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Abstract

We use a tangent method approach to obtain the arctic curve in a model 
of non-intersecting lattice paths within the first quadrant, including a 
q-dependent weight associated with the area delimited by the paths. Our 
model is characterized by an arbitrary sequence of starting points along the 
positive horizontal axis, whose distribution involves an arbitrary piecewise 
differentiable function. We give an explicit expression for the arctic curve in 
terms of this arbitrary function and of the parameter q. A particular emphasis 
is put on the deformation of the arctic curve upon varying q, and on its limiting 
shapes when q tends to 0 or infinity. Our analytic results are illustrated by a 
number of detailed examples.
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1. Introduction

The study of two-dimensional non intersecting lattice path (NILP) configurations is a subject 
of constant investigation, in particular because they provide alternative descriptions for a num-
ber of statistical models, including tiling problems [CEP96, JPS98] or dimer models on regu-
lar lattices. Quite generally, their statistics exhibits a number of interesting properties, among 
which is the remarkable arctic curve phenomenon which may be described as follows: for 
prescribed boundary conditions (obtained for instance by fixing the starting and ending points 
of the paths), the paths may by construction visit only a fixed domain D in the lattice. In the 
thermodynamic limit, i.e. for a large number of paths and under the appropriate scaling, this 
accessible domain D is then split into one or several liquid disordered phases in which paths 
may fluctuate with a finite entropy, and frozen (crystalline) ordered phases in which paths 
develop some underlying order generally imposed by some nearby boundary. Frozen phases 
may correspond either to fully filled regions with a compact arrangement of the paths charac-
terized by a fixed common orientation or, on the contrary, to regions not visited by paths. In 
the thermodynamic limit, the transition between frozen and liquid phases is sharp and takes 
place along a well defined arctic curve (with possibly several connected components) whose 
shape depends only on the boundary conditions and on some local weights possibly attached 
to the paths. The arctic curve phenomenon was described in a quite general setting in [KOS06, 
KO06, KO07]. Several methods were designed to obtain, for specific NILP problems, the 
precise location of their arctic curve. These are in general based on the identification of the 
various phases in the bulk and their implementation, which requires the evaluation of bulk 
expectation values, is achieved by use of quite involved techniques such as inversion of the 
Kasteleyn matrix, or more recently by exploiting the underlying cluster integrable system 
structure of the equivalent dimer problem [DFSG14, KP13b].

On the other hand, an elegant new technique, referred to as the tangent method, was 
recently invented by Colomo and Sportiello [CS16]: it produces the arctic curve via a simple 
geometric construction, without recourse to any bulk order parameter evaluation. The idea is 
the following: many NILP problems have several equivalent formulations involving different 
families of paths and a given portion of the arctic curve may always in practice be understood, 
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for the appropriate path family, as the separation between a liquid phase and a region empty 
of all paths. In particular, the shape of the arctic curve is dictated by the most likely trajecto-
ries of outermost paths in the NILP configuration since these are precisely the paths which 
delimit the visited region. Based on this remark, the tangent method consists in reconstructing 
the arctic curve from the location of the outermost path trajectories for the various equivalent 
path families defining the model. In practice, the trajectory of the outermost path is obtained 
by perturbing it upon moving one of its endpoints outside of the originally allowed domain 
D, so as to force it to cross the empty region before it eventually exits D. The perturbed and 
unperturbed trajectories are expected to share a common part before they eventually split 
tangentially (hence the name of the method). After splitting, the perturbed trajectory which 
takes place in some empty region is somewhat trivial as it is no longer influenced by the other 
paths: as a consequence, it follows a geodesic and one may thus easily reconstruct the posi-
tion of the tangency (splitting) point from that of the point where the path most likely exits 
D. The latter is determined by a variational principle. By varying the displaced endpoint, one 
then reconstructs the entire unperturbed outermost trajectory as the envelope of the family of 
geodesics thus produced, yielding the desired portion of arctic curve. The tangent method was 
tested successfully in a number of problems [CS16, DFL18, DFG18] where it was shown to 
reproduce already known results and yielded new explicit predictions.

In a recent paper [DFG18], we concentrated on a particular NILP problem involving paths 
traveling up and left along the edges of the first quadrant of a regular square lattice and with 
an arbitrary sequence of starting points along the positive horizontal axis, with abscissa 
a0 = 0, a1, a2, ..., an, and with the fixed sequence of endpoints along the positive vertical 
axis at positions 0, 1, 2, ..., n. Applying the tangent method, we were able to obtain the corre-
sponding arctic curve in terms of the asymptotic distribution of starting points in the thermo-
dynamic limit. In particular, this allowed us to recover via simple geometrical constructions 
the results of [DM15] and de facto to validate the tangent method.

In the present paper, we address the same question of the arctic curve, for the same NILP 
problem, but including a new q-dependent weight for the NILP configurations, associated 
with the area under the paths. More precisely, let Ai be the area delimited by the coordinate 
axes and a path Pi in the first quadrant. A NILP configuration then receives a total statistical 
weight q

∑
i Ai where the sum runs over all the paths in the configuration. A small value of q 

favors configurations in which the paths are squeezed towards the origin of the first quadrant 
so as to lower the cumulative area 

∑
i Ai. On the contrary, a large value of q pushes the paths 

away from this origin. Such choice of q-dependent weight is quite natural and was already 
considered in [MP17] in a more specific situation3, and in [BGR10] for a special case thereof, 
corresponding to the example of section 7.4 below. There the model is presented in its equiva-
lent tiling formulation, which may itself be viewed as a plane partition, or equivalently as a 
three-dimensional piling of elementary cubic bricks (see [MP17, DFG18]). In this language, 
the above cumulative area 

∑
i Ai has a nice geometrical interpretation as a measure of the vol-

ume below the surface of the brick piling (and above some appropriate base plane, see [MP17] 
for details). Alternatively, this plane partition model may be rephrased as a free fermion five-
vertex model [NK94] and our area weight corresponds to its particular q-weighted version of 
[KP13a] with inhomogeneous weights controlled by a single parameter q.

Our main result is an explicit parametric expression for the arctic curve in terms of the 
(arbitrary, piecewise differentiable) distribution of starting points α(u) = limn→∞ a�n u�/n, 
u ∈ [0, 1], and of the renormalized parameter q = q1/n:

3 This situation corresponds in fact to a particular instance of our general framework with a sequence of starting 
points corresponding to so-called freezing boundaries only.
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Theorem 1.1. Let x(t) be the q-deformed exponential moment-generating function for the 
distribution α(u) of starting points, namely:

x(t) := q
−t

∫ 1
0

du
t−qα(u) . (1.1)

The arctic curve for the asymptotic configurations of NILP with prescribed endpoints is given 
in the following parametric form (X(t), Y(t)), for admissible ranges of t ∈ R:

qX(t) =
t2 x′(t)

t x′(t) + x(t)(1 − x(t))
, qY(t) =

t x′(t) + 1 − x(t)
t x′(t) + x(t)(1 − x(t))

. (1.2)

The precise relevant admissible domains for t are discussed in the paper. Using this result, 
we may follow the deformation of the arctic curve for varying q, and obtain its limiting shape 
whenever q tends to 0 or to infinity.

The paper is organized as follows. In section 2, we give a precise definition of the NILP 
problem under study, which is first presented in its ‘original’ form (section 2.1) involving a 
first family of paths along the edges of the first quadrant of a regular square lattice, and then 
reformulated in terms of a second, dual family of paths (section 2.2), with a detailed analysis 
of the mapping between these two formulations. The model is entirely characterized by its 
fixed arbitrary sequence of starting points as well as by the weight parameter q and we give 
in section 2.1 an explicit expression for its partition function. Section 3 is devoted to the com-
putation of the basic quantities required to apply the tangent method to our problem. These 
include in particular the so-called one-point function, computed in section 3.1, which enumer-
ates path configurations in which the outermost path is perturbed so as to exit the allowed 
domain D at a prescribed exit point. The associated scaling expression in the thermodynamic 
limit of a large number of paths is discussed in section 3.2 where we also analyze the position 
of the most likely exit point. Section 4 proves our main result, namely the above parametric 
equation (1.2) for the arctic curve. Its derivation requires computing the equation for ‘geodes-
ics’ (section 4.1), i.e. free trajectories of the (perturbed) outermost path within an unvisited 
region empty of all the other paths. The arctic curve is then obtained from the tangent method 
principle as the envelope of the geodesics passing via the previously identified most likely exit 
points (section 4.2). The above construction, based exclusively on the original path family of 
section 2.1, produces only one portion of the arctic curve, its so-called ‘right part’. We show 
in section 5 how to get other portions of the arctic curve, a generic ‘left part’ (section 5.1) 
obtained from outermost trajectories in the second path family of section 2.2, as well as possi-
ble additional portions (section 5.2) arising for so-called ‘freezing boundaries’ in the presence 
of either fully filled intervals or gaps in the sequence of starting points. Section 6 is devoted 
to the description of the arctic curve in the limit where q tends to 0 or to infinity, either via 
heuristic arguments (section 6.1) based on the identification of the most likely limiting NILP 
configuration, or via a rigorous treatment analyzing the limit of the arctic curve equation (1.2) 
when q becomes large (section 6.2) or small (section 6.3). Section 7 presents a number of 
explicit examples of this deformation of the arctic curve when q varies for a fairly generic 
class of starting point distributions (section 7.1), including situations with freezing boundaries 
resulting from a fully filled interval in the starting point sequence (section 7.2) or from a gap 
(section 7.3). As a final example we revisit the path formulation of the classical rhombus tiling 
problem of a hexagonal domain [CLP98] in section 7.4. We show how the arctic curve, known 
to be an ellipse for q  =  1 is deformed for large or small q as a result of the invasion of the 
liquid phase by frozen regions. We gather a few concluding remarks in section 8.
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2. Partition function for q-weighted non-intersecting lattice paths

2.1. Direct path formulation

As in [DFG18], we consider configurations of non-intersecting lattice paths consisting of 
(n + 1) paths Pi, i = 0, 1, · · · , n, making west- or north-oriented unit steps along the edges 
of the regular square lattice Z2, starting at respective position Oi = (ai, 0) along the x-axis 
and ending at position Ei  =  (0, i) along the y -axis. Here (ai)0�i�n denotes an arbitrarily fixed 
strictly increasing sequence of integers with a0  =  0. The paths are non-intersecting in the 
sense that any two distinct paths may not share a common vertex. Clearly, the domain D acces-
sible to the paths is a rectangle of size an × n in the first quadrant, with its lower left corner 
at the origin.

