, resorting for instance to
the machinery of the Kasteleyn matrix. Other rigorous methods use the machinery of cluster
integrable systems of dimers [DFSG14, KP13].

All the models above have an interesting common feature: they can be rephrased in terms
of configurations of non-intersecting lattice (or graph) paths, which arise from conservation
laws of the models, and display their underlying fermionic character. Typically, we have a
set of paths with steps along oriented edges of a regular graph, with fixed starting and ending
points, and subject to the condition that no two paths share the same vertex. These occupy a
maximal domain D, which is then scaled to reach a continuum limit. In the path formulation,
frozen phases correspond to regular compact configurations (such as zones with parallel paths
only), or to empty domains not visited by any path. With such an interpretation, it is easy
to track down the arctic curve (or portions thereof) as the asymptotic ‘outer shell’ of the
path configurations, determined by the outermost paths. Inspired by this remark, Colomo
and Sportiello [CS16] recently devised a new method for determining the arctic curve in path
models, coined the fangent method. The idea is to move the endpoint of one of the outermost
paths to some distant point p on the regular graph, so as to force this path to exit the domain
D say at a point £. It is then argued that between £ and p, away from the influence of the other
paths, the most likely asymptotic trajectory is a straight line. Inside the domain D, the out-
ermost path is expected to first follow the outer shell, then escape this shell tangentially and
continue on towards £, again along a straight line since the crossed region is empty from other
paths. For any fixed p, the most likely position £ = £(p) corresponds to having both straight
lines identical. Solving the corresponding extremization problem therefore provides a para-
metric family of straight lines (¢( p) p), all tangent to the arctic curve, which is then recovered
as the envelope of this family of tangents. The main advantage of this method is that it only
requires to estimate a boundary one-point function, namely that for which the endpoint of
an outer path is moved to a position £ on the boundary of D. Such a function is considerably
simpler to compute than bulk expectation values.

The method, though non-rigorous, was successfully tested in a number of examples [CS16,
DFL18]. Remarkably, it seems to even apply to situations where the lattice paths interact, such
as the so-called osculating paths describing configurations of the six-vertex model. In this
model, the path configurations are allowed to form ‘kissing points’ where a vertex is shared
by two neighboring paths. The tangent method predicts in particular the asymptotic shape of
large alternating sign matrices (ASM) [CS16] as well as vertically symmetric alternating sign
matrices (VSASM) [DFL18].

In the present paper, we use the tangent method to investigate path/tiling models with new
kinds of boundary conditions: in the path language, we consider path configurations where
the starting points of the paths take fixed but arbitrary positions aligned along some bound-
ary segment. Asymptotically, the distribution of these points is simply characterized by some
arbitrary piecewise differentiable function «(u) : [0, 1] — R. This includes the particular case
of ‘fully frozen boundaries’ studied by Petrov [Pet14] by use of very different tools. Our more
general boundary conditions correspond actually to the cases investigated in [BG15, DM15]
via asymptotic representation theory. Our main result is that the corresponding arctic curve
has an explicit parametric representation (X(z), Y(z)) for its coordinates in the plane, which
takes the following simple form:
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X(1) = - U=

Y() = U=y (1.1)
du

X (1)
with x(¢) :==e” fy =% )

This provides us with a direct transform that maps the ‘boundary shape’ a(u) to the arctic
curve, made in general of several portions corresponding to various allowed domains of the
parameter . This result reproduces the expressions of [DM15], and thus provides a strong
validation of the tangent method approach.

The paper is organized as follows. In section 2, we present the general path model that we
will consider, together with its tiling interpretation, and compute its partition function. The
model involves paths on the edges of the square lattice with starting points fixed at arbitrary
positions along a horizontal segment. As just mentioned, these positions are entirely charac-
terized asymptotically by their limiting boundary shape «(u). The tiling interpretation allows
to rephrase the model in three different (but equivalent) ways, using different sets of paths.

The tangent method is then applied in sections 3 and 4 using two different sets of paths
to obtain two different portions of the arctic curve. The derivation involves the computation
of a boundary one-point function, which is performed by using the LU decomposition of the
Lindstrom—Gessel—Viennot matrix, a method advertised and successfully used in [DFL18§]
for similar problems. Both computations lead to the same parametric equations for the arctic
curve, as given above, in two different parameter domains.

Section 5 presents various examples: the ‘pure’ case a(u) = pu, the case of a piecewise
linear «(u) and finally two instances of some non-linear «(u). Subtleties arise whenever
o/(u) =1 on finite segments, corresponding to a certain type of freezing boundary condi-
tion inducing new macroscopic frozen regions inside the path domain. Likewise, macroscopic
gaps in the distribution of starting points induce another type of freezing. These ‘freezing
boundaries’ are investigated in detail in section 6, and give rise to additional portions of the
arctic curve, still described by the parametric equation (1.1) above, but for yet other domains
of 1.

We gather a few concluding remarks in section 7.

2. Definition of the model and partition function

2.1. Non-intersecting lattice paths with arbitrary starting points

In its simplest formulation, the model that we wish to study simply describes configurations
of non-intersecting lattice paths (NILP) with prescribed extremities. More precisely, a con-
figuration consists of n 4 1 lattice paths making only west- or north-oriented unit steps along
the edges of the regular square lattice, with respective starting points O; and endpoints E;,
i=0,...,n,chosen as follows: the endpoints E; are taken with coordinates (0, 7) so as to span
a vertical segment of length n; the starting points O; have coordinates (a;,0) where (a;)o<i<n 1
a given arbitrary strictly increasing sequence of integers of length n 4+ 1 with ay = 0. These
vertices therefore lie on a horizontal segment of length a, (with a, > n) with prescribed
but arbitrary strictly increasing positions along this segment. The paths are required to be
non-intersecting in the sense that any two paths cannot share a common vertex of the lat-
tice. Figure 1 shows an example of such path configuration with n = 6. Note that, due to the
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0 2 3 6 10 12 15

Figure 1. A configuration of n + 1 = 7 non-intersecting lattice paths made of west-
or north-oriented unit steps, with starting points O; = (a;,0) and endpoints E; = (0,i),
i =0,...,n, here in the particular case (a;)o<i<» = (0,2,3,6, 10,12, 15). The portions
of paths above the dashed line are necessarily ‘frozen’ into horizontal segments.

non-intersection constraint, the portions of the paths lying above the line ¥ = X in the (X,Y)
plane (dashed line in the figure) are ‘frozen’ as they necessarily form horizontal segments.

2.2. Tiling interpretation and alternative path formulations

As displayed in figure 2, any of the above defined configurations of non-intersecting
lattice paths may be transformed into a particular tiling for the domain of the plane cov-
ered by the paths. More precisely, to each horizontal edge (p+ 1,q) — (p,q) car-
rying a west-oriented step is associated an upper tile which is the rhomboid with
vertices (p—1/2,g—1/2),(p+1/2,q—1/2),(p+3/2,9+1/2),(p+1/2,9+ 1/2),
to each vertical edge (p,q) — (p,q+ 1) carrying a north-oriented step is associated
a right tile which is a rhomboid with vertices (p—1/2,q—1/2),(p—1/2,9q+ 1/2),
(p+1/2,q+3/2),(p+1/2,q+ 1/2) and finally, to each unvisited vertex (p,q) is asso-
ciated a front tile which is a square with vertices (p — 1/2,q—1/2),(p —1/2,q+ 1/2),
(p+1/2,q+1/2),(p+1/2,q — 1/2). Apart from the original NILP configuration, the
resulting tiling naturally gives rise to two other sets of NILP as displayed in the figure.

The second set of paths is obtained by associating to the right and front tiles introduced
above northeast- and east-oriented steps of the form (p — 1/2,¢4) — (p+1/2,q+ 1), and
(p—1/2,q9) = (p+ 1/2,q) respectively. This leads to a configuration of (rn+ 1) NILP
with endpoints E,- of coordinates (a, + 1/2, i) and starting points O,- of coordinates
(an+1/2 —a;,0)fori=0,...,n, where (a;)oi<, is the strictly increasing sequence (with
ag = 0) defined as:

Zl,‘ =a, —au—; . (21)

As for the the third set of paths, it is obtained by associating to the upper and front tiles men-
tioned above northeast- and north-oriented steps of the form (p,qg — 1/2) = (p+ 1,g + 1/2),
and (p,q — 1/2) — (p,q + 1/2) respectively. We omit here those upper tiles above the ¥ = X
line as they form a regular crystalline pattern and the associated paths play no role. This leads
to a configuration of m = a, — n NILP with endpoints E; of coordinates (n + i,n + 1/2) and
starting points O; of coordinates (b;, — 1/2) for i = 1,...,m, where the strictly increasing

sequence (b;)1<i<m 1 the complementary sequence of the sequence (a;)ogi<n, defined for
instance via the polynomial identity
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Figure 2. Top: the path configuration of figure 1 together with the associated tiling
configuration, made of upper, right, and front tiles, corresponding respectively to edges
carrying a horizontal path step, edges carrying a vertical path step, and vertices not
visited by the paths. Middle: connecting the vertical sides of both front tiles and right
tiles by elementary segments creates a configuration of (n+ 1) = 7 non-intersecting
lattice paths made of east- and northeast-oriented elementary steps. These paths
(numbered from right to left) have starting points O; = (a, + 1/2 — a;,0), where
a; := a, — ay—;, and endpoints E; = (an +1/2,i), i=0,...,n. Here, a, =15 and
(@i)oicn = (0,3,5,9,12,13,15). Bottom: connecting the horizontal sides of both
front tiles and upper tiles (except for those in the frozen region above the dashed
line) by elementary segments creates a configuration of m =a, —n=9 non-
intersecting lattice paths made of north- and northeast-oriented elementary steps.
These paths have starting points O; = (b;, —1/2) and endpoints E; = (n + i,n + 1/2),
i=1,...,m, where (b;)igj<m is the ‘complementary sequence’ of (a;)ogjca in
ZN[0,ay,). Here, (b;)1<i<m = (1,4,5,7,8,9,11, 13, 14).
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H(t —b;) H(t —a;) = H(t —i), withm=a,—n. (2.2)
i=1 i=0 i=0
Clearly, the data of any of the three path configurations allows to recover the two others so
that each of the three descriptions carries all the information about the configuration at hand.
We may therefore use any of the three path formulations to describe our model.

2.3. Partition function

Returning to the original formulation of section 2.1 with paths made or west- and north-
oriented steps, the partition function Z, ‘= Z ((a;)o<i<n) Of the model, namely the number
of non-intersecting path configurations, may be obtained via the famous Lindstrom—Gessel—
Viennot (LGV) lemma [Lin73, GV85], which states that Z, = det ((A;;)o<ij<n) Where A;;
denotes the number of paths made of west- and north-oriented steps along edges of the square
lattice and connecting the starting point O; to the endpoint E;. In the present case, we have

clearly
ai+j
Y ( J >

since a path from O; to E; is made of a total of a; + j steps among which exactly j are oriented
north. This latter determinant may be easily computed in various ways. We present here a
derivation using the so-called LU decomposition of the matrix A with elements A;; above.
This method will indeed prove adapted when we will extend our calculation to some more
involved determinants with the same flavor and was successfully applied for determining the
arctic curve for various path problems in [DFL18]. Recall that the LU decomposition consists
in writing the square matrix A, of size (n+ 1) X (n+ 1), as the product A = LU of a lower
triangular square matrix L by an upper triangular square matrix U (both matrices having the
same size as A). Such a decomposition exists for suitable matrices (among which is the desired
matrix A, as made explicit below) and is moreover unique if we demand that L is lower uni-
triangular, i.e. L;; = 1 for all i = 0, ..., n. From the knowledge of the matrices L and U, we
immediately obtain Z, via

Z, = det(A) = det(L) x det(U) = | [ Ui
i=0

since U is upper triangular and det(L) = 1. Note that, in practice, only the knowledge of the
diagonal elements of U is required to get Z,.

