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Abstract

Robust estimation is much more challenging in

high dimensions than it is in one dimension:

Most techniques either lead to intractable opti-

mization problems or estimators that can toler-

ate only a tiny fraction of errors. Recent work

in theoretical computer science has shown that,

in appropriate distributional models, it is possi-

ble to robustly estimate the mean and covariance

with polynomial time algorithms that can tolerate

a constant fraction of corruptions, independent of

the dimension. However, the sample and time

complexity of these algorithms is prohibitively

large for high-dimensional applications. In this

work, we address both of these issues by estab-

lishing sample complexity bounds that are opti-

mal, up to logarithmic factors, as well as giving

various refinements that allow the algorithms to

tolerate a much larger fraction of corruptions. Fi-

nally, we show on both synthetic and real data

that our algorithms have state-of-the-art perfor-

mance and suddenly make high-dimensional ro-

bust estimation a realistic possibility.

1. Introduction

Robust statistics was founded in the seminal works of

(Tukey, 1960) and (Huber, 1964). The overarching motto

is that any model (especially a parametric one) is only ap-

proximately valid, and that any estimator designed for a

particular distribution that is to be used in practice must

also be stable in the presence of model misspecification.

The standard setup is to assume that the samples we are
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given come from a nice distribution, but that an adversary

has the power to arbitrarily corrupt a constant fraction of

the observed data. After several decades of work, the ro-

bust statistics community has discovered a myriad of esti-

mators that are provably robust. An important feature of

this line of work is that it can tolerate a constant fraction of

corruptions independent of the dimension and that there are

estimators for both the location (e.g., the mean) and scale

(e.g., the covariance). See (Huber & Ronchetti, 2009) and

(Hampel et al., 1986) for further background.

It turns out that there are vast gaps in our understanding of

robustness, when computational considerations are taken

into account. In one dimension, robustness and compu-

tational efficiency are in perfect harmony. The empirical

mean and empirical variance are not robust, because a sin-

gle corruption can arbitrarily bias these estimates, but alter-

natives such as the median and the interquartile range are

straightforward to compute and are provably robust.

But in high dimensions, there is a striking tension between

robustness and computational efficiency. Let us consider

estimators for location. The Tukey median (Tukey, 1960)

is a natural generalization of the one-dimensional median

to high-dimensions. It is known that it behaves well (i.e.,

it needs few samples) when estimating the mean for vari-

ous symmetric distributions (Donoho & Gasko, 1992; Chen

et al., 2016). However, it is hard to compute in gen-

eral (Johnson & Preparata, 1978; Amaldi & Kann, 1995)

and the many heuristics for computing it degrade badly

in the quality of their approximation as the dimension

scales (Clarkson et al., 1993; Chan, 2004; Miller & Sheehy,

2010). The same issues plague estimators for scale. The

minimum volume ellipsoid (Rousseeuw, 1985) is a natural

generalization of the one-dimensional interquartile range

and is provably robust in high-dimensions, but is also hard

to compute. And once again, heuristics for computing

it (Van Aelst & Rousseeuw, 2009; Rousseeuw & Struyf,

1998) work poorly in high dimensions.

The fact that robustness in high dimensions seems to come
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at such a steep price has long been a point of consterna-

tion within robust statistics. In a 1997 retrospective on the

development of robust statistics, Huber laments: “It is one

thing to design a theoretical algorithm whose purpose is to

prove [large fractions of corruptions can be tolerated] and

quite another thing to design a practical version that can

be used not merely on small, but also on medium sized re-

gression problems, with a 2000 by 50 matrix or so. This

last requirement would seem to exclude all of the recently

proposed [techniques].”

The goal of this paper is to answer Huber’s call to ac-

tion and design estimators for both the mean and covari-

ance that are highly practical, provably robust, and work

in high-dimensions. Such estimators make the promise of

robust statistics – estimators that work in high-dimensions

and limit the error induced by outliers – much closer to a

reality.