The novelty of the present paper is that each path Pi now receives a weight qAi, where 
q is some arbitrary positive real number and Ai measures the area ‘to the left of the path’ 
Pi, i.e. the number of unit squares in the domain delimited by the path Pi and its projection 
along the y -axis (see figure 1). Note that in the present case, this area may also be viewed as 
the area ‘under the path’, i.e. the number of unit squares in the domain delimited by Pi and 
its projection along the x-axis. The total weight of a NILP configuration is then the prod-
uct of its path weights, namely q

∑n
i=0 Ai . Alternatively, the weight qAi of the path Pi may 

be obtained by assigning to each north-oriented step (x, y) → (x, y + 1) of the path a local 
weight qx. Since this latter formulation involves only local edge weights, the partition function 
Zn(q) := Zn(q; (ai)0�i�n) of the model may be obtained via the famous Lindström–Gessel–
Viennot (LGV) lemma [Lin73, GV85] as

Zn(q) = det
(
(Ai,j (q))0�i,j�n

)
 (2.1)

where Ai,j (q) denotes the partition function of a single path P (made of west- and north-ori-
ented steps) connecting Oi to Ej , and with weight qA if A is the area to the left of the path P. 
Since a path from Oi to Ej  is made of a total of ai  +  j  steps among which exactly j  are oriented 
north, we have clearly

Ai,j(q) =
[

ai + j
j

]
q

in terms of the q-binomial[
a
b

]
q

:=
b∏

s=1

qs+a−b − 1
qs − 1

for a � b � 0 (2.2)

and 
[a

b

]
q := 0 otherwise4. As in [DFG18], the value of the determinant (2.1) is easily obtained 

by performing the LU decomposition of the matrix A(q) with elements Ai,j (q) above, i.e. upon 
writing A(q) as the product of a uni5-lower triangular square matrix L(q) by an upper triangu-
lar square matrix U(q), so that Zn(q) =

∏n
i=0 Ui,i(q).

Let us show that we may take for L(q) the inverse of the uni-lower triangular matrix L−1(q) 
with matrix elements

4 Note that the product expression for the q-binomial is in practice valid for all a � 0 as it gives 0 for 0 � a < b. 

Note also that 
[a

b

]
q =

[ a
a−b

]
q
.

5 By uni-lower triangular, we mean a lower triangular matrix with all its diagonal elements equal to 1.
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L−1(q)i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i−1∏
s=0

(qai−qas )

i∏
s=0
s�=j

(qaj−qas )

for i � j,

0 for i < j,

 (2.3)

i.e. that U(q) := L−1(q)A(q) is upper triangular. We may compute directly

Ui,j(q) =
(
L−1 (q)A (q)

)
i,j =

i∑
k=0

i−1∏
s=0

(qai − qas)

i∏
s=0
s�=k

(qak − qas)

[
ak + j

j

]
q

=

i−1∏
s=0

(qai − qas)

∮
C(qa0 ,qa1 ,··· ,qai )

dt
2iπ

1
i∏

s=0
(t − qas)

j∏
s=1

t qs − 1
qs − 1

,

where the contour C(qa0 , qa1 , · · · , qai) encircles all the finite poles qa0 , qa1 , · · · , qai  of the inte-
grand. The contour integral is then easily obtained as minus the residue of its integrand at 
t = ∞, which clearly vanishes if j   <  i since the integrand is an O(tj −i−1) at large t: this shows 
that U(q) is upper triangular as announced. Moreover, picking the residue at t = ∞ when 
j   =  i, we also have

Ui,i(q) =
i−1∏
s=0

(qai − qas)

i∏
s=1

qs

qs − 1
= qi2

i−1∏
s=0

qai − qas

qi − qs

and the partition function finally reads

Zn(q; (ai)0�i�n) =
n∏

i=0

Ui,i(q) = q
1
6 n(n+1)(2n+1) Δ(qa0 , qa1 , qa2 , · · · , qan)

Δ(1, q, q2, · · · , qn)
,

 

(2.4)

where Δ(x0, x1, x2, · · · , xn) =
∏

i<j(xj − xi) is the Vandermonde determinant.

0 151210632

O4

E4

P4

Figure 1. A sample configuration of n  +  1  =  7 non-intersecting lattice paths made of 
west- or north-oriented unit steps. The ith path Pi starts at position Oi = (ai, 0) and 
ends at position Ei  =  (0,i) (here for the sequence (ai)0�i�n = (0, 2, 3, 6, 10, 12, 15)). For 
illustration, we colored the domain ‘to the left of the path’ P4 whose number of unit 
squares defines the area A4 (here  =31). The weight of the configuration is q

∑n
i=0 Ai  

(here q0+1+5+16+31+53+75 = q181).
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2.2. Alternative path formulation

As explained in [DFG18], the NILP configurations of our model may be bijectively trans-
formed into particular tiling configurations which in turn may be reformulated into alternative 
path configurations. Here we shall concentrate on one particular alternative path description 
of our model, referred to as the ‘second set’ of paths in [DFG18]. Its configurations consist 
again of (n + 1) NILP P̃i, i = 0, 1, · · · , n, now made of northeast- and east-oriented unit steps, 
with respective starting points Õi  of coordinates (an−i  +  1/2, 0) along the x-axis and endpoints 
Ẽi of coordinates (an  +  1/2  +  i, i) along the line y   =  x  −  an  −  1/2 (see figure 2). The bijection 
between the original NILP configurations and these second set of non-intersecting paths may 
be obtained directly as follows: given the original NILP configuration, the ith path P̃i in the 
associated second set of paths is obtained, starting from Õi , by performing east-oriented unit 
steps as long as these steps do not intersect a path of the first original set and by overpassing 
any encountered such path via a northeast-oriented step crossing a north-oriented step of the 
original path (see figure 2). The procedure is continued until the final point Ẽi is reached (after 
i crossings, so that Ẽi has the desired y -coordinate i). Note that, as opposed to the original path 
numbering from left to right, the paths in the second set are now numbered from right to left. 
It is clear that the mapping from {Pi}0�i�n to {P̃i}0�i�n is a bijection since, from the data 
of any {P̃i}0�i�n in the second set of paths, we may easily reconstruct its unique pre-image 
{Pi}0�i�n by a similar construction.

Let us now discuss how to transfer the weight of the original NILP configuration to its 
image by the above bijection: this weight is clearly recovered in the second setting by assign-
ing to each northeast-oriented step (x − 1/2, y) → (x + 1/2, y + 1) a weight qx as any such 
step is ‘dual’ to a north-oriented step (x, y) → (x, y + 1) in the original configuration. By 
performing a simple shear of the original unit squares into elementary rhombi of the same unit 

area, this in turn corresponds to assigning a weight qÃi to each path P̃i of the new configura-

tion, where Ãi denotes again the area to the left of P̃i, now defined as the total area (number of 
rhombi) of the domain delimited by the path P̃i and its projection along the ‘vertical sawtooth 
line’ surrounding the y -axis (see figures 2 and 3). Again the total weight of a NILP configura-

tion is the product of its path weights, namely q
∑n

i=0 Ãi . With this weight, the partition function 

of the second path configurations is, by construction, identical to that, Zn(q; (ai)0�i�n), of the 
first path configurations, namely given by (2.4).

0 151210632 Õ4

Ẽ4

P̃4

Figure 2. The second set of paths (in red) associated to the original configuration 
(in blue) of figure  1. For illustration, we colored the domain ‘to the left of 
the path’ P̃4, with area Ã4 = 39. The weight of the new configuration is 
q
∑6

i=0 Ãi = q0+14+26+34+39+40+28 = q181, equal to that of the original configuration.
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As in [DFG18], we may, on the other hand, transform a path configuration in the sec-
ond NILP set back into a configuration made of north- and west-oriented steps in a much 
more straightforward way: this direct transformation is achieved by first performing a shear 
transformation (x, y) �→ (x − y, y) (transforming northeast-oriented steps into north-oriented 
steps) followed by a reflection (x, y) → (an + 1/2 − x, y) (transforming east-oriented steps 
into west-oriented steps), as displayed in figure 3. The resulting mapping

R : (x, y) �→ (an + 1/2 + y − x, y)

sends the endpoints Ẽi to R(Ẽi) = (0, i) and the starting points Õi  to R(Õi) = (ãi, 0) involving 
the strictly increasing sequence of integers (with ã0 = 0)

ãi := an − an−i . (2.5)

We thus recover path configurations as those of the original setting but with a new set of start-
ing points now characterized by the sequence (ãi)0�i�n.