In order to get the LU decomposition of the matrix A, it is enough to find a lower triangular
square matrix L~! with diagonal elements equal to 1 such that L™' A is upper triangular. We
have the following result:

Theorem 2.1.  The lower uni-triangular matrix L~" with matrix elements

i;] (ai—ay) . .
isoj., for i =]
L;jl — H;:o (aj a.\') (23)

s
0 fori <j

is such that U := L™ A is upper triangular.
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Proof. The diagonal elements of L~ are clearly equal to 1 and, for any i and j, we may write

i—1
_ 1 dr
Li,jlz | I(ai—as)]{ =N

$=0 C(aj) Hs:O(t — ay) 2im”

where C(g;) is a counterclockwise contour in the complex plane which encircles a; but none of
the other a, for 0 < s < i. Here and throughout the paper, when referring to a contour integral,
we use the notation C(zi, ..., zy) to indicate that the integral runs over a counterclockwise
contour in the complex plane which encircles all the points zy, ..., z, and does not encircle
any pole of the integrand which is not this list. The specified z;’s will in general be themselves
poles of the integrand but it may happen that some of them are not, in which case they do not
influence the value of the integral. Written this way, we have

N i —ifat]
D ITUNED SRl
k=0 k=0

i—1 1Ly7/-! :

Flli—ot+J—35) dr

= [J(ai - as)j{ £ Hi ol ).—, (2.4)
—0 Cl(ag.ai,...,a;) Hs:O(t - as) 2im

where the summation over k is automatically achieved by the choice of contour which encir-
cles all the poles of the denominator at t = ay, . . ., a;. Here we simply used the trivial equality

a 15
() =5 It
T s=0
for any integers a > 0 and m > 0 to transform the binomial coefficient into a polynomial

in ¢. Since the contour in (2.4) encircles all the poles of the integrand for finite 7, the value of
the integral may be obtained as minus the residue of its integrand at infinity. Using

Gl +j—s) 1 O(z) fori>j

: - =
[Timo(t —a;) 1/ g x4 fori=j,

we immediately deduce that U;; = 0 for i > j since there is no pole at infinity in this case,
hence U is upper triangular as wanted. O

Moreover, we have

i—1

1
Uii = 5 [ —a) 2.5)
s=0

fori =0,...,n since the residue at infinity is —1/il.
From this latest result, we deduce the following expression for the partition function:
Theorem 2.2. The partition function reads

; H [To(ai —a) _ Ala.ar.....an)
S § (). A0, 1,...,n)

(2.6)

where A(ag,ai, . . ., a,) denotes the Vandermonde determinant:
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Example 2.3. In the particular case a; = pi for some integer p > 1, this theorem yields
a partition function

n(n+1)
2

Zn:p

in agreement with the result of [DFL18] for p = 2. Note also that the matrix L~' then has
elements L' = (—1)"* (]’) independently of p.

To conclude this section, we note that, by consistency, the same expression for the partition
function should be obtained upon using any of the three possible path formulations of sec-
tion 2.2. From the LGV lemma, this allows us to express Z, as the determinant of the matrix
Aofsize (n+ 1) x (n + 1) whose elements A;; enumerate paths made of northeast- and east-
oriented elementary steps joining O; to Ej, or equivalently as the determinant of the matrix
A of size m x m whose elements A, ; enumerate paths made of northeast- and north-oriented
elementary steps joining O; to E] The simple combinatorial formulas for A; j and A; jlead to
the identities:

det (ai +]> = det (c?,-) = det ( n+ ! > = —A(ao,al, SELD)
b Jo<ij<n J/ o<ij<n bi—j+1 I<ij<m A(0,1,...,n)

with g; as in (2.1), b; as in (2.2) and m = a,, — n as before.

3. Tangent method and one-point function: the first piece of the puzzle

The aim of this paper is to further study the arctic curve phenomenon, roughly summarized
as follows. For large NILP configurations, two distinct phases can be distinguished: a frozen
phase in which paths follow lattice-like regular patterns, and a liquid entropic phase where
paths display more erratic behaviors. It turns out that for special setups, large NILP configura-
tions develop a sharp separation between these two phases, along a curve coined ‘arctic’ for
obvious reasons (see figure 3 for an illustration).

3.1 Tangent method and LU decomposition

Let us first describe here the general setting of the rangent method, as devised by Colomo
and Sportiello [CS16] for the derivation of arctic curves in path models. As opposed to the
standard approach consisting in computing bulk expectation values, this method only requires
the knowledge of a much simpler boundary one-point function. The method goes as follows:
we consider NILP configurations with fixed starting and ending points say v = {v;}i—o.1...»
and w = {w;}j=01,..» With steps along the oriented edges of some given underlying lattice.
The partition function Zyy is given by a LGV determinant: Zyy = det(A), where the matrix
element A;; = Z,, ,,, enumerates the possible configurations for a single path joining v; to w;.
At finite n, the NILP configurations for this problem occupy a maximal domain D whose size
grows with n. We may now consider an asymptotic version of the problem with n large, with
a suitable rescaling of the underlying lattice so that D tends to a scaled domain D remaining
finite when n — oo.
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Figure 3. A schematic picture of the tangent method: moving the endpoint of the
outermost path from w, to wj, forces the path to escape from the originally reachable
domain D at some point w on the boundary of D. The most likely choice for w is such
that the straight line (ww/,) is tangent to the arctic curve since the most likely route
followed by the outermost path, starting from v, consists in sticking to the arctic curve
and escaping from this curve tangentially towards w’,.

The tangent method relies on the assumption that outermost paths say from v, to w, will
follow asymptotically the boundary between the frozen and liquid phases of the system, which
sharpens into the arctic curve as n becomes large. To investigate this curve, we simply have
to move the endpoint w, to another point w/, away from D so that paths from v, to w/, must
escape the domain D (see figure 3). Let w be the last vertex of D (w € dD) visited by such
a path. It is then argued that asymptotically, as it lies away from the influence of the other
paths, the escaping path is most likely to follow a straight line from w to w,. This line extends
within D until the arctic curve is met, and is argued to be fangent to the latter if we picked
for w the most likely escape point from D. By moving around the new endpoint w/,, we may
thus determine lines of most likely escape, which form a parametric family of tangents to the
arctic curve. The latter is then recovered as the envelope of this family of lines. The modified
partition function, normalized by the original one, reads simply ZV,{WO,»--,Wn—l,W,I,} /Zyw. By an
asymptotic analysis, we may determine the most likely exit point w from D of the outermost
path, which together with w/, defines the tangent line. This is done is all generality by perform-
ing the decomposition

Zy {wo.ca1 ¥,
w = HW Yy (3.1)
v.W wedD

where Hsvﬁv) = Zy {worn 1w} /Zy.w is the so-called boundary one-point function in which the

outermost path ends at w on the boundary of D. The last term Y,/ simply enumerates path

configurations outside D from w to w/,.

In practice, the boundary one-point function H%V) can be computed explicitly by the LU

decomposition method [DFL18]: first we use for the new partition function the LGV determi-
nant expression Zy fy, . w._,w} = det(A’), where the matrix A’ differs from A only in its last
column, which now consists of the partition functions Z,,,,, i = 0,1, ...,n. Assume we found
a lower uni-triangular matrix L such that L~' A = U is upper triangular. Then, since A and A’
differ only in their last column, L~ A’ = U’ is again upper triangular and differs from U in its
last column only. We immediately deduce that
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!
HY) = Z o2, (3.2)
As for Y,, s, it is in general obtained straightforwardly as it involves configurations of a single
path from w to w/, lying outside D, hence away from the domain of influence of the other
paths. The most likely exit point w for fixed endpoint w/, can then be found by an asymptotic
analysis of the explicit decomposition (3.1), which leads to a parametric family of tangents to
the arctic curve.

3.2. One-point function

Let us now apply the tangent method to our specific problem. As clear from figure 1, the
domain D in which the paths are confined is here a rectangle of vertical size n and horizontal
size a,. As described above, we now modify the partition function for NILP by moving the
topmost endpoint E,, = (0, n) along the vertical line to some other position say E, = (0,n + r)
with a varying ¥ € Z4. This choice is somewhat arbitrary but it is easy to check that the final
result for the arctic curve would be the same for any other prescription of endpoint that would
induce an exit point on the segment (0, 7n)(a,, n) (for instance by taking E; = (r,n+r)
instead).

Let us first compute the one-point function H, ¢ corresponding to an outermost path from
O, = (ay,0) exiting at the position E = (¢, n) from the rectangular domain D along a north-
oriented vertical step (¢,n) — (¢,n + 1) pointing out of D (see figure 4). The LGV matrix A’
for such paths reads:

A; J ifj<n
A=
(a,’JrnfE

n

) ifj=n.

Theorem 3.1. The one-point function H, ¢ reads:

dr 1 “
Hyp = }{ ST ———TT =+, 33
C(S¢) 21w —0 (t — as) H ( )

s=1
where S; = {ay |a; > (}.

Proof. We use the LU decomposition method with the matrix L~! displayed in (2.3) to
compute:

n

Upy =3 (L7 )usAl, = ZH i )(ak+:—e>

=0 k_as)

n—1

- dr 1 1
= (a,,—as)]{ — ||+ n—LC—ys),
E) e(s,) 2im [[_o(t — as) n! sl;([)

where the contour integral picks up the residues at all the poles for which the binomial coef-
ficient is well-defined and non-zero, namely at all the points as such that a; > ¢. The theorem

follows from the identity (3.2), by normalizing by Uy, = + [T, \(an — as), as given by (2.5),
and changing s into n — s in the last product. O

10
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(0, +7)

r | (¢,n)

! 4

Figure 4. The tangent method applied to the NILP under study: the endpoint of the
outermost path is moved from E, = (0,n) to E}, = (0,n + r) with r € Z, forcing the
path to escape from the domain D (here the displayed grid) by a north-oriented step at
some position (¢, n) on the boundary of D.

Remark 3.2. Note that the contour C(Sy) in (3.3) may be extended into C(S,_,) i.e. encircle
also those a, between ¢ — n and £ — 1 since [],_, (f — £ + s) vanishes for all integers ¢ in this
range.

Finally, the single path partition function from the exit point (¢, + 1) to the remote end-
point (0,7 + r) is simply

—1
Yo, = (4 v ) | (3.4)

3.3. Asymptotic analysis and arctic curve |

We now study the large n asymptotics of the identity (3.1) for our model. To this end, let us
introduce rescaled variables

i
{=né r=nz, ai:na(—>, (3.5
n
where u — «a(u) is a fixed piecewise differentiable increasing function from [0, 1] — R
encoding the fixed limiting endpoint distribution. Note that moreover o/ (u) > 1 whenever the
derivative of « is well-defined due to the condition a;+1 — a; = 1.

The main result of this section may be summarized into the following theorem.

Theorem 3.3. The portion of arctic curve obtained with the tangent method for the path
setup in which the target endpoint is moved away from D in the northwest corner and the es-
cape point is on the top boundary of D has the following parametric representation:

_ o x(0(1=x()
X=X(t):= t 0
(z € [a(1), +00)), (3.6)
_ — (=x()?
Y=Y(1):= 7
where the quantity x(t) is defined as:

1
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du

(1) = e h = 3.7)

Here X and Y denote rescaled coordinates in the plane, as obtained by after rescaling all
coordinates by 7 so that D becomes a rectangle D of vertical size 1 and horizontal size «(1).

This result matches exactly lemma 2.3 in [DM15]. As the proof below relies only on the
tangent method, it provides de facto a strong validation of its principles.

Proof. The exact formulas (3.3) and (3.4) lead to the following leading asymptotic behav-
iors:

dr
Hn,n£ ~ % EenSO(Z,E), Yng,nz ~ eﬂsl (5,2)’

So(t,€) = /01 duLog (%)

1
::—r+u+1—fnnar+1—§w—o—@L%v—5>—[:mdmar—aw»

S1(6,2) = (£ +2)Log(& + 2) — ELog(§) — zLog(z) . (3.8)

Note that we performed a harmless rescaling of the integration variable ¢+ — nt. In this new
variable, the integration contour (originally C(S)), must encircle the segment [¢, «(1)]. On the
left side of this segment, we note, using remark 3.2, that the contour may cross the real axis
anywhere between £ — 1 and £. On the right side, it may cross the real axis at any position
t € [a(1), +00). At large n, the contour integral is evaluated by a simple saddle-point estimate,
i.e. picking 7 such that 9,5y = 0. Note that it is important that the saddle-point solution is com-
patible with the contour constraint. As it will appear, the corresponding value of ¢ is real and
must lie in [a(1), +00).