First, we make some remarks to dispel some common mis-

conceptions. There has been a considerable amount of re-

cent work on robust principal component analysis, much

of it making use of semidefinite programming. Some of

these works can tolerate a constant fraction of corruptions

(Candès et al., 2011), however require that the locations of

the corruptions are evenly spread throughout the dataset so

that no individual sample is entirely corrupted. In contrast,

the usual models in robust statistics are quite rigid in what

they require and they do this for good reason. A common

scenario that is used to motivate robust statistical methods

is if two studies are mixed together, and one subpopulation

does not fit the model. Then one wants estimators that work

without assuming anything at all about these outliers.

There have also been semidefinite programming methods

proposed for robust principal component analysis with out-

liers (Xu et al., 2010). These methods assume that the un-

corrupted matrix is rank r and that the fraction of outliers is

at most 1/r, which again degrades badly as the rank of the

matrix increases. Moreover, any method that uses semidef-

inite programming will have difficulty scaling to the sizes

of the problems we consider here. For sake of compari-

son – even with state-of-the-art interior point methods – it

is not currently feasible to solve the types of semidefinite

programs that have been proposed when the matrices have

dimension larger than a hundred.

1.1. Robustness in a Generative Model

Recent works in theoretical computer science have sought

to circumvent the usual difficulties of designing efficient

and robust algorithms by instead working in a generative

model. The starting point for our paper is the work of Di-

akonikolas et al. (2016a) who gave an efficient algorithm

for the problem of agnostically learning a Gaussian: Given

a polynomial number of samples from a high-dimensional

Gaussian N (µ,Σ), where an adversary has arbitrarily cor-

rupted an ε-fraction, find a set of parameters N ′(µ̂, Σ̂) that

satisfy dTV (N ,N ′) ≤ Õ(ε)1.

Total variation distance is the natural metric to use to mea-

sure closeness of the parameters, since a (1−ε)-fraction of

the observed samples came from a Gaussian. (Diakoniko-

las et al., 2016a) gave an algorithm for the above prob-

lem (note that the guarantees are dimension independent),

whose running time and sample complexity are polynomial

in the dimension d and 1/ε. (Lai et al., 2016) independently

gave an algorithm for the unknown mean case that achieves

dTV (N ,N ′) ≤ Õ(ε
√
log d), and in the unknown covari-

ance case achieves guarantees in a weaker metric that is not

affine invariant. A crucial feature is that both algorithms

work even when the moments of the underlying distribu-

tion satisfy certain conditions, and thus are not necessar-

ily brittle to the modeling assumption that the inliers come

from a Gaussian distribution.

A more conceptual way to view such work is as a proof-

of-concept that the Tukey median and minimum volume

ellipsoid can be computed efficiently in a natural family of

distributional models. This follows because not only would

these be good estimates for the mean and covariance in the

above model, but in fact any estimates that are good must

also be close to them. Thus, these works fit into the emerg-

ing research direction of circumventing worst-case lower

bounds by going beyond worst-case analysis.

Since the dissemination of the aforementioned works (Di-

akonikolas et al., 2016a; Lai et al., 2016), there has been a

flurry of research activity on computationally efficient ro-

bust estimation in a variety of high-dimensional settings,

including studying graphical models (Diakonikolas et al.,

2016b), understanding the computation-robustness tradeoff

for statistical query algorithms (Diakonikolas et al., 2016c),

tolerating much more noise by allowing the algorithm to

output a list of candidate hypotheses (Charikar et al., 2017),

and developing robust algorithms under sparsity assump-

tions (Li, 2017; Du et al., 2017), and more (Diakonikolas

et al., 2017; Steinhardt et al., 2017).

1.2. Our Results

Our goal in this work is to show that high-dimensional ro-

bust estimation can be highly practical. However, there

are two major obstacles to achieving this. First, the sam-

ple complexity and running time of the algorithms in (Di-

akonikolas et al., 2016a) is prohibitively large for high-

dimensional applications. We just would not be able to

store as many samples as we would need, in order to com-

1We use the notation Õ(·) to hide factors which are polylog-
arithmic in the argument – in particular, we note that this bound
does not depend on the dimension.
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pute accurate estimates, in high-dimensional applications.