As for the weight qx assigned to any northeast-oriented step (x − 1/2, y) → (x + 1/2, y + 1) 
of, say, the path P̃i, it is attached after the mapping R , to a north-oriented step 
(an + 1 + y − x, y) → (an + 1 + y − x, y + 1) of the path R(P̃i), In other words6, any north-
oriented step (x̃, ỹ) → (x̃, ỹ + 1) of the path R(P̃i) receives a weight qan+1+ỹ−x̃. Since the path 
R(P̃i) has exactly i north-oriented steps (x̃, ỹ) → (x̃, ỹ + 1) whose ordinates ỹ take the respec-
tive integer values j = 0, 1, · · · , i − 1, the above weight is recovered by assigning a weight 
q−x̃ to each north-oriented steps (x̃, ỹ) → (x̃, ỹ + 1) together with a global weight

n∑
i=0

⎛
⎝i (an + 1) +

i−1∑
j=0

j

⎞
⎠ =

n∑
i=0

i
2an + i + 1

2
=

1
6

n(n + 1)(3an + n + 2) .

We deduce the identity

Zn(q; (ai)0�i�n) = q
1
6 n(n+1)(3an+n+2) Zn(q−1; (ãi)0�i�n) (2.6)

relating the partition functions of NILP configurations in the same original setting made of 
north- and west-oriented steps but associated with different sequences (ai)0�i�n and (ãi)0�i�n 
respectively. This identity may also be verified by a direct calculation from the explicit expres-
sion (2.4) and the relation (2.5) between ai and ãi.

The above (back and forth) bijective mappings between NILP configurations of the two 
different settings may appear here as a pure academic exercise but they will prove very useful 
in section 5.1 when using the second set of paths to compute the so-called ‘left part’ of the 
arctic curve.

3. One-point function and free trajectory partition function

3.1. Exact expressions

The tangent method consists in slightly modifying the NILP configurations by moving the 
endpoint En of the nth path r steps north to the position En(r)  =  (0,n  +  r). This forces this 
path to exit the domain y � n (hence the domain D) by a north-oriented step at some x- 
coordinate � between 0 and an. Let us denote by E(�) = (�, n) this ‘exit point’ (see figure 4). 

6 Note that R  is an involution, hence setting (an + 1 + y − x, y) = (x̃, ỹ) amounts to setting 
(x, y) = (an + 1 + ỹ − x̃, ỹ).
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As in [DFG18], the so-called one-point function Hn,�(q) := Hn,�(q; (ai)0�i�n) corresponds 
precisely to the partition function for configurations where we let the nth path Pn stop at a 
fixed exit point E(�), normalized by the original partition function Zn(q) (so that Hn,0(q)  =  1 
since E(0)  =  En). Here, the weight of the truncated path Pn is chosen to be qAn, where An  
denotes the number of unit squares in the region delimited by this truncated path Pn and its 
projection along the y -axis. This corresponds to our notion of area ‘to the left of the path’, but 
note that it is no longer identical to the area ‘under the (truncated) path’ whenever � > 0 (the 
difference between the two areas being n�).

Denoting by Zn(q, �) := Zn(q, �; (ai)0�i�n) the partition function of these configurations 
with exit point E(�), the one-point function Hn,� is simply obtained as the ratio

Hn,�(q) =
Zn(q, �)
Zn(q)

=
det (A(q, �))
det (A(q))

,

where the new LGV matrix A(q, �) differs from A(q) only in its last column:

Ai,j(q, �) =

⎧⎪⎨
⎪⎩

Ai,j(q) for j < n,

qn�
[ai+n−�

n

]
q for j = n .

Since A(q, �) and A(q) differ only in their last column, the matrix U(q, �) := L−1(q)A(q, �) 
differs also from U(q)  =  L−1(q)A(q) in its last column only, hence it is upper triangular, lead-
ing immediately to Hn,�(q) = Un,n(q, �)/Un,n(q), where

ã6 =a6ã0 =0 ã1 ã2 ã3 ã4 ã5

R

P̃i

R(P̃i)

Figure 3. The mapping R  from the configuration of figure 2 to a NILP configuration 
made of north- and west-oriented steps, now associated to the sequence 

(ãi)0�i�6 = (0, 3, 5, 9, 12, 13, 15). The area to the left of the transformed path R(P̃i) 

(shaded domain) is given by 
(

i (a6 + 1) +
∑i−1

y=0 y
)
− Ãi where Ãi is the area to the 

left of P̃i before mapping (colored domain).
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Un,n(q, �) =
n∑

k=0

L−1
n,k (q)Ak,n(q, �) = qn�

n∑
k=0

n−1∏
s=0

(qan − qas)

n∏
s=0
s�=k

(qak − qas)

[
ak + n − �

n

]
q

= qn�
n−1∏
s=0

(qan − qas)

∮
C(qak |ak��)

dt
2iπ

n∏
s=0

1
t − qas

n∏
s=1

t qs−� − 1
qs − 1

.

Here the contour C(qak |ak � �) encircles the finite poles qak of the integrand only for values of 
k such that ak � �. Other values of k (with ak < �) are indeed absent de facto from the sum in 

the first line due to the vanishing of the q-binomial 
[ak+n−�

n

]
q whenever ak < �.

This yields the desired expression

Hn,�(q) =
Un,n(q, �)
Un,n(q)

= qn�−n(n+1)/2
∮
C(qak |ak��)

dt
2iπ

n∏
s=0

1
t − qas

n∏
s=1

(t qs−� − 1) .

 

(3.1)

Note finally that the last product in the integrand vanishes for t  =  qa when a = �− n, · · · , �− 1 
so that the contour C(qak |ak � �) may be extended to C(qak |ak � �− n) by also encircling 
poles qak with �− n � ak < � since these poles contribute 0 to the integral.

To obtain the full partition function for NILP configurations where the nth path ends at the 
shifted position En(r)  =  (0, n  +  r), we also need the partition function Y�,r(q) of the remain-
ing part of the nth path, leading from E(�) = (�, n) to En(r), hereafter referred to as the ‘free 
trajectory’ of the nth path as it is not affected by the other paths. It is simply given by

Y�,r(q) = q�

[
�+ r − 1

�

]
q

En(r) = (0, n + r)

E(�) = (�, n)
�

rY�,r(q)

Hn,�(q)

{
{

Figure 4. A modified NILP configuration where the nth path ends at position 
En(r)  =  (0, n  +  r). This forces this path to exit the domain y � n by a north-oriented 
step at E(�) = (�, n) for some � between 0 and an. The (normalized) partition function 
for the part of the configuration below the y   =  n line is given by Hn,�(q), including a 
weight qAn corresponding to the area An  to the left of the portion of the nth path below 
this line (colored domain). The partition function for the part of the configuration above 
the y   =  n line is given by Y�,r(q), including a weight q� for the first (shaded) strip.
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since the first step must be north-oriented (with weight q�) and the q-binomial precisely incor-
porates the desired weight qA for the area A to the left of the new portion of path lying above 
the y   =  n  +  1 line (see figure 4).

The modified (normalized) partition function for configurations with a fixed shifted end-
point En(r) for the nth path is simply obtained by summing over all possible intermediate 
positions E(�) of the exit point, namely given by

an∑
�=0

Hn,�(q) Y�,r(q) . (3.2)

3.2. Scaling limit

The tangent method uses the most likely value � for the exit point E(�), i.e. that which maxi-
mizes the modified partition function (3.2) for fixed r. The relation between the optimal � and 
r is easily obtained in the limit of large n by analyzing the asymptotics of the various functions 
at hand under the appropriate scaling, namely

� = ξ n, r = z n, ai = nα(i/n)

with ξ and z remaining finite, and where α(u) is an increasing piecewise differentiable func-
tion for u ∈ [0, 1] such that its derivative, when defined, satisfies α′(u) � 1 since the sequence 
(ai)0�i�n is strictly increasing. To get a non-trivial large n limit, it is also necessary to adjust 
the weight q by setting:

q = q1/n

with a finite q.
From the product expression (2.2) for the q-binomial, we immediately deduce the 

asymptotic equivalent:

Y�,r(q) ∼ enS1(ξ,z),

S1(ξ, z) =
∫ ξ

0
du Log

(
qu+z − 1
qu − 1

)

while, from the expression (3.1), we deduce

Hn,�(q) ∼
∮

dt
2iπ

enS0(t,ξ),

S0(t, ξ) =
(
ξ − 1

2

)
Log(q) +

∫ 1

0
du Log

(
t qu−ξ − 1
t − qα(u)

)
.

 

(3.3)

Here the contour must encircle only those qα(u) such that α(u) � ξ. For q > 1 (i.e. q  >  1), 
it must therefore surround the segment [qξ, qα(1)], hence cross the real axis anywhere in the 
interval ]qξ−1, qξ[ (recall indeed that the poles qak for �− n � ak < � do not contribute to the 
integral) and in the interval ]qα(1),+∞[ (there are no poles larger than qan). Similarly, for 
q < 1 (i.e. q  <  1), it must surround the segment [qα(1), qξ], hence cross the real axis in the 
interval ]−∞, qα(1)[ and in the interval ]qξ, qξ−1[. At large n, the integral is estimated by a 
saddle-point method, namely
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Hn,�(q) ∼ enS0(t∗,ξ),

∂S0(t, ξ)
∂t

∣∣∣
t=t∗

= 0 .

The optimal value of ξ for fixed z is then obtained by extremizing S0(t∗, ξ) + S1(ξ, z) with 
respect to ξ at fixed z. The two (saddle-point and extremization) operations may be performed 
simultaneously by solving the two extremization conditions:

∂S0(t, ξ)
∂t

= 0 =

∫ 1

0
du
{

qu−ξ

t qu−ξ − 1
− 1

t − qα(u)

}

=
1

t Log(q)
Log

(
t q− qξ

t − qξ

)
−
∫ 1

0
du

1
t − qα(u) ,

∂(S0(t, ξ) + S1(ξ, z))
∂ξ

= 0 = Log
(
q
qξ+z − 1
qξ − 1

)
− t Log(q)

∫ 1

0
du

qu−ξ

t qu−ξ − 1
.

