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Abstract
We use the tangent method of Colomo and Sportiello to investigate the 
arctic curve in a model of non-intersecting lattice paths with arbitrary fixed 
starting points aligned along some boundary and whose distribution is 
characterized by some arbitrary piecewise differentiable function. We find 
that the arctic curve has a simple explicit parametric representation depending 
of this function, providing us with a simple transform that maps the arbitrary 
boundary condition to the arctic curve location. We discuss generic starting 
point distributions as well as particular freezing ones which create additional 
frozen domains adjacent to the boundary, hence new portions for the arctic 
curve. A number of examples are presented, corresponding to both generic 
and freezing distributions. Our results corroborate already known expressions 
obtained by more involved methods based on bulk correlations, hence 
providing more evidence to the validity of the tangent method.

Keywords: non-intersecting lattice paths, continuum limit, arctic curve

(Some figures may appear in colour only in the online journal)

1. Introduction

Many tiling problems of finite plane domains of large size are known to exhibit the so-called 
arctic curve phenomenon, namely the existence of a sharp phase separation between ‘crys-
talline’ (i.e. regularly tiled) phases often induced by boundary corners and ‘liquid’ (i.e. dis-
ordered) phases away from the influence of boundaries. For instance, the celebrated problem 
of tiling the Aztec diamond with dominoes is known to display an arctic circle separating fro-
zen phases induced by the corners of the domain from an entropic phase in the center [CEP96, 
JPS98]. Typically, one studies the asymptotics of tilings of scaled domains whose limits are 
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polygons. More generally, dimer models on regular graphs, which are a dual version of til-
ing problems, exhibit the same arctic phenomenon, which received a fairly general treatment 
in the recent years [KO06, KO07, KOS06]. Free boundary conditions, where portions of the 
boundary are allowed to fluctuate were also studied [DFR12].

The general method to obtain the arctic curve location is the asymptotic study of bulk 
expectation values, which requires a certain amount of technology, resorting for instance to 
the machinery of the Kasteleyn matrix. Other rigorous methods use the machinery of cluster 
integrable systems of dimers [DFSG14, KP13].

All the models above have an interesting common feature: they can be rephrased in terms 
of configurations of non-intersecting lattice (or graph) paths, which arise from conservation 
laws of the models, and display their underlying fermionic character. Typically, we have a 
set of paths with steps along oriented edges of a regular graph, with fixed starting and ending 
points, and subject to the condition that no two paths share the same vertex. These occupy a 
maximal domain D, which is then scaled to reach a continuum limit. In the path for mulation, 
frozen phases correspond to regular compact configurations (such as zones with parallel paths 
only), or to empty domains not visited by any path. With such an interpretation, it is easy 
to track down the arctic curve (or portions thereof) as the asymptotic ‘outer shell’ of the 
path configurations, determined by the outermost paths. Inspired by this remark, Colomo 
and Sportiello [CS16] recently devised a new method for determining the arctic curve in path 
models, coined the tangent method. The idea is to move the endpoint of one of the outermost 
paths to some distant point p on the regular graph, so as to force this path to exit the domain 
D say at a point ℓ. It is then argued that between ℓ and p, away from the influence of the other 
paths, the most likely asymptotic trajectory is a straight line. Inside the domain D, the out-
ermost path is expected to first follow the outer shell, then escape this shell tangentially and 
continue on towards ℓ, again along a straight line since the crossed region is empty from other 
paths. For any fixed p, the most likely position ℓ = ℓ( p) corresponds to having both straight 
lines identical. Solving the corresponding extremization problem therefore provides a para-
metric family of straight lines (ℓ( p) p), all tangent to the arctic curve, which is then recovered 
as the envelope of this family of tangents. The main advantage of this method is that it only 
requires to estimate a boundary one-point function, namely that for which the endpoint of 
an outer path is moved to a position ℓ on the boundary of D. Such a function is considerably 
simpler to compute than bulk expectation values.

The method, though non-rigorous, was successfully tested in a number of examples [CS16, 
DFL18]. Remarkably, it seems to even apply to situations where the lattice paths interact, such 
as the so-called osculating paths describing configurations of the six-vertex model. In this 
model, the path configurations are allowed to form ‘kissing points’ where a vertex is shared 
by two neighboring paths. The tangent method predicts in particular the asymptotic shape of 
large alternating sign matrices (ASM) [CS16] as well as vertically symmetric alternating sign 
matrices (VSASM) [DFL18].

In the present paper, we use the tangent method to investigate path/tiling models with new 
kinds of boundary conditions: in the path language, we consider path configurations where 
the starting points of the paths take fixed but arbitrary positions aligned along some bound-
ary segment. Asymptotically, the distribution of these points is simply characterized by some 
arbitrary piecewise differentiable function α(u) : [0, 1]→ R. This includes the particular case 
of ‘fully frozen boundaries’ studied by Petrov [Pet14] by use of very different tools. Our more 
general boundary conditions correspond actually to the cases investigated in [BG15, DM15] 
via asymptotic representation theory. Our main result is that the corresponding arctic curve 
has an explicit parametric representation (X(t), Y(t)) for its coordinates in the plane, which 
takes the following simple form:
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⎧
⎪⎪⎨

⎪⎪⎩

X(t) = t − x(t)(1 −x(t))
x′(t)

Y(t) = (1 −x(t))2

x′(t)

with x(t) := e−
∫ 1

0
d u

t−α(u) .

 (1.1)

This provides us with a direct transform that maps the ‘boundary shape’ α(u) to the arctic 
curve, made in general of several portions corresponding to various allowed domains of the 
parameter t. This result reproduces the expressions of [DM15], and thus provides a strong 
validation of the tangent method approach.

The paper is organized as follows. In section 2, we present the general path model that we 
will consider, together with its tiling interpretation, and compute its partition function. The 
model involves paths on the edges of the square lattice with starting points fixed at arbitrary 
positions along a horizontal segment. As just mentioned, these positions are entirely charac-
terized asymptotically by their limiting boundary shape α(u). The tiling interpretation allows 
to rephrase the model in three different (but equivalent) ways, using different sets of paths.

The tangent method is then applied in sections 3 and 4 using two different sets of paths 
to obtain two different portions of the arctic curve. The derivation involves the computation 
of a boundary one-point function, which is performed by using the LU decomposition of the 
Lindströ m–Gessel–Viennot matrix, a method advertised and successfully used in [DFL18] 
for similar problems. Both computations lead to the same parametric equations for the arctic 
curve, as given above, in two different parameter domains.

Section 5 presents various examples: the ‘pure’ case α(u) = p u, the case of a piecewise 
linear α(u) and finally two instances of some non-linear α(u). Subtleties arise whenever 
α′(u) = 1 on finite segments, corresponding to a certain type of freezing boundary condi-
tion inducing new macroscopic frozen regions inside the path domain. Likewise, macroscopic 
gaps in the distribution of starting points induce another type of freezing. These ‘freezing 
boundaries’ are investigated in detail in section 6, and give rise to additional portions of the 
arctic curve, still described by the parametric equation (1.1) above, but for yet other domains 
of t.

We gather a few concluding remarks in section 7.

2. Definition of the model and partition function

2.1. Non-intersecting lattice paths with arbitrary starting points

In its simplest formulation, the model that we wish to study simply describes configurations 
of non-intersecting lattice paths (NILP) with prescribed extremities. More precisely, a con-
figuration consists of n  +  1 lattice paths making only west- or north-oriented unit steps along 
the edges of the regular square lattice, with respective starting points Oi and endpoints Ei, 
i = 0, . . . , n, chosen as follows: the endpoints Ei are taken with coordinates (0, i) so as to span 
a vertical segment of length n; the starting points Oi have coordinates (ai,0) where (ai)0!i!n is 
a given arbitrary strictly increasing sequence of integers of length n  +  1 with a0  =  0. These 
vertices therefore lie on a horizontal segment of length an (with an ! n) with prescribed 
but arbitrary strictly increasing positions along this segment. The paths are required to be 
non-intersecting in the sense that any two paths cannot share a common vertex of the lat-
tice. Figure 1 shows an example of such path configuration with n  =  6. Note that, due to the 
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non-intersection constraint, the portions of the paths lying above the line Y  =  X in the (X, Y) 
plane (dashed line in the figure) are ‘frozen’ as they necessarily form horizontal segments.

2.2. Tiling interpretation and alternative path formulations

As displayed in figure  2, any of the above defined configurations of non-intersecting 
lattice paths may be transformed into a particular tiling for the domain of the plane cov-
ered by the paths. More precisely, to each horizontal edge ( p + 1, q) → ( p, q) car-
rying a west-oriented step is associated an upper tile which is the rhomboid with  
vertices ( p − 1 /2, q − 1 /2), ( p + 1 /2, q − 1 /2), ( p + 3 /2, q + 1 /2), ( p + 1 /2, q + 1 /2),  
to each vertical edge ( p, q) → ( p, q + 1 ) carrying a north-oriented step is associated 
a right tile which is a rhomboid with vertices ( p − 1 /2, q − 1 /2), ( p − 1 /2, q + 1 /2),  
( p + 1 /2, q + 3 /2), ( p + 1 /2, q + 1 /2) and finally, to each unvisited vertex ( p, q) is asso-
ciated a front tile which is a square with vertices ( p − 1 /2, q − 1 /2), ( p − 1 /2, q + 1 /2),  
( p + 1 /2, q + 1 /2), ( p + 1 /2, q − 1 /2). Apart from the original NILP configuration, the 
resulting tiling naturally gives rise to two other sets of NILP as displayed in the figure.

The second set of paths is obtained by associating to the right and front tiles introduced 
above northeast- and east-oriented steps of the form ( p − 1 /2, q) → ( p + 1 /2, q + 1 ), and 
( p − 1 /2, q) → ( p + 1 /2, q) respectively. This leads to a configuration of (n + 1) NILP 
with endpoints Ẽi of coordinates (an  +  1/2, i) and starting points Õi  of coordinates 
(an + 1/2 − ãi, 0) for i = 0, . . . , n, where (ãi)0!i!n is the strictly increasing sequence (with 
ã0 = 0) defined as:

ãi := an − an−i . (2.1)

As for the the third set of paths, it is obtained by associating to the upper and front tiles men-
tioned above northeast- and north-oriented steps of the form ( p, q − 1/2 ) → ( p + 1, q + 1/2 ), 
and ( p, q − 1 /2 ) → ( p, q + 1 /2 ) respectively. We omit here those upper tiles above the Y  =  X 
line as they form a regular crystalline pattern and the associated paths play no role. This leads 
to a configuration of m  =  an  −  n NILP with endpoints Êi of coordinates (n + i, n + 1 /2 ) and 
starting points Ôi  of coordinates (bi, −  1/2) for i = 1, . . . , m , where the strictly increasing 
sequence (bi)1!i!m  is the complementary sequence of the sequence (ai)0!i!n, defined for 
instance via the polynomial identity

0 151210632

Figure 1. A configuration of n  +  1  =  7 non-intersecting lattice paths made of west- 
or north-oriented unit steps, with starting points Oi = (ai, 0) and endpoints Ei  =  (0,i), 
i = 0, . . . , n, here in the particular case (ai)0!i!n = (0, 2, 3, 6, 10, 12, 15). The portions 
of paths above the dashed line are necessarily ‘frozen’ into horizontal segments.
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a0 a6a5a4a3a2a1

ã6 ã0ã1ã2ã3ã4ã5

b1 b9b8b7b4b3b2 b5 b6

Figure 2. Top: the path configuration of figure 1 together with the associated tiling 
configuration, made of upper, right, and front tiles, corresponding respectively to edges 
carrying a horizontal path step, edges carrying a vertical path step, and vertices not 
visited by the paths. Middle: connecting the vertical sides of both front tiles and right 
tiles by elementary segments creates a configuration of (n + 1) = 7 non-intersecting 
lattice paths made of east- and northeast-oriented elementary steps. These paths 
(numbered from right to left) have starting points Õi = (an + 1/2 − ãi, 0), where 
ãi := an − an−i, and endpoints Ẽi = (an + 1 /2, i), i = 0, . . . , n. Here, an  =  15 and 
(ãi)0!i!n = (0, 3, 5, 9, 12, 13, 15). Bottom: connecting the horizontal sides of both 
front tiles and upper tiles (except for those in the frozen region above the dashed 
line) by elementary segments creates a configuration of m  =  an  −  n  =  9 non-
intersecting lattice paths made of north- and northeast-oriented elementary steps. 
These paths have starting points Ôi = (bi,−1 /2 ) and endpoints Êi = (n + i, n + 1 /2 ),   
i = 1, . . . , m , where (bi)1!j!m  is the ‘complementary sequence’ of (ai)0!j!n in 
Z ∩ [0, an]. Here, (bi)1!i!m = (1, 4, 5, 7, 8, 9, 11, 13, 14).
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m∏

i=1

(t − bi)
n∏

i=0

(t − ai) =
an∏

i=0

(t − i), with m = an − n . (2.2)

Clearly, the data of any of the three path configurations allows to recover the two others so 
that each of the three descriptions carries all the information about the configuration at hand. 
We may therefore use any of the three path formulations to describe our model.

2.3. Partition function

Returning to the original formulation of section  2.1 with paths made or west- and north-
oriented steps, the partition function Zn := Z ((ai)0!i!n) of the model, namely the number 
of non-intersecting path configurations, may be obtained via the famous Lindströ m–Gessel–
Viennot (LGV) lemma [Lin73, GV85], which states that Zn = det ((Ai,j)0 !i,j!n) where Ai,j 
denotes the number of paths made of west- and north-oriented steps along edges of the square 
lattice and connecting the starting point Oi to the endpoint Ej. In the present case, we have 
clearly

Ai,j =

(
ai + j

j

)

since a path from Oi to Ej is made of a total of ai  +  j steps among which exactly j are oriented 
north. This latter determinant may be easily computed in various ways. We present here a 
derivation using the so-called LU decomposition of the matrix A with elements Ai,j above. 
This method will indeed prove adapted when we will extend our calculation to some more 
involved determinants with the same flavor and was successfully applied for determining the 
arctic curve for various path problems in [DFL18]. Recall that the LU decomposition consists 
in writing the square matrix A, of size (n + 1)× (n + 1), as the product A = L U  of a lower 
triangular square matrix L by an upper triangular square matrix U (both matrices having the 
same size as A). Such a decomposition exists for suitable matrices (among which is the desired 
matrix A, as made explicit below) and is moreover unique if we demand that L is lower uni-
triangular, i.e. Li,i  =  1 for all i = 0, . . . , n. From the knowledge of the matrices L and U, we 
immediately obtain Zn via

Zn = det(A) = det(L)× det(U ) =
n∏

i=0

U i,i

since U is upper triangular and det(L) = 1. Note that, in practice, only the knowledge of the 
diagonal elements of U is required to get Zn.