Our first main contribution is to show nearly-tight bounds

on the sample complexity of the filtering-based algorithm

of (Diakonikolas et al., 2016a). Roughly speaking, we ac-

complish this with a new definition of the good set which

straightforwardly plugs into the existing analysis, show-

ing that one can estimate the mean with Õ(d/ε2) samples

(when the covariance is known) and the covariance with

Õ(d2/ε2) samples. Both of these bounds are information-

theoretically optimal, up to logarithmic factors.

Our second main contribution is to vastly improve the frac-

tion of adversarial corruptions that can be tolerated in appli-

cations. The fraction of errors that the algorithms of (Di-

akonikolas et al., 2016a) can tolerate is indeed a constant

that is independent of the dimension, but it is very small

both in theory and in practice – a naive implementation of

the algorithm did not remove any outliers in many realistic

scenarios. We avoid this by giving new ways to empiri-

cally tune the threshold for where to remove points from

the sample set.

Finally, we show that the same bounds on the error guar-

antee continue to work even when the underlying distribu-

tion is sub-Gaussian. This theoretically confirms that the

robustness guarantees of such algorithms are in fact not

overly brittle to the distributional assumptions. In fact, the

filtering algorithm of (Diakonikolas et al., 2016a) is easily

shown to be robust under much weaker distributional as-

sumptions, while retaining near-optimal sample and error

guarantees. As an example, we show that it yields a near

sample-optimal efficient estimator for robustly estimating

the mean of a distribution, under the assumption that its

covariance is bounded. Even in this regime, the filtering

algorithm guarantees optimal error, up to a constant fac-

tor. Furthermore we empirically corroborate this finding by

showing that the algorithm works well on real world data,

as we describe below.

Now we come to the task of testing out our algorithms. To

the best of our knowledge, there have been no experimental

evaluations of the performance of the myriad of approaches

to robust estimation. It remains mostly a mystery which

ones perform well in high-dimensions, and which do not.

To test out our algorithms, we design a synthetic experi-

ment where a (1 − ε)-fraction of the samples come from

a Gaussian and the rest are noise and sampled from an-

other distribution (in many cases, Bernoulli). This gives us

a baseline to compare how well various algorithms recover

µ and Σ, and how their performance degrades based on

the dimension. Our plots show a predictable and yet strik-

ing phenomenon: All earlier approaches have error rates

that scale polynomially with the dimension and ours is a

constant that is almost indistinguishable from the error that

comes from sample noise alone. Moreover, our algorithms

are able to scale to hundreds of dimensions.

But are algorithms for agnostically learning a Gaussian un-

duly sensitive to the distributional assumptions they make?

We are able to give an intriguing visual demonstration of

our techniques on real data. The famous study of (Novem-

bre et al., 2008) showed that performing principal compo-

nent analysis on a matrix of genetic data recovers a map of

Europe. More precisely, the top two singular vectors define

a projection into the plane and when the groups of individ-

uals are color-coded with where they are from, we recover

familiar country boundaries that corresponds to the map of

Europe. The conclusion from their study was that genes

mirror geography. Given that one of the most important

applications of robust estimation ought to be in exploratory

data analysis, we ask: To what extent can we recover the

map of Europe in the presence of noise? We show that

when a small number of corrupted samples are added to

the dataset, the picture becomes entirely distorted (and this

continues to hold even for many other methods that have

been proposed). In contrast, when we run our algorithm,

we are able to once again recover the map of Europe. Thus,

even when some fraction of the data has been corrupted

(e.g., medical studies were pooled together even though the

subpopulations studied were different), it is still possible to

perform principal component analysis and recover qualita-

tively similar conclusions as if there were no noise at all!