Using the definition (1.1) for the q-defomed moment-generating function of the distribution 
α, namely

x(t) = q
−t

∫ 1
0 du 1

t−qα(u) ,

the above equations reduce to

t q− qξ

t − qξ
x(t) = 1, q

qξ+z − 1
qξ − 1

x(t) = 1,

which yield the parametric solution (ξ(t), z(t)) for the optimal ξ at fixed z:

qξ(t) = t
q x(t)− 1
x(t)− 1

, qz(t) =
t + x(t)− 1

t q x(t)
. (3.4)

Since qξ(t) and qz(t) must be real, t must be real and therefore lie in the specific intervals men-
tioned above when discussing the intersection of the t-contour with the real axis. It is easily 
checked that (qξ(t) − t)/(t − qξ(t)−1) = −q x(t) < 0 (since x(t) > 0), hence t cannot lie in 
the interval ]qξ−1, qξ[ for q > 1 (respectively ]qξ, qξ−1[ for q < 1). The solution above is thus 
valid only for a parameter t in the range ]qα(1),+∞[ if q > 1 and for a parameter t in the 
range ]−∞, qα(1)[ whenever q < 1.

4. Arctic curve: first portion

4.1. Geodesic equation for the free trajectory

So far we obtained in (3.4) the most likely exit point E(� = n ξ) for a fixed shifted endpoint 
En(r = n z) in the scaling limit. The tangent method relies on the assumption that the ‘geo-
desic path’ connecting E(�) to En(r), i.e. the most likely free trajectory passing through these 
two points, is tangent to the arctic curve at their meeting point. In other words, the nth path 
(travelled backwards from En(r)) continues to follow a geodesic trajectory below the y   =  n 
line until it meets the other paths of the NILP configuration tangentially along the arctic curve. 
Here it is important to note that, as opposed to the case q  =  1 considered in [DFG18], the 
geodesic path is no longer a straight line but follows a certain curve depending on n, �, r and 
on the parameter q.
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To compute the equation of this most likely free trajectory, let us consider the intersection 
point between the path from (�, n + 1) (recall that the first step after E(�) is a north-oriented 
step) to En(r)  =  (0, n  +  r) and, say, a vertical line x  =  m for m between 0 and �. If (m, n + p) 
denotes this intersection point (with p  between 1 and r), the free trajectory partition function 
reads

Y�,r(q) =
r∑

p=1

qm( p−1)
[

r − p + m
r − p

]
q

[
�− m + p − 1

p − 1

]
q

.

At large n, we use again scaling variables � = ξ n, m = μ n, r = z n, p = φ n and q = q
1
n 

to write

Y�,r(q) ∼
∫ z

0
dφ en S(φ,μ;ξ,z),

S(φ,μ; ξ, z) = μφLog(q) +
∫ z−φ

0
du Log

(
qu+μ − 1
qu − 1

)
+

∫ φ

0
du Log

(
qu+ξ−μ − 1

qu − 1

)
.

For fixed ξ and z, the most likely free trajectory φ = φ(μ) is obtained as the saddle-point of 
the integrand via

∂S(φ,μ; ξ, z)
∂φ

= Log
(
qμ

qz−φ − 1
qz−φ+μ − 1

qφ+ξ−μ − 1
qφ − 1

)
= 0,

namely

(1 − qξ)qφ + (1 − qz)qμ = 1 − qz+ξ .

Using rescaled Cartesian coordinates X  =  x/n, Y  =  y /n, this gives, for fixed ξ and z, the most 
likely free (rescaled) trajectory (X, Y) = (μ, 1 + φ) by letting μ vary between 0 and ξ (or 
equivalently letting φ vary between 0 and z). The above trajectory is equivalently rewritten as

1 − qX

1 − qξ
+

1 − qY−1

1 − qz = 1 (4.1)

with 0 � X � ξ (or equivalently 1 � Y � 1 + z). The above expression for the geodesic path 
emphasizes the fact that the rescaled endpoints (X, Y) = (0, 1 + z) (corresponding to En(r)) 
and (X, Y) = (ξ, 1) (corresponding to E(�)) lie on the curve, as wanted. The geodesic trajec-
tory is straightforwardly extended to values of X > ξ  (Y  <  1) and describes the most likely 
rescaled position of the nth path until it reaches the other paths.

4.2. Tangent method and arctic curve

We are now ready to apply the tangent method principles: the arctic curve is obtained as the 
envelope of the above geodesic trajectories (4.1) for varying endpoints (characterized by z in 
the scaling limit) and their associated most likely exit point (characterized by ξ), i.e. for vary-
ing values of ξ and z related via the parametric equation (3.4). Letting t vary in (3.4) yields a 
family of ‘tangent curves’ with equation

1 − qX

1 − qξ(t) +
1 − qY−1

1 − qz(t) = 1

parametrized by t. Substituting the solution (3.4) for ξ(t) and z(t), we end up with the par-
ticularly simple equation for the tangent curves:

P Di Francesco and E Guitter J. Phys. A: Math. Theor.  ( ) 115205



14

x(t) qY +
1 − x(t)

t
qX − 1 = 0 (4.2)

with x(t) as in (1.1). The envelope of these curves is the solution of the linear (in qX  and qY ) 
system:

t x(t) qY + (1 − x(t)) qX − t = 0,

(t x′(t) + x(t)) qY − x′(t) qX − 1 = 0,

leading to the following explicit parametric equation for the arctic curve (X(t), Y(t)) in terms 
of the quantity x(t) defined in (1.1):

qX(t) =
t2 x′(t)

t x′(t) + x(t)(1 − x(t))
, qY(t) =

t x′(t) + 1 − x(t)
t x′(t) + x(t)(1 − x(t))

, (4.3)

with, as already discussed, t ∈]qα(1),+∞[ whenever q > 1 and t ∈]−∞, qα(1)[ whenever 
q < 1. This proves a first instance of theorem 1.1, for the indicated ranges of t.

For illustration, let us discuss the simple case where the sequence of starting points is taken 
as ai = 2 i, i = 1, · · · , n. This results in a linear function α(u) = 2u and the function x(t) is 
easily computed from its general expression (1.1) as

x(t) =
1
q

√
t − q2

t − 1
.

The corresponding arctic curve (4.3) is displayed in figure 5 together with the associated fam-
ily of tangent curves (as given by (4.2)) for q = 3 and q = 1/3 respectively. Note that these 
tangent curves are concave for q = 3 and convex for q = 1/3, which is consistent with a ten-
dency for a free trajectory with fixed endpoints to increase the area to its left when q > 1 and, 
on the contrary, to decrease it whenever q < 1. Note also that the parameter t (in both (4.3) 
and (4.2)) varies in ]q2,+∞[=]9,+∞[ for q = 3 and ]−∞, q2[=]−∞, 1/9[ for q = 1/3. 
As apparent in figure 5, restricting t to the above ranges builds only one portion of the arctic 
curve, its so-called ‘right part’. This is due to the particular geometry that we used to apply the 
tangent method, namely by shifting north the endpoint En of the outermost path in the original 
NILP formulation of the model. As explained in [DFG18], other geometries may be used and 
lead to other portions of the arctic curve. Let us now discuss how to obtain these other portions 
in practice.

5. Other portions of the arctic curve

5.1. Left part of the arctic curve

Another portion of the arctic curve, hereafter called its ‘left part’ for obvious reasons, is obtained 
by considering the alternative formulation of section 2.2 through NILP configurations with 
northeast- and east-oriented steps. Moving the endpoint Ẽn = (an + 1/2 + n, n) of the nth 
path r steps in the northeast direction to the position Ẽn(r) = (an + 1/2 + n + r, n + r) forces 
this path to exit the domain y � n by a northeast-oriented step at some x-coordinate �+ 1/2 
for some � between n and an  +  n. Let us denote by Ẽ(�) = (�+ 1/2, n) this exit point (see 
figure 6). We denote by H̃n,�(q) := H̃n,�(q; (ai)0�i�n) the one-point function corresponding, 
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as before, to the (normalized) partition function for configurations where we let the nth path 
stop at a fixed exit point Ẽ(�) and where the weight of this truncated nth path is qÃn with Ãn  
the area to the left of the path as before. Note that the normalization condition now implies that 

H̃n,an+n(q) = 1 since Ẽ(an + n) = Ẽn.
By a straightforward generalization of the argument leading to (2.6) based on the mapping 

R , we immediately deduce the relation, valid for n � � � an + n:

H̃n,�(q; (ai)0�i�n) = Hn,�̃(q
−1, (ãi)0�i�n), �̃ = an + n − �

with no q-dependent prefactor since the proportionality factor appearing in (2.6) eventually 
drops out in the ratio defining the one-point functions (which are normalized partition func-
tions by definition, in particular H̃n,an+n = Hn,0 = 1 for any value of the parameter q and of 
the sequence (ai)0�i�n). Here �̃  is nothing but the x-coordinate of R(Ẽ(�)). This leads directly 
from the expression (3.1) to

Figure 5. The ‘right part’ of the arctic curve (thick solid blue line) as given by 
(4.3) for the appropriate domain of t (see text) for q = 3 (top) and q = 1/3 (bottom) 
in the particular case α(u) = 2u. The extremities of this portion of curve are at 
(Log (q(q+ 1)/2) /Log(q), 1) and (2, 0). We also indicated members of the family of 
tangent curves (thin lines) whose envelope defines the portion of arctic curve at hand.
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H̃n,�(q) = q−n�̃+n(n+1)/2
∮
C(q−ãk |ãk��̃)

dt
2iπ

n∏
s=0

1
t − q−ãs

n∏
s=1

(t q−s+�̃ − 1)

= qn�−n(n−1)/2 q−nan

∮
C(qak−an |ak��−n)

dt
2iπ

n∏
s=0

1
t − qan−s−an

n∏
s=1

(t q−s+an+n−� − 1)

= qn�−n(n−1)/2
∮
C(qak |ak��−n)

dt′

2iπ

n∏
s=0

1
t′ − qan−s

n∏
s=1

(t′ qn−s−� − 1)

= qn�−n(n−1)/2
∮
C(qak |ak��−n)

dt
2iπ

n∏
s=0

1
t − qas

n−1∏
s=0

(t qs−� − 1),

where we performed the change of variable t′ = t qan (then called t again in the fourth line). 
Note that this expression is very similar to that (3.1) for Hn,�(q). Apart from minor shifts in the 
indices, the main difference comes from the contour of integration which now encircles those 
qak with ak � �− n. As before, this contour may be extended7 to the qak with ak � � since the 
last product in the integral vanishes for t = q�, q�−1, · · · , q�−n+1.