In order to get the LU decomposition of the matrix A, it is enough to find a lower triangular 
square matrix L−1 with diagonal elements equal to 1 such that L−1 A is upper triangular. We 
have the following result:

Theorem 2.1. The lower uni-triangular matrix L−1 with matrix elements

L−1
i,j =

⎧
⎨

⎩

∏i−1
s=0 (ai−as)∏i
s=0
s≠j

(aj−as)
for i ! j

0 for i < j
 (2.3)

is such that U := L−1 A is upper triangular.
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Proof. The diagonal elements of L−1 are clearly equal to 1 and, for any i and j, we may write

L−1
i,j =

i−1∏

s=0

(ai − as)

∮

C(aj)

1
∏i

s=0 (t − as)

d t
2iπ

,

where C(aj) is a counterclockwise contour in the complex plane which encircles aj but none of 
the other as for 0 ! s ! i . Here and throughout the paper, when referring to a contour integral, 
we use the notation C(z1 , . . . , zm) to indicate that the integral runs over a counterclockwise 
contour in the complex plane which encircles all the points z1 , . . . , zm and does not encircle 
any pole of the integrand which is not this list. The specified zs’s will in general be themselves 
poles of the integrand but it may happen that some of them are not, in which case they do not 
influence the value of the integral. Written this way, we have

U i,j ≡
n∑

k=0

L−1
i,k Ak,j =

i∑

k=0

L−1
i,k

(
ak + j

j

)

=
i−1∏

s=0

(ai − as)

∮

C(a0 ,a1 ,...,ai)

1
j!
∏ j−1

s=0 (t + j − s)
∏i

s=0 (t − as)

d t
2iπ

,

 

(2.4)

where the summation over k is automatically achieved by the choice of contour which encir-
cles all the poles of the denominator at t = a0 , . . . , ai. Here we simply used the trivial equality

(
a
m

)
=

1
m !

m −1∏

s=0

(a − s)

for any integers a ! 0 and m ! 0 to transform the binomial coefficient into a polynomial  
in t. Since the contour in (2.4) encircles all the poles of the integrand for finite t, the value of 
the integral may be obtained as minus the residue of its integrand at infinity. Using

1
j!
∏ j−1

s=0 (t + j − s)
∏i

s=0 (t − as)
∼

t→∞

1
j!

t j−i−1 =

⎧
⎨

⎩

O
( 1

t2

)
for i > j

1
i! ×

1
t for i = j,

we immediately deduce that Ui,j  =  0 for i  >  j since there is no pole at infinity in this case, 
hence U is upper triangular as wanted. □ 

Moreover, we have

Ui,i =
1
i!

i−1∏

s=0

(ai − as) (2.5)

for i = 0, . . . , n since the residue at infinity is −1/i!.
From this latest result, we deduce the following expression for the partition function:

Theorem 2.2. The partition function reads

Zn =
n∏

i=0

∏i−1
s=0(ai − as)∏i−1

s=0(i − s)
=

∆(a0, a1, . . . , an)

∆(0, 1, . . . , n)
, (2.6)

where ∆(a0 , a1 , . . . , an) denotes the Vandermonde determinant:

P Di Francesco and E Guitter J. Phys. A: Math. Theor. 51 (2018) 355201
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∆(a0 , a1 , . . . , an) := det
(
(a j

i )0 !i,j!n

)
=

∏

0 !i<j!n

(aj − ai) .

Example 2.3. In the particular case ai = p i  for some integer p ! 1, this theorem yields  
a partition function

Zn = p
n(n+ 1)

2

in agreement with the result of [DFL18] for p  =  2. Note also that the matrix L−1 then has  
elements L−1

i,j = (−1 )i+j
(i

j

)
 independently of p.

To conclude this section, we note that, by consistency, the same expression for the partition 
function should be obtained upon using any of the three possible path formulations of sec-
tion 2.2. From the LGV lemma, this allows us to express Zn as the determinant of the matrix 
Ã of size (n + 1)× (n + 1) whose elements Ãi,j enumerate paths made of northeast- and east-
oriented elementary steps joining Õi  to Ẽj , or equivalently as the determinant of the matrix 
Â of size m × m whose elements Âi,j enumerate paths made of northeast- and north-oriented 
elementary steps joining Ôi  to Êj . The simple combinatorial formulas for Ãi,j and Âi,j lead to 
the identities:

det

(
ai + j

j

)

0!i,j!n
= det

(
ãi

j

)

0!i,j!n
= det

(
n + 1

bi − j + 1

)

1!i,j!m
=

∆(a0, a1, . . . , an)

∆(0, 1, . . . , n)

with ãi as in (2.1), bi as in (2.2) and m  =  an  −  n as before.

3. Tangent method and one-point function: the first piece of the puzzle

The aim of this paper is to further study the arctic curve phenomenon, roughly summarized 
as follows. For large NILP configurations, two distinct phases can be distinguished: a frozen 
phase in which paths follow lattice-like regular patterns, and a liquid entropic phase where 
paths display more erratic behaviors. It turns out that for special setups, large NILP configura-
tions develop a sharp separation between these two phases, along a curve coined ‘arctic’ for 
obvious reasons (see figure 3 for an illustration).

3.1. Tangent method and LU decomposition

Let us first describe here the general setting of the tangent method, as devised by Colomo 
and Sportiello [CS16] for the derivation of arctic curves in path models. As opposed to the 
standard approach consisting in computing bulk expectation values, this method only requires 
the knowledge of a much simpler boundary one-point function. The method goes as follows: 
we consider NILP configurations with fixed starting and ending points say v = {vi}i=0,1,...,n 
and w = {wj}j=0,1,...,n with steps along the oriented edges of some given underlying lattice. 
The partition function Zv,w is given by a LGV determinant: Zv,w = det(A), where the matrix 
element Ai,j = Zvi,wj enumerates the possible configurations for a single path joining vi to wj. 
At finite n, the NILP configurations for this problem occupy a maximal domain D whose size 
grows with n. We may now consider an asymptotic version of the problem with n large, with 
a suitable rescaling of the underlying lattice so that D tends to a scaled domain D remaining 
finite when n → ∞.

P Di Francesco and E Guitter J. Phys. A: Math. Theor. 51 (2018) 355201
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The tangent method relies on the assumption that outermost paths say from vn to wn will 
follow asymptotically the boundary between the frozen and liquid phases of the system, which 
sharpens into the arctic curve as n becomes large. To investigate this curve, we simply have 
to move the endpoint wn to another point w′

n away from D so that paths from vn to w′
n must 

escape the domain D (see figure 3). Let w be the last vertex of D (w ∈ ∂D) visited by such 
a path. It is then argued that asymptotically, as it lies away from the influence of the other 
paths, the escaping path is most likely to follow a straight line from w to w′

n. This line extends 
within D until the arctic curve is met, and is argued to be tangent to the latter if we picked 
for w the most likely escape point from D. By moving around the new endpoint w′

n, we may 
thus determine lines of most likely escape, which form a parametric family of tangents to the 
arctic curve. The latter is then recovered as the envelope of this family of lines. The modified 
partition function, normalized by the original one, reads simply Zv,{w0 ,...,wn−1 ,w′

n}/Zv,w. By an 
asymptotic analysis, we may determine the most likely exit point w from D of the outermost 
path, which together with w′

n defines the tangent line. This is done is all generality by perform-
ing the decomposition

Zv,{w0 ,...,wn−1 ,w′
n}

Zv,w
=
∑

w∈∂D

H(w)
v,w Yw,w′

n
, (3.1)

where H(w)
v,w = Zv,{w0 ,...,wn−1 ,w}/Zv,w is the so-called boundary one-point function in which the 

outermost path ends at w on the boundary of D. The last term Yw,w′
n
 simply enumerates path 

configurations outside D from w to w′
n.

In practice, the boundary one-point function H(w)
v,w can be computed explicitly by the LU 

decomposition method [DFL18]: first we use for the new partition function the LGV determi-
nant expression Zv,{w0 ,...,wn−1 ,w} = det(A′), where the matrix A′ differs from A only in its last 
column, which now consists of the partition functions Zvi,w, i = 0, 1, . . . , n. Assume we found 
a lower uni-triangular matrix L such that L−1 A = U  is upper triangular. Then, since A and A′ 
differ only in their last column, L−1 A′ = U ′ is again upper triangular and differs from U in its 
last column only. We immediately deduce that

vn

w′
n

w

D
wn

Figure 3. A schematic picture of the tangent method: moving the endpoint of the 
outermost path from wn to w′

n forces the path to escape from the originally reachable 
domain D at some point w on the boundary of D. The most likely choice for w is such 
that the straight line (ww′

n) is tangent to the arctic curve since the most likely route 
followed by the outermost path, starting from vn, consists in sticking to the arctic curve 
and escaping from this curve tangentially towards w′

n.

P Di Francesco and E Guitter J. Phys. A: Math. Theor. 51 (2018) 355201



10

H(w)
v,w =

U′
n,n

Un,n
. (3.2)

As for Yw,w′
n
, it is in general obtained straightforwardly as it involves configurations of a single 

path from w to w′
n lying outside D, hence away from the domain of influence of the other 

paths. The most likely exit point w for fixed endpoint w′
n can then be found by an asymptotic 

analysis of the explicit decomposition (3.1), which leads to a parametric family of tangents to 
the arctic curve.

3.2. One-point function

Let us now apply the tangent method to our specific problem. As clear from figure 1, the 
domain D in which the paths are confined is here a rectangle of vertical size n and horizontal 
size an. As described above, we now modify the partition function for NILP by moving the 
topmost endpoint En  =  (0, n) along the vertical line to some other position say E′

n = (0, n + r) 
with a varying r ∈ Z+. This choice is somewhat arbitrary but it is easy to check that the final 
result for the arctic curve would be the same for any other prescription of endpoint that would 
induce an exit point on the segment (0, n)–(an, n) (for instance by taking E′′

n = (r, n + r) 
instead).

Let us first compute the one-point function Hn,ℓ corresponding to an outermost path from 
On = (an, 0) exiting at the position E = (ℓ, n) from the rectangular domain D along a north-
oriented vertical step (ℓ, n) → (ℓ, n + 1 ) pointing out of D (see figure 4). The LGV matrix A′ 
for such paths reads:

A′
i,j =

⎧
⎨

⎩

Ai,j if j < n

(ai+n−ℓ
n

)
if j = n .

Theorem 3.1. The one-point function Hn,ℓ reads:

Hn,ℓ =

∮

C(Sℓ)

d t
2iπ

n∏

s=0

1
(t − as)

n∏

s=1

(t − ℓ+ s), (3.3)

where Sℓ = {as |as ! ℓ} .

Proof. We use the LU decomposition method with the matrix L−1 displayed in (2.3) to 
compute:

U ′
n,n =

n∑

k=0

(L−1 )n,kA′
k,n =

n∑

k=0

∏n−1
s=0 (an − as)∏n
s=0
s̸=k

(ak − as)

(
ak + n − ℓ

n

)

=
n−1∏

s=0

(an − as)

∮

C(Sℓ)

d t
2iπ

1∏n
s=0 (t − as)

1
n!

n−1∏

s=0

(t + n − ℓ− s),

where the contour integral picks up the residues at all the poles for which the binomial coef-
ficient is well-defined and non-zero, namely at all the points as such that as ! ℓ. The theorem 
follows from the identity (3.2), by normalizing by Un,n = 1

n!
∏n−1

s=0 (an − as), as given by (2.5), 
and changing s into n  −  s in the last product. □ 
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Remark 3.2. Note that the contour C(Sℓ) in (3.3) may be extended into C(Sℓ−n) i.e. encircle 
also those as between ℓ− n and ℓ− 1 since 

∏n
s=1(t − ℓ+ s) vanishes for all integers t in this 

range.

Finally, the single path partition function from the exit point (ℓ, n + 1 ) to the remote end-
point (0, n + r) is simply

Yℓ,r =
(
ℓ+ r − 1

ℓ

)
. (3.4)

3.3. Asymptotic analysis and arctic curve I

We now study the large n asymptotics of the identity (3.1) for our model. To this end, let us 
introduce rescaled variables

ℓ = n ξ, r = n z, ai = nα
(

i
n

)
,

 
(3.5)

where u !→ α(u) is a fixed piecewise differentiable increasing function from [0, 1] → R+ 
encoding the fixed limiting endpoint distribution. Note that moreover α′(u) ! 1 whenever the 
derivative of α is well-defined due to the condition ai+1 − ai ! 1.

The main result of this section may be summarized into the following theorem.

Theorem 3.3. The portion of arctic curve obtained with the tangent method for the path 
setup in which the target endpoint is moved away from D in the northwest corner and the es-
cape point is on the top boundary of D has the following parametric representation:

⎧
⎪⎪⎨

⎪⎪⎩

X = X(t) := t − x(t)(1 −x(t))
x′(t)

Y = Y(t) := (1 −x(t))2

x′(t)

(t ∈ [α(1 ),+∞)), (3.6)

where the quantity x(t) is defined as:

(0, n + r)

(ℓ, n)
ℓ

r

Figure 4. The tangent method applied to the NILP under study: the endpoint of the 
outermost path is moved from En  =  (0,n) to E′

n = (0, n + r) with r ∈ Z+, forcing the 
path to escape from the domain D (here the displayed grid) by a north-oriented step at 
some position (ℓ, n) on the boundary of D.
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x(t) := e−
∫ 1

0
d u

t−α(u) . (3.7)

Here X and Y denote rescaled coordinates in the plane, as obtained by after rescaling all  
coordinates by n so that D becomes a rectangle D of vertical size 1 and horizontal size α(1).

This result matches exactly lemma 2.3 in [DM15]. As the proof below relies only on the 
tangent method, it provides de facto a strong validation of its principles.

Proof. The exact formulas (3.3) and (3.4) lead to the following leading asymptotic behav-
iors:

Hn,nξ ∼
∮

d t
2iπ

enS0 (t,ξ), Ynξ,nz ∼ enS1 (ξ,z),

S0 (t, ξ) =
∫ 1

0
d u Log

(
t + u − ξ

t − α(u)

)

= −1 + (t + 1 − ξ)Log(t + 1 − ξ)− (t − ξ)Log(t − ξ)−
∫ 1

0
d u Log(t − α(u)),

S1 (ξ, z) = (ξ + z)Log(ξ + z)− ξLog(ξ)− zLog(z) .