The most likely rescaled exit position ¢ must maximize the total action®
S(t.€,z) = So(1.€) + S1(&,2). Writing 9,8y = 0¢S = 0, we find:

(1€ e €+ -6
e Joi—aw =1 and =1.
t—¢ §(r+1-¢)
In terms of the quantity x(¢) of (3.7), this leads to the solution:
x(1) 1 —x(¢)
= =1— d = = —1.
E=&(1) =t =) and z=7z(t):=1¢ 0

Clearly, we want &(7) and z(¢) real, which implies 7 real. Moreover, we have
(€(t) —1)(t — (£(r) — 1)) = —x(£) /(1 — x(1))?> < 0 as x(t) > 0, which means that ¢ cannot
lie in the interval [£ — 1, &]. This leaves us with the range 7 € [a(1), +00): the result above is
only valid if 7 lies in this range. Letting 7 vary from «(1) to +00 corresponds in turn to letting
x(t) increase from O to 1.

The (tangent) line passing through the rescaled escape point (£(#), 1) and the rescaled
moved endpoint (0, 1 + z(¢)) is defined by the equation £(¢) Y + z(¢) X = £(¢)(1 + z(2)), or
equivalently

XY+ (1—x()) (X —1) =0. (3.9)

3Indeed, at the saddle-point ¢ = *(£), we have %S(z* (£),&,2) = 0:8(1*(£), €, 2).
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In particular, this allows us to interpret the parameter 7 as the intercept of the tangent line with
the X-axis. The range t € [a(1),4+00) corresponds to negative slopes —(1 — x(#))/x(¢). The
envelope of this parametric family of lines is obtained by solving the system

x(t) Y+ (1—x(2))(X—1)=0
XY =xX(t)X—1t)—1+x(t) =0

and leads immediately to (3.6). O

Let us stress again that, due to the setup that we have used for applying the tangent method,
namely that we decided to move the topmost endpoint £, = (0,n) to E, = (0,n + r), the theo-
rem 3.3 above provides us only with a portion of the arctic curve. Other portions will be
studied below. Let us examine the limiting points of the current portion: in the limit # — oo
(x(t) — 1), we have the expansion

x(t):1—1+t12(;—/Ola(u)du>+0(t13),

hence the limiting point on the arctic curve has coordinates (X;, Y1) with

1 1
X = 3 —|—/ a(u)du, V=1 (3.10)
0

and corresponds to a horizontal tangent. Note that, from the conditions a(0) = 0 and o/ (u) > 1
for all u, we deduce the bounds 1 < X; < «a(1). At the other end when ¢ — «(1) (x(7) — 0),
writing t = a(1) + 6 for small 6 leads to the estimate:

L"g(x“”“/olemibm—/Oldu{Ha(S—a(u) Sl
1
~atee () [ o am o o0

where the subtraction term was devised so that the integral in the second line is finite. We
deduce from (3.6) that, since x(r)/x'(t) ~ /(1) 8, X — «(1) whereas

2 I—
yo A=x®)? 0 o o srrtam -t |
x’(t) O/(l)1+"'7<')

We see that if o/(1) > 1 then ¥ — 0, and the endpoint of the arctic curve has coordinates
(Xo, Yo) = («(1),0) with a vertical tangent. On the other hand, if /(1) = 1, then Y has a finite
limit, and the endpoint is:

Xo=a(l), Y, =eham=m—an} (3.11)

with a vertical tangent. The case where o’ (u) = 1 on a finite interval [1 — ~, 1] will be treated
in section 6 below.
The above discussion assumed implicitly that /(1) is finite. For o/(1) = 400, we must

consider the two integrals I} = fo] m and I, = fol W. Assuming the behav-
ior (1) — a(u) ~ C(1 — u)? for 0 < a < 1, we see that both I; and I, are finite for a < 1,
while /; is finite positive and I, diverges for a > % When both ; and /I, are finite, we have

X

lim, o1y X(2) = e < 1and lim, o1 % = I, > 0. This leads to the endpoint

13
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Figure 5. The portion of arctic curve given by (3.6) in the particular case a(u) = 3u
(thick solid line), with extremities (Xo,Yp) = (3,0) and (X;,Y;) = (2,1). We also
displayed a set of tangents enveloping this curve, as given by (3.9) for values of 7 in the
range [a(1), +00) (here (1) = 3). The parameter 7 corresponds to the abscissa of the
intersection point of the tangent with the X-axis.

l—eh (1 —eh)?

Xo=a(l) = = o=

with a tangent of negative slope lim,_, 1y (x(¢) — 1) /x(t) = 1 — &/ so that the arctic curve is
tangent to the line connecting (Xo, Yp) to («(1),0). When I; is finite and I, diverges, this leads
as before to an endpoint (X, Yo) = ((1),0) but with now a finite negative slope 1 — e’.

Example 3.4. To illustrate our result, we display in figure 5 the portion of arctic curve
given by (3.6) in the particular case (1) = 3u together with some set of tangents enveloping

this curve. In this case x(f) = (=2) 1/3 from (3.7), (Xo, Yo) = (3,0) and (X1, Y;) = (2, 1).

4. The second piece of the puzzle

As we just mentioned, theorem 3.3 solves only one part of the puzzle by providing only a por-
tion of the arctic curve, corresponding to an X-coordinate larger than X, as given by (3.10).
Let us now derive a second portion of the arctic curve, corresponding to X-coordinates smaller
than X;. This is done by repeating the tangent method analysis, now applied to the second
family of NILP, made of northeast- and east-oriented elementary steps.

4.1. A simple reflection principle

Let us consider the equivalent formulation of our problem in terms of the second family of
paths. These paths, made of northeast- and east-oriented elementary steps, connect starting
points O; of coordinates (a, + 1/2 — @;,0), with @ as in (2.1), to endpoints E; of coordi-
nates (a, + 1/2,i), fori =0, ...,n. We may again apply the tangent method and compute the
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(an+1/2,n4+1)

(0+1/2,n)
0+1/2 ¢

/S

4

/ //
S/ /S /]
)T ST ST S ST
S S S SN,

Figure 6. The tangent method applied to NILP made of east- and northeast-oriented
steps: the endpoint of the outermost path is moved from E, = (an+1/2,n) to
E, = (a,+1/2,n+r) with r € Z, forcing the path to escape from the domain D
(displayed rectangle) by a northeast-oriented step at some position (¢ + 1/2,n) on the
boundary of D.

one-point function f{,,,g corresponding to an outermost path starting from O, = (1/2,0) and
escaping at the position E = (£ + 1/2,n) from the rectangular domain D along a northeast-
oriented diagonal step (¢ + 1/2,n) — (£ +3/2,n+ 1) pointing out of D (see figure 6). Note
that, since elementary steps are northeast- or east-oriented, the smallest possible X-coordinate
for the escape point is (n + 1/2) hence we have now the condition £ > n. The escape path
is then eventually extended to a new endpoint, say E;l =(a,+1/2,n+r), r € Zy, corre-
sponding to moving the original endpoint E, by r elementary steps to the north. The single path
partition function from the exit point (£ + 3/2,n + 1) to the remote endpoint (a,, + 1/2,n + r)

is simply
- a, —¥f—1
Yo, = ( ) 4.1)

r—1
As for the new one-point function, we have the following theorem:

Theorem 4.1.  The one-point function H,, (£ > n) reads:

n n—1

_ dt 1 -
H,o = —fe ngw—t—s), (4.2)

(S0\St—ps1) 217 5=0

where So \ S¢—n+1 = {as la; < £ — n}.

Proof. Let us show how to derive the expression of I:I,,,g directly from our previous result
for H,, via a simple reflection principle. As displayed in figure 7, the endpoints E; of co-
ordinates (a, + 1/2,i) for the second family of paths can be moved toward east to position
(an + 1/2 + i,i) without changing the path enumeration problem. Indeed, the constraint of
non-intersection of the paths forces the path extensions to form straight horizontal segments.
The obtained configuration may then be transformed into a set of north- and east-oriented
NILP on a square grid by the simple (shear) mapping (X,Y) — (X — Y, Y) (see figure 7). Up
to a reflection (X, Y) — (1/2 + a, — X, Y), we immediately recognize the setting of our first
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set of NILP (made of north- and west-oriented elementary steps), where the strictly increas-
ing sequence (a;)ogi<n is simply replaced by the strictly increasing sequence (&;)o<i<,- This
identification holds also in the presence of some escape point for the uppermost path. If this
point has coordinates (¢ + 1/2,n) as in figure 6, its X-coordinate is transformed by the two
successive mappings above (shear and reflection) and takes the value {=a,—l+nWe may
therefore transpose the expression (3.3) for H, ¢ and write directly, without new calculation,

. d &5 1 £ ~ dr & 1 u
Hn!e:\% - = l‘*é‘f*s :% - D — tfan+€7n+s,
eG;) 2im H (t—ay) };[1( ) ;) 2im H (t—ay+an—s) H( )

s=0 s=0 s=1

where S ;= 1asla, > ?}. Performing the change of variable 7+ a, — ¢ (and changing
s — n — s in both products), we immediately obtain (4.2). Indeed, after changing variable,
the contour explored by the (new) ¢ variable must encircle the a,, — a, such that a, > / hence,
using £ = n + a, — ¢ and @; = a, — a,—, (and changing the dummy variable s into n — s), the
as with ag < £ — n. This latter set {ay |a; < £ — n} is nothing but So \ S¢—,1. O

As before, we have the following remark:

Remark 4.2. The contour C(Sp \ S¢—,+1) in (4.2) may be extended to C(Sp \ S¢+1) i.e.
encircle only those a; between 0 and ¢. Indeed, the integrand in (4.2) vanishes for all integers
tbetween £ —n+ 1 and ¢.

4.2. A combinatorial sum rule

Before we discuss the asymptotics of Ijln,g and the associated tangent method result, let us
make some comment on the close relation between the one-point functions H,; and H, 4.
From their expressions (3.3) an (4.2), we deduce the equality, for £ > n + 1,

n n n—1

Hn,e-l—I:In,eq:f(se)%nﬁn(l—€+s)_?{e dr H%H(@_l_l_s)

¢ s=0 s=1 (S0\Se) 2im 5s=0 (as -1 s=0
n n

dr 1
:ﬁ(so)ﬁﬂi(f—as) H(t—é—i—s)

s=0 s=1

where, using remark 4.2, we extended the contour for H, ¢_ from € (So \ Se—n) to C(So \ Se).
The final contour C(Sp) encircles all the a,, s =0, .. .,n, hence all the (finite) poles of the
integrand. The integral may thus be computed as minus the residue at infinity. At large 7, the
integrand behaves as 1/¢, hence the residue is —1, leading to the sum rule

Huo+Hy =1. (4.3)

This sum rule has a nice combinatorial interpretation, which we explain now. In the origi-
nal setting with north- and west-oriented step paths, the quantity Z, H,, enumerates con-
figurations where the n’th path exits the domain D by a north-step starting at position (¢, n).
Alternatively, Z, H, , may be interpreted as configurations where the n’th path goes from O, to
E,, hence remains in the domain D but is required to pass via the position (¢, n). Indeed, once
the position (¢, n) is reached, the path from (¢, n) to (0, n) is uniquely determined, made of a
straight horizontal segment of length £. The quantity Z, H, ¢ — Z, H, ¢+ therefore enumerates
NILP in D where the n’th path passes via (¢,n) but not via (£ + 1,n). This path necessarily
reaches (£, n) by anorth step (¢,n — 1) — (¢, n), which is moreover the unique vertical step in
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Figure 7. For a NILP configuration with paths made of east- and northeast-oriented
steps, moving the endpoints E,- from position (a, + 1/2,i) to position (a, + 1/2 + i,i)
does not modity the enumeration problem since the added portions of path are frozen
into horizontal segments. A simple shear transforms this extended NILP into a NILP
made of north- and east-oriented steps which, upon reflection is of the same type as that
of figure 1 up to the change of sequence from (a;)o<i<n — (@i)o<i<n-

the uppermost horizontal strip of D (i.e. the subdomain of D with Y-coordinate between n — 1
and n), see figure 8. Using now the equivalent description by east- and northeast-oriented step
paths, the corresponding n’th path in this set necessarily has a northeast-oriented step from
(6 —1/2,n—1)to (£+ 1/2,n) hence reaches position (£ + 1/2,n) without passing via posi-
tion (¢ — 1/2,n). By the same argument as above, configurations satisfying this requirement
are enumerated by Z, H, y — Z, H, ,_,. Using this bijective correspondence and simplifying
by Z,, we deduce the identity

Hn,@ - Hn,£+l = Hn,(f - Hn,é—l A Hn,€+l + Hn,é = Hn,é + Hn,é—l .
This equality states that the quantity H, ¢ + I:In,g_l does not depend on ¢, and remains valid for
¢ = n with the convention that H,,_; = 0 since the outermost path in the second path family
setting cannot pass via the vertex (n — 1,n). Note that H,,,, = 1 (since the outermost path in
the original path family setting necessarily passes through the vertex (n, n)) so that the actual

common value of H,, + I:I,,,g_l for all ¢ > n is 1. This is precisely the sum rule (4.3).