We finally need the partition function of the free trajectory, easily computed as (see figure 6)

Ỹ�,r(q) = qr(�+1)+r(r−1)/2
[
�̃+ r − 1

�̃

]
q

.

We deduce the asymptotic equivalent

Ẽ(�) = (�+1/2, n)

�+1

r

Ẽn(r) = (an+1/2+n+r, n+r)

an0

�̃

Figure 6. A modified NILP configuration where the endpoint of the nth path is moved 
to position Ẽn(r) = (an + 1/2 + n + r, n + r). The partition function H̃n,�(q) for 
the lower part of the configuration with exit point Ẽ(�) is obtained via some general 
symmetry principle (see text). The partition function Ỹ�,r(q) of the upper part involves 
the area of the shaded domain, divided for convenience into three regions. The leftmost 
shaded region is responsible for a weight qr(r−1)/2 and the central shaded region for 
a weight qr(�+1). As for the rightmost part, which involves a summation over path 
configurations from (�+ 3/2, n + 1) to (an  +  1/2  +  n  +  r,n  +  r) with area equal to the 
(indicated in blue) rightmost shaded region, it yields, by a simple up-down reflection of 

the path, to a weight 
[
�̃+r−1

r−1

]
q
=
[�̃+r−1

�̃

]
q.

7 Using this extended domain, it is easily verified by a simple contour deformation that Hn,�(q) + H̃n,�−1(q) = 1 for 
all �. This remarkable identity has in fact a simple combinatorial explanation discussed in [DFG18].
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Ỹ�,r(q) ∼ enS̃1(ξ,z),

S̃1(ξ, z) = z(ξ + z/2)Log(q) +
∫ α(1)+1−ξ

0
du Log

(
qu+z − 1
qu − 1

)
,

while

H̃n,�(q) ∼
∮

dt
2iπ

enS0(t,ξ),

with the same function S0(t, ξ) as in (3.3) for Hn,�(q). Here however, the contour must encir-
cle only those qα(u) such that α(u) � ξ − 1. For q > 1, it must therefore surround the seg-
ment [1, qξ−1], hence cross the real axis in the interval ]−∞, 1[ (there are no poles less than 
qa0 = 1) and in the interval ]qξ−1, qξ[ (the poles qak for �− n < ak � � do not contribute to 
the integral). For q < 1, it must surround the segment [qξ−1, 1], hence cross the real axis in the 
interval ]qξ, qξ−1[ and in the interval ]1,+∞[. As before, at large n, the integral is estimated 
by a saddle-point method and the optimal value of ξ for fixed z is obtained from the two 
extremization conditions:

∂S0(t, ξ)
∂t

= 0 =

∫ 1

0
du
{

qu−ξ

t qu−ξ − 1
− 1

t − qα(u)

}
,

∂(S0(t, ξ) + S̃1(ξ, z))
∂ξ

= 0 = Log
(
qz+1 qα(1)+1−ξ − 1

qα(1)+1−ξ+z − 1

)
− t Log(q)

∫ 1

0
du

qu−ξ

t qu−ξ − 1
.

These equations reduce to:

t q− qξ

t − qξ
x(t) = 1, qz+1 qα(1)+1−ξ − 1

qα(1)+1−ξ+z − 1
x(t) = 1

with x(t) as in (1.1), hence the parametric solution (ξ(t), z(t)):

qξ(t) = t
q x(t)− 1
x(t)− 1

, qz(t) =
t

q(t x(t) + qα(1)(1 − x(t)))
. (5.1)

As before, the range t ∈]qξ−1, qξ[ for q > 1 (respectively t ∈]qξ, qξ−1[ for q < 1) is ruled out 
since (qξ(t) − t)/(t − qξ(t)−1) = −q x(t) < 0. The parameter t is therefore now restricted to 
the range t ∈]−∞, 1[ whenever q > 1 (respectively t ∈]1,+∞[ whenever q < 1).

In order to obtain a new family of tangent curves, we must compute the equivalent of equa-
tion (4.1) for the present geometry, i.e. find in the present setting the most likely free (rescaled) 
trajectory (X, Y) from (ξ, 1) (point Ẽ(�)) to (α(1) + z, 1 + z) (point Ẽn(r)). Fortunately, a 
simple symmetry argument allows us to get the new equation  for geodesics directly from 
(4.1) by (i) applying to this latter equation the (rescaled) transformation R , i.e. the change 
(X, Y) → (α(1) + Y − X, Y) and (ii) changing q → 1/q. Indeed, in configurations enumer-
ated by Ỹ�,r(q), the varying part, for fixed �, of the weight of a free trajectory may be written 
as qA if A denotes the area on top of the path (the rightmost blue shaded domain in figure 6). 
After the mapping R , this area is still on top of the path rather than under it as in the computa-
tion leading to (4.1). This difference simply amounts to changing q → 1/q up to global factor 
(which is fixed for fixed � and r). To summarize, we deduce, by applying (i) and (ii) to (4.1), 
the new equation for geodesics in the present geometry:

1 − q−(α(1)+Y−X)

1 − q−(α(1)+1−ξ)
+

1 − q−(Y−1)

1 − q−z = 1 .
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Picking for ξ and z the values ξ(t) and z(t) of (5.1), this yields a parametric equation for a new 
family of tangent curves, namely after substitution:

x(t) qY +
1 − x(t)

t
qX − 1 = 0 .

Remarkably, we obtain for our new family the same expression as that obtained in (4.2) for the 
family of tangent curves associated with the first portion (right part) of arctic curve. The result 
for the second portion of arctic curve boils down again to equation (1.2) of theorem 1.1, but 
with now a different domain of variation for the parameter t, namely t ∈]−∞, 1[ whenever 
q > 1 and t ∈]1,+∞[ whenever q < 1.

The complete arctic curve, incorporating both the right and left parts, is displayed in fig-
ure 7 in the particular case α(u) = 2u.

5.2. Portions induced by freezing boundaries

Recall that, by construction, the scaling function α(u) is an increasing piecewise differentiable 
function for u ∈ [0, 1], such that α′(u) � 1 when α′(u) is defined. For a generic such function, 
the quantity x(t) given by (1.1) is well-defined and real only for t in the already encountered 
allowed domains, namely t ∈]−∞, 1[∪]qα(1),+∞[ for q > 1 and t ∈]−∞, qα(1)[∪]1,+∞[ 

for q < 1. This is due heuristically to the fact that 
∫ 1

0 du 1/(t − qα(u)) is generically not defined 
for t in the interval [qα(0), qα(1)] = [1, qα(1)] for q > 1 (respectively [qα(1), qα(0)] = [qα(1), 1] 
for q < 1) since qα(u) spans this interval when u varies between 0 and 1. As a consequence, 
the arctic curve for a generic α(u) consists only of the two portions computed so far, namely 
its left and right part above.

As explained in [DFG18], there exist however some particular realizations of α(u) giv-
ing rise to extra domains of t for which x(t), as given by (1.1) (possibly through some ana-
lytic continuation), remains well defined and real. This in turns leads through (1.2) to extra 
portions of arctic curve by letting t span these new domains. This phenomenon appears in 
the par ticular case of so-called ‘freezing boundaries’, corresponding to a situation where the 
sequence (ai)0�i�n contains either macroscopic ‘gaps’, i.e. has no element in one or several 
intervals of the form �Am, Am +Δm� with Δm ∝ n for large n, or, on the contrary, to a situation 
where the sequence has ‘fully filled intervals’, i.e. includes all the successive integer values 
of one or several intervals �A′

m, A′
m +Δ′

m�. Both situations correspond to freezing boundaries 
in the sense that they induce domains just above the x-axis where the paths configurations are 
fully frozen, which serve as germs for larger frozen domains in the limit of large n, hence to 
new portions of arctic curve (see [DFG18] for details).

In terms of the function α(u), the first situation corresponds to a discontinuity δm = Δm/n 
at the value um = Am/n, namely:

α(u+m )− α(u−m ) = δm .

In this case, the quantity 
∫ 1

0 du 1/(t − qα(u)) is now well-defined for t ∈ [qα(u−m ), qα(u+m )] for 
q > 1 (respectively t ∈ [qα(u+m ), qα(u−m )] for q < 1) since this interval is no longer spanned by 
qα(u) when u varies between 0 and 1. This in turns creates an extra domain of t on which x(t) 
remains well-defined and real positive.

The second situation corresponds instead to a function α(u) with derivative equal to 1 on 
some segment (recall that, by definition, α′(u) � 1 when defined), namely:

α′(u) = 1 for u ∈]u′
m, u′m + δ′m[ .
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In this case, the quantity 
∫ 1

0 du/(t − qα(u)) has a logarithmic cut for t along [qα(u′m), qα(u′m)+δ′m ] 
for q > 1 (respectively [qα(u′m)+δ′m , qα(u′m)] for q < 1) but, since α(u) = α(u′

m) + u − u′
m for 

u ∈ [u′
m, u′m + δ′m], we have along this interval a discontinuity∫ u′m+δ′m

u′m

du
1

t ± iε− qα(u) =
δ′m
t
− 1

t Log(q)

(
Log

(
qα(u′m)+δ′m − t

t − qα(u′m)

)
± iπ

)

which, when exponentiated in (1.1), contributes to x(t) via a (multiplicative) factor

−q−δ′m
qα(u′m)+δ′m − t

t − qα(u′m)
,

with a global sign e±iπ = −1, but with no cut in x(t) along [qα(u′m), qα(u′m)+δ′m ]. The quantity 
x(t) remains thus well-defined and real for t in this interval, but it now takes a negative value.