 

(3.8)

Note that we performed a harmless rescaling of the integration variable t → nt . In this new 
variable, the integration contour (originally C(Sℓ)), must encircle the segment [ξ,α(1 )]. On the 
left side of this segment, we note, using remark 3.2, that the contour may cross the real axis 
anywhere between ξ − 1 and ξ. On the right side, it may cross the real axis at any position 
t ∈ [α(1 ),+∞). At large n, the contour integral is evaluated by a simple saddle-point estimate, 
i.e. picking t such that ∂tS0 = 0. Note that it is important that the saddle-point solution is com-
patible with the contour constraint. As it will appear, the corresponding value of t is real and 
must lie in [α(1 ),+∞).

The most likely rescaled exit position ξ must maximize the total action3 
S(t, ξ, z) = S0 (t, ξ) + S1 (ξ, z). Writing ∂tS0 = ∂ξS = 0, we find:

t + 1 − ξ

t − ξ
e−
∫ 1

0
d u

t−α(u) = 1 and
(ξ + z)(t − ξ)

ξ(t + 1 − ξ)
= 1 .

In terms of the quantity x(t) of (3.7), this leads to the solution:

ξ = ξ(t) := t − x(t)
1 − x(t)

and z = z(t) := t
1 − x(t)

x(t)
− 1 .

Clearly, we want ξ(t) and z(t) real, which implies t real. Moreover, we have 
(ξ(t)− t)(t − (ξ(t)− 1)) = −x(t)/(1 − x(t))2 < 0 as x(t) > 0, which means that t cannot 
lie in the interval [ξ − 1, ξ]. This leaves us with the range t ∈ [α(1 ),+∞): the result above is 
only valid if t lies in this range. Letting t vary from α(1) to +∞ corresponds in turn to letting 
x(t) increase from 0 to 1.

The (tangent) line passing through the rescaled escape point (ξ(t), 1) and the rescaled 
moved endpoint (0, 1 + z(t)) is defined by the equation ξ(t) Y + z(t)X = ξ(t)(1 + z(t)), or 
equivalently

x(t) Y + (1 − x(t)) (X − t) = 0 . (3.9)

3 Indeed, at the saddle-point t = t∗(ξ), we have d
dξS(t∗(ξ), ξ, z) = ∂ξS(t∗(ξ), ξ, z).
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In particular, this allows us to interpret the parameter t as the intercept of the tangent line with 
the X-axis. The range t ∈ [α(1 ),+∞) corresponds to negative slopes −(1 − x(t))/x(t). The 
envelope of this parametric family of lines is obtained by solving the system

x(t) Y + (1 − x(t)) (X − t) = 0
x′(t) Y − x′(t) (X − t)− 1 + x(t) = 0

and leads immediately to (3.6). □ 

Let us stress again that, due to the setup that we have used for applying the tangent method, 
namely that we decided to move the topmost endpoint En  =  (0,n) to E′

n = (0, n + r), the theo-
rem 3.3 above provides us only with a portion of the arctic curve. Other portions will be 
studied below. Let us examine the limiting points of the current portion: in the limit t → ∞ 
(x(t) → 1), we have the expansion

x(t) = 1 − 1
t
+

1
t2

(
1
2
−
∫ 1

0
α(u)d u

)
+ O

(
1
t3

)
,

hence the limiting point on the arctic curve has coordinates (X1 , Y1 ) with

X1 =
1
2
+

∫ 1

0
α(u)d u, Y1 = 1 (3.10)

and corresponds to a horizontal tangent. Note that, from the conditions α(0) = 0 and α′(u) ! 1 
for all u, we deduce the bounds 1 ! X1 ! α(1). At the other end when t → α(1) (x(t) → 0), 
writing t = α(1) + θ for small θ leads to the estimate:

Log (x(t)) = −
∫ 1

0

d u
θ + (1 − u)α′(1 )

−
∫ 1

0
d u
{

1
θ + α(1 )− α(u)

− 1
θ + (1 − u)α′(1 )

}

=
1

α′(1 )
Log

(
θ

α′(1 )

)
−
∫ 1

0
d u
{

1
α(1 )− α(u)

− 1
(1 − u)α′(1 )

}
+ O(θ),

where the subtraction term was devised so that the integral in the second line is finite. We 
deduce from (3.6) that, since x(t)/x′(t) ∼ α′(1) θ, X → α(1) whereas

Y =
(1 − x(t))2

x′(t)
≃ θ

1 − 1
α′(1 )

α′(1 )1 + 1
α′(1 )

e
∫ 1

0 d u
{

1
α(1 )−α(u)−

1
(1 −u)α′(1 )

}

.

We see that if α′(1) > 1 then Y → 0, and the endpoint of the arctic curve has coordinates 
(X0, Y0) = (α(1), 0) with a vertical tangent. On the other hand, if α′(1) = 1, then Y has a finite 
limit, and the endpoint is:

X0 = α(1 ), Y0 = e
∫ 1

0 d u{ 1
α(1 )−α(u)−

1
(1 −u)} (3.11)

with a vertical tangent. The case where α′(u) = 1 on a finite interval [1 − γ, 1] will be treated 
in section 6 below.

The above discussion assumed implicitly that α′(1) is finite. For α′(1) = +∞, we must 

consider the two integrals I1 =
∫ 1

0
du

α(1)−α(u)  and I2 =
∫ 1

0
du

(α(1)−α(u))2 . Assuming the behav-
ior α(1)− α(u) ∼ C(1 − u)a for 0  <  a  <  1, we see that both I1 and I2 are finite for a < 1

2, 
while I1 is finite positive and I2 diverges for a ! 1

2. When both I1 and I2 are finite, we have 

limt→α(1) x(t) = e−I1 < 1 and limt→α(1)
x′(t)
x(t) = I2 > 0. This leads to the endpoint
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X0 = α(1 )− 1 − e−I1

I2
, Y0 =

(1 − e−I1 )2

I2 e−I1
,

with a tangent of negative slope limt→α(1)(x(t)− 1)/x(t) = 1 − eI1 so that the arctic curve is 
tangent to the line connecting (X0 , Y0 ) to (α(1), 0). When I1 is finite and I2 diverges, this leads 
as before to an endpoint (X0, Y0) = (α(1), 0) but with now a finite negative slope 1 − eI1.

Example 3.4. To illustrate our result, we display in figure 5 the portion of arctic curve 
given by (3.6) in the particular case α(u) = 3u together with some set of tangents enveloping 
this curve. In this case x(t) =

( t−3
t

)
1/3 from (3.7), (X0, Y0) = (3, 0) and (X1, Y1) = (2, 1).

4. The second piece of the puzzle

As we just mentioned, theorem 3.3 solves only one part of the puzzle by providing only a por-
tion of the arctic curve, corresponding to an X-coordinate larger than X1, as given by (3.10). 
Let us now derive a second portion of the arctic curve, corresponding to X-coordinates smaller 
than X1. This is done by repeating the tangent method analysis, now applied to the second 
family of NILP, made of northeast- and east-oriented elementary steps.

4.1. A simple reflection principle

Let us consider the equivalent formulation of our problem in terms of the second family of 
paths. These paths, made of northeast- and east-oriented elementary steps, connect starting 
points Õi  of coordinates (an + 1/2 − ãi, 0), with ãi as in (2.1), to endpoints Ẽi of coordi-
nates (an  +  1/2,i), for i = 0, . . . , n. We may again apply the tangent method and compute the 

(X1, Y1)

(X0, Y0)
t

Figure 5. The portion of arctic curve given by (3.6) in the particular case α(u) = 3u 
(thick solid line), with extremities (X0, Y0) = (3, 0) and (X1, Y1) = (2, 1). We also 
displayed a set of tangents enveloping this curve, as given by (3.9) for values of t in the 
range [α(1 ),+∞) (here α(1) = 3). The parameter t corresponds to the abscissa of the 
intersection point of the tangent with the X-axis.
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one-point function H̃n,ℓ corresponding to an outermost path starting from Õn = (1/2, 0) and 
escaping at the position Ẽ = (ℓ+ 1 /2, n) from the rectangular domain D along a northeast-
oriented diagonal step (ℓ+ 1 /2, n) → (ℓ+ 3 /2, n + 1 ) pointing out of D (see figure 6). Note 
that, since elementary steps are northeast- or east-oriented, the smallest possible X-coordinate 
for the escape point is (n + 1/2) hence we have now the condition ℓ ! n. The escape path 
is then eventually extended to a new endpoint, say Ẽ′

n = (an + 1 /2, n + r), r ∈ Z+, corre-
sponding to moving the original endpoint Ẽn by r elementary steps to the north. The single path 
partition function from the exit point (ℓ+ 3 /2, n + 1 ) to the remote endpoint (an  +  1/2,n  +  r) 
is simply

Ỹℓ,r =
(

an − ℓ− 1
r − 1

)
. (4.1)

As for the new one-point function, we have the following theorem:

Theorem 4.1. The one-point function H̃n,ℓ (ℓ ! n) reads:

H̃n,ℓ = −
∮

C(S0 \Sℓ−n+1 )

d t
2iπ

n∏

s=0

1
(as − t)

n−1∏

s=0

(ℓ− t − s), (4.2)

where S0 \ Sℓ−n+1 = {as |as ! ℓ− n} .

Proof. Let us show how to derive the expression of H̃n,ℓ directly from our previous result 
for Hn,ℓ via a simple reflection principle. As displayed in figure 7, the endpoints Ẽi of co-
ordinates (an  +  1/2,i) for the second family of paths can be moved toward east to position 
(an  +  1/2  +  i,i) without changing the path enumeration problem. Indeed, the constraint of 
non-intersection of the paths forces the path extensions to form straight horizontal segments. 
The obtained configuration may then be transformed into a set of north- and east-oriented 
NILP on a square grid by the simple (shear) mapping (X, Y) !→ (X − Y , Y) (see figure 7). Up 
to a reflection (X, Y) → (1 /2 + an − X, Y), we immediately recognize the setting of our first 

(ℓ+1/2 , n)

ℓ+1/2
r

(an+1/2 , n + r)

Figure 6. The tangent method applied to NILP made of east- and northeast-oriented 
steps: the endpoint of the outermost path is moved from Ẽn = (an + 1 /2, n) to 
E′

n = (an + 1 /2, n + r) with r ∈ Z+, forcing the path to escape from the domain D 
(displayed rectangle) by a northeast-oriented step at some position (ℓ+ 1 /2, n) on the 
boundary of D.
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set of NILP (made of north- and west-oriented elementary steps), where the strictly increas-
ing sequence (ai)0!i!n is simply replaced by the strictly increasing sequence (ãi)0!i!n. This 
identification holds also in the presence of some escape point for the uppermost path. If this 
point has coordinates (ℓ+ 1 /2, n) as in figure 6, its X-coordinate is transformed by the two 
successive mappings above (shear and reflection) and takes the value ℓ̃ = an − ℓ+ n. We may 
therefore transpose the expression (3.3) for Hn,ℓ and write directly, without new calculation,

H̃n,ℓ =

∮

C(S̃ℓ̃)

d t
2iπ

n∏

s=0

1
(t − ãs)

n∏

s=1

(t − ℓ̃+ s) =
∮

C(S̃ℓ̃)

d t
2iπ

n∏

s=0

1
(t − an + an−s)

n∏

s=1

(t − an + ℓ− n + s),

where S̃ℓ̃ = {ãs |ãs ! ℓ̃} . Performing the change of variable t !→ an − t (and changing 
s → n − s in both products), we immediately obtain (4.2). Indeed, after changing variable, 
the contour explored by the (new) t variable must encircle the an − ãs such that ãs ! ℓ̃  hence, 
using ℓ̃ = n + an − ℓ and ãs = an − an−s (and changing the dummy variable s into n  −  s), the 
as with as ! ℓ− n. This latter set {as |as ! ℓ− n}  is nothing but S0 \ Sℓ−n+1. □ 

As before, we have the following remark:

Remark 4.2. The contour C(S0 \ Sℓ−n+1) in (4.2) may be extended to C(S0 \ Sℓ+1) i.e. 
encircle only those as between 0 and ℓ. Indeed, the integrand in (4.2) vanishes for all integers 
t between ℓ− n + 1 and ℓ.

4.2. A combinatorial sum rule

Before we discuss the asymptotics of H̃n,ℓ and the associated tangent method result, let us 
make some comment on the close relation between the one-point functions H̃n,ℓ and Hn,ℓ. 
From their expressions (3.3) an (4.2), we deduce the equality, for ℓ ! n + 1,

Hn,ℓ + H̃n,ℓ−1 =

∮

C(Sℓ)

d t
2iπ

n∏

s=0

1
(t − as)

n∏

s=1

(t − ℓ+ s)−
∮

C(S0 \Sℓ)

d t
2iπ

n∏

s=0

1
(as − t)

n−1∏

s=0

(ℓ− 1 − t − s)

=

∮

C(S0 )

d t
2iπ

n∏

s=0

1
(t − as)

n∏

s=1

(t − ℓ+ s)

where, using remark 4.2, we extended the contour for H̃n,ℓ−1  from C(S0 \ Sℓ−n) to C(S0 \ Sℓ). 
The final contour C(S0) encircles all the as, s = 0, . . . , n, hence all the (finite) poles of the 
integrand. The integral may thus be computed as minus the residue at infinity. At large t, the 
integrand behaves as 1/t, hence the residue is  −1, leading to the sum rule

Hn,ℓ + H̃n,ℓ−1 = 1 . (4.3)

This sum rule has a nice combinatorial interpretation, which we explain now. In the origi-
nal setting with north- and west-oriented step paths, the quantity Zn Hn,ℓ enumerates con-
figurations where the n’th path exits the domain D by a north-step starting at position (ℓ, n). 
Alternatively, Zn Hn,ℓ may be interpreted as configurations where the n’th path goes from On to 
En, hence remains in the domain D but is required to pass via the position (ℓ, n). Indeed, once 
the position (ℓ, n) is reached, the path from (ℓ, n) to (0, n) is uniquely determined, made of a 
straight horizontal segment of length ℓ. The quantity Zn Hn,ℓ − Zn Hn,ℓ+1  therefore enumerates 
NILP in D where the n’th path passes via (ℓ, n) but not via (ℓ+ 1, n). This path necessarily 
reaches (ℓ, n) by a north step (ℓ, n − 1 ) → (ℓ, n), which is moreover the unique vertical step in 
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the uppermost horizontal strip of D (i.e. the subdomain of D with Y-coordinate between n  −  1 
and n), see figure 8. Using now the equivalent description by east- and northeast-oriented step 
paths, the corresponding n’th path in this set necessarily has a northeast-oriented step from 
(ℓ− 1 /2, n − 1 ) to (ℓ+ 1 /2, n) hence reaches position (ℓ+ 1 /2, n) without passing via posi-
tion (ℓ− 1 /2, n). By the same argument as above, configurations satisfying this requirement 
are enumerated by Zn H̃n,ℓ − Zn H̃n,ℓ−1 . Using this bijective correspondence and simplifying 
by Zn, we deduce the identity

Hn,ℓ − Hn,ℓ+1 = H̃n,ℓ − H̃n,ℓ−1 ⇔ Hn,ℓ+1 + H̃n,ℓ = Hn,ℓ + H̃n,ℓ−1 .