4.3. Asymptotic analysis and arctic curve Il

Applying now the tangent method to the second family of paths, we may complete theorem
3.3 by the following statement:

Theorem 4.3. The portion of arctic curve obtained with the tangent method for the path
setup in which the target endpoint is moved away from D in the northeast corner and the es-
cape point is on the top boundary of D has the following parametric representation:
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(£,n)
// //
A //’
// // / //
AL, yARD ARV 4P 4N

Figure 8. A configuration of NILP in D. In the language of paths made of north- and
west-oriented steps, the configuration has a unique vertical step in the uppermost
horizontal strip of D, which is part of the outermost path and leads to position (¢, n) on
the boundary. In the equivalent description by east- and northeast-oriented step paths,
this step is dual to the unique northeast-oriented step in the uppermost strip, itself part
of the outermost path and leading to position (¢ + 1/2, n) on the boundary.

X=X(1)= 1 *00-x0)

(t € (—00,0)), 4.4)
Y=y() = U000

with x(t) as in 3.3.

In other words, the arctic curve parametrization of theorem 3.3 extends to values of 7 in
(—00, 0], leading to a new portion of the arctic curve which we will describe below.

Proof. Using the same rescaling (3.5) as in section 3.3, we now get from the exact formulas
(4.2) and (4.1) the asymptotic behaviors, valid for & > 1 (recall that £ > n in I:I,,,g):

- dr 3 5 5
Hypg ~ — 7{ ﬁen&)(ﬁg)’ Yignz ~ enSl(g’Z)’

So(1,€) = /OlduLog (i(_u)%)

1
1 (€—1—1)Log(f —1— 1)+ (€ — f)Log(¢ — 1) —/0 duLog(a (i) — 1),
Si(&,2) = (a(1) — &)Log(a(l) — &) — zLog(z) — (a(1) — &€ — z)Log(a(l) — € —z) .

Here the contour in the (rescaled) ¢ variable must encircle the segment [0, — 1] and, us-
ing remark 4.2, may cross the real axis anywhere between £ — 1 and £ on the right side of
this segment. On the left side, any position # € (—o0, 0] is acceptable. As in section 3.3, the
asymptotic evaluation of the contour integral amounts to picking 7 such that 9,8y = 0 which
will produce a real value of 7 in the interval (—oo, 0]. The most likely rescaled exit position
¢ is obtained as before by maximizing the total action S(z,&,z) = So(1,€) + 81 (€, z). Setting
8,5‘0 = 853 = 0 now leads to:

E—r—1
E—t

(€D —§-2) _
(a(1) ~ )€1 1)

x(t)=1 and
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with x(z) as in (3.7). We deduce

x(2) x(t) —1
x(t) — 1 x(1)

Again ¢ must be real and cannot lie in the segment [ — 1, &] and this leaves us with the range
t € (—o0,0]. Letting ¢ vary from —oo to 0 corresponds to letting x(#) increase from 1 to +o0.

The (tangent) line passing through the rescaled escape point (£(¢),1) and the
rescaled endpoint («(1),1+z(7)) is defined by the equation (£(r) — (1)) Y +z(1) X =
E(N(1 +2z(r)) — a(1), or, after substitution and simplification,

XY + (1 —x(1) (X —1)=0. 4.5)

E=tn=1+

and z=2z(1) = (a(l) —1)

Remarkably, the equation for the tangent lines is the same as that (3.9) in the setting of sec-
tion 3.3. Only the range of 7, now in the interval (—oo, 0], is changed and corresponds to posi-
tive slopes (x(¢) — 1)/x(t). The envelope of this new parametric family of lines has therefore
the same parametric form (3.6) as for theorem 3.3 and this leads immediately to (4.4), hence
theorem 4.3. O

Again we may examine the limiting points of the new portion of arctic curve: in the limit
t — —oo (x(t) — 1), we recover the point (X;, ;) of (3.10) with a horizontal tangent. At the
other end of the curve, when t — 0 (x(f) — 400), we have the estimate:

Log(x(1)) = /01 t—:+(0) /Oldu{;—ig(u) - t—ula’(())}

- _o/tO) Log (a'((t))> - /01 e { ua}(o) - a(lu) } Fou

with a second integral being finite. We obtain the estimates

’ 1/a(0)
x(f) ~ K (0‘(0)) ,
t—0~ —t
1+1/a’(0
O ~ K (@)Y
—0- a’(0)? —t ’
PR e ——
Note that both x(#) and x/(¢) tend to oo for t — 0 with
2 ’ 1/a’(0)-1
x(t) ~ KCY/(O)Z - (0) .
x’(t) t—0— —t

For o/(0) > 1, this ratio tends to 0 and the endpoint of the arctic curve has coordinates
(Xoo» Yoo) = (0,0) with a slope 1 since (x(#) — 1)/x(¢) tends to 1. On the other hand, if
a/(0) = 1, then X and Y have a finite limit, and the endpoint is:

1 1 1
XOO — YOO :e_fo du E_W}

with again a slope 1. Since the paths cannot enter the domain Y > X, the arctic curve is natu-
rally extended from (X0, Yoo) to (0,0) by a segment. The case where o/ (1) = 1 on a finite
interval [0, ] is special in this respect, and will be discussed in section 6 below.
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The above discussion assumed implicitly that o/(0) is finite. For o/ (0) = +o00, we have
to be more precise. Let us assume the behavior a(u) ~ Cu® when u — 0 with 0 < a < 1. We

have to consider the two integrals J; = fol % and J, = fol ﬁ- We note that fora < 3 both
integrals are finite, while for a > %, Jj is finite and J; diverges. If both integrals are finite, then
lim, 0 x(1) = e/t and lim,_,¢ ’% = J,, and we find the endpoint for + — 0:

J J 2
Xoozel—l’ Y. — (e —1)
Jo Jo eli
with a tangent of positive slope lim,_o(x(f) — 1)/x(t) = 1 —e™' < 1 so that the arctic
curve is tangent to the line connecting (Xoo, Yoo ) to (0,0). If J, diverges and J; is finite, then
(Xo0, Ys) = (0,0), and the tangent at the origin has slope 1 —e™" < 1.

As a final remark, we note that when the starting point pattern is symmetric by reflection,
i.e. whenever a; = a;, hence a(u) = a(1) — a(l — u), the arctic curve is symmetric under
the involution (X, Y) — (a(1) — X + Y, Y) as a direct consequence of the reflection principle
detailed in section 4.1 above. This is visible in the parametric equation of the curve: indeed,
using a(u) = a(1) — a(1 — u), we get the identity x(a(1) — ) = 1/x(¢). Plugged into the
parametric equation, it yields X(a(1) — ) = a(1) — X(¢) + Y(¢f) and Y(«(1) — ) = Y (). The
above symmetry of the arctic curve is therefore associated with the involution ¢ — «(1) — ¢
for the parameter ¢ .

5. Examples

In this section, we present various examples to illustrate the general results of sections 3 and 4
above. As a preliminary remark, we note that any continuous piecewise differentiable increas-
ing function a(u) on [0, 1] with o/ (1) > 1 (when it is defined) may be realized by taking start-
ing points (a;,0) with

4 = {na(}t)J (5.1)

The condition o () > 1 guarantees that this sequence is indeed strictly increasing* and its
scaling limit is clearly described by «(u).

5.1. The pure case a(u) =pu

We consider the case where a(u) = pu for some real number p > 1. For instance, the par-
ticular case p € N\ {1} is obtained as the large n limit of the points ¢; = pi,i =0,1,...,n.
Substituting (1) = pu into (3.7) yields

1
x(t) =e b P = (1 - g’) . (5.2)
The two portions of the arctic curve correspond respectively to t € (—o0,0] and
t € [p, +00)], namely to x(¢) € [0, +00). More precisely, we may express the arctic curve
of theorems 3.3 and 4.3 in terms of the parameter x = x(¢), by noting that ¢ = p/(1 — x”) and
K1) = (1=xP)?/(p*xP~ ) as:

4 As we shall see later, it is interesting to also address the case where a/(u) presents discontinuities with positive
jumps &. In that case, equation (5.1) is only valid for large enough n > max(1/d;) to ensure that the sequence (a;)
is strictly increasing.
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(X1, Y1)

0.0 D.IS 1 .ICII 1 .I5 2.I0 2.I5 30
(Xoo, Yoo) (Xo, Yo)

Figure 9. The arctic curve in the case a(u) =3u. The slope is horizontal at
(X1, Y1) = (2, 1) on the upper boundary of D, vertical at (Xo, Yy) = (3,0) on the right
boundary of D, and 1 at (X, Yoo ) = (0,0) on the left boundary of D so that the arctic
curve is tangent to the indicated line Y = X (above which paths are fully frozen even
for finite n).

x €0, 4+00)). (5.3)

The special points on the curve, corresponding respectively to x = 400, 1,0, are the origin
(Xoo0» Yoo) = (0,0) with a tangent of slope 1, the maximum (X;,Y;) = (’%1 1) with hori-
zontal tangent and the endpoint (Xp, Yy) = (p, 0) with vertical tangent. When p is an integer,
equation (5.3) may be recast into:

X = p(42e43 24 tpr )
U (ke 0,400)) (5.4)

p2xp—l

Y

For p = 2, this simplifies drastically, as we may eliminate x = Y/(2(X — Y)), and we recover
the arctic parabola of [DFL18]:

(2X —Y)*—8(X—-Y)=0.
For p = 3, eliminating x leads to the following quartic arctic curve:

(3X% —3XY + Y?)2 —2(3X — Y)(9X* — 15XY +7Y*) +81(X — Y)* =0.

The corresponding curve is displayed in figure 9 for illustration. For higher integer values of
p, by eliminating x, one can show that the arctic curve is an algebraic curve of degree 2p — 2.
The case of rational p > 1 also leads to an algebraic arctic curve. For instance, for p = 3/2
we find:

32(3X% — 3XY + Y?)? — 16(54X* — 135X?Y + 99XY?* — 19Y?)
+162(5X —8Y)(X —Y) —243(X —Y) =0.

It is interesting to notice that there is a well-defined large p limit of the arctic curve, pro-
vided one rescales the X coordinate by a factor 1/p. In the new coordinates (X, Y) = (X/p, Y),
using the finite parameter ¢’ = x?, i.e. setting Log(x) = 127 and letting p — oo, we find
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¥ =l (1+ 2%5) = mdiorn - mont
) (lyZ:) (1 ze) 4sinh?(y/2) 2 sinh(y/2) (y c R) )
Y= (i—e)y — 4sinh?(y/2)

(5.5)

%

Note the following symmetry: under y — —y, we have (X,¥) — (1 — X, ¥) so that the arctic
curve is symmetric with respect to the vertical line X = 1/2. The tangents at the endpoints
(0,0) and (1, 0) are vertical, while that at the maximum (3, 1) is horizontal.