In both cases of gaps or fully filled intervals, the extra domains of t leading to real val-
ues for x(t), once inserted in (1.2), create new pieces of curve and it was conjectured8 in 
[DFG18] that these pieces are indeed actual additional portions of the arctic curve, separating 

Figure 7. The complete arctic curve including its right part (thick solid blue) and its 
left part (thick red line) as given by (1.2) for the appropriate respective domains of t, 
here for q = 3 (top) and q = 1/3 (bottom) and in the particular case α(u) = 2u. We also 
indicated members of the family of tangent curves (thin lines) whose envelope defines 
the left part of the arctic curve.

8 A particular instance of this conjecture was actually proved in [DFG18] in the case of a fully filled interval placed 
at the end of the sequence of starting points.
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the liquid phase from new frozen domains directly induced by the boundary conditions (hence 
the denomination ‘freezing boundaries’). Quite recently, this conjecture was proved in all gen-
erality by Debin and Ruelle in [DR18] for the q  =  1 version of the model. There it was shown 
how to extend the tangent method to arbitrary freezing boundaries and get these new portions 
of arctic curve by performing some clever shift below the x-axis of the starting points for those 
paths originally originating from one of the extremities of the freezing boundary. This nice 
proof clearly extends to the case of arbitrary q. Many examples of freezing boundaries are 
discussed in [DFG18] when q  =  1 and we will now revisit some of them in the present design 
incorporating a q-dependent weight.

6. The q → 0 and q → ∞ limits

6.1. Heuristic argument

It is interesting to look at the limit of the arctic curve when q → 0 (i.e. q → 0) or q → ∞ (i.e. 
q → ∞). To address this question, a first heuristic approach consists in identifying, in each 
case, the most probable limiting path configuration, i.e. that with the highest weight. Indeed, 
let us recall the precise meaning of the left and right parts of the arctic curve for finite q in 
terms of the original NILP configurations. The right part of the arctic curve is the frontier 
between a liquid phase (below the curve) and a frozen region which is not visited by any of the 
paths9. As for the left part, it separates the liquid phase from a frozen region in which the paths 
all follow horizontal segments towards their respective endpoints10. Finding the arctic curve 
when q → 0 or q → ∞ therefore boils down identifying the location where these separations 
take place in the most probable limiting path configuration.

Let us start with the simplest q → ∞ limit. Letting q tend to infinity selects, in the original 
NILP setting, a configuration such that each path has the largest possible area compatible with 
the sequence of origins Oi and endpoints Ei, i.e. is pushed as much as possible towards the 
upper-right corner (an,n). Clearly, as displayed in figure 8, this configuration is such that the 
path Pi is made of a vertical segment of length i from Oi, followed by a horizontal segment of 
length ai to Ei. The transition from vertical to horizontal takes place at position (ai,i) and the 
curve joining these transition points for increasing i is the limit of the region in which path are 
frozen horizontally, hence a natural candidate for the q → ∞ limit of the left part of the arctic 
curve. In rescaled coordinates, this curve is parametrized by (α(u), u) for u ∈ [0, 1] and goes 
from (0, 0) to (α(1), 1) with slope 1/α′(u) (between 0 and 1) at x-coordinate α(u).

On the other hand, the vertical segment joining (α(1), 1) to (α(1), 0) defines the limit of 
the region visited by the paths and is therefore a natural candidate for the q → ∞ limit of the 
right part of the arctic curve.

To summarize, we expect that the left and right parts of the arctic curve tend for q → ∞ 
to the above described limiting curve and segment, see figure 8. From this analysis, we also 
expect that the liquid phase, which remains liquid as long as q remains finite, eventually 
crystallizes right at q = ∞ into a sequence of frozen vertical paths whose relative spacing is 
directly measured by the function α(u).

Let us now come to the q → 0 limit. This now selects a configuration such that each path 
has the smallest possible area compatible with the non-intersection constraint, i.e. is pushed 
as much as possible towards the lower-left corner. As displayed in figure 9, this configuration 
is best described if we now use the second set of paths made of east- and northeast-oriented 

9 For the second set of paths, this region corresponds instead to paths frozen along horizontal segments.
10 For the second set of paths, this corresponds indeed to a region not visited by any of the paths.
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steps, as these paths must now be pushed as much as possible towards the upper left cor-
ner to reduce the area on their left. Clearly, the path P̃i is then made a northeast-oriented 
segment from Õi = (an−i + 1/2, 0) to the point (an−i  +  1/2  +  i, i), followed by a horizontal 
segment towards Ẽi. The curve joining the transition points (an−i  +  1/2  +  i,i) for increasing 
i delimits the region where the paths become horizontal, a criterion which, for the original 
NILP configuration, corresponds instead to a region not visited by any of the paths. In other 
words, this curve is a natural candidate for q → 0 limit of the right part of the arctic curve. In 
rescaled coordinates, it is parametrized by (α(1 − u) + u, u) for u ∈ [0, 1] and connects (1, 1) 

α(1)

(α(1), 1)

0

1

(α(u), u)

Figure 8. The NILP configuration with highest weight when q → ∞ for an arbitrary 
strictly increasing sequence (ai)0�i�n whose large n limit is characterized by the 
function α(u). Each path is made of a single vertical north-oriented segment followed 
by a single horizontal west-oriented segment. In rescaled coordinates, the change from 
vertical to horizontal occurs at position (α(u), u) with u ∈ [0, 1]. The corresponding 
curve connects the point (0, 0) to the point (α(1), 1). The thick red curve and the thick 
blue vertical segment are natural candidates for the q → ∞ limit of the left and right 
parts of the arctic curve respectively.

α(1)

(1, 1)

0

1

(α(1−u) + u, u)

Figure 9. The NILP configuration with highest weight when q → 0 for an arbitrary 
strictly increasing sequence (ai)0�i�n whose large n limit is characterized by the 
function α(u). The path configuration (solid thin blue) is the pre-image by the bijection 
of section  2.2 of a configuration of paths (dashed red) made of a single northeast-
oriented segment followed by a single horizontal east-oriented segment (we did not 
represent here the rightmost parts of these horizontal segments as they carry no relevent 
information). In rescaled coordinates, the location of the limit of the region not visited 
by paths is given by (α(1 − u) + u, u) with u ∈ [0, 1]. This connects the point (1, 1) 
to the point (α(1), 0). The thick red segment and the thick blue curve are natural 
candidates for the q → 0 limit of the left and right parts of the arctic curve respectively.
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(for u  =  1) to (α(1), 0) (for u  =  0). In particular, it has a slope −1/(α′(1 − u)− 1) (between 
0 and −∞) at x-coordinate α(1 − u) + u.

On the other hand, the outermost path P̃n starts, in the most probable configuration, by a 
northeast-oriented segment from (1/2, 0) to (n + 1/2, n) which defines the limit of the region 
where the original paths are frozen into horizontal lines and this segment is a natural candidate 
for the q → 0 limit of the left part of the arctic curve. In rescaled coordinates, it is nothing but 
the segment joining (0, 0) to (1, 1).

To summarize, we expect that the right and left parts of the arctic curve tend for q → 0 
to the above described curve and segment, see figure 9. We also expect that, below the arctic 
curve, the liquid phase which remains liquid as long as q  >  0, crystallizes right at q  =  0 into a 
sequence of frozen paths whose shape is the same11 as that of the right part of the arctic curve 
travelled downwards from the point (1, 1), but are shifted southwest so as to start instead from 
any point (1 − v, 1 − v) (v ∈ [0, 1]) along the left part of the arctic curve, until they eventually 
reach the x-axis at (α(1 − v), 0). In particular, the (negative) slope of the paths is the same 
along 45◦ oriented lines (see figure 9). Let us now validate the above heuristic arguments by 
a more precise study of the limiting shape of the arctic curve, as given by (1.2), when q → ∞ 
or q → 0.

6.2. Analytic treatment for q → ∞
For q > 1, the left part of the arctic curve is obtained by letting t vary in ]−∞, 1[. Let us for 
convenience decompose this interval into

]−∞, 1[ = ]−∞,−qα(1)]∪]− qα(1),−1[∪[−1, 1[ (6.1)

and study the respective portions of arctic curve coming from each of the three subinter-
vals when q → ∞. We start with the middle subinterval, which is best studied by setting 
t = −qα(τ) with τ ∈]0, 1[. From (1.1), we may then write

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 + qα(u)−α(τ)

= −Log(q)

(∫ τ

0
du

1
1 + qα(u)−α(τ)

+

∫ 1

τ

du
1

1 + qα(u)−α(τ)

)

∼
q→∞ −Log(q) τ

since, for u ∈]0, τ [, we have α(u)− α(τ) < 0 hence the integrand in the first integral tends 
to 1, while for u ∈]τ , 1[, α(u)− α(τ) > 0 and the integrand in the second integral tends to 0. 
This yields

x(t) ∼ q−τ , t x′(t) ∼ −q−τ 1
α′(τ)

qX(t) ∼ t2x′(t)
tx′(t) + x(t)

∼ qα(τ)
1

α′(τ)− 1
, qY(t) ∼ 1

tx′(t) + x(t)
∼ qτ

α′(τ)
α′(τ)− 1

,

which implies at leading order

X(τ) = α(τ), Y(τ) = τ .