This equality states that the quantity Hn,ℓ + H̃n,ℓ−1  does not depend on ℓ, and remains valid for 
ℓ = n with the convention that H̃n,n−1 = 0  since the outermost path in the second path family 
setting cannot pass via the vertex (n − 1, n). Note that Hn,n  =  1 (since the outermost path in 
the original path family setting necessarily passes through the vertex (n, n)) so that the actual 
common value of Hn,ℓ + H̃n,ℓ−1  for all ℓ ! n is 1. This is precisely the sum rule (4.3).

4.3. Asymptotic analysis and arctic curve II

Applying now the tangent method to the second family of paths, we may complete theorem 
3.3 by the following statement:

Theorem 4.3. The portion of arctic curve obtained with the tangent method for the path 
setup in which the target endpoint is moved away from D in the northeast corner and the es-
cape point is on the top boundary of D has the following parametric representation:

ã6 ã0ã1ã2ã3ã4ã5

ã6 ã0ã1ã2ã3ã4ã5

Figure 7. For a NILP configuration with paths made of east- and northeast-oriented 
steps, moving the endpoints Ẽi from position (an  +  1/2,i) to position (an  +  1/2  +  i,i) 
does not modify the enumeration problem since the added portions of path are frozen 
into horizontal segments. A simple shear transforms this extended NILP into a NILP 
made of north- and east-oriented steps which, upon reflection is of the same type as that 
of figure 1 up to the change of sequence from (ai)0!i!n → (ãi)0!i!n.
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⎧
⎪⎪⎨

⎪⎪⎩

X = X(t) := t − x(t)(1−x(t))
x′(t)

Y = Y(t) := (1−x(t))2

x′(t)

(t ∈ (−∞, 0]), (4.4)

with x(t) as in 3.3.

In other words, the arctic curve parametrization of theorem 3.3 extends to values of t in 
(−∞, 0], leading to a new portion of the arctic curve which we will describe below.

Proof. Using the same rescaling (3.5) as in section 3.3, we now get from the exact formulas 
(4.2) and (4.1) the asymptotic behaviors, valid for ξ ! 1 (recall that ℓ ! n in H̃n,ℓ):

H̃n,nξ ∼ −
∮

d t
2iπ

enS̃0 (t,ξ), Ỹnξ,nz ∼ enS̃1 (ξ,z),

S̃0 (t, ξ) =
∫ 1

0
d u Log

(
ξ − t − u
α(u)− t

)

= −1 − (ξ − t − 1 )Log(ξ − t − 1 ) + (ξ − t)Log(ξ − t)−
∫ 1

0
d u Log(α(u)− t),

S̃1 (ξ, z) = (α(1 )− ξ)Log(α(1 )− ξ)− zLog(z)− (α(1 )− ξ − z)Log(α(1 )− ξ − z) .

Here the contour in the (rescaled) t variable must encircle the segment [0, ξ − 1 ] and, us-
ing remark 4.2, may cross the real axis anywhere between ξ − 1 and ξ on the right side of 
this segment. On the left side, any position t ∈ (−∞, 0] is acceptable. As in section 3.3, the 
asymptotic evaluation of the contour integral amounts to picking t such that ∂tS̃0 = 0 which 
will produce a real value of t in the interval (−∞, 0]. The most likely rescaled exit position 
ξ is obtained as before by maximizing the total action S̃(t, ξ, z) = S̃0 (t, ξ) + S̃1 (ξ, z). Setting 
∂tS̃0 = ∂ξS̃ = 0 now leads to:

ξ − t − 1
ξ − t

x(t) = 1 and
(ξ − t)(α(1)− ξ − z)
(α(1)− ξ)(ξ − t − 1)

= 1

(ℓ, n)

Figure 8. A configuration of NILP in D. In the language of paths made of north- and 
west-oriented steps, the configuration has a unique vertical step in the uppermost 
horizontal strip of D, which is part of the outermost path and leads to position (ℓ, n) on 
the boundary. In the equivalent description by east- and northeast-oriented step paths, 
this step is dual to the unique northeast-oriented step in the uppermost strip, itself part 
of the outermost path and leading to position (ℓ+ 1 /2, n) on the boundary.
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with x(t) as in (3.7). We deduce

ξ = ξ(t) = t +
x(t)

x(t)− 1
and z = z̃(t) = (α(1)− t)

x(t)− 1
x(t)

− 1 .

Again t must be real and cannot lie in the segment [ξ − 1, ξ] and this leaves us with the range 
t ∈ (−∞, 0]. Letting t vary from −∞ to 0 corresponds to letting x(t) increase from 1 to +∞.

The (tangent) line passing through the rescaled escape point (ξ(t), 1) and the 
rescaled endpoint (α(1), 1 + z̃(t)) is defined by the equation  (ξ(t)− α(1)) Y + z̃(t)X =  
ξ(t)(1 + z̃(t))− α(1), or, after substitution and simplification,

x(t) Y + (1 − x(t)) (X − t) = 0 . (4.5)

Remarkably, the equation for the tangent lines is the same as that (3.9) in the setting of sec-
tion 3.3. Only the range of t, now in the interval (−∞, 0], is changed and corresponds to posi-
tive slopes (x(t)− 1)/x(t). The envelope of this new parametric family of lines has therefore 
the same parametric form (3.6) as for theorem 3.3 and this leads immediately to (4.4), hence 
theorem 4.3. □ 

Again we may examine the limiting points of the new portion of arctic curve: in the limit 
t → −∞ (x(t) → 1), we recover the point (X1 , Y1 ) of (3.10) with a horizontal tangent. At the 
other end of the curve, when t → 0 (x(t) → +∞), we have the estimate:

Log(x(t)) = −
∫ 1

0

du
t − uα′(0)

−
∫ 1

0
du
{

1
t − α(u)

− 1
t − uα′(0)

}

= − 1
α′(0)

Log
(

−t
α′(0)

)
−
∫ 1

0
du
{

1
uα′(0)

− 1
α(u)

}
+ O(t)

with a second integral being finite. We obtain the estimates

x(t) ∼
t→0 −

K
(
α′(0 )
−t

)1 /α′(0 )

,

x′(t) ∼
t→0 −

K
α′(0 )2

(
α′(0 )
−t

)1 +1 /α′(0 )

,

K = e−
∫ 1

0 d u
{

1
u α′(0 )−

1
α(u)

}

.
Note that both x(t) and x′(t) tend to ∞ for t → 0 with

x(t)2

x′(t)
∼

t→0 −
K α′(0 )2

(
α′(0 )
−t

)1 /α′(0 )−1

.

For α′(0) > 1, this ratio tends to 0 and the endpoint of the arctic curve has coordinates 
(X∞, Y∞) = (0, 0) with a slope 1 since (x(t)− 1)/x(t) tends to 1. On the other hand, if 
α′(0) = 1, then X and Y have a finite limit, and the endpoint is:

X∞ = Y∞ = e−
∫ 1

0 du{ 1
u −

1
α(u)}

with again a slope 1. Since the paths cannot enter the domain Y  >  X, the arctic curve is natu-
rally extended from (X∞, Y∞) to (0, 0) by a segment. The case where α′(u) = 1 on a finite 
interval [0, γ] is special in this respect, and will be discussed in section 6 below.
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The above discussion assumed implicitly that α′(0) is finite. For α′(0) = +∞, we have 
to be more precise. Let us assume the behavior α(u) ∼ Cua when u → 0 with 0  <  a  <  1. We 

have to consider the two integrals J1 =
∫ 1

0
du
α(u)  and J2 =

∫ 1
0

du
α(u)2 . We note that for a < 1

2 both 
integrals are finite, while for a ! 1

2, J1 is finite and J2 diverges. If both integrals are finite, then 

limt→0 x(t) = eJ1 and limt→0
x′(t)
x(t) = J2 , and we find the endpoint for t → 0:

X∞ =
eJ1 − 1

J2
, Y∞ =

(eJ1 − 1 )2

J2 eJ1

with a tangent of positive slope limt→0(x(t)− 1)/x(t) = 1 − e−J1 < 1 so that the arctic 
curve is tangent to the line connecting (X∞, Y∞) to (0, 0). If J2 diverges and J1 is finite, then 
(X∞, Y∞) = (0, 0), and the tangent at the origin has slope 1 − e−J1 < 1.

As a final remark, we note that when the starting point pattern is symmetric by reflection, 
i.e. whenever ãi = ai, hence α(u) = α(1)− α(1 − u), the arctic curve is symmetric under 
the involution (X, Y) !→ (α(1 )− X + Y , Y) as a direct consequence of the reflection principle 
detailed in section 4.1 above. This is visible in the parametric equation of the curve: indeed, 
using α(u) = α(1)− α(1 − u), we get the identity x(α(1)− t) = 1/x(t). Plugged into the 
parametric equation, it yields X(α(1)− t) = α(1)− X(t) + Y(t) and Y(α(1)− t) = Y(t). The 
above symmetry of the arctic curve is therefore associated with the involution t !→ α(1)− t 
for the parameter t .

5. Examples

In this section, we present various examples to illustrate the general results of sections 3 and 4 
above. As a preliminary remark, we note that any continuous piecewise differentiable increas-
ing function α(u) on [0, 1] with α′(u) ! 1 (when it is defined) may be realized by taking start-
ing points (ai,0) with

ai =
⌊

nα
(

i
n

)⌋
. (5.1)

The condition α′(u) ! 1 guarantees that this sequence is indeed strictly increasing4 and its 
scaling limit is clearly described by α(u).

5.1. The pure case α(u) = p u

We consider the case where α(u) = p u for some real number p  >  1. For instance, the par-
ticular case p ∈ N \ {1} is obtained as the large n limit of the points ai = p i , i = 0, 1, . . . , n.

Substituting α(u) = p u into (3.7) yields

x(t) = e−
∫ 1

0
d u

t−pu =
(

1 − p
t

) 1
p

. (5.2)

The two portions of the arctic curve correspond respectively to t ∈ (−∞, 0] and 
t ∈ [p,+∞)], namely to x(t) ∈ [0,+∞). More precisely, we may express the arctic curve 
of theorems 3.3 and 4.3 in terms of the parameter x ≡ x(t), by noting that t  =  p/(1  −  xp) and 
x′(t) = (1 − x p)2/( p2 x p−1) as:

4 As we shall see later, it is interesting to also address the case where α(u) presents discontinuities with positive 
jumps δk. In that case, equation (5.1) is only valid for large enough n ! maxk(1/δk) to ensure that the sequence (ai) 
is strictly increasing.
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⎧
⎨

⎩
X = p

(1 −x p)

(
1 − p (1 −x)

(1 −x p) x p
)

Y = p2 (1 −x)2

(1 −x p)2 x p−1
(x ∈ [0,+∞)) . (5.3)

The special points on the curve, corresponding respectively to x = +∞, 1, 0, are the origin 
(X∞, Y∞) = (0, 0) with a tangent of slope 1, the maximum (X1, Y1) = ( p+1

2 , 1) with hori-
zontal tangent and the endpoint (X0, Y0) = ( p, 0) with vertical tangent. When p is an integer, 
equation (5.3) may be recast into:

⎧
⎨

⎩
X = p (1 +2 x+3 x2 +···+p x p−1 )

(1 +x+x2 +···+x p−1 )2

Y = p2 x p−1

(1 +x+x2 +···+x p−1 )2

(x ∈ [0,+∞)) . (5.4)

For p  =  2, this simplifies drastically, as we may eliminate x = Y/(2(X − Y)), and we recover 
the arctic parabola of [DFL18]:

(2 X − Y)2 − 8 (X − Y) = 0 .

For p  =  3, eliminating x leads to the following quartic arctic curve:

(3 X2 − 3 XY + Y 2 )2 − 2 (3 X − Y)(9 X2 − 15 XY + 7 Y 2 ) + 81(X − Y)2 = 0 .

The corresponding curve is displayed in figure 9 for illustration. For higher integer values of 
p, by eliminating x, one can show that the arctic curve is an algebraic curve of degree 2p  −  2. 
The case of rational p ! 1 also leads to an algebraic arctic curve. For instance, for p  =  3/2 
we find:

32(3X2 − 3XY + Y2)2 − 16(54X3 − 135X2Y + 99XY2 − 19Y3)

+ 162(5X − 8 Y)(X − Y)− 243(X − Y) = 0 .

It is interesting to notice that there is a well-defined large p limit of the arctic curve, pro-
vided one rescales the X coordinate by a factor 1/p. In the new coordinates (X̃, Ỹ) = (X/p, Y), 
using the finite parameter ey = x p, i.e. setting Log(x) = y

p  and letting p → ∞, we find

(X1, Y1)

(X∞, Y∞) (X0, Y0)

Figure 9. The arctic curve in the case α(u) = 3 u. The slope is horizontal at 
(X1, Y1) = (2, 1) on the upper boundary of D, vertical at (X0, Y0) = (3, 0) on the right 
boundary of D, and 1 at (X∞, Y∞) = (0, 0) on the left boundary of D so that the arctic 
curve is tangent to the indicated line Y  =  X (above which paths are fully frozen even 
for finite n).
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⎧
⎨

⎩
X̃ = 1

(1 −ey)

(
1 + y ey

(1 −ey)

)
= y

4 sinh2 (y/2 ) −
e−y/2

2 sinh(y/2 )

Ỹ = y2 ey

(1 −ey)2 = y2

4 sinh2 (y/2 )

(y ∈ R) . (5.5)

Note the following symmetry: under y → −y, we have (X̃, Ỹ) → (1 − X̃, Ỹ) so that the arctic 
curve is symmetric with respect to the vertical line X̃ = 1/2. The tangents at the endpoints 
(0, 0) and (1, 0) are vertical, while that at the maximum ( 1

2 , 1) is horizontal.
To end this section, it is interesting to revisit the connection between the asymptotic result 

for the one-point function Hn,ℓ and its discrete counterpart. Let us for instance consider the 
case ai  =  3i (p  =  3). The one-point function Hn,ℓ may easily be obtained from the LU decom-
position as

Hn,ℓ =

∑n
k=⌊ℓ/3 ⌋(−1 )k+n

(n
k

)(3 k+n−ℓ
n

)

∑n
k=0 (−1 )k+n

(n
k

)(3 k+n
n

) .