To end this section, it is interesting to revisit the connection between the asymptotic result
for the one-point function H,, and its discrete counterpart. Let us for instance consider the
case a; = 3i (p = 3). The one-point function H, , may easily be obtained from the LU decom-
position as

n n\ (3 k+n—~
_ Sy (DR T

Sz () ()

Figure 10 shows a plot of H,, as a function of ¢/n for increasing values of

n = 20,50, 100. We observe a sharp jump from the value 1 to the value O taking place at a
value of ¢/n tending to X; = 2 in this case. The corresponding asymptotics, describing the
large n behavior of H, for /n > X; is captured by the quantity 1Log(H,,¢) which tends to a
continuous function Sy(&) equal to So(z, &) of (3.8) taken at the saddle-point solution t = r*(&)
where 0,50(1,&) = 0. We find the parametric expression

x(7)
i p——)

$ol8) = %(t ~3)Log(r—3) - %tLOg(t) 1 —lx(t) Log (1 lx(t))

1 i(;)(t) Log (1 it)(t))
X(t) = (t_f)m . (5.6)

This asymptotic analysis is corroborated by the plot of %Log(Hn,g) as a function of ¢/n dis-
played in figure 10, for increasing values of n = 20, 50, 100, together with the expected limit
So(¢/n). The function Sy(€) is well defined for ¢ between X; = 2 (t — o0) and 3 (r — 3) and
vanishes at £ = 2. For 0 < £ < 2, the limit of %Log(Hn,g) vanishes identically, meaning that
H,, — latlarge n for £ < 2n.

Hn,@

€=

5.2. The case of a piecewise linear a(u)

Let us consider real numbers 71,2, ..., > 0 such that 25:1 ~; = 1, and real numbers
P1>P2s---»pr = 1. We define the function «(u) to be continuous and piecewise linear with
constant derivative p; on the interval [0, 1], p> on [y1,y1 + ¥2], etc, pron [y; + - - + Yx—1, 1].
Define variables ¢; := Z;:l ~; and 6; := Z;:lpj'yj fori=0,1,...,k with o9 =0, @ =1,
and0 =0y <0 < -+ <1 <0 =a(l). Wehave fori =1,2,...,k:

au) =01 +pilu—pi-1)  (u€ [pim1,0)

The corresponding value of x() from (3.7) reads:

22



J. Phys. A: Math. Theor. 51 (2018) 355201 P Di Francesco and E Guitter

o

.

[\S]
PR

2.5 2.75 3
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Figure 10. Top: the one-point function H,, for the sequence a; = 3i and for finite
n = 20,50, 100 versus £/n presents a sharp transition around £/n = 2 from a limiting
value 1 for small £/n to a limiting value O for large ¢/n. Bottom: the asymptotic limiting
shape of the right part of the transition curve is captured by the quantity %Log(H,,,g)

as a function of £ = ¢/n, which, for £ > X, = 2, tends at large n towards the scaling
function Sy (&) of (5.6).

k k 1 1__t
- foi # t—6; \7 0;\ 7 Pt
x(f) =e =1 %1 i—1 TP Tt — 1= =2 5.7
Q 1_[1 t— 01 H t
=
with the convention that px+1 = +0o0.
The maximum with horizontal tangent has coordinates:

k2 2
0; —91'71

2

X =
= 2P

, Y1=1.

N =

The other special points on the arctic curve depend crucially on the values of p; and p;. We
have (Xoo, Yoo) = (0,0) unless p; = 1, and (Xo, Yo) = («(1),0) = (6, 0) unless py = 1. The
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Figure 11. The arctic curve when «(u) is continuous piecewise linear, made of k = 3
linear pieces of respective widths v, = 72 = 3 = 1/3 and slopes p; = 2, p» = 4 and
p3 =3 (sothat @ =2/3, 6, =2 and 65 = 3).

situation where either p; = 1 or p; = 1 is more subtle and will be discussed in section 6 below.
Figure 11 presents a plot of the arctic curve in the particular case of k = 3 linear pieces, with

")/1:’}/2:")/3:1/3,[71:2,]72:42111(1[)3:3.

5.3. A first non-linear case: a(u) = pu + q u?

In the case when a(u) = p u + g u® with p, g real numbers such that p > 1and g > 0, we have
by equation (3.7):

1
() = e Bt (P VP g Vi
p—2t—\/p?+4qt

The special points are for p > 1:

(X007YOO):(O’O)’ (leYI): (I%l—'_%]’l)’ (XO’YO):(pJf_q’O)’

whereas for p = 1 we have (X0, Yoo ) = (ﬁ ﬁ) Figure 12 presents a plot of the arctic
curve in the particular case p = g = 1.

5.4. A second non-linear case: a(u) = 1y
We consider the case a(u) = 1u® for some fixed real number a € (0,1). We have by
7f0‘ s —2F <1,$;1+$

equation (3.7):
, )

x(r)=e =e ,

in terms of the hypergeometric function

AL i) =y
by al*) = na+1°

n=0

a(a+1)°
gent. For ¢+ — 0, we have, according to the discussion at the end of section 4.3:

The special points are as follows: for t — oo: (X;,Y;) = (% + L 1) with horizontal tan-
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(Xlayl)
1.0

0.6 |-

(Xoo, Yoo
0.4 |

0.2}

0.0 ' Tos o s 20
(X0, Yo)

Figure 12. The arctic curve when a(u) = u + u? hits the ¥ =X line at the point
(Xoos Yoo) = (1/2,1/2). For X < 1/2, the limit between the ‘crystalline’ and the ‘liquid’
phase occurs on the ¥ = X line.

a
T—

7 ™) .
((1—261)e — 1,(1—2a)(eaT;j—)) ifa<3
(0,0) ifa >

(XOO’ Yoo) = .
2
2

where we have used the value J; = 4 while J, = ;%5 when a < % and diverges other-

wise. In both cases the tangent has slope 1 — e~ ™. Finally, when 1 — a(1) = 1/a, we have
a/(1) = 1, leading to the endpoint

11 -
(X0, Yo) = <—,—e_75_w(“ ])>

a a

by applying (3.11), and where ~g = .5772... is Euler’'s Gamma constant and
¥(u) =I"(u)/T(u). We have represented the cases a = 1 and a = 2 in figures 13 and 14
respectively. The special points read respectively:

a- %; (X1, ¥) = (%1) (Koo, Yoo) = (3(\/6— 1),3(*/6\/_61)2>, (Xo, Yo) = (3%)
a=3: 1) = (21), (o) = 00 001 = (5.5).

with horizontal tangents at (X;, Y;), vertical tangents at (Xo, Yp), and tangents of respective
slopes 1 — 1/y/e and 1 — 1/e? at (Xoo, Yoo )-

6. Freezing boundaries

So far we discussed two portions of the arctic curve, one going from (X, Yoo ) to (X1, Y1) and
one from (X;,Y;) to (Xo, Yo). For a generic function «(u), we expect that these two portions
build the entire arctic curve, which therefore defines two frozen domains in D. The domain
lying above the portion from (X, Yoo ) to (Xi, Y1) corresponds in the original path family
setting to a region where the paths are frozen into horizontal segments, or equivalently, in
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(X17 Yl)
1.0
o8k (Xoos Yoo) |_— \
06+ 1 (X0> YO)
04+
0.2}
0.0 | " L . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 13. The arctic curve when a(u) = 3 u'/3 (see text for the values of the special
points). The slope at the point (X0, Yoo ) is equal to 1 — 1/4/e. For X < X, the limit
between the ‘crystalline” and the ‘liquid’ phase occurs on the line ¥ = (1 — 1/+/e)X.

(leyl)

1.0

o8| ' (X0, Yo)

04

0.2

0.0 05 1.0 1.5

Figure 14. The arctic curve when a(u) = % u?/3 (see text for the values of the special
points). The slope at the point (X, Yoo ) is equal to 1 — 1/e2.

the second path family setting, to a region not visited by the paths. In the tiling language, this
corresponds to a frozen domain made of upper tiles: we therefore shall refer to such freezing
as being of type U (for upper), see figure 15 for an illustration. As for the domain lying above
the portion from (X, Y1) to (Xo, Yp), it corresponds to a region not visited by the paths in the
original path family setting and to a region where paths of the second family form horizontal
segments. In other words, we have here a frozen domain of type F (i.e. made of front tiles). A
frozen domain with the third possible type of freezing, of type R (i.e. made of right tiles with
paths of the first family frozen vertically, or equivalently, paths of the second family frozen
along diagonal lines) will not appear in general since for a generic increasing sequence, the
spacing between the successive a;’s leaves enough space for the paths to develop some fluid
erratic behavior in the horizontal direction.

New portions of arctic curve may still appear in the presence of what may be called freez-
ing boundaries, i.e. for particular sequences (a;)o<i<, Which induce new frozen domains adja-
cent to the lower boundary of the domain D.

A first kind of such freezing boundary corresponds to a case for which there is no (horizon-
tal) spacing left in-between successive g;’s. In other words, it may happen that a;+1 —a; = 1
for i lying in one or several ‘macroscopic’ intervals Iy = {qx,qx + 1, ..., qx + my — 1} where
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U type (X1, 1) F type
1.0 \‘ o s

0.0 0.5 1.0 15 20 25 3.0
(Xoo, Yoo) (Xo,Y0)

Figure 15. Frozen domains for a generic «(u) (here in the case «(u) = 3 u) are made
of upper tiles (U-type) above the portion of arctic curve from (Xso, Yoo ) to (X1, Y1) and
made of front tiles (F-type) above the portion of arctic curve from (Xj, Y;) to (Xo, Yo).

the length my, of I; scales like n. As displayed in figure 16, the non-intersection constraint in
this case creates, for any such interval, a triangular region which is fully frozen, of type R. We
expect these fully frozen regions to then serve as germs for even larger frozen domains of type
R, hence to create new portions for the arctic curve. Note that, for the third family of paths
made of north- and northeast-oriented steps, these freezing domains of type R correspond to
regions not visited by the paths.

The condition that @;+1 —a; = 1 for i € I; translates into the condition o’ (1) = 1 for u
in some finite interval [ug, uy + ] (With uy = gi/n and v = my/n > 0 in the large n limit).
When several intervals co-exist, they may be arranged into a family of (maximal) disjoint
intervals [ug, ux + | (Where g1 > ug + Yk), which may possibly include boundary intervals
of the form [0,~] or [1 — 7, 1].

Another type of freezing boundary corresponds to the opposite case where there
is one or several ‘macroscopic’ gaps in the sequence (a;)ogi<n,» Namely intervals
I ={q-qc + 1,...,qx + my — 1} (with my scaling like n) which contain no g; at all. As dis-
played in figure 17, this case creates, for any such interval, a fully frozen layer made of a
sequence of front tiles followed by a sequence of upper tiles (so that the lower boundary of
the layer is horizontal). We expect these frozen layers to serve as germs for extended frozen
domains of type F above their left part and of type U above their right part, creating again new
portions for the arctic curve.

The presence of gaps translates into the fact that a(u) is discontinuous and presents a jumps
of height 6, = my/n at uy = qi/n.

This section is devoted to a heuristic study of these freezing boundaries, of both types,
creating new portions of arctic curve.

6.1. The case of a piecewise linear a(u) revisited

We may easily introduce freezing boundaries in the framework studied in section 5.2 where
a(u) is a continuous and piecewise linear function made of k pieces, as defined in section 5.2.
Let us start with freezing boundaries creating frozen domains of type R. Such boundaries exist
whenever p; = 1 for one or several i’s in {1,...,k}.

To describe new portions of the arctic curve, we note that, in all generality, the two already
known portions are described by the same parametric equations, given by (3.6) or (4.4) with
the same expression (3.7) for x(¢). Only the range of ¢ differs between the two portions,
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a/qk ............ qk+mk

Figure 16. A schematic picture of a freezing boundary, where ai+1 —a; = 1 for i in
some interval Iy = {qx,qx + 1,...,qx +m — 1}. The non-intersection constraint
creates a fully frozen triangular region made of right tiles only. This region will serve as
a germ for a larger frozen domain of type R around it.

AN N A/

=//
Q; ///ai-H

Figure 17. A schematic picture of a freezing boundary corresponding to a ‘macroscopic’
gap in the sequence between a; and ;| for some i. This forces the lower layer to be
made of a sequence of front tiles followed by a sequence of upper tiles. This frozen
layer will serve as germ for two extended frozen domains: one of type F above the left
part and one of type U above the right part.

namely (—o0, 0] for one portion and [(1), +00) for the other. This range covers the allowed
X-coordinates of the points at which the tangents intersect the X-axis, whose value is precisely
t. The allowed values of 7 correspond moreover to positive real values of x(¢) ranging from 0
to 0o, the slope of the tangent parametrized by ¢ being precisely —(1 — x(¢)) /x(¢).