11 In other words, the paths are parametrized by (α(1 − u) + u − v, u − v) for u ∈ [v, 1], with v ∈ [0, 1].
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When τ  varies between 0 and 1, this gives precisely the curve announced in section 6.1 (with 
the identification τ = u). Here we assumed implicitly that α′(τ) > 1 but having α′(τ) = 1 at 
isolated points would not cause any problem. On the other hand, having α′(τ) = 1 along some 
interval, which corresponds to a freezing boundary with a fully filled interval, would require 
a more involved analysis. We will discuss such a case in section 7.2 below. A interesting out-
come of our analysis is that, when q → ∞, the left part of the arctic curve seems to be entirely 
produced by the middle subinterval in the decomposition (6.1) above. This is indeed the case 
since, as we will now show, the contribution of the subinterval ]−∞,−qα(1)[ reduces to a 
single point (α(1), 1) at the right extremity of the left part of the arctic curve while that of the 
subinterval ]− 1, 1[ reduces to the point (0, 0) at its left extremity. For t ∈]−∞,−qα(1)[, we 
set t = −qα(1)+τ with τ > 0 and get

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 + qα(u)−α(1)−τ

∼
q→∞ −Log(q)

since for u ∈ [0, 1], we have α(u)− α(1) � 0 hence the integrand tends to 1. We deduce 
x(t) ∼ q−1. By differentiation, we also have

t x′(t)
x(t)

= −Log(q)
∫ 1

0
du

qα(u)−α(1)−τ(
1 + qα(u)−α(1)−τ

)2 ∼
q→∞ −Log(q) q−τ

∫ 1

0
duqα(u)−α(1) ∼

q→∞ − 1
α′(1)

q−τ

since the last integral vanishes12 as 1/(α′(1)Log(q)). This now yields

qX(t) ∼ t2x′(t)
x(t)

∼ qα(1) 1
α′(1)

, qY(t) ∼ 1
x(t)

∼ q,

hence (X(t), Y(t)) tends to (α(1), 1) for all t ∈]−∞,−qα(1)[. For the last subinterval 
t ∈]− 1, 1[, we set t = ±qτ with τ < 0 and obtain

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 ∓ qα(u)−τ

∼
q→∞ ±Log(q) qτ

∫ 1

0
duq−α(u) ∼

q→∞ ± 1
α′(0)

qτ

hence x(t) ∼ 1 ± 1
α′(0)q

τ  and

t x′(t)
x(t)

= −Log(q)
∫ 1

0
du

∓qα(u)−τ(
1 ∓ qα(u)−τ

)2

= Log(x(t)) + Log(q)
∫ 1

0
du

1(
1 ∓ qα(u)−τ

)2

so that

t x′(t)
x(t)

− Log(x(t)) ∼
q→∞ Log(q) q2τ

∫ 1

0
duq−2α(u) ∼

q→∞
1

2α′(0)
q2τ .

Using Log(x(t)) = (x(t)− 1) + O
(
(x(t)− 1)2

)
 with x(t) = 1 + O(qτ ), we now get 

t x′(t) + x(t)(1 − x(t)) = O
(
q2τ
)
, t x′(t) + (1 − x(t)) = O

(
q2τ
)
 and t2 x′(t) = O

(
q2τ
)
, 

which implies that qX(t) and qY(t) tend to finite constants, hence (X(t), Y(t)) tends to (0, 0) for 
all t ∈]− 1, 1[. To summarize, the two extremal subintervals in (6.1) contribute only to the two 
points at the extremities of the left part of the arctic curve.

12 This may be shown by a saddle point method upon setting u = 1 − η/Log(q) so that the integral has asymptotic 

value (1/Log(q))
∫∞

0 dη e−α′(1)η = 1/(α′(1)Log(q)).

P Di Francesco and E Guitter J. Phys. A: Math. Theor.  ( ) 115205



24

Let us now discuss the limiting shape of the right part of the arctic curve, coming from 
values of t in the range ]qα(1),+∞[. Writing t = qα(1)w with w  >  1, we may write

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 − w−1 qα(u)−α(1)

so the calculation seems at first very similar to that for the interval ]−∞,−qα(1)[ and we 
could be tempted to conclude that this again leads to a unique limiting point (α(1), 1). This 
reasoning however ignores the fact that the denominator in the integrand may remain small for 
values of w close enough to 1. As we shall now see, there exists indeed an appropriate domain 
of w close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if w  −  1 
does not scale properly with q) is modified and depends on w. More precisely, writing

Log(x(t)) = −Log(q)

(
1 +

∫ 1

0
du

qα(u)−α(1)

w − qα(u)−α(1)

)
,

the last integral may be evaluated by a saddle point method upon setting u = 1 − η/Log(q). 
The asymptotic value of this additional correction reads

1
Log(q)

∫ ∞

0
dη

e−α′(1)η

w − e−α′(1)η = − 1
α′(1)

Log
(
1 − 1

w

)
Log(q)

,

which is finite when w is chosen so that (1 − 1/w) = q−ρ, i.e. w = 1/(1 − q−ρ) for some 
positive ρ . Otherwise stated, we have asymptotically

x(t) ∼
q→∞ q−1

(
1 − 1

t q−α(1)

) 1
α′(1)

with a non trivial limiting value when we take t = qα(1)/(1 − q−ρ). In this case, we obtain 
directly13 from (1.2):

qX(t) ∼ qα(1), qY(t) ∼ q
max

(
1−ρ

(
1− 1

α′(1)

)
,0
)

which leads to

X(t) = α(1), Y(t) = 1 − ρ

(
1 − 1

α′(1)

)
, 0 < ρ � α′(1)

α′(1)− 1
.

This parametric curve is nothing but the vertical segment from (α(1), 1) to (α(1), 0), which 
confirms our heuristic result for the q → ∞ limit of the right part of the arctic curve. Note that 
the above result requires α′(1) > 1. For α′(1) = 1, the right part of the arctic curve reduces 
instead to the single point (α(1), 1). We will see such an example in section 7.4 below.

6.3. Analytic treatment for q → 0

For q < 1, the right part of the arctic curve is now obtained by letting t vary in ]−∞, qα(1)[ 
and we decompose this interval into

13 It is indeed easily verified that t2x′(t) ∼ q
α(1)−1+ρ

(
1− 1

α′(1)

)
, t x′(t) + (1 − x(t)) ∼ q

max
(

0,−1+ρ
(

1− 1
α′(1)

))
 and 

t x′(t) + x(t)(1 − x(t)) ∼ q
−1+ρ

(
1− 1

α′(1)

)
.
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]−∞, qα(1)[ = ]−∞,−1]∪]− 1,−qα(1)[∪[−qα(1), qα(1)[ (6.2)

to better study the respective portions coming from each of the three subintervals when q → 0. 
Again the non-trivial contribution is that of the middle subinterval, best expressed by setting 
t = −qα(τ) with τ ∈]0, 1[. We have indeed

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 + qα(u)−α(τ)

= −Log(q)

(∫ τ

0
du

1
1 + qα(u)−α(τ)

+

∫ 1

τ

du
1

1 + qα(u)−α(τ)

)

∼
q→0

−Log(q) (1 − τ)

since, for u ∈]0, τ [, we have α(u)− α(τ) < 0 hence the integrand in the first integral tends 
to 0, while for u ∈]τ , 1[, α(u)− α(τ) > 0 and the integrand in the second integral tends to 1. 
This yields

x(t) ∼ qτ−1, t x′(t) ∼ qτ−1 1
α′(τ)

qX(t) ∼ t2x′(t)
−(x(t))2 ∼ qα(τ)+1−τ 1

α′(τ)
, qY(t) ∼ tx′(t)− x(t)

−(x(t))2 ∼ q1−τ α
′(τ)− 1
α′(τ)

,

which implies at leading order

X(τ) = α(τ) + 1 − τ , Y(τ) = 1 − τ .

When τ  varies between 0 and 1, this gives precisely the curve announced in section  6.1 
(with the identification τ = 1 − u). Let us now discuss the contribution of the subintervals 
]−∞,−1[ and ]− qα(1), qα(1)[. For t ∈]−∞,−1[, we set t = −qτ with τ < 0 and get

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 + qα(u)−τ

∼
q→0

−Log(q)

since for u ∈ [0, 1], we have α(u) � 0 hence the integrand tends to 1. We deduce x(t) ∼ q−1. 
By differentiation, we also have

t x′(t)
x(t)

= −Log(q)
∫ 1

0
du

qα(u)−τ(
1 + qα(u)−τ

)2 ∼
q→0

−Log(q) q−τ

∫ 1

0
duqα(u) ∼

q→0

1
α′(0)

q−τ

since the last integral vanishes14 as −1/(α′(0)Log(q)). This now yields

qX(t) ∼ t2x′(t)
−(x(t))2 ∼ q

1
α′(0)

, qY(t) ∼ 1
x(t)

∼ q,

hence (X(t), Y(t)) tends to (1, 1) for all t ∈]−∞,−1[. For the other subinterval, i.e. for 
t ∈]− qα(1), qα(1)[, we set t = ±qα(1)+τ with τ > 0 and obtain

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 ∓ qα(u)−α(1)−τ

∼
q→0

±Log(q) qτ
∫ 1

0
duqα(1)−α(u) ∼

q→0
∓ 1
α′(1)

qτ

14 This again is shown by a saddle point method upon setting u = −η/Log(q) so that the integral has asymptotic 

value −(1/Log(q))
∫∞

0 dη e−α′(0)η = −1/(α′(0)Log(q)).
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hence x(t) ∼ 1 ∓ 1
α′(1)q

τ  and

t x′(t)
x(t)

= −Log(q)
∫ 1

0
du

∓qα(u)−α(1)−τ(
1 ∓ qα(u)−α(1)−τ

)2

= Log(x(t)) + Log(q)
∫ 1

0
du

1(
1 ∓ qα(u)−α(1)−τ

)2

so that

t x′(t)
x(t)

− Log(x(t)) ∼
q→0

Log(q) q2τ
∫ 1

0
du q2(α(1)−α(u)) ∼

q→0
− 1

2α′(1)
q2τ .