Figure 10 shows a plot of Hn,ℓ as a function of ℓ/n for increasing values of  
n = 20, 50, 100. We observe a sharp jump from the value 1 to the value 0 taking place at a 
value of ℓ/n tending to X1  =  2 in this case. The corresponding asymptotics, describing the 
large n behavior of Hn,ℓ for ℓ/n ! X1 is captured by the quantity 1n Log (Hn,ℓ) which tends to a 
continuous function S0(ξ) equal to S0 (t, ξ) of (3.8) taken at the saddle-point solution t = t∗(ξ) 
where ∂tS0 (t, ξ) = 0 . We find the parametric expression

ξ = t − x(t)
1 − x(t)

S0 (ξ) =
1
3
(t − 3 )Log (t − 3 )− 1

3
t Log (t) +

1
1 − x(t)

Log
(

1
1 − x(t)

)

− x(t)
1 − x(t)

Log
(

x(t)
1 − x(t)

)

x(t) :=
(

t − 3
t

)1 /3

.

 

(5.6)

This asymptotic analysis is corroborated by the plot of 1
n Log (Hn,ℓ) as a function of ℓ/n dis-

played in figure 10, for increasing values of n = 20, 50, 100, together with the expected limit 
S0(ℓ/n). The function S0(ξ) is well defined for ξ between X1  =  2 (t → ∞) and 3 (t → 3) and 
vanishes at ξ = 2. For 0 ! ξ ! 2, the limit of 1

n Log (Hn,ℓ) vanishes identically, meaning that 
Hn,ℓ → 1  at large n for ℓ ! 2n.

5.2. The case of a piecewise linear α(u)

Let us consider real numbers γ1 , γ2 , . . . , γk > 0  such that 
∑k

i=1 γi = 1, and real numbers 
p1 , p2 , . . . , pk ! 1 . We define the function α(u) to be continuous and piecewise linear with 
constant derivative p1 on the interval [0, γ1 ], p2 on [γ1 , γ1 + γ2 ], etc, pk on [γ1 + · · ·+ γk−1, 1]. 
Define variables ϕi :=

∑i
j=1 γj and θi :=

∑i
j=1 pjγj for i = 0, 1, . . . , k  with ϕ0 = 0, ϕk = 1, 

and 0 = θ0 < θ1 < · · · < θk−1 < θk = α(1). We have for i = 1, 2, . . . , k:

α(u) = θi−1 + pi(u − ϕi−1 ) (u ∈ [ϕi−1 ,ϕi]) .

The corresponding value of x(t) from (3.7) reads:
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x(t) = e
−

k∑
i= 1

∫ ϕi
ϕi−1

du
t−θi−1−pi(u−ϕi−1) =

k∏

i=1

(
t − θi

t − θi−1

) 1
pi

=
k∏

i=1

(
1 − θi

t

) 1
pi
− 1

pi+ 1

 

(5.7)

with the convention that pk+1 = +∞.
The maximum with horizontal tangent has coordinates:

X1 =
1
2
+

k∑

i=1

θ2
i − θ2

i−1

2 pi
, Y1 = 1 .

The other special points on the arctic curve depend crucially on the values of p1 and pk. We 
have (X∞, Y∞) = (0, 0) unless p1  =  1, and (X0, Y0) = (α(1), 0) = (θk, 0) unless pk  =  1. The 

Hn,ℓ

ℓ/n

ξ =ℓ/n

1
nLog(Hn,ℓ) X1

S0(ξ)

Figure 10. Top: the one-point function Hn,ℓ for the sequence ai = 3 i and for finite 
n = 20, 50, 100 versus ℓ/n presents a sharp transition around ℓ/n = 2 from a limiting 
value 1 for small ℓ/n to a limiting value 0 for large ℓ/n. Bottom: the asymptotic limiting 
shape of the right part of the transition curve is captured by the quantity 1

n Log (Hn,ℓ) 
as a function of ξ = ℓ/n, which, for ξ ! X1 = 2, tends at large n towards the scaling 
function S0(ξ) of (5.6).
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situation where either p1  =  1 or pk  =  1 is more subtle and will be discussed in section 6 below. 
Figure 11 presents a plot of the arctic curve in the particular case of k  =  3 linear pieces, with 
γ1 = γ2 = γ3 = 1/3, p1  =  2, p2  =  4 and p3  =  3.

5.3. A first non-linear case: α(u) = p u + q u2

In the case when α(u) = p u + q u2 with p, q real numbers such that p ! 1 and q  >  0, we have 
by equation (3.7):

x(t) = e−
∫ 1

0
d u

t−pu−qu2 =

(
p − 2 t +

√
p2 + 4 qt

p − 2 t −
√

p2 + 4 qt

) 1√
p2 +4 qt

.

The special points are for p  >  1:

(X∞, Y∞) = (0, 0), (X1, Y1) =

(
p + 1

2
+

q
3

, 1
)

, (X0, Y0) = ( p + q, 0),

whereas for p  =  1 we have (X∞, Y∞) =
(

1
1 +q , 1

1 +q

)
. Figure 12 presents a plot of the arctic 

curve in the particular case p  =  q  =  1.

5.4. A second non-linear case: α(u) = 1
a ua

We consider the case α(u) = 1
a ua for some fixed real number a ∈ (0, 1). We have by 

equation (3.7):

x(t) = e
−
∫ 1

0
d u

t− 1
a ua = e

−2 F1

(
1, 1

a ;1+ 1
a

∣∣∣ 1
a t

)
/t

,

in terms of the hypergeometric function

2 F1

(
1,

1
a

; 1 +
1
a

∣∣∣x
)

=
∑

n!0

xn

na + 1
.

The special points are as follows: for t → ∞: (X1, Y1) =
(

1
2 + 1

a(a+1) , 1
)
 with horizontal tan-

gent. For t → 0, we have, according to the discussion at the end of section 4.3:

(X1, Y1)

θ1 θ2 θ3
(X∞, Y∞) (X0, Y0)

p3 =3p1 =2 p2 =4

Figure 11. The arctic curve when α(u) is continuous piecewise linear, made of k  =  3 
linear pieces of respective widths γ1 = γ2 = γ3 = 1/3 and slopes p1  =  2, p2  =  4 and 
p3  =  3 (so that θ1 = 2/3, θ2 = 2 and θ3 = 3).
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(X∞, Y∞) =

⎧
⎨

⎩

(
(1 − 2a) e

a
1−a −1

a2 , (1 − 2a) (e
a

1−a −1)2

a2 e
a

1−a

)
if a < 1

2

(0, 0) if a ! 1
2 ,

where we have used the value J1 = a
1−a  while J2 = a2

1−2a when a < 1
2 and diverges other-

wise. In both cases the tangent has slope 1 − e−
a

1−a. Finally, when t → α(1) = 1/a, we have 
α′(1) = 1, leading to the endpoint

(X0 , Y0 ) =

(
1
a

,
1
a

e−γE−ψ(a−1 )

)

by applying (3.11), and where γE = .5772... is Euler’s Gamma constant and   
ψ(u) = Γ′(u)/Γ(u). We have represented the cases a = 1

3 and a = 2
3 in figures  13 and 14 

respectively. The special points read respectively:

a =
1
3

: (X1, Y1) =

(
11
4

, 1
)

, (X∞, Y∞) =

(
3(
√

e − 1), 3
(
√

e − 1)2
√

e

)
, (X0, Y0) =

(
3,

3
e
√

e

)
,

a =
2
3

: (X1, Y1) =

(
7
5

, 1
)

, (X∞, Y∞) = (0, 0), (X0, Y0) =

(
3
2

,
6
e2

)
,

with horizontal tangents at (X1 , Y1 ), vertical tangents at (X0 , Y0 ), and tangents of respective 
slopes 1 − 1/

√
e and 1  −  1/e2 at (X∞, Y∞).

6. Freezing boundaries

So far we discussed two portions of the arctic curve, one going from (X∞, Y∞) to (X1 , Y1 ) and 
one from (X1 , Y1 ) to (X0 , Y0 ). For a generic function α(u), we expect that these two portions 
build the entire arctic curve, which therefore defines two frozen domains in D. The domain 
lying above the portion from (X∞, Y∞) to (X1 , Y1 ) corresponds in the original path family 
setting to a region where the paths are frozen into horizontal segments, or equivalently, in 

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 12. The arctic curve when α(u) = u + u2 hits the Y  =  X line at the point 
(X∞, Y∞) = (1/2, 1/2). For X  <  1/2, the limit between the ‘crystalline’ and the ‘liquid’ 
phase occurs on the Y  =  X line.
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the second path family setting, to a region not visited by the paths. In the tiling language, this 
corresponds to a frozen domain made of upper tiles: we therefore shall refer to such freezing 
as being of type U (for upper), see figure 15 for an illustration. As for the domain lying above 
the portion from (X1 , Y1 ) to (X0 , Y0 ), it corresponds to a region not visited by the paths in the 
original path family setting and to a region where paths of the second family form horizontal 
segments. In other words, we have here a frozen domain of type F (i.e. made of front tiles). A 
frozen domain with the third possible type of freezing, of type R (i.e. made of right tiles with 
paths of the first family frozen vertically, or equivalently, paths of the second family frozen 
along diagonal lines) will not appear in general since for a generic increasing sequence, the 
spacing between the successive ai’s leaves enough space for the paths to develop some fluid 
erratic behavior in the horizontal direction.

New portions of arctic curve may still appear in the presence of what may be called freez-
ing boundaries, i.e. for particular sequences (ai)0!i!n which induce new frozen domains adja-
cent to the lower boundary of the domain D.

A first kind of such freezing boundary corresponds to a case for which there is no (horizon-
tal) spacing left in-between successive ai’s. In other words, it may happen that ai+1 − ai = 1 
for i lying in one or several ‘macroscopic’ intervals Ik = {qk, qk + 1, . . . , qk + m k − 1} where 

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 13. The arctic curve when α(u) = 3 u1/3 (see text for the values of the special 
points). The slope at the point (X∞, Y∞) is equal to 1 − 1/

√
e. For X < X∞, the limit 

between the ‘crystalline’ and the ‘liquid’ phase occurs on the line Y = (1 − 1/
√

e)X.

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 14. The arctic curve when α(u) = 3
2 u2/3 (see text for the values of the special 

points). The slope at the point (X∞, Y∞) is equal to 1  −  1/e2.
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the length mk of Ik scales like n. As displayed in figure 16, the non-intersection constraint in 
this case creates, for any such interval, a triangular region which is fully frozen, of type R. We 
expect these fully frozen regions to then serve as germs for even larger frozen domains of type 
R, hence to create new portions for the arctic curve. Note that, for the third family of paths 
made of north- and northeast-oriented steps, these freezing domains of type R correspond to 
regions not visited by the paths.

The condition that ai+1 − ai = 1 for i ∈ Ik translates into the condition α′(u) = 1 for u 
in some finite interval [uk, uk + γk] (with uk = qk/n and γk = m k/n > 0 in the large n limit). 
When several intervals co-exist, they may be arranged into a family of (maximal) disjoint 
intervals [uk, uk + γk] (where uk+1 > uk + γk), which may possibly include boundary intervals 
of the form [0, γ] or [1 − γ, 1].

Another type of freezing boundary corresponds to the opposite case where there 
is one or several ‘macroscopic’ gaps in the sequence (ai)0!i!n, namely intervals 
Ik = {qk, qk + 1, . . . , qk + m k − 1} (with mk scaling like n) which contain no ai at all. As dis-
played in figure 17, this case creates, for any such interval, a fully frozen layer made of a 
sequence of front tiles followed by a sequence of upper tiles (so that the lower boundary of 
the layer is horizontal). We expect these frozen layers to serve as germs for extended frozen 
domains of type F above their left part and of type U above their right part, creating again new 
portions for the arctic curve.

The presence of gaps translates into the fact that α(u) is discontinuous and presents a jumps 
of height δk = m k/n at uk = qk/n.

This section  is devoted to a heuristic study of these freezing boundaries, of both types, 
creating new portions of arctic curve.

6.1. The case of a piecewise linear α(u) revisited

We may easily introduce freezing boundaries in the framework studied in section 5.2 where 
α(u) is a continuous and piecewise linear function made of k pieces, as defined in section 5.2. 
Let us start with freezing boundaries creating frozen domains of type R. Such boundaries exist 
whenever pi  =  1 for one or several i’s in {1, . . . , k}.

To describe new portions of the arctic curve, we note that, in all generality, the two already 
known portions are described by the same parametric equations, given by (3.6) or (4.4) with 
the same expression (3.7) for x(t). Only the range of t differs between the two portions, 

(X1, Y1)

(X∞, Y∞) (X0, Y0)

U type F type

Figure 15. Frozen domains for a generic α(u) (here in the case α(u) = 3 u) are made 
of upper tiles (U-type) above the portion of arctic curve from (X∞, Y∞) to (X1 , Y1 ) and 
made of front tiles (F-type) above the portion of arctic curve from (X1 , Y1 ) to (X0 , Y0 ).
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namely (−∞, 0] for one portion and [α(1 ),+∞) for the other. This range covers the allowed 
X-coordinates of the points at which the tangents intersect the X-axis, whose value is precisely 
t. The allowed values of t correspond moreover to positive real values of x(t) ranging from 0 
to ∞, the slope of the tangent parametrized by t being precisely −(1 − x(t))/x(t).

It is tempting to conjecture that, in the presence of freezing boundaries, the expected new 
portions of the arctic curve are again given by (3.6) (or (4.4)) and simply correspond to new 
possible values of the parameter t. In order for these parametric equations to remain meaning-
ful, we must insist on having a real value for x(t). On the other hand, releasing the constraint 
that x(t) be positive seems harmless. Let us now see how this may be realized in the piecewise 
linear case.