It is tempting to conjecture that, in the presence of freezing boundaries, the expected new
portions of the arctic curve are again given by (3.6) (or (4.4)) and simply correspond to new
possible values of the parameter 7. In order for these parametric equations to remain meaning-
ful, we must insist on having a real value for x(z). On the other hand, releasing the constraint
that x(7) be positive seems harmless. Let us now see how this may be realized in the piecewise
linear case.

From the expression (5.7) for x(¢), written as

k i
t— 01' Pi
t) = — ),
=11 (750)
we immediately see that the ith term in the product leads to a cut of x(¢) on the real interval
[6i—1,0;] when p; > 1.1f all the p;’s are strictly larger than 1, then x(¢) has a cut on the real axis
along the whole interval [0, 6;] and, for real ¢, is well-defined only fort > 6, = (1) ort < 0
(for which x() is moreover real and positive) corresponding to the known two portions of the
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R type

Figure 18. The complete arctic curve when «(u) is continuous piecewise linear with
k = 3 linear pieces of respective widths vy = v, =3 = 1/3 and slopes p; =2, p, = 1
and p3 = 2 (so that §; = 2/3 and 6, = 1), giving rise to a freezing boundary along the
segment [0}, 6>]. A new frozen domain of type R emerges above this segment, separated
from the ‘liquid’ phase by a new portion of arctic curve forming a cusp. As displayed,
this new portion is obtained as the envelope of a family of tangents whose intercepts
with the X-axis have abscissa r € [0}, 65].

arctic curve. On the other hand, if p,, = 1 for some m, then the above formula is well defined
on [0,—1, 6,y] and takes the value:

m—1 L k 1
[—9i Pi Gm—t 0,-—1‘ Pi _
X0 =- H <t_0i71) . (t_0m7]> . H <9i—1 —l) for # € -t n) (pm=1).

i=1 i=m+1

Taking p,, = 1 therefore gives rise to a domain [6,,—1, 6,,] of ¢ for which x(¢) is real and nega-
tive. This new range of ¢ in turn gives rise via the equation (3.9) (or equivalently (4.5)) to a
new set of tangent lines with positive slope —(1 — x(#))/x(¢) crossing the X-axis at (z,0) with
t € [On—1,0,), which is precisely the location of the base of the triangular fully frozen region
of type R (as displayed in figure 16). It is easily checked that the slope of the tangent is equal
to 1 for t = 6,1 and oo for t = 6,, and that the envelope of these tangents for ¢ € [6,,—1, 0]
presents a cusp. We conjecture that this envelope is precisely the outer boundary of a larger
frozen domain enclosing the fully frozen triangular region and tangent to this region at its
endpoints. We thus have here a new portion of arctic curve.

Figure 18 displays for illustration the complete (including conjectured portions) arctic
curve in the case k = 3, v = 2 =3 = 1/3, p = p3 =2 and p, = 1. Clearly, when p,, = 1
for several values of m (which we take non consecutive as, in the piecewise linear setting, it is
implicitly assumed that consecutive slopes are different), each piece where p,, = 1 gives rise
to a new frozen domain. When a freezing boundary occurs in the first piece (i.e. when p; = 1),
it is easily checked that Y, > 0 and that the new frozen domain is enclosed by a new portion
of arctic curve from (X, Yoo ) to (0;,0). Similarly, when a freezing boundary occurs in the
last piece (i.e. when p; = 1), the new frozen domain is enclosed by a new portion of arctic
curve from (Xp, Yy) (where Y > 0) to (6x—1,0). Figure 19 displays a situation where both p;
and py are equal to 1, namely the case k = 5, py = p3 =ps = 1, pp = py =2 and ~; = 1/5 for
i=1,...,5, giving rise to three new frozen domains.
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Figure 19. The complete arctic curve when «(u) is continuous piecewise
linear, made of k=5 linear pieces of widths v, =1/5 (i=1,...,5) and slopes
p1=p3=ps =1, pp =ps = 2. The three pieces where p; =1 give rise to freezing
boundaries which generate frozen domains of type R. The first frozen domain of type
R is separated from the ‘liquid’ phase by a portion of arctic curve joining (6;,0) to
(Xoo» Yoo ) and from a frozen domain of type U by the ¥ = X line for X < Xo. The third
frozen domain of type R is separated from the ‘liquid’ phase by a portion of arctic curve
joining (64, 0) to (Xo, Yp). For each frozen domain we indicated its triangular ‘germ’.

Let us now come to the case of freezing boundaries arising from a gap in the @;’s, creating
frozen domains of type F and U. This situation also occurs in the setting of piecewise linear
functions «(u) in the following limit. A discontinuity in the function «(u) may be obtained
by letting v, — O for some m together with p,, — oo, keeping the product p,, Y, = J,, finite.
This creates a jump in the function a(u) by &, at the position u = p,,_1 = ¢, (recall that

Y= Z;:I ~;)- Using again the parameters 6; := Z;:I pj; to express x(z), we have the identi-

fication 0,y = 0 — 6i—1 so that we may use the form (5.7) for x(¢), now with p,, = oo to write

mlp g\ k 0, —t \ 7
=TT () I () e
i=1 i=m+1
Apart from the domains ¢ < 0 and ¢ > «(1) = 6, this opens a new domain [f,,_1, 8,,] of

linear size 6, for the allowed values of ¢, leading to real and positive values of x(z). As dis-
played in figure 20 (which shows the resulting complete arctic curve in the simple case k = 3,
v =793 =1/2, py =p3 =2 and pp = 00,72 = 0, pry2 — § = 1), the corresponding fam-
ily of tangents creates a new portion of arctic curve made of three parts: a part on the left
leaving the point (6,,—1,0) with a vertical slope, a part on the right leaving the point (6,,,0)
with a slope 1 and a middle part which is tangent to the X-axis at a point (6,0) for some
0 € [0—1,0,) This in turn creates two frozen domains, one of type F on the left, and one of
type U on the right.

6.2. Freezing the right edge: exact derivation

So far, the expressions for the new portions that we obtained are based on the conjec-
ture that the parametric equation for the arctic curve is not only valid for 7 in the range
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(—00,0] U [a(1), +00) but holds in a larger range of values corresponding to real values of
x(#). This hypothesis may be tested in the particular case where the freezing boundary lies
on the edge of the domain D. More precisely, this section is devoted to the study of the effect
of ‘freezing the right edge’ of our paths by imposing that the rightmost starting points obey
aiy1 —ai=1fori=n—r+1,n—r+2,...,n— 1, while dp—r+1 — ay—r > 1, and letting r
grow proportionally to n when n becomes large. In turn, letting r = pn, this amounts to the
condition o’ (#) = 1 on the segment [1 — p, 1]. We expect in this case a frozen domain of type
R below a new portion of arctic curve connecting the point (a(1 — p), 0) to the point (Xo, Yo)
(where Y > 0 in this case). Let us show that this is indeed the case.

6.2.1. Partition function: a new derivation. It is easier to describe the present situation in
terms of the complementary starting points b;, i = 1,2, ..., m, for the paths with north- and
northeast-oriented steps of section 2.3, where m + n = a,. The above condition simply forces
the position b,, = a, — r of the rightmost starting point. As mentioned in section 2.3, the
partition function for paths with north- and northeast-oriented steps, starting at (b;, — 1/2),
i=1,2,...,mand ending at (n + j,n+ 1/2), j = 1,2,...,m s given by the determinant of
the LGV matrix A;; with entries:

. n+1
Ajj= j=12,...,m). .
J (bij+1> (i.j m) ©.1)
Let us use again the LU decomposition method to compute the determinant directly in terms
of the b’s. We have the following explicit result:

Theorem 6.1.  The lower uni-triangular matrix L= with elements:

(n«;;m) (nt:nlib_,-) Hi:l (b-fb ) . .

. T s =1 L fori >

Ligl = (2; )(++17b’) H,Z;} (b=bs) (6.2)
0 fori <j

is such that U = L™'A is upper triangular.

A 1
0 T )
(0 <bk —j+1
Crm Gy T2 (b — by) ( nt1 )
k=1 (n;;m) (nrn+4tn1iljik) [T (bx — by) \bk—j+1

Proof. We compute:

..Q>
<
I

- 1M

i
s=1
s#k

Note that, due to the binomial factors, only the values of k for which j — 1 < by < n+j and
by < n+i— 1 contribute to the sum. When this holds, the combination of the five binomial
factors above may then be rewritten as

Jj—2 i—1
% Ho(bk—s) Hl(n—bk+s) fori > j
= s=j+

(n+1)! 1/ (i—s)
bil(nti—1=b)! TTL_ (n—bx+s)

fori <j.

Assume now that i > j so that the constraint over by reduces to j — 1 < by < n+j. We way
then write
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Figure 20. The complete arctic curve when «(u) is a piecewise linear function made of
two pieces with a discontinuity in-between, obtained as limit of a continuous piecewise
linear function made of k =3 pieces of widths v; =3 = 1/2, 72 — 0, and slopes
p1=p3; =2, py — 00, with poy, — §, = 1 (sothat§; = land 6, = 6, + 6, = 2). The
discontinuity gives rise to a freezing boundary with a gap along the segment [0}, 6,]. Two
new frozen domains of respective type F and U emerge above this segment, separated
from the ‘liquid’ phase by a new portion of arctic curve forming two cusps and being
tangent to the X-axis at some point with abscissa between 6, and 6, (here equal to 3/2
by symmetry). As displayed, this new portion is obtained as the envelope of a family
of tangents whose intercepts with the X-axis have abscissa ¢ € [0}, 6] For clarity, the
Y-axis has been stretched.

o (n+1)! ’ﬁ(b b)}{ dt ﬁ( ) "1:[‘( )li[ 1
ij = ; i — Ds - t—s n—t+s
bl (n+i—1-b)! ot s e@) 2T -1 i < (1= by)

where the contour encompasses only the set S'j ={bs|lj— 1< by <n+j}

Due to the factor H;}H(n —t+s) which vanishes for t=n+j+1,n+j+2,...,
n+i—1 and to the factor Hﬁ;g(r —s) which vanishes for t =0,1,...,j — 2, the con-
tour of integration can be extended harmlessly so as to encircle all the poles by, by, ..., b;
as the residues of the unwanted contributions vanish (recall that b; <n+i— 1 since
b; < biy1 <--- < by < n+m).Inturn, by the Cauchy theorem, the integral can be expressed
as minus the contribution of the pole at co. But for large ¢, the integrand behaves as #~2, hence

the residue at co vanishes, and we conclude that U; j=0fori>j, ie. U is upper triangular.

U
The diagonal matrix elements U,;,- are also easily obtained from the above:
. N H dt v 1 -
Ui = (n'—l— ) H(bi - bs)?{ - HS:O(. )
Tobiln+i—1—-b)l Clbrbary) 2T 0 (1= bs) (n4i—1)
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where the contour encompasses all b; for s = 1,2,...,i, but not n 4 i. Indeed the original
contour must select those by with i — 1 < by < n —|— i — 1 and may be extended to those b;
with 0 < by < n+i— 1 (due to the vanishing of Hs:O(t —s)forr=0,1,...,i —2), which
includes all b, for s = 1,2, ...,1 since the condition by < n—+i— 1is automatically satisfied
(due to b; < n+i— 1). As before we note that the integrand behaves as 1/¢* for large ¢, hence
the residue at oo vanishes. By the Cauchy theorem, we may therefore re-express f],-,,» as minus
the residue at the excluded pole n + i. We find:

i

1 i—2 .
l_ll(n—l—i—bs) }}f”*’*”

i—

1
Vit = b'(n+l—1— '3 1
B <n+i> 11[1 (b; — by)
bi ) % (n+i—by)"
This leads to the following result:
Theorem 6.2. The partition function expressed in terms of the sequence (b;)1<i<m reads:
A(0,1,...,n+m) A(by,by,...,by)

Z, = = .
AQQ.L,....n) [16:(n+m—b;)!
i=1

Proof. We compute
o z nti\ o m (n+i)! i—1
Zn:ll;I]U H{( )sl_[] n+l* } H{bln+m b) r[l(bi*bs)

_ H { H1<1</<m( _bi)} _A,1,...,n+m)  A(by,ba,...,by)
I (T b+ m =)y A, L) [T bl (n+m— D)

O

Note that this evaluation of the determinant of the matrix A of (6.1) is a particular limit
q — 1 of a more general formula [Kra99], theorem 26, equation (3.12).