2. Formal Framework

Notation. For a vector v, we will let ‖v‖2 denote its Eu-

clidean norm. If M is a matrix, we will let ‖M‖2 denote its

spectral norm and ‖M‖F denote its Frobenius norm. We

will write X ∈u S to denote that X is drawn from the

empirical distribution defined by S.

Robust Estimation. We consider the following powerful

model of robust estimation that generalizes many other ex-

isting models, including Huber’s contamination model:

Definition 2.1. Given ε > 0 and a distribution family D,

the adversary operates as follows: The algorithm specifies

some number of samples m. The adversary generates m
samples X1, X2, . . . , Xm from some (unknown) D ∈ D.

It then draws m′ from an appropriate distribution. This

distribution is allowed to depend on X1, X2, . . . , Xm, but

when marginalized over the m samples satisfies m′ ∼
Bin(ε,m). The adversary is allowed to inspect the sam-

ples, removes m′ of them, and replaces them with arbitrary

points. The set of m points is then given to the algorithm.

In summary, the adversary is allowed to inspect the samples

before corrupting them, both by adding corrupted points

and deleting uncorrupted points. In contrast, in Huber’s

model the adversary is oblivious to the samples and is only

allowed to add corrupted points.
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We remark that there are no computational restrictions on

the adversary. The goal is to return the parameters of a dis-

tribution D̂ in D that are close to the true parameters in an

appropriate metric. For the case of the mean, our metric

will be the Euclidean distance. For the covariance, we will

use the Mahalanobis distance, i.e., ‖Σ−1/2Σ̂Σ−1/2 − I‖F .

This is a strong affine invariant distance that implies corre-

sponding bounds in total variation distance.

We will use the following terminology:

Definition 2.2. We say that a set of samples is ε-corrupted

if it is generated by the process described in Definition 2.1.

3. Nearly Sample-Optimal Efficient Robust

Learning

In this section, we present near sample-optimal efficient ro-

bust estimators for the mean and the covariance of high-

dimensional distributions under various structural assump-

tions of varying strength. Our estimators rely on the filter-

ing technique introduced in (Diakonikolas et al., 2016a).

This paper gave two algorithmic techniques: the first one

was a spectral technique to iteratively remove outliers from

the dataset (filtering), and the second one was a soft-outlier

removal method relying on convex programming. The fil-

tering technique seemed amenable to practical implemen-

tation (as it only uses simple eigenvalue computations),

but the corresponding sample complexity bounds given in

(Diakonikolas et al., 2016a) are polynomially worse than

the information-theoretic minimum. On the other hand,

the convex programming technique of Diakonikolas et al.

(2016a) achieved better sample complexity bounds (e.g.,

near sample-optimal for robust mean estimation), but re-

lied on the ellipsoid method, which seemed to preclude a

practically efficient implementation.

In this work, we achieve the best of both worlds: we give a

better analysis of the filter, giving sample-optimal bounds

(up to logarithmic factors) for both the mean and the co-

variance. Moreover, we show that the filtering technique

easily extends to much weaker distributional assumptions

(e.g., under bounded second moments). Roughly speaking,

the filtering technique follows a general iterative recipe: (1)

via spectral methods, find some univariate test which is vi-

olated by the corrupted points, (2) find some concrete tail

bound violated by the corrupted points, and (3) discard all

points which violate this tail bound.

We start with sub-gaussian distributions. Recall that if P
is sub-gaussian on R

d with mean vector µ and parame-

ter ν > 0, then for any unit vector v ∈ R
d we have that

PrX∼P [|v · (X − µ)| ≥ t] ≤ exp(−t2/2ν).

Theorem 3.1. Let G be a sub-gaussian distribution on R
d

with parameter ν = Θ(1), mean µG, covariance matrix

I , and ε > 0. Let S be an ε-corrupted set of samples

from G of size Ω((d/ε2) poly log(d/ε)). There exists an

efficient algorithm that, on input S and ε > 0, returns a

mean vector µ̂ so that with probability at least 9/10 we

have ‖µ̂− µG‖2 = O(ε
√
log(1/ε)).