From the expression (5.7) for x(t), written as

x(t) =
k∏

i=1

(
t − θi

t − θi−1

) 1
pi

,

we immediately see that the ith term in the product leads to a cut of x(t) on the real interval 
[θi−1 , θi] when pi  >  1. If all the pi’s are strictly larger than 1, then x(t) has a cut on the real axis 
along the whole interval [0, θk] and, for real t, is well-defined only for t ! θk = α(1) or t ! 0 
(for which x(t) is moreover real and positive) corresponding to the known two portions of the 

aqk aqk+mk. . . . . . . . . . . .

Figure 16. A schematic picture of a freezing boundary, where ai+1 − ai = 1 for i in 
some interval Ik = {qk, qk + 1, . . . , qk + m k − 1}. The non-intersection constraint 
creates a fully frozen triangular region made of right tiles only. This region will serve as 
a germ for a larger frozen domain of type R around it.

ai ai+1

Figure 17. A schematic picture of a freezing boundary corresponding to a ‘macroscopic’ 
gap in the sequence between ai and ai+1 for some i. This forces the lower layer to be 
made of a sequence of front tiles followed by a sequence of upper tiles. This frozen 
layer will serve as germ for two extended frozen domains: one of type F above the left 
part and one of type U above the right part.
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arctic curve. On the other hand, if pm  =  1 for some m, then the above formula is well defined 
on [θm−1 , θm] and takes the value:

x(t) = −
m −1∏

i=1

(
t − θi

t − θi−1

) 1
pi

×
(

θm − t
t − θm −1

)
×

k∏

i=m +1

(
θi − t
θi−1 − t

) 1
pi

for t ∈ [θm −1 , θm ] ( pm = 1 ) .

Taking pm  =  1 therefore gives rise to a domain [θm−1 , θm] of t for which x(t) is real and nega-
tive. This new range of t in turn gives rise via the equation (3.9) (or equivalently (4.5)) to a 
new set of tangent lines with positive slope −(1 − x(t))/x(t) crossing the X-axis at (t, 0) with 
t ∈ [θm−1 , θm], which is precisely the location of the base of the triangular fully frozen region 
of type R (as displayed in figure 16). It is easily checked that the slope of the tangent is equal 
to 1 for t = θm−1 and ∞ for t = θm and that the envelope of these tangents for t ∈ [θm−1 , θm] 
presents a cusp. We conjecture that this envelope is precisely the outer boundary of a larger 
frozen domain enclosing the fully frozen triangular region and tangent to this region at its 
endpoints. We thus have here a new portion of arctic curve.

Figure 18 displays for illustration the complete (including conjectured portions) arctic 
curve in the case k  =  3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2  =  1. Clearly, when pm  =  1 
for several values of m (which we take non consecutive as, in the piecewise linear setting, it is 
implicitly assumed that consecutive slopes are different), each piece where pm  =  1 gives rise 
to a new frozen domain. When a freezing boundary occurs in the first piece (i.e. when p1  =  1), 
it is easily checked that Y∞ > 0 and that the new frozen domain is enclosed by a new portion 
of arctic curve from (X∞, Y∞) to (θ1, 0). Similarly, when a freezing boundary occurs in the 
last piece (i.e. when pk  =  1), the new frozen domain is enclosed by a new portion of arctic 
curve from (X0 , Y0 ) (where Y0  >  0) to (θk−1, 0). Figure 19 displays a situation where both p1 
and pk are equal to 1, namely the case k  =  5, p1 = p3 = p5 = 1, p2 = p4 = 2 and γi = 1/5 for 
i = 1, . . . , 5, giving rise to three new frozen domains.

θ1 θ2p2 = 1

p3 = 2p1 = 2

R type

Figure 18. The complete arctic curve when α(u) is continuous piecewise linear with 
k  =  3 linear pieces of respective widths γ1 = γ2 = γ3 = 1/3 and slopes p1  =  2, p2  =  1 
and p3  =  2 (so that θ1 = 2/3 and θ2 = 1), giving rise to a freezing boundary along the 
segment [θ1 , θ2 ]. A new frozen domain of type R emerges above this segment, separated 
from the ‘liquid’ phase by a new portion of arctic curve forming a cusp. As displayed, 
this new portion is obtained as the envelope of a family of tangents whose intercepts 
with the X-axis have abscissa t ∈ [θ1 , θ2 ].
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Let us now come to the case of freezing boundaries arising from a gap in the ai’s, creating 
frozen domains of type F and U. This situation also occurs in the setting of piecewise linear 
functions α(u) in the following limit. A discontinuity in the function α(u) may be obtained 
by letting γm → 0 for some m together with pm → ∞, keeping the product pmγm = δm finite. 
This creates a jump in the function α(u) by δm at the position u = ϕm−1 = ϕm (recall that 
ϕi :=

∑i
j=1 γj). Using again the parameters θi :=

∑i
j=1 pjγj to express x(t), we have the identi-

fication δm = θm − θm−1 so that we may use the form (5.7) for x(t), now with pm = ∞ to write

x(t) =
m −1∏

i=1

(
t − θi

t − θi−1

) 1
pi

×
k∏

i=m +1

(
θi − t
θi−1 − t

) 1
pi

( pm = ∞) .

Apart from the domains t ! 0 and t ! α(1) = θk, this opens a new domain [θm−1 , θm] of 
linear size δm for the allowed values of t, leading to real and positive values of x(t). As dis-
played in figure 20 (which shows the resulting complete arctic curve in the simple case k  =  3, 
γ1 = γ3 = 1/2, p1 = p3 = 2 and p2 → ∞, γ2 → 0, p2γ2 → δ2 = 1), the corresponding fam-
ily of tangents creates a new portion of arctic curve made of three parts: a part on the left 
leaving the point (θm−1, 0) with a vertical slope, a part on the right leaving the point (θm, 0) 
with a slope 1 and a middle part which is tangent to the X-axis at a point (θ, 0) for some 
θ ∈ [θm−1 , θm]. This in turn creates two frozen domains, one of type F on the left, and one of 
type U on the right.

6.2. Freezing the right edge: exact derivation

So far, the expressions for the new portions that we obtained are based on the conjec-
ture that the parametric equation  for the arctic curve is not only valid for t in the range 

(X1, Y1)

θ1 θ2 θ5

(X∞, Y∞)
(X0, Y0)

p4 =2 p5 =1p2 =2

θ3 θ4

p1 =1 p3 =1

Figure 19. The complete arctic curve when α(u) is continuous piecewise 
linear, made of k  =  5 linear pieces of widths γi = 1/5 (i = 1, . . . , 5) and slopes 
p1 = p3 = p5 = 1, p2 = p4 = 2. The three pieces where pi  =  1 give rise to freezing 
boundaries which generate frozen domains of type R. The first frozen domain of type 
R is separated from the ‘liquid’ phase by a portion of arctic curve joining (θ1, 0) to 
(X∞, Y∞) and from a frozen domain of type U by the Y  =  X line for X ! X∞. The third 
frozen domain of type R is separated from the ‘liquid’ phase by a portion of arctic curve 
joining (θ4, 0) to (X0 , Y0 ). For each frozen domain we indicated its triangular ‘germ’.
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(−∞, 0]∪[α(1),+∞) but holds in a larger range of values corresponding to real values of 
x(t). This hypothesis may be tested in the particular case where the freezing boundary lies 
on the edge of the domain D. More precisely, this section is devoted to the study of the effect 
of ‘freezing the right edge’ of our paths by imposing that the rightmost starting points obey 
ai+1 − ai = 1 for i = n − r + 1, n − r + 2, . . . , n − 1, while an−r+1 − an−r > 1, and letting r 
grow proportionally to n when n becomes large. In turn, letting r = ρn, this amounts to the 
condition α′(u) = 1 on the segment [1 − ρ, 1]. We expect in this case a frozen domain of type 
R below a new portion of arctic curve connecting the point (α(1 − ρ), 0) to the point (X0 , Y0 ) 
(where Y0  >  0 in this case). Let us show that this is indeed the case.

6.2.1. Partition function: a new derivation. It is easier to describe the present situation in 
terms of the complementary starting points bi, i = 1, 2, . . . , m , for the paths with north- and 
northeast-oriented steps of section 2.3, where m  +  n  =  an. The above condition simply forces 
the position bm = an − r  of the rightmost starting point. As mentioned in section  2.3, the 
partition function for paths with north- and northeast-oriented steps, starting at (bi, −  1/2), 
i = 1, 2, . . . , m  and ending at (n + j, n + 1 /2 ), j = 1, 2, . . . , m  is given by the determinant of 
the LGV matrix Âi,j with entries:

Âi,j =

(
n + 1

bi − j + 1

)
(i, j = 1, 2, . . . , m ) . (6.1)

Let us use again the LU decomposition method to compute the determinant directly in terms 
of the b’s. We have the following explicit result:

Theorem 6.1. The lower uni-triangular matrix L̂−1 with elements:

L̂−1
i,j =

⎧
⎨

⎩

(n+m
bi
)(n+m −bi

m +1 −i )
(n+m

bj
)(n+m −bj

m +1 −i )

∏i−1
s=1 (bi−bs)∏i
s=1
s≠j

(bj−bs)
for i ! j

0 for i < j
 (6.2)

is such that Û := L̂−1Â is upper triangular.

Proof. We compute:

Û i,j =
m∑

k=1

(L̂−1 )i,k

(
n + 1

bk − j + 1

)

=
i∑

k=1

(n+m
bi

)(n+m −bi
m +1 −i

)
(n+m

bk

)(n+m −bk
m +1 −i

)
∏i−1

s=1 (bi − bs)∏i
s=1
s̸=k

(bk − bs)

(
n + 1

bk − j + 1

)
.

Note that, due to the binomial factors, only the values of k for which j − 1 ! bk ! n + j  and 
bk ! n + i − 1 contribute to the sum. When this holds, the combination of the five binomial 
factors above may then be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

(n+1 )!
bi!(n+i−1 −bi)!

j−2∏
s=0

(bk − s)
i−1∏

s=j+1
(n − bk + s) for i > j

(n+1 )!
bi!(n+i−1 −bi)!

∏ j−2
s=0 (bk−s)

∏ j
s=i(n−bk+s)

for i ! j .

Assume now that i  >  j so that the constraint over bk reduces to j − 1 ! bk ! n + j . We way 
then write
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Û i,j =
(n + 1 )!

bi!(n + i − 1 − bi)!

i−1∏

s=1

(bi − bs)

∮

C(Ŝj)

d t
2iπ

j−2∏

s=0

(t − s)
i−1∏

s=j+1

(n − t + s)
i∏

s=1

1
(t − bs)

where the contour encompasses only the set Ŝj = {bs| j − 1 ! bs ! n + j} .

Due to the factor 
∏i−1

s=j+1(n − t + s) which vanishes for t = n + j + 1, n + j + 2, . . . ,
n + i − 1 and to the factor 

∏ j−2
s=0 (t − s) which vanishes for t = 0, 1, . . . , j − 2, the con-

tour of integration can be extended harmlessly so as to encircle all the poles b1 , b2 , . . . , bi 
as the residues of the unwanted contributions vanish (recall that bi ! n + i − 1 since 
bi < bi+1 < · · · < bm < n + m ). In turn, by the Cauchy theorem, the integral can be expressed 
as minus the contribution of the pole at ∞. But for large t, the integrand behaves as t−2, hence 
the residue at ∞ vanishes, and we conclude that Ûi,j = 0  for i  >  j, i.e. Û  is upper triangular.
 □ 

The diagonal matrix elements Ûi,i are also easily obtained from the above:

Ûi,i =
(n + 1 )!

bi!(n + i − 1 − bi)!

i−1∏

s=1

(bi − bs)

∮

C(b1 ,b2,...,bi)

d t
2iπ

i∏

s=1

1
(t − bs)

∏i−2
s=0 (t − s)

(n + i − t)

θ1 θ2

p2 → ∞

p3 = 2p1 = 2

(γ2p2 → 1)

U typeF type

Figure 20. The complete arctic curve when α(u) is a piecewise linear function made of 
two pieces with a discontinuity in-between, obtained as limit of a continuous piecewise 
linear function made of k  =  3 pieces of widths γ1 = γ3 = 1/2, γ2 → 0, and slopes 
p1 = p3 = 2, p2 → ∞, with p2γ2 → δ2 = 1 (so that θ1 = 1 and θ2 = θ1 + δ2 = 2). The 
discontinuity gives rise to a freezing boundary with a gap along the segment [θ1 , θ2 ]. Two 
new frozen domains of respective type F and U emerge above this segment, separated 
from the ‘liquid’ phase by a new portion of arctic curve forming two cusps and being 
tangent to the X-axis at some point with abscissa between θ1 and θ2  (here equal to 3/2 
by symmetry). As displayed, this new portion is obtained as the envelope of a family 
of tangents whose intercepts with the X-axis have abscissa t ∈ [θ1 , θ2 ]. For clarity, the 
Y-axis has been stretched.
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where the contour encompasses all bs for s = 1, 2, . . . , i, but not n  +  i. Indeed the original 
contour must select those bs with i − 1 ! bs ! n + i − 1 and may be extended to those bs 
with 0 ! bs ! n + i − 1 (due to the vanishing of 

∏i−2
s=0(t − s) for t = 0, 1, . . . , i − 2), which 

includes all bs for s = 1, 2, . . . , i since the condition bs ! n + i − 1 is automatically satisfied 
(due to bi ! n + i − 1). As before we note that the integrand behaves as 1/t2 for large t, hence 
the residue at ∞ vanishes. By the Cauchy theorem, we may therefore re-express Ûi,i as minus 
the residue at the excluded pole n  +  i. We find:

Ûi,i =
(n + 1 )!

bi!(n + i − 1 − bi)!

i−1∏

s=1

(bi − bs)
i∏

s=1

1
(n + i − bs)

i−2∏

s=0

(n + i − s)

=

(
n + i

bi

) i−1∏

s=1

(bi − bs)

(n + i − bs)
.

This leads to the following result:

Theorem 6.2. The partition function expressed in terms of the sequence (bi)1!i!m  reads:

Zn =
∆(0, 1, . . . , n + m )

∆(0, 1, . . . , n)
∆(b1, b2 , . . . , bm )
m∏

i=1
bi!(n + m − bi)!

.