Using the complementarity of the a’s and b’s, namely {a,} U {b,} ={0,1,...,n+m}
and {a,} N {b,} = 0, we have the identity

A0, 1,....n+m) = Alag,ar,....an)Abr, by, ... bw) ] (bg—as) T] (as = by)

as<b, by<ay

bg!(n+m — by)!

B Alag,ar,. .. a,) "
B A(bl,bz,...,bm)g

which allows one to identify the expression in theorem 6.2 with (2.6).

6.2.2. One-point function. Let us now apply the tangent method to the configurations of
north- and northeast-oriented step paths with the frozen boundary b,, =a, —r=m+n —r,
by moving the endpoint of the rightmost path from (n 4+ m,n + 1/2) to another point on the
right (n+m+ p,n+ 1/2), p > 0. This induces an escape of the rightmost path from the
domain D at a point (n+m,n+ 1/2 — E) (see figure 21 for an illustration). As usual, the

/

U - PR .
corresponding one-point function reads: H, ¢ = =22, where U’ = L 1A’, A’ the LGV matrix

mm

for the configurations with an escaping path, with entries:
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ntl (n+m+p,n+1/2)

N
N
N
N
N
N

AN
\< NN
AN

/%
(n+m,n+1/2-10)

N\ D

/4
7T 7V

b1 bg b3 bm T

/
A

n—+m

Figure 21. The tangent method applied to NILP made of north- and northeast-oriented
step paths with b,, = a, —r = m+n — r, i.e. with a freezing boundary of linear size
r on the right of the lower boundary of the domain D (displayed here as a rectangle)
creating a frozen triangular region made of right tiles only. Moving the endpoint of the
rightmost path from (n +m,n+ 1/2) to (n+ m+ p,n+ 1/2) with p € Z forces the
rightmost path to escape from the domain D at some point (n + m,n + 1/2 — £).

AI . A,’J‘ f0r1<j<m ©.3)
(:_:nff;) forj=m. ’

Theorem 6.3. The one-point function I:I,,,m,g reads

i, = =i tm=b) 1 H H”’” =)
h () €0 b b) 24T (m 1 — 1) (t— (m+e—1)!" '

where the contour leaves the point m + n out.

Proof. We compute

5 1 & n—{+1
Hyme=—> (L")
=g (L™) ’k(n+m—bk>

(") (ntm—b) [T (b = by)°

1
s
=
_|_
3
|
S

s=1 k=1

where only those values of k for which b; > m + ¢ — 1 contribute to the sum (recall also that
by < a, = m+ n for all k) . Using

(rewn) _ 1 TI (=)
(50 (O @Em=nt”
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we may thus write

g _IILin+m—b) / dr ’ H'"” (=)
C =

Hyme = :
" () (%mzmwlnzm'”+m_t (m+£—1)!

s=1
We may harmlessly extend the integral contour so as to encompass all the by, as all the extra
poles at by < m — £ — 1 have vanishing residues (due to the factor H;”:Jr()e_z(t —s)), and the
formula (6.4) follows. O

The partition function for the single path from the escape point (n + m,n + 1 — £), start-
ing with a northeast-oriented step, and ending at the target point (n +m + p,n + 1) is simply

) -1
You = (P_ 1) . (6.5)

Note in particular the condition ¢ > p (which is saturated only if all steps taken by the path
are of the northeast type).

6.2.3. Asymptotic analysis. For large n, we use the scaling m = pn, r = pn, p = wn,
¢ = £n, and b; = nf3(i/n) with a piecewise differentiable function 8(u) with 3'(x) > 1 when
defined. Moreover the freezing condition implies that b, = a, —r =n+ m — r, hence
B(p) =14 p — p, with p > 0.

Theorem 6.4. The tangent method for the case of a target endpoint to the east of D and an
escape point on the right boundary of D, leads to the following portion of arctic curve:
_ o x(00=x(n)
X=X(t):= t o)
(t€ [ +p—p.1+ ), (6.6)

Y=¥()= U0
with
14+p—t

R O]
OB y(1) =e e (6.7)

x(t) = —

Proof. From the explicit expressions (6.4) and (6.5) for I:In,m,g and f/p,g, we may infer the
scaling limits

2 dr g > $1(€
Hn,#n,én ~ % 217T n O(I 6) Ywn,én ~ e” 1(5)’

where we have performed the customary redefinition ¢ — nt,. The contour, which, before
rescaling, encompasses all the b;’s but leaves the point (n 4+ m) out, must encircle the real
segment [0, 1 + p — p] but leave the point (1 + ) out, i.e. cross the real axis strictly inside the
segment [l + p — p, 1 4 u] as well as on the negative real axis (—oo, 0]. Here we have

Su(t) = [ vog (S ZE ) o) - (- - Lole
— (14 p)Log(1 + 1) + (1 — §)Log(1 ~ &)
$1(6) = ELogl€) ~ wLog(w) — (€ ~ w)Log(é ~w).
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The saddle-point and maximum equations 8,5y = 85(5'0 +8 1) =01lead to
' t—p—§)E
t) —— 1, ( Al'l’ _ 5)6 —
(t—p—=28 (1=8)(E—w)
where y(¢) is as in (6.7). We find the solution

{0 = 1= =00, W) = s

(I+p—1). (6.8)

As just mentioned, the contour of integration in # must cross the real axis strictly inside the
segment [1 + u — p, 1 + p] and on the negative real axis (—oo, 0]. The saddle-point solution
must have t = (1 —&)(§ —w)/E+pu+£>0, as € > w (from the condition ¢ > p), and
0< f < 1. The range of validity of (6.8) is therefore for z € [1 + p — p, 1 + p]. The tangent
line through the rescaled points (1 + u, 1 — £(¢)) and (1 4+ p + w(¢), 1) has the equation

w(i)Y —£(1) (X —1) = 0. (6.9)

We may compare this result with that of equations (3.6) and (4.4). Introducing the quantity
x(t) defined by (6.7), we may express

aozr—u—ig%gﬂ

which allows to identify the parametric representation (6.9) for the tangents with that (3.9)
obtained in section 3.3, or that (4.5) obtained in section 4.3. We deduce that the arctic curve
has the same parametric expression in terms of ¢ and x(¢) as before, and theorem 6.4 follows.

O

To relate the function x() of theorem 6.4 to that given by (3.7), we use again the com-
plementarity of the a’s and b’s which implies that Y7 = + 37" | A5 = St L This
leads immediately to

oo e o N 1ok
t

which allows to identify the quantity x(¢) defined by (6.7) to that defined by (3.7) when both
terms are well-defined (and positive), i.e. for + <0 or t > «(1) = 1 4+ u. Equation (6.7)
allows to extend the definition of x(¢) to values of t > B(u) =1+ p — p, i.e. to the new
domain[l + u — p, 1 + p] = [a(1) — p, @(1)]. This corresponds to an analytic continuation of
x(r) in this interval, leading to real values x(¢) < 0 (from (6.7), as y(z) > 0), a scheme which
matches precisely that described in section 6.1 to extend the arctic curve for a freezing bound-
ary creating a frozen domain of type R. The analytic continuation of x(¢) may be obtained
directly from the original definition (3.7) of x(¢) which states that, for t > a(1) = 1 + g,

I—p

_ 1 -t _q-
x(t)ze 0 Ia(u) flpta(u):_ +n e i

du
I 0 ma@
Py Ry (6.10)

where we have used the freezing condition that «(u) =u+p on the segment
[1 —,0,1] (with p = (1) —1). The last expression above allows to define x(¢) for
a(l=p)=a(l)—p=1+ u - p and is equivalent to the definition (6.7) (as easily

deduced from the identity >, + 30 L= 3" L) When ¢ increases from
J

—Ot a,
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14+ p—ptol + pu, x(¢) increases from —oco to 0, or equivalently the slope (x(¢) — 1)/x(¢) of
the tangent increases from 1 to +oo.
Let us examine the extremities of the new portion of arctic curve. For 7 — (1 4 p)~, writ-

ing 1 = 1+ 1 — ein (6.10) yields x(r) ~ —eC with C = Le” Jo™" 5w which yields
e—0

X(t) — 1+p=a(l)=X
t=(14p)~

- du - 1 1
Y(t — efO g Fo—a() = efO ”du{ a(M—a) _m}
t—=(14p)~

1
_ ehd{smam—th) = Yo

with Xy and Y as in (3.11) (again we used (1) — a(u) = 1 — u for u € [1 — p, 1)). The new
portion of the arctic curve therefore connects to the previous known portion at (Xo, ¥p). For
t = 1+ p—p= B(p),writingt = 3(11) + nandlettingn — 0%, wehave y(¢) ~ n'/# () (with
some unimportant multiplicative constant), hence x(r) ~ n~"/#" (") and x/(r) ~ n= /8" (W) ~1,
leading to X(#) — (1 + p — p) and Y(z) — 0 in the generic case 3'(u) > 1. The extremity of
the new portion is thus at (1 4+ 1 — p, 0), as expected.

To summarize this section, the explicit computation above proves our conjecture of sec-
tion 6.1 in the particular case where the freezing occurs on the right edge of the lower bound-
ary of D. Clearly, the freezing of the left edge is amenable to the same exact calculation by a
simple application of the reflection principle of section 4.1, thus proving the conjecture in this
case as well.

6.3. Examples

6.3.1. Fully frozen boundaries. We display here examples where the boundary is fully frozen,
namely where the distribution of starting points a; alternates between macroscopic portions
with a;+1 — a; = 1 and macroscopic gaps with no a’s. This case corresponds precisely to that
studied in [Pet14], and our expression in theorem 3.3 for the arctic curve as a function of x(z)
given by (6.11) below matches proposition 2.6 of [Pet14].

In turn, fully frozen boundaries correspond to piecewise linear a(u) with pieces corre-
sponding exclusively of p =1 and p = oo portions. In general, we consider 2k — 1 posi-
tive numbers ~i,72,...,%,01,02,...,0¢_1, together with dp = =0 and such that
Zle ~; = 1. As before we introduce the quantities ¢; := Z,l':o Vi, i=0,1,...,k,withepy =0
and o = 1, as well as 0, = Zi':o(%' +6;) and 6piy1 = O + vip1 fori=0,1,...,k— 1. We

j
have fori =1,2,...,k:
i—1
a)=u+> & (e pi1.p)).
j=1

This immediately gives:

£ r— 92,'—1
xn) =[] —= (6.11)

i t— 0o

The simplest non-trivial example is for k=2. Let us denote vy =a, d; =b and
Y2 = ¢ =1 — a. The path problem is then equivalent (up to a simple shear/dilation) to that

37



J. Phys. A: Math. Theor. 51 (2018) 355201 P Di Francesco and E Guitter

0.8

0.6

0.4

021

(X1, Y1)
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0.8 ()(07 YO)
06  (Xoo,Vao
0.4
0.2+
0.0 ""w--_

0.0 0.5

Figure 22. The complete arctic curve when a(u) is a piecewise linear function made of
two pieces of width a and ¢ and slope 1, with a discontinuity by b in-between (here for
a=1/3, b =1 and ¢ = 2/3). The pieces of slope 1 give rise to freezing boundaries on
the left and on the right of the lower boundary of D and create frozen domains of type
R, while the discontinuity gives rise to a central freezing boundary with a gap along the
segment [0y, 6,], creating two frozen domains of respective type F and U. The resulting
arctic curve is an ellipse, as expected since, up to a shear, the path/tiling problem is
equivalent to that of the rhombus tiling of a hexagon with edge lengths na, nb, nc.