Diakonikolas et al. (2016a) gave algorithms for robustly es-

timating the mean of a Gaussian distribution with known

covariance and for robustly estimating the mean of a bi-

nary product distribution. The main motivation for consid-

ering these specific distribution families is that robustly es-

timating the mean within Euclidean distance immediately

implies total variation distance bounds for these families.

The above theorem establishes that these guarantees hold

in a more general setting with near sample-optimal bounds.

Under a bounded second moment assumption, we show:

Theorem 3.2. Let P be a distribution on R
d with unknown

mean vector µP and unknown covariance matrix ΣP �
σ2I . Let S be an ε-corrupted set of samples from P of size

Θ((d/ε) log d). There exists an efficient algorithm that, on

input S and ε > 0, with probability 9/10 outputs µ̂ with

‖µ̂− µP ‖2 ≤ O(
√
εσ).

The sample size above is optimal, up to a logarithmic fac-

tor, and the error guarantee is easily seen to be the best pos-

sible up to a constant factor. The main difference between

the filtering algorithm establishing the above theorem and

the filtering algorithm for the sub-gaussian case is how we

choose the threshold for the filter. Instead of looking for a

violation of a concentration inequality, here we will choose

a threshold at random. In this case, randomly choosing

a threshold weighted towards higher thresholds suffices to

throw out more corrupted samples than uncorrupted sam-

ples in expectation. Although it is possible to reject many

good samples this way, we show that the algorithm still

only rejects a total of O(ε) samples with high probability.

Finally, estimating the covariance of a Gaussian:

Theorem 3.3. Let G ∼ N (0,Σ) be a Gaussian in d dimen-

sions, and let ε > 0. Let S be an ε-corrupted set of samples

from G of size Ω((d2/ε2) poly log(d/ε)). There exists an

efficient algorithm that, given S and ε, returns the param-

eters of a Gaussian distribution G′ ∼ N (0, Σ̂) so that with

probability at least 9/10, it holds ‖I−Σ−1/2Σ̂Σ−1/2‖F =
O(ε log(1/ε)).

We now provide a high-level description of the main in-

gredient which yields these improved sample complexity

bounds. The initial analysis of Diakonikolas et al. (2016a)

established sample complexity bounds which were sub-

optimal by polynomial factors because it insisted that the

set of good samples (i.e., before the corruption) satisfied

very tight tail bounds. To some degree such bounds are

necessary, as when we perform our filtering procedure, we

need to ensure that not too many good samples are thrown
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away. However, the old analysis required that fairly strong

tail bounds hold uniformly. The idea for the improvement

is as follows: If the errors are sufficient to cause the vari-

ance of some polynomial p (linear in the unknown mean

case or quadratic in the unknown covariance case) to in-

crease by more than ε, it must be the case that for some T ,

roughly an ε/T 2 fraction of samples are error points with

|p(x)| > T . As long as we can ensure that less than an

ε/T 2 fraction of our good sample points have |p(x)| > T ,

this will suffice for our filtering procedure to work. For

small values of T , these are much weaker tail bounds than

were needed previously and can be achieved with a smaller

number of samples. For large values of T , these tail bounds

are comparable to those used in previous work (Diakoniko-

las et al., 2016a) , but in such cases we can take advantage

of the fact that |p(G)| > T only with very small probabil-

ity, again allowing us to reduce the sample complexity. The

details are deferred to the supplementary material.

4. Filtering

We now describe the filtering technique more rigorously, as

well as some additional practical heuristics.

4.1. Robust Mean Estimation

We first consider mean estimation. The algorithms which

achieve Theorems 3.1 and 3.2 both follow the general

recipe in Procedure 1. We must specify three parameter

functions:

• Thres(ε) is a threshold function—we terminate if the

covariance has spectral norm bounded by Thres(ε).