Proof. We compute

Zn =
m∏

i=1

Ûi,i =
m∏

i=1

{(
n + i

bi

) i−1∏

s=1

(bi − bs)

(n + i − bs)

}
=

m∏

i=1

{
(n + i)!

bi!(n + m − bi)!

i−1∏

s=1

(bi − bs)

}

=

∏m +n
i=1

{
i!
∏i−1

1!i<j!m (bj − bi)
}

∏n
i=1

{
i!
∏m

i=1 bi!(n + m − bi)!
} =

∆(0, 1, . . . , n + m )

∆(0, 1, . . . , n)
∆(b1, b2 , . . . , bm )∏m
i=1 bi!(n + m − bi)!

.
□ 

Note that this evaluation of the determinant of the matrix Â of (6.1) is a particular limit 
q → 1 of a more general formula [Kra99], theorem 26, equation (3.12).

Using the complementarity of the a’s and b’s, namely {as} ∪ {bq} = {0, 1, . . . , n + m } 
and {as} ∩ {bq} = ∅, we have the identity

∆(0, 1, . . . , n + m ) = ∆(a0, a1, . . . , an)∆(b1, b2, . . . , bm )
∏

as<bq

(bq − as)
∏

bq<as

(as − bq)

=
∆(a0, a1, . . . , an)

∆(b1, b2, . . . , bm )

m∏

q=1

bq!(n + m − bq)!

which allows one to identify the expression in theorem 6.2 with (2.6).

6.2.2. One-point function. Let us now apply the tangent method to the configurations of 
north- and northeast-oriented step paths with the frozen boundary bm = an − r = m + n − r, 
by moving the endpoint of the rightmost path from (n + m, n + 1 /2 ) to another point on the 
right (n + m + p, n + 1 /2 ), p ! 0. This induces an escape of the rightmost path from the 
domain D at a point (n + m, n + 1 /2 − ℓ) (see figure 21 for an illustration). As usual, the 

corre sponding one-point function reads: Ĥn,m,ℓ =
Û′

m,m

Ûm,m
, where Û ′ = L̂−1Â′, Â′ the LGV matrix 

for the configurations with an escaping path, with entries:
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Â′
i,j =

{
Âi,j for 1 ! j < m( n−ℓ+1

n+m −bi

)
for j = m . (6.3)

Theorem 6.3. The one-point function Ĥn,m,ℓ reads

Ĥn,m ,ℓ =

∏m
s=1 (n + m − bs)( n+m

n−ℓ+1

)
∮

C(b1 ,b2,...,bm )

d t
2iπ

1
(m + n − t)

m∏

s=1

1
(t − bs)

∏m +ℓ−2
s=0 (t − s)
(m + ℓ− 1 )!

, (6.4)

where the contour leaves the point m  +  n out.

Proof. We compute

Ĥn,m ,ℓ =
1

Û m ,m

m∑

k=1

(L̂−1 )m ,k

(
n − ℓ+ 1

n + m − bk

)

=
m∏

s=1

(n + m − bs)
m∑

k=1

( n−ℓ+1
n+m −bk

)
(n+m

bk

) 1
(n + m − bk)

∏m
s=1
s̸=k

(bk − bs)
,

where only those values of k for which bk ! m + ℓ− 1 contribute to the sum (recall also that 
bk < an = m + n for all k) . Using

( n−ℓ+1
n+m −bk

)
(n+m

bk

) =
1( n+m

n−ℓ+1

)
∏m +ℓ−2

s=0 (bk − s)
(ℓ+ m − 1 )!

,

(n+m, n+1/2−ℓ)

n+1 (n+m+p, n+1/2)

b1 bmb3b2 r

n+m

p

ℓ

Figure 21. The tangent method applied to NILP made of north- and northeast-oriented 
step paths with bm = an − r = m + n − r, i.e. with a freezing boundary of linear size 
r on the right of the lower boundary of the domain D (displayed here as a rectangle) 
creating a frozen triangular region made of right tiles only. Moving the endpoint of the 
rightmost path from (n + m, n + 1 /2 ) to (n + m + p, n + 1 /2 ) with p ∈ Z+ forces the 
rightmost path to escape from the domain D at some point (n + m, n + 1 /2 − ℓ).
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we may thus write

Ĥn,m ,ℓ =

∏m
s=1 (n + m − bs)( n+m

n−ℓ+1

)
∮

C({bs|bs!m +ℓ−1 } )

d t
2iπ

1
(n + m − t)

m∏

s=1

1
(t − bs)

∏m +ℓ−2
s=0 (t − s)
(m + ℓ− 1 )!

.

We may harmlessly extend the integral contour so as to encompass all the bs, as all the extra 
poles at bs < m − ℓ− 1 have vanishing residues (due to the factor 

∏m+ℓ−2
s=0 (t − s)), and the 

formula (6.4) follows. □ 

The partition function for the single path from the escape point (n + m, n + 1 − ℓ), start-
ing with a northeast-oriented step, and ending at the target point (n + m + p, n + 1 ) is simply

Ŷp,ℓ =

(
ℓ− 1
p − 1

)
. (6.5)

Note in particular the condition ℓ ! p (which is saturated only if all steps taken by the path 
are of the northeast type).

6.2.3. Asymptotic analysis. For large n, we use the scaling m = µn, r = ρn, p  =  wn, 
ℓ = ξ̂n, and bi = nβ(i/n) with a piecewise differentiable function β(u) with β′(u) ! 1 when 
defined. Moreover the freezing condition implies that bm = an − r = n + m − r, hence 
β(µ) = 1 + µ− ρ, with ρ > 0.

Theorem 6.4. The tangent method for the case of a target endpoint to the east of D and an 
escape point on the right boundary of D, leads to the following portion of arctic curve:

⎧
⎪⎪⎨

⎪⎪⎩

X = X(t) := t − x(t)(1−x(t))
x′(t)

Y = Y(t) := (1−x(t))2

x′(t)

(t ∈ [1 + µ− ρ, 1 + µ]), (6.6)

with

x(t) = − 1 + µ− t
t y(t)

, y(t) = e−
∫ µ

0
d u

t−β(u) . (6.7)

Proof. From the explicit expressions (6.4) and (6.5) for Ĥn,m,ℓ and Ŷp,ℓ, we may infer the 
scaling limits

Ĥn,µn,ξ̂n ∼
∮

d t
2iπ

enŜ0 (t,ξ̂), Ŷwn,ξ̂n ∼ enŜ1 (ξ̂),

where we have performed the customary redefinition t → nt ,. The contour, which, before 
rescaling, encompasses all the bi’s but leaves the point (n + m) out, must encircle the real 
segment [0, 1 + µ− ρ] but leave the point (1 + µ) out, i.e. cross the real axis strictly inside the 
segment [1 + µ− ρ, 1 + µ] as well as on the negative real axis (−∞, 0]. Here we have

Ŝ0 (t, ξ̂) =
∫ µ

0
Log

(
1 + µ− β(u)

t − β(u)

)
+ tLog (t)− (t − µ− ξ̂)Log (t − µ− ξ̂)

− (1 + µ)Log (1 + µ) + (1 − ξ̂)Log (1 − ξ̂)

Ŝ1 (ξ̂) = ξ̂Log (ξ̂)− wLog (w)− (ξ̂ − w)Log (ξ̂ − w) .
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The saddle-point and maximum equations ∂tŜ0 = ∂ξ̂(Ŝ0 + Ŝ1) = 0 lead to

y(t)
t

(t − µ− ξ̂)
= 1,

(t − µ− ξ̂)ξ̂

(1 − ξ̂)(ξ̂ − w)
= 1,

where y(t) is as in (6.7). We find the solution

ξ̂(t) = t − µ− t y(t), w(t) =
t(1 − y(t))− µ

1 + µ− t(1 − y(t))
(1 + µ− t) . (6.8)

As just mentioned, the contour of integration in t must cross the real axis strictly inside the 
segment [1 + µ− ρ, 1 + µ] and on the negative real axis (−∞, 0]. The saddle-point solution 
must have t = (1 − ξ̂)(ξ̂ − w)/ξ̂ + µ+ ξ̂ > 0, as ξ̂ ! w (from the condition ℓ ! p), and 
0 ! ξ̂ < 1. The range of validity of (6.8) is therefore for t ∈ [1 + µ− ρ, 1 + µ]. The tangent 
line through the rescaled points (1 + µ, 1 − ξ(t)) and (1 + µ+ w(t), 1) has the equation

w(t) Y − ξ̂(t) (X − t) = 0. (6.9)

We may compare this result with that of equations (3.6) and (4.4). Introducing the quantity 
x(t) defined by (6.7), we may express

ξ̂(t) = t − µ− t − 1 − µ

x(t)
, w(t) = ξ̂(t)

x(t)
x(t)− 1

,

which allows to identify the parametric representation (6.9) for the tangents with that (3.9) 
obtained in section 3.3, or that (4.5) obtained in section 4.3. We deduce that the arctic curve 
has the same parametric expression in terms of t and x(t) as before, and theorem 6.4 follows.
 □ 

To relate the function x(t) of theorem 6.4 to that given by (3.7), we use again the com-

plementarity of the a’s and b’s which implies that 
∑n

i=0
1

t−ai
+
∑m

j=1
1

t−bj
=
∑n+m

i=0
1

t−i. This 
leads immediately to

e−
∫ 1

0
du

t−α(u) e−
∫ µ

0
du

t−β(u) =
t − 1 − µ

t
which allows to identify the quantity x(t) defined by (6.7) to that defined by (3.7) when both 
terms are well-defined (and positive), i.e. for t ! 0 or t ! α(1) = 1 + µ. Equation  (6.7) 
allows to extend the definition of x(t) to values of t > β(µ) = 1 + µ− ρ, i.e. to the new 
domain [1 + µ− ρ, 1 + µ] = [α(1)− ρ,α(1)]. This corresponds to an analytic continuation of 
x(t) in this interval, leading to real values x(t) ! 0 (from (6.7), as y(t) > 0), a scheme which 
matches precisely that described in section 6.1 to extend the arctic curve for a freezing bound-
ary creating a frozen domain of type R. The analytic continuation of x(t) may be obtained 
directly from the original definition (3.7) of x(t) which states that, for t ! α(1) = 1 + µ,

x(t) = e−
∫ 1−ρ

0
du

t−α(u)−
∫ 1

1−ρ
du

t−α(u) = − 1 + µ− t
t − 1 − µ+ ρ

e−
∫ 1−ρ

0
du

t−α(u) (6.10)

where we have used the freezing condition that α(u) = u + µ on the segment 
[1 − ρ, 1] (with µ = α(1)− 1). The last expression above allows to define x(t) for 
t ! α(1 − ρ) = α(1)− ρ = 1 + µ− ρ and is equivalent to the definition (6.7) (as easily 

deduced from the identity 
∑n−r

i=0
1

t−ai
+
∑m

j=1
1

t−bj
=
∑n+m −r

i=0
1

t−i). When t increases from 
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1 + µ− ρ to 1 + µ, x(t) increases from −∞ to 0, or equivalently the slope (x(t)− 1)/x(t) of 
the tangent increases from 1 to +∞.

Let us examine the extremities of the new portion of arctic curve. For t → (1 + µ)−, writ-

ing t = 1 + µ− ϵ in (6.10) yields x(t) ∼
ϵ→0+

−ϵC  with C = 1
ρe−

∫ 1−ρ
0

du
1+ µ−α(u), which yields

X(t) →
t→(1+µ)−

1 + µ = α(1) = X0

Y(t) →
t→(1+µ)−

ρ e
∫ 1−ρ

0
du

1+ µ−α(u) = e
∫ 1−ρ

0 du{ 1
α(1)−α(u)−

1
1−u}

= e
∫ 1

0 du{ 1
α(1)−α(u)−

1
1−u} = Y0

with X0 and Y0 as in (3.11) (again we used α(1)− α(u) = 1 − u for u ∈ [1 − ρ, 1]). The new 
portion of the arctic curve therefore connects to the previous known portion at (X0 , Y0 ). For 
t → 1 + µ− ρ = β(µ), writing t = β(µ) + η and letting η → 0+, we have y(t) ≃ η1/β′(µ) (with 
some unimportant multiplicative constant), hence x(t) ≃ η−1/β′(µ) and x′(t) ≃ η−1/β′(µ)−1, 
leading to X(t) → (1 + µ− ρ) and Y(t) → 0 in the generic case β′(µ) > 1. The extremity of 
the new portion is thus at (1 + µ− ρ, 0), as expected.

To summarize this section, the explicit computation above proves our conjecture of sec-
tion 6.1 in the particular case where the freezing occurs on the right edge of the lower bound-
ary of D. Clearly, the freezing of the left edge is amenable to the same exact calculation by a 
simple application of the reflection principle of section 4.1, thus proving the conjecture in this 
case as well.

6.3. Examples

6.3.1. Fully frozen boundaries. We display here examples where the boundary is fully frozen, 
namely where the distribution of starting points ai alternates between macroscopic portions 
with ai+1 − ai = 1 and macroscopic gaps with no a’s. This case corresponds precisely to that 
studied in [Pet14], and our expression in theorem 3.3 for the arctic curve as a function of x(t) 
given by (6.11) below matches proposition 2.6 of [Pet14].

In turn, fully frozen boundaries correspond to piecewise linear α(u) with pieces corre-
sponding exclusively of p  =  1 and p = ∞ portions. In general, we consider 2k  −  1 posi-
tive numbers γ1 , γ2 , . . . , γk, δ1 , δ2 , . . . , δk−1 , together with δ0 = γ0 = 0 and such that 
∑k

i=1 γi = 1. As before we introduce the quantities ϕi :=
∑i

j=0 γi, i = 0, 1, . . . , k , with ϕ0 = 0 
and ϕk = 1, as well as θ2i =

∑i
j=0(γj + δj) and θ2i+1 = θ2i + γi+1 for i = 0, 1, . . . , k − 1. We 

have for i = 1, 2, . . . , k:

α(u) = u +
i−1∑

j=1

δj (u ∈ [ϕi−1 ,ϕi)) .