(XL,YL

[ (Xeo, Vao)
\ (Xo,Yo)

A

\

(92 97

Figure 23. The complete arctic curve when «(u) is a (discontinuous) piecewise linear
functlon consisting of an alternatlon of pieces with slope 1 of widths y; = vy, = 4 = 6,
=5 1 and of gaps §; = 4, 0p = land 63 = é This results in an alternation of frozen
domains adjacent to the lower boundary of the domain D.

of the rhombus tiling of a hexagon with edge lengths na, nb, nc (see figure 22), and the arctic
curve is well known to be an ellipse. Noting that

(ala+b+c)— (atoyr) +bert
(a(a+b+e)—(a+e)) +abe (a+be)
(alat+bte)—(atoy)”
(ala+b+c)— (ato)r) +abe (atb-te)

X(1) =(ato)

Y(1) = (a+c)

and eliminating 7, we indeed find the equation of the arctic ellipse:
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(X1,Y1)
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» (X0, Y0)
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(Xoo, Yoo) A
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0.0 05 3/4 1.0 3:_/52 2.0
a(u) = u+u? 8ap a(u) =1+u
(u<1/2) (u>1/2)

Figure 24. The complete arctic curve when a(u)=u+u?> for u<1/2 and
a(u) = 1+ u for u > 1/2, hence with a gap of linear size 3/2 — 3/4 = 3/4.

((c—b)Y—(a+c)X+a(a+b—|—c))2+4ch(Y—X) =0.

The case a = 4, b = 1, ¢ = # is represented in figure 22.

We display a more involved case with k = 4 in figure 23, with v, = v, = 74 =

(51:%,52:1and53=%,sothat01:éﬂg:%,%: 7 1o

ﬁ394 — 12,65 - 12’66 - 12997 -

S =

[l

o=
‘>_|:m|~

6.3.2. Mixed boundaries. We now consider a ‘mixed’ boundary case, with:

(W) = u+u? foru € [0,1/2]
W= +uforue (1/2.1] .

This combines a non-linear distribution on [0, %], a gap with no a’s on (%, %], and a frozen

boundary with o/ («) = 1 on (2, 2]. The corresponding x(t) reads

1

) t—=2 (1 —4r+ 144\ V"

X = .
t—3\1—4t— 1+ 4

2
and the associated arctic curve is represented in figure 24.

7. Conclusion

71. Summary and discussion

In this paper, we have studied non-intersecting path models in the Z? lattice with fixed arbi-
trary starting points along the X-axis. These fixed positions ay, ay, ...,a, are described in
the scaling limit n — oo by a single piecewise differentiable increasing function a(u) with
o/ (u) > 1 when defined, such that a; ~ na(i/n) for large i,n with i/n — u. Our main result
is a parametric expression (1.1) of the arctic curve for the large n asymptotic path model,

39



J. Phys. A: Math. Theor. 51 (2018) 355201 P Di Francesco and E Guitter

involving some function x(¢) directly related to «(u) via (3.7) (or its analytic continuation via
(6.7)). Several portions of the arctic curve are obtained from several intervals in the variable
t. Explicit calculations were performed for three portions: two generic ones and one arising in
the presence of a freezing edge. We also analyzed, without explicit derivation®, the shape of
new portions induced by more general freezing boundaries. Our results corroborate those of
[Pet14, DM15] hence validate the tangent method. A nice feature of the tangent method is that
its simplicity allows for solving more involved versions of the problem. For instance, we may
derive [WIP] a straightforward g-deformation of our results, in which the parameter g keeps
track of the volume below the surface spanned by the tiling, as viewed in the plane partition
formulation (see [Pet14] for a precise definition).

It is interesting to better understand the meaning of the fundamental function x(¢). First, we
note that, associated to the asymptotic boundary ‘shape’ is the actual distribution of starting
points, which can be defined in the finite size as:

1 n
pn(v) = n+1;5(v—ai)-

The limiting distribution is then defined on [0, a(1)] as

1
a/(a=!(v))’
where o~ !(v) is the composition inverse of the function o(u) whenever well-defined. We may

consequently interpret the quantity x(7) of (3.7) as giving the moment generating function (or
resolvent) of the distribution p, namely:

1
p(v) = lim np,(w) = /0 du §(v —afu)) =

n— 00

oo

a(l) 1
“Log(e() = > = [ et = [Ca@rae. )
n=0

Another remark is that the formula (1.1) for the arctic curve may be rephrased in the lan-
guage of the Legendre transformation as follows: introducing the quantity

() = < x(;)(t), (1.2)

the equation (3.9) for the tangent line may be rewritten as
X=t—s()Y

so that, if we express the arctic curve (1.1) by its Cartesian equation X = X(Y), the quantities ¢
and s(¢) are respectively the value at the origin (¥ = 0) and minus the slope of the line tangent
to X(Y) at the point Y = Y(¢). In particular, at ¥ = Y(z), we have s(t) = —X'(Y) (a relation
which may also be checked directly from (1.1)) and, inverting s = s(¢) into ¢ = #(s), we may
write the above relation as

t(s) = X(Y(s)) +sY(s)  where Y(s) = —X'"(s)

in terms of the composition inverse X'~ of the function X’(Y). This states that the function
t(s) is simply the Legendre transform of the function X(Y) and vice versa, to that we may
write as well

3 Since completion of this paper, we received a note by Bryan Debin who was able to extend our proof to all general
freezing boundaries.
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0.8

osl (X2.Y2)

Figure 25. The ‘rectified’ version of figure 19, obtained by modifying the tiles as
shown on the left. The vertical axial symmetry of the boundary condition induces a
vertical axial symmetry of the arctic curve.

X(Y)=t(s(Y))—Ys(Y)  wheres(Y)=¢""(Y)

in terms of the composition inverse #'~! of the function # (s). This latter expression allows to

directly get the location X(Y) of the arctic curve as the Legendre transform of the function
#(s), the composition inverse of s(7) given by (7.2). In practice, the equation s = s(z) may have
several solutions in 7 so that #(s) can be made of several branches. Each branch gives in turn
one branch for X(¥) (recall that X(Y) is made of at least two branches corresponding to the
two generic portions of the arctic curve) or several ones with cusps if #”(s) vanishes for some s.

We conclude this paper with three comments: we first give the equation for the arctic curve
in modified coordinates adapted to the rhombus tiling interpretation. We then discuss a direct
geometric construction of the arctic curve inspired by the well-known Wulff construction for
crystal shape. We end by a more technical point on some alternative use of the tangent method
consisting in moving the extremal starting point instead of the ending one.

72. Rhombus tilings

The problem we studied was conveniently expressed in terms of paths on the lattice Z2.
However, the dual tiling problem has the natural symmetry of the triangular lattice, the tiles
being the three possible rhombi obtained by gluing pairs of adjacent triangles. All the results
of this paper can be reformulated in this framework, provided we perform a change of
coordinates:

X, Y)— [ X2 =X - l1/,1/A = ﬁy
2 2
Some of the symmetries observed in this paper become more manifest in this frame. For
illustration we have represented in figure 25 the ‘rectified’ version of the case of figure 19, of
ak = 5 piecewise linear «(u), with a manifest vertical axial symmetry.
In the new coordinates, the arctic curve reads:
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Figure 26. Geometric construction of the line L(M) from a point M on the curve
(¢, x(¢)) in some orthonormal frame. The line L(M) (fat line) is the line orthogonal to
(0Q) passing through P. Moving the point M along the curve generates a family of lines
L(M) whose envelope is the arctic curve.

x(1)>—1
XA =1+ 505

2
YA = V3.

The corresponding parametric family of tangent lines has equation:

(1+x(0)Y +V3(1 —x(1)) (X —1) =0.

73. A geometric construction

One may wonder whether our result (1.1) connecting the boundary conditions to the shape
of the arctic curve has a direct geometric description. It is very reminiscent indeed of the so-
called Wulff construction that relates the surface tension of a growing two-dimensional crystal
to the shape of its boundaries. In that case, the crystal is grown from an initial center (xo, yo),
with a surface tension o() depending on the angle # measuring the orientation of the normal
to the growing surface with respect to the microscopic crystalline axes. This surface tension
may be represented by the one-dimensional curve r = o () in polar coordinates centered at
(0, ¥0): the shape of the boundary of the crystal is then (up to a global scaling) given by the
envelope of the family of lines L(#) that are normal to the radius vector at the point (o(6), )
(more precisely the shape is given by the convex hull of this envelope).

If we could interpret our family of tangent lines as arising from some Wulff construction, it
would give access to some candidate surface tension o (6). However, the problem is ill-posed,
as there seems to be no favored choice of the center (xg, yo), and in fact if we were to think of
our model as the final stage of some growth process, it would rather start from frozen bounda-
ries, and the status of fixed boundaries with arbitrary «(u) is unclear in that respect.

On the other hand, we may devise the following direct geometrical construction for the
arctic curve (1.1) based again, in the spirit of the Wulff construction, on the data of some one-
dimensional curve in the plane. Here this curve is simply the plot of the function x(¢) itself,
namely the curve (z,x(7)) in cartesian coordinates (using some orthonormal basis). Given a
point M on this curve, we may easily obtain the corresponding value of ¢ by projecting the
point vertically on the X-axis as the resulting point is P = (¢,0) by definition. The point Q
of coordinates (1 — x(¢),x(¢)) is obtained by now projecting M horizontally on the line of
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4
(an,n—1>)

B

(an+p,0)

Figure 27. The tangent method applied to the NILP with paths made of north- and
west-oriented step, as obtained by moving the starting point of the outermost path is
moved from O, = (ay,0) to O, = (a, + p,0) with p € Z, forcing the path to re-
enter the domain D (here the displayed grid) by a west-oriented step at some position
(@n,n — £) on the right boundary of D.

equation X 4+ Y = 1 (see figure 26). Denoting by O = (0, 0) the origin, the tangent to the arctic
curve labelled by ¢ is, from its equation (3.9), the line L := L(M) orthogonal to the line (OQ)
and passing trough the point P. Each point M of the plot gives rise to a line L(M) and the arctic
curve is the envelope of these lines.

74. Moving the starting point

So far we used the tangent method by moving the ending point of the outermost (or rightmost)
path out of the domain D. Another choice would have been to move instead the starting point
of this path. Let us briefly describe how the method works in the original language of north-
and west-oriented paths. Moving the starting point O, = (a,,0) to say O, = (a, + p,0) for
some p € Z forces the outermost path to re-enter the domain D at some point (ay,n — ) on
its right boundary (see figure 27). The partition function for NILP in the domain D with their
outermost path starting at (a,,n — £), properly normalized by Z,, defines our new one-point
function H,,, for this new geometry. Its computation is made straightforward thanks to the
remark that

A ~ -

Hn,m,[ - Hn,m,é-H = Hn,é - Hn,Z—l

where m = a, — n and [:In’m,z as is (6.4), which implies the sum rule

Hn,é =1- Hn,m,€+l .

These identities are obtained exactly via the same arguments as those given in section 4.2 to
prove (4.3). Using the explicit expression (6.4) for IAJW,,‘g, we may write

m

1", (n+m—b,) dr 1 1[I -
\%(:1 - n) H (t - bs)

(’:,t’z) (b1,b2,....by,n+m) 2im (t —m (m + f)'

where the contour now encircles the pole at m + n, since, as easily checked, its contribution
produces the first term 1 in the left hand side. Using now

1 - Hn,m,€+l =

s=1

n—1

m n+m
(t—m—n) H(t—as) H(t—bs) = H(t—s)

and in particular, dividing by (t — m — n) and setting t = a, = n + m,
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n—1 m
H(an — ay) H(n +m—bs)=(n+m),
s=0 s=1

the above expression yields immediately

n—1

P — G ey 0
12 (an — as) Je@—m—t)a—m—t-1)....a) 27 (t = an) —4 [L- (t—an+s)

It is then a straightforward exercise to use the tangent method machinery to get, in the large
n asymptotic regime, the equation for the tangents and for the arctic curve. As expected, we
recover the same set of tangents as in section 3.3, given by equation (3.9) for ¢ € [a(1), +00).
This provides an alternative derivation for the first portion of the arctic curve. Clearly, an alter-
native derivation for the second portion of arctic curve would consist in moving out of D the
starting point of the outermost path for NILP configurations with paths made of east- and
northeast-oriented steps.
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