• Tail(T, d, ε, δ, τ) is an univariate tail bound, which

would only be violated by a τ fraction of points if they

were uncorrupted, but is violated by many more of the cur-

rent set of points.

• δ(ε, s) is a slack function, which we require for techni-

cal reasons.

Given these objects, our filter is fairly easy to state: first,

we compute the empirical covariance. Then, we check

if the spectral norm of the empirical covariance exceeds

Thres(ε). If it does not, we output the empirical mean with

the current set of data points. Otherwise, we project onto

the top eigenvector of the empirical covariance, and throw

away all points which violate Tail(T, d, ε, δ, τ), for some

choice of slack function δ.

Sub-gaussian case To instantiate this algorithm for the

subgaussian case, we take Thres(ε) = O(ε log 1/ε),
δ(ε, s) = 3

√
ε(s− 1), and Tail(T, d, ε, δ, τ) =

8 exp(−T 2/2ν) + 8 ε
T 2 log(d log(d/ετ)) , where ν is the sub-

gaussian parameter. See the supplementary material for de-

tails.

Procedure 1 Filter-based algorithm template for robust

mean estimation

1: Input: An ε-corrupted set of samples S,

Thres(ε),Tail(T, d, ε, δ, τ), δ(ε, s)
2: Compute the sample mean µS′

= EX∈uS′ [X], covari-

ance Σ, approximations for the largest absolute eigen-

value and eigenvector of Σ, λ∗ := ‖Σ‖2, and v∗.
3: if ‖Σ‖2 ≤ Thres(ε) then

4: return µS′

.
5: end if

6: Let δ = δ(ε, ‖Σ‖2).
7: Find T > 0 such that

Pr
X∈uS′

[
|v∗ · (X − µS′

)| > T + δ
]
> Tail(T, d, ε, δ, τ).

8: return {x ∈ S′ : |v∗ · (x− µS′

)| ≤ T + δ}.

Second moment case To instantiate this algorithm for

the second moment case, we take Thres(ε) = 9, δ = 0,

and we take Tail to be a random rescaling of the largest

deviation in the data set, in the direction v∗. See the sup-

plementary material for details.

4.2. Robust Covariance Estimation

Our algorithm for robust covariance follows the exact

recipe outlined above, with one key difference—we check

for deviations in the empirical fourth moment tensor. Intu-

itively, just as in the robust mean setting, we used degree-2
information to detect outliers for the mean (the degree-1
moment), here we use degree-4 information to detect out-

liers for the covariance (the degree-2 moment).

This corresponds to finding a normalized degree-2 poly-

nomial whose empirical variance is too large. Filter-

ing along this polynomial with an appropriate choice of

Thres(ε), δ(ε, s), and Tail gives the desired bounds. See

the supplementary material for more details.

4.3. Better Univariate Tests

In the algorithms described above for robust mean estima-

tion, after projecting onto one dimension, we center the

points at the empirical mean along this direction. This is

theoretically sufficient, however, introduces additional con-

stant factors since the empirical mean along this direction

may be corrupted. Instead, one can use a robust estimate

for the mean in one direction. Namely, it is well known that

the median is a provably robust estimator for the mean for

symmetric distributions (Huber & Ronchetti, 2009; Ham-

pel et al., 1986), and under certain models it is in fact op-

timal in terms of its resilience to noise (Dvoretzky et al.,

1956; Massart, 1990; Chen, 1998; Daskalakis & Kamath,

2014; Diakonikolas et al., 2017). By centering the points
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Figure 1. Experiments with synthetic data for robust mean esti-

mation: excess `2 error is reported against dimension.

at the median instead of the mean, we are able to achieve

better error in practice.

4.4. Adaptive Tail Bounding

In our empirical evaluation, we found that it was im-

portant to find an appropriate choice of Tail, to achieve

good error rates, especially for robust covariance estima-

tion. Concretely, in this setting, our tail bound is given by

Tail(T, d, ε, δ, τ) = C1 exp(−C2T ) + Tail2(T, d, ε, δ, τ),
for some function Tail2, and constants C1, C2. We found

that for reasonable settings, the term that dominated was

always the first term on the RHS, and that Tail2 is less sig-

nificant. Thus, we focused on optimizing the first term.