This immediately gives:

x(t) =
k∏

j=1

t − θ2 j−1

t − θ2 j−2
. (6.11)

The simplest non-trivial example is for k  =  2. Let us denote γ1 = a, δ1 = b and 
γ2 = c = 1 − a. The path problem is then equivalent (up to a simple shear/dilation) to that 

P Di Francesco and E Guitter J. Phys. A: Math. Theor. 51 (2018) 355201



38

of the rhombus tiling of a hexagon with edge lengths na, nb, nc (see figure 22), and the arctic 
curve is well known to be an ellipse. Noting that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(t) = (a + c)
(

a(a+b+c)−(a+c)t
)2

+bct2

(
a(a+b+c)−(a+c)t

)2
+abc (a+b+c)

Y(t) = (a + c)
(

a(a+b+c)−(a+c)t
)2

(
a(a+b+c)−(a+c)t

)2
+abc (a+b+c)

and eliminating t, we indeed find the equation of the arctic ellipse:

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

θ1 θ2a cb θ3

Figure 22. The complete arctic curve when α(u) is a piecewise linear function made of 
two pieces of width a and c and slope 1, with a discontinuity by b in-between (here for 
a  =  1/3, b  =  1 and c  =  2/3). The pieces of slope 1 give rise to freezing boundaries on 
the left and on the right of the lower boundary of D and create frozen domains of type 
R, while the discontinuity gives rise to a central freezing boundary with a gap along the 
segment [θ1 , θ2 ], creating two frozen domains of respective type F and U. The resulting 
arctic curve is an ellipse, as expected since, up to a shear, the path/tiling problem is 
equivalent to that of the rhombus tiling of a hexagon with edge lengths na, nb, nc.

(X1, Y1)

(X∞, Y∞)
(X0, Y0)

θ2θ1 θ5θ4θ3 θ7θ6

Figure 23. The complete arctic curve when α(u) is a (discontinuous) piecewise linear 
function consisting of an alternation of pieces with slope 1 of widths γ1 = γ2 = γ4 = 1

6, 
γ3 = 1

2  and of gaps δ1 = 1
4, δ2 = 1 and δ3 = 1

2. This results in an alternation of frozen 
domains adjacent to the lower boundary of the domain D.
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(
(c − b)Y − (a + c)X + a(a + b + c)

)2
+ 4 bc Y(Y − X) = 0 .

The case a = 1
3, b  =  1, c = 2

3 is represented in figure 22.
We display a more involved case with k  =  4 in figure 23, with γ1 = γ2 = γ4 = 1

6, γ3 = 1
2 , 

δ1 = 1
4, δ2 = 1 and δ3 = 1

2, so that θ1 = 1
6, θ2 = 5

12 , θ3 = 7
12 , θ4 = 19

12 , θ5 = 25
12 , θ6 = 31

12 , θ7 = 11
4 .

6.3.2. Mixed boundaries. We now consider a ‘mixed’ boundary case, with:

α(u) =
{

u + u2 for u ∈ [0, 1 /2]
1 + u for u ∈ (1 /2, 1 ].

This combines a non-linear distribution on [0, 3
4 ], a gap with no a’s on ( 3

4 , 3
2 ], and a frozen 

boundary with α′(u) = 1 on ( 3
2 , 2]. The corresponding x(t) reads

x(t) =
t − 2
t − 3

2

(
1 − 4 t +

√
1 + 4 t

1 − 4 t −
√

1 + 4 t

) 1√
1 +4 t

.

and the associated arctic curve is represented in figure 24.

7. Conclusion

7.1. Summary and discussion

In this paper, we have studied non-intersecting path models in the Z2 lattice with fixed arbi-
trary starting points along the X-axis. These fixed positions a0, a1, ..., an are described in 
the scaling limit n → ∞ by a single piecewise differentiable increasing function α(u) with 
α′(u) ! 1 when defined, such that ai ∼ nα(i/n) for large i, n with i/n → u. Our main result 
is a parametric expression (1.1) of the arctic curve for the large n asymptotic path model, 

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

α(u) = u+u2
3/4 3/2

α(u) = 1+u

(u > 1/2)(u ≤ 1/2)

gap

Figure 24. The complete arctic curve when α(u) = u + u2 for u ! 1/2 and 
α(u) = 1 + u for u  >  1/2, hence with a gap of linear size 3/2  −  3/4  =  3/4.
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involving some function x(t) directly related to α(u) via (3.7) (or its analytic continuation via 
(6.7)). Several portions of the arctic curve are obtained from several intervals in the variable 
t. Explicit calculations were performed for three portions: two generic ones and one arising in 
the presence of a freezing edge. We also analyzed, without explicit derivation5, the shape of 
new portions induced by more general freezing boundaries. Our results corroborate those of 
[Pet14, DM15] hence validate the tangent method. A nice feature of the tangent method is that 
its simplicity allows for solving more involved versions of the problem. For instance, we may 
derive [WIP] a straightforward q-deformation of our results, in which the parameter q keeps 
track of the volume below the surface spanned by the tiling, as viewed in the plane partition 
formulation (see [Pet14] for a precise definition).

It is interesting to better understand the meaning of the fundamental function x(t). First, we 
note that, associated to the asymptotic boundary ‘shape’ is the actual distribution of starting 
points, which can be defined in the finite size as:

ρn(v) =
1

n + 1

n∑

i=0

δ(v − ai) .

The limiting distribution is then defined on [0,α(1 )] as

ρ(v) = lim
n→∞

n ρn(nv) =
∫ 1

0
d u δ(v − α(u)) =

1
α′(α−1 (v))

,

where α−1(v) is the composition inverse of the function α(u) whenever well-defined. We may 
consequently interpret the quantity x(t) of (3.7) as giving the moment generating function (or 
resolvent) of the distribution ρ, namely:

−Log (x(t)) =
∞∑

n=0

µn

tn+1 , µn =

∫ α(1 )

0
vnρ(v)dv =

∫ 1

0
α(u)nd u . (7.1)

Another remark is that the formula (1.1) for the arctic curve may be rephrased in the lan-
guage of the Legendre transformation as follows: introducing the quantity

s(t) :=
x(t)

1 − x(t)
, (7.2)

the equation (3.9) for the tangent line may be rewritten as

X = t − s(t) Y

so that, if we express the arctic curve (1.1) by its Cartesian equation X = X(Y), the quantities t 
and s(t) are respectively the value at the origin (Y  =  0) and minus the slope of the line tangent 
to X(Y) at the point Y = Y(t). In particular, at Y = Y(t), we have s(t) = −X′(Y) (a relation 
which may also be checked directly from (1.1)) and, inverting s = s(t) into t = t(s), we may 
write the above relation as

t(s) = X(Y(s)) + s Y(s) where Y(s) = −X′−1(s)

in terms of the composition inverse X′−1 of the function X′(Y). This states that the function 
t(s) is simply the Legendre transform of the function X(Y) and vice versa, to that we may 
write as well

5 Since completion of this paper, we received a note by Bryan Debin who was able to extend our proof to all general 
freezing boundaries.

P Di Francesco and E Guitter J. Phys. A: Math. Theor. 51 (2018) 355201



41

X(Y) = t(s(Y))− Y s(Y) where s(Y) = t′−1(Y)

in terms of the composition inverse t′−1 of the function t′(s). This latter expression allows to 
directly get the location X(Y) of the arctic curve as the Legendre transform of the function 
t(s), the composition inverse of s(t) given by (7.2). In practice, the equation s = s(t) may have 
several solutions in t so that t(s) can be made of several branches. Each branch gives in turn 
one branch for X(Y) (recall that X(Y) is made of at least two branches corresponding to the 
two generic portions of the arctic curve) or several ones with cusps if t′′(s) vanishes for some s.

We conclude this paper with three comments: we first give the equation for the arctic curve 
in modified coordinates adapted to the rhombus tiling interpretation. We then discuss a direct 
geometric construction of the arctic curve inspired by the well-known Wulff construction for 
crystal shape. We end by a more technical point on some alternative use of the tangent method 
consisting in moving the extremal starting point instead of the ending one.

7.2. Rhombus tilings

The problem we studied was conveniently expressed in terms of paths on the lattice Z2. 
However, the dual tiling problem has the natural symmetry of the triangular lattice, the tiles 
being the three possible rhombi obtained by gluing pairs of adjacent triangles. All the results 
of this paper can be reformulated in this framework, provided we perform a change of 
coordinates:

(X, Y) !→
(

X∆ = X − 1
2

Y , Y∆ =

√
3

2
Y

)
.

Some of the symmetries observed in this paper become more manifest in this frame. For 
illustration we have represented in figure 25 the ‘rectified’ version of the case of figure 19, of 
a k  =  5 piecewise linear α(u), with a manifest vertical axial symmetry.

In the new coordinates, the arctic curve reads:

(X∆
1 , Y ∆

1 )

(X∆
∞, Y ∆

∞ ) (X∆
0 , Y ∆

0 )

Figure 25. The ‘rectified’ version of figure  19, obtained by modifying the tiles as 
shown on the left. The vertical axial symmetry of the boundary condition induces a 
vertical axial symmetry of the arctic curve.
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⎧
⎨

⎩
X∆(t) = t + x(t)2 −1

2 x′(t)

Y∆(t) =
√

3 (x(t)−1 )2

2 x′(t) .

The corresponding parametric family of tangent lines has equation:

(1 + x(t)) Y +
√

3 (1 − x(t)) (X − t) = 0 .

7.3. A geometric construction

One may wonder whether our result (1.1) connecting the boundary conditions to the shape 
of the arctic curve has a direct geometric description. It is very reminiscent indeed of the so-
called Wulff construction that relates the surface tension of a growing two-dimensional crystal 
to the shape of its boundaries. In that case, the crystal is grown from an initial center (x0 , y0 ), 
with a surface tension σ(θ) depending on the angle θ measuring the orientation of the normal 
to the growing surface with respect to the microscopic crystalline axes. This surface tension 
may be represented by the one-dimensional curve r = σ(θ) in polar coordinates centered at 
(x0 , y0 ): the shape of the boundary of the crystal is then (up to a global scaling) given by the 
envelope of the family of lines L(θ) that are normal to the radius vector at the point (σ(θ), θ) 
(more precisely the shape is given by the convex hull of this envelope).

If we could interpret our family of tangent lines as arising from some Wulff construction, it 
would give access to some candidate surface tension σ(θ). However, the problem is ill-posed, 
as there seems to be no favored choice of the center (x0 , y0 ), and in fact if we were to think of 
our model as the final stage of some growth process, it would rather start from frozen bounda-
ries, and the status of fixed boundaries with arbitrary α(u) is unclear in that respect.

On the other hand, we may devise the following direct geometrical construction for the 
arctic curve (1.1) based again, in the spirit of the Wulff construction, on the data of some one-
dimensional curve in the plane. Here this curve is simply the plot of the function x(t) itself, 
namely the curve (t, x(t)) in cartesian coordinates (using some orthonormal basis). Given a 
point M on this curve, we may easily obtain the corresponding value of t by projecting the 
point vertically on the X-axis as the resulting point is P = (t, 0) by definition. The point Q 
of coordinates (1 − x(t), x(t)) is obtained by now projecting M horizontally on the line of 

P

M

O

Q

X
+

Y
=

1

L(M)

Figure 26. Geometric construction of the line L(M) from a point M on the curve 
(t, x(t)) in some orthonormal frame. The line L(M) (fat line) is the line orthogonal to 
(OQ) passing through P. Moving the point M along the curve generates a family of lines 
L(M) whose envelope is the arctic curve.
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equation X  +  Y  =  1 (see figure 26). Denoting by O = (0, 0) the origin, the tangent to the arctic 
curve labelled by t is, from its equation (3.9), the line L := L(M) orthogonal to the line (OQ) 
and passing trough the point P. Each point M of the plot gives rise to a line L(M) and the arctic 
curve is the envelope of these lines.

7.4. Moving the starting point

So far we used the tangent method by moving the ending point of the outermost (or rightmost) 
path out of the domain D. Another choice would have been to move instead the starting point 
of this path. Let us briefly describe how the method works in the original language of north- 
and west-oriented paths. Moving the starting point On = (an, 0) to say O′

n = (an + p, 0) for 
some p ∈ Z+ forces the outermost path to re-enter the domain D at some point (an, n − ℓ) on 
its right boundary (see figure 27). The partition function for NILP in the domain D with their 
outermost path starting at (an, n − ℓ), properly normalized by Zn, defines our new one-point 
function Ȟn,ℓ for this new geometry. Its computation is made straightforward thanks to the 
remark that

Ĥn,m,ℓ − Ĥn,m,ℓ+1 = Ȟn,ℓ − Ȟn,ℓ−1

where m  =  an  −  n and Ĥn,m,ℓ as is (6.4), which implies the sum rule

Ȟn,ℓ = 1 − Ĥn,m,ℓ+1 .

These identities are obtained exactly via the same arguments as those given in section 4.2 to 
prove (4.3). Using the explicit expression (6.4) for Ĥn,m,ℓ, we may write

1 − Ĥn,m ,ℓ+1 =

∏m
s=1 (n + m − bs)(n+m

n−ℓ
)

∮

C(b1 ,b2,...,bm ,n+m )

d t
2iπ

1
(t − m − n)

m∏

s=1

1
(t − bs)

∏m +ℓ−1
s=0 (t − s)
(m + ℓ)!

where the contour now encircles the pole at m  +  n, since, as easily checked, its contribution 
produces the first term 1 in the left hand side. Using now

(t − m − n)
n−1∏

s=0

(t − as)
m∏

s=1

(t − bs) =
n+m∏

s=0

(t − s)

and in particular, dividing by (t − m − n) and setting t  =  an  =  n  +  m,

(an+p, 0)

(an, n−ℓ)
ℓ

p

Figure 27. The tangent method applied to the NILP with paths made of north- and 
west-oriented step, as obtained by moving the starting point of the outermost path is 
moved from On = (an, 0) to O′

n = (an + p, 0) with p ∈ Z+, forcing the path to re-
enter the domain D (here the displayed grid) by a west-oriented step at some position 
(an, n − ℓ) on the right boundary of D.
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n−1∏

s=0

(an − as)
m∏

s=1

(n + m − bs) = (n + m )!,

the above expression yields immediately

Ȟn,ℓ =
1

∏n−1
s=0 (an − as)

∮

C(an−(n−ℓ),an−(n−ℓ−1 ),...,an)

d t
2iπ

1
(t − an)

n−1∏

s=0

(t − as)
(n − ℓ)!

∏n−ℓ
s=1 (t − an + s)

.

It is then a straightforward exercise to use the tangent method machinery to get, in the large 
n asymptotic regime, the equation for the tangents and for the arctic curve. As expected, we 
recover the same set of tangents as in section 3.3, given by equation (3.9) for t ∈ [α(1 ),+∞). 
This provides an alternative derivation for the first portion of the arctic curve. Clearly, an alter-
native derivation for the second portion of arctic curve would consist in moving out of D the 
starting point of the outermost path for NILP configurations with paths made of east- and 
northeast-oriented steps.
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