We found that depending on the setting, it was useful to

change the constant C2. In particular, in low dimensions,

we could be more stringent, and enforce a stronger tail

bound (which corresponds to a higher C2), but in higher

dimensions, we must be more lax with the tail bound. To

do this in a principled manner, we introduced a heuristic we

call adaptive tail bounding. Our goal is to find a choice of

C2 which throws away roughly an ε-fraction of points. The

heuristic is fairly simple: we start with some initial guess

for C2. We then run our filter with this C2. If we throw

away too many data points, we increase our C2, and retry.

If we throw away too few, then we decrease our C2 and

retry. Since increasing C2 strictly decreases the number of

points thrown away, and vice versa, we binary search over

our choice of C2 until we reach something close to our tar-

get accuracy. In our current implementation, we stop when

the fraction of points we throw away is between ε/2 and

3ε/2, or if we’ve binary searched for too long. We found

that this heuristic drastically improves our accuracy, and

allows our algorithm to scale fairly smoothly from low to

high dimension.

5. Experiments

We performed an empirical evaluation of the above algo-

rithms on synthetic and real data sets with and without
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Figure 2. Experiments with synthetic data for robust covariance

estimation: excess Mahalanobis error is reported against dimen-

sion.

synthetic noise. All experiments were done on a laptop

computer with a 2.7 GHz Intel Core i5 CPU and 8 GB of

RAM. The focus of this evaluation was on statistical ac-

curacy, not time efficiency. In all synthetic trials, our al-

gorithm consistently had the smallest error, sometimes or-

ders of magnitude better than any other algorithms. In the

semi-synthetic benchmark, our algorithm also (arguably)

performs the best, though this is subjective. While we did

not optimize our code for runtime, it is always comparable

to (and often better than) the effective alternatives.

5.1. Synthetic Data

Experiments with synthetic data allow us to verify the error

guarantees and the sample complexity rates proven in Sec-

tion 3. In both cases, the experiments validate the accuracy

and usefulness of our algorithm, almost exactly matching

the best rate without noise.

Unknown mean The results of our synthetic mean ex-

periment are shown in Figure 1. In the synthetic mean

experiment, we set ε = 0.1, and for dimension d =
[100, 150, . . . , 400], we generate n = 10d

ε2 samples, where

a (1 − ε)-fraction come from N (µ, I), and an ε fraction

come from a noise distribution. Our goal is to produce an

estimator which minimizes the `2 error the estimator has

to the truth. As a baseline, we compute the error that is

achieved by only the uncorrupted sample points. This error

will be used as the gold standard for comparison, since in

the presence of error, this is roughly the best one could do
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even if all the noise points were identified exactly.2

On this data, we compared the performance of our Filter al-

gorithm to that of (1) the empirical mean of all the points,

(2) a trivial pruning procedure, (3) the geometric median of

the data, (4) a RANSAC-based mean estimation algorithm,

and (5) a recently proposed robust estimator for the mean

due to (Lai et al., 2016), which we will call LRVMean. For

(5), we use the implementation available in their Github.3

In Figure 1, the x-axis indicates the dimension of the exper-

iment, and the y-axis measures the `2 error of our estimated

mean minus the `2 error of the empirical mean of the true

samples from the Gaussian, i.e., the excess error induced

over the sampling error.

We tried various noise distributions, and found that the

same qualitative pattern arose for all of them. In the re-

ported experiment, our noise distribution was a mixture

of two binary product distributions, where one had a cou-

ple of large coordinates (see the supplementary material

for a detailed description). For all (nontrivial) error dis-

tributions we tried, we observed that indeed the empirical

mean, pruning, geometric median, and RANSAC all have

error which diverges as d grows, as the theory predicts.

On the other hand, both our algorithm and LRVMean have

markedly smaller error as a function of dimension. Indeed,

our algorithm’s error is almost identical to that of the em-

pirical mean of the uncorrupted sample points.

Unknown covariance See Figure 2 for the results of our

synthetic covariance experiment. Our setup is similar to

that for the synthetic mean. Since both our algorithm and

LRVCov require access to fourth moments, we ran into is-

sues with limited memory on machines. This limitation

prevented us from performing experiments at the same di-

mensionality as the unknown mean setting, and we could

not use as many samples. We fix ε = 0.05. For di-

mension d = [10, 20, . . . , 100], we generate 0.5d
ε2 sam-

ples, where a (1 − ε)-fraction come from N (0,Σ), and

the rest come from a noise distribution. We measure dis-

tance in the natural affine invariant way, namely, the Ma-

halanobis distance induced by Σ to the identity: err(Σ̂) =

‖Σ−1/2Σ̂Σ−1/2 − I‖F . As before, we use the empirical

error of only the uncorrupted data points as a benchmark.

On this corrupted data, we compared the performance of

our Filter algorithm to that of (1) the empirical covari-

ance of all the points, (2) a trivial pruning procedure, (3)

a RANSAC-based minimal volume ellipsoid (MVE) algo-

rithm, and (5) a recently proposed robust estimator for the

covariance due to (Lai et al., 2016), which we will call

2We note that it is possible that an estimator may achieve
slightly better error than this baseline.

3https://github.com/kal2000/AgnosticMean\

AndCovarianceCode

LRVCov. For (5), we again obtained the implementation

from their Github repository.

We tried various choices of Σ and noise distribution. Fig-

ure 2 shows two choices of Σ and noise. Again, the x-axis

indicates the dimension of the experiment and the y-axis

indicates the estimator’s excess Mahalanobis error over the

sampling error. In the left figure, we set Σ = I , and our

noise points are simply all located at the all-zeros vector. In

the right figure, we set Σ = I+10e1e
T
1 , where e1 is the first

basis vector, and our noise distribution is a somewhat more

complicated distribution, which is similarly spiked, but in a

different, random, direction. We formally define this distri-

bution in the supplementary material. For all choices of Σ
and noise we tried, the qualitative behavior of our algorithm

and LRVCov was unchanged. Namely, we seem to match

the empirical error without noise up to a very small slack,

for all dimensions. On the other hand, the performance of

empirical mean, pruning, and RANSAC varies widely with

the noise distribution. The performance of all these algo-

rithms degrades substantially with dimension, and their er-

ror gets worse as we increase the skew of the underlying

data. The performance of LRVCov is the most similar to

ours, but again is worse by a large constant factor. In par-

ticular, our excess risk was on the order of 10−4 for large

d, for both experiments, whereas the excess risk achieved

by LRVCov was in all cases a constant between 0.1 and 2.

These experiments demonstrate that our statistical guaran-

tees are in fact quite strong. As our excess error is al-

most zero (and orders of magnitude smaller than other ap-

proaches), this suggests that our sample complexity is in-

deed near-optimal, since we match the rate without noise,

and that the constants and logarithmic factors in the theo-

retical recovery guarantee are often small or non-existent.

5.2. Semi-synthetic Data

To demonstrate the efficacy of our method on real data,

we revisit the famous study of Novembre et al. (2008). In

this study, the authors investigated data collected as part of

the POPRES project. This dataset consists of the genotyp-

ing of thousands of individuals using the Affymetrix 500K

single nucleotide polymorphism (SNP) chip. The authors

pruned the dataset to obtain the genetic data of over 1387

European individuals, annotated by their country of origin.

Using principal components analysis, they produce a two-

dimensional summary of the genetic variation, which bears

a striking resemblance to the map of Europe.

Our experimental setup is as follows. While the original

dataset is very high dimensional, we use a 20 dimensional

version of the dataset as found in the authors’ GitHub4. We

4https://github.com/NovembreLab/Novembre_

etal_2008_misc
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