Using Log(x(t)) = (x(t)− 1) + O
(
(x(t)− 1)2

)
 with x(t) = 1 + O(qτ ), we now get 

t x′(t) + x(t)(1 − x(t)) = O
(
q2τ
)
, t x′(t) + (1 − x(t)) = O

(
q2τ
)
 and t2 x′(t) = O

(
qα(1)+2τ

)
, 

which implies that qX(t) ∼ qα(1) while qY(t) tends to a finite constant, hence (X(t), Y(t)) tends 
to (α(1), 0) for all t ∈]− 1, 1[. We end up with the expected result that the two extremal sub-
intervals in (6.2) contribute only to the two extremities of the right part of the arctic curve.

Let us conclude our discussion with the limiting shape of the left part of the arctic curve, 
corresponding to values of t in the range ]1 +∞[. Writing directly

Log(x(t)) = −Log(q)
∫ 1

0
du

1
1 − t−1 qα(u)

with t  >  1, we again have to deal with values of t close enough to 1 so that the denominator in 
the integral remains small. As in the previous section, there exists an appropriate domain of t 
close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if t  −  1 does not 
scale properly with q) is modified. Writing

Log(x(t)) = −Log(q)

(
1 +

∫ 1

0
du

qα(u)

t − qα(u)

)
,

the last integral may be evaluated by a saddle point method upon setting u = −η/Log(q) and 
its asymptotic value reads

− 1
Log(q)

∫ ∞

0
dη

e−α′(0)η

t − e−α′(0)η =
1

α′(0)
Log

(
1 − 1

t

)
Log(q)

,

which leads eventually to

x(t) ∼
q→0

q−1
(

1 − 1
t

)− 1
α′(0)

.

Setting t = 1/(1 − qρ) with ρ > 0, we obtain directly15 from (1.2):

qX(t) ∼ q
max

(
1−ρ

(
1− 1

α′(0)

)
,0
)

, qY(t) ∼ q
max

(
1−ρ

(
1− 1

α′(0)

)
,0
)

which leads to

15 It is easily verified that t2x′(t) ∼ q
−1−ρ

(
1+ 1

α′(0)

)
, t x′(t) + (1 − x(t)) ∼ q

−1−ρ
(

1+ 1
α′(0)

)
 and 

t x′(t) + x(t)(1 − x(t)) ∼ q
min

(
−1−ρ

(
1+ 1

α′(0)

)
,−2−ρ 2

α′(0)

)
.
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X(t) = 1 − ρ

(
1 − 1

α′(0)

)
, Y(t) = 1 − ρ

(
1 − 1

α′(0)

)
, 0 < ρ � α′(0)

α′(0)− 1
.

This parametric curve is nothing but the segment joining (0, 0) to (1, 1), which confirms our 
heuristic result for the q → 0 limit of the left part of the arctic curve. Note that the above result 
requires α′(0) > 1. For α′(0) = 1, the left part of the arctic curve reduces instead to the single 
point (1, 1). We will see such an example in section 7.4 below.

7. Examples

A quite general situation, which displays most of the interesting phenomena for the arctic 
curve, corresponds to the case when α(u) is piecewise linear. More precisely, we demand 
that α(u) is made of k linear pieces, i.e. satisfies α(0) = 0, has slope p 1 on [0, γ1], p 2 on 
[γ1, γ1 + γ2], …, p i on [γ1 + · · ·+ γi−1, γ1 + · · ·+ γi] for i up to k. Here the slopes p i of the 
various pieces satisfy pi � 1, i = 1, · · · , k (to ensure α′(u) � 1 when defined), and the widths 
γi  of these pieces add up to 

∑k
i=1 γi = 1. In short, we take:

α(u) = pi u +

i−1∑
j=1

( pj − pi)γj, for u ∈ [γ1 + · · ·+ γi−1, γ1 + · · ·+ γi]

for i = 1, · · · , k.
Note that the case of frozen boundaries of section 5.2 may be realized in the present setting: 

the case of a gap δm in α(u) for u = um = γ1 + · · ·+ γm−1 is obtained by sending simultane-
ously pm → ∞ and γm → 0, keeping the product pmγm = δm finite. As for the case of a fully 
filled interval between u′

m = γ1 + · · ·+ γm−1 and u′
m + δ′m = γ1 + · · ·+ γm, it is obtained by 

simply taking p m  =  1 and γm = δ′m. Such cases will be discussed in sections 7.2 and 7.3 below.
Returning to the case of arbitrary p i’s, we introduce for convenience the notation

θi := α

⎛
⎝ i∑

j=1

γj

⎞
⎠ =

i∑
j=1

pj γj, , i = 1, · · · , k

together with θ0 := 0 by convention. We immediately obtain from (1.1) the expression

x(t) = q−1
k∏

i=1

(
t − qθi

t − qθi−1

) 1
pi

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q−1

k∏
i=0

(
1 − t−1qθi

) 1
pi
− 1

pi+1 0 for t < 0 or
{

t > 1 (q < 1)
t > qθk (q > 1)

q−1
k∏

i=0

(
t−1qθi − 1

) 1
pi
− 1

pi+1 for
{

0 < t < qθk (q < 1)
0 < t < 1 (q > 1)

 (7.1)
with the convention that p0 = pk+1 = ∞. The alternative expressions of the second line 
emphasize that x(t) is well defined and real positive for the indicated domain of t. Knowing 
x(t), the two generic, left and right, portions of arctic curve are obtained from the general para-
metric expression (1.2) with t ∈]−∞, 1[∪]qθk ,+∞[ for q > 1 and t ∈]−∞, qθk [∪]1,+∞[ 
for q < 1 since α(1) = θk . Figure 10 gives an example of such arctic curves in some particular 
case with k  =  3 linear pieces, for two different values of q (one larger and one smaller than 1).
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7.1. A look at the q → 0 and q → ∞ limits

Here again, it is interesting to have a look at the degenerate limit of the arctic curve when 
q → 0 or q → ∞. Figure 11 displays the configuration selected for q → 0, where each path 
has the smallest possible area to its left. This configuration is clearly made of paths which 
remain ‘parallel’ with slope  −1/(p i  −  1) (i.e. are made of a sequence of blocks consisting in 
p i  −  1 west-oriented steps followed by a north-oriented step) within 45◦ strips whose base are, 
after rescaling, the segments [θi−1, θi] for i = 1, · · · , k. In particular, in rescaled coordinates, 
the outermost path, travelled backwards, is horizontal from (0, 1) to (1, 1) and then follows  
a piecewise linear curve from (1, 1) to (θk, 0) made of a succession of segments of slope  
 −1/(p i  −  1) for i = 1, · · · , k. From the discussion of section 6, this latter curve corresponds 
to the q → 0 limit of the right part of the arctic curve while the segment joining (0, 0) to 
(1, 1) constitutes its left part. Below the arctic curve, the liquid phase which remains liquid 
as long as q  >  0, crystallizes right at q  =  0 into a sequence of 45◦ macroscopic strips with a 
prescribed frozen path orientation within each strip, as displayed in figure 11 .

The q → ∞ limit now selects a configuration displayed in figure 12, such that each path has 
the largest possible area to its left. This configuration is made of a vertical segments of length i 

Figure 10. The left (red) and right (blue) portions of the arctic curve for a piecewise 
linear α(u) with k  =  3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p 2  =  4, here for q = 5 
and q = .2.

θi−1 θi

(pi − 1)γi

γi

piγi

(1, 1)

θkθi−1 θi
piγi

Figure 11. The configuration with highest weight when q → 0 for a sequence (ai)0�i�n 
whose large n limit is a piecewise linear function α(u) as defined in the text. In rescaled 
coordinates, the outermost path follows a piecewise linear curve from (1, 1) to (θk, 0) 
made of a succession of segments of slope  −1/(p i  −  1). Each segment is the top side 
of a 45◦ strip in which all the paths have the same slope as the segment. The thick red 
segment and the thick blue curve are the q → 0 limit of the left and right parts of the 
arctic curve respectively.
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from Oi, followed by a horizontal segments of length ai to Ei. In rescaled coordinates, the pas-
sage from vertical to horizontal follows a piecewise linear curve from (0, 0) to (θk, 1) made of 
a succession of segments of slope 1/p i. This path defines the q → ∞ limit of the left part of the 
arctic curve while the segment joining (θk, 1) to (θk, 0) now defines its right part. Here again, 
the liquid phase, which remains liquid as long as q remains finite, is expected to crystallize 
right at q = ∞ into a sequence of macroscopic vertical strips filled with frozen vertical paths, 
with a prescribed path spacing within each strip (see figure 12).

We may also obtain the limiting shape of the arctic curve from its analytic expression, as 
given by (1.2) for the particular x(t) of equation (7.1), taken in the limit q → 0 or q → ∞. We 
will not present the details of this analysis since we already performed it in all generality in 
section 6 but we will still describe its outcome for illustration.

For q → 0, the right part of the arctic curve is obtained by letting t vary in ]−∞, qθk [, 
naturally decomposed into

]−∞, qθk [=]−∞,−1] ∪
(

k∏
i=1

[−qθi−1 ,−qθi ]

)
∪ [−qθk , qθk [ . (7.2)

As we know, the two extremal subintervals ]−∞,−1] and [−qθk , qθk [ contribute only to the 
extremal points (1, 1) and (θk, 0) of the right part of the arctic curve, whose core is entirely 
created by the k intermediate subintervals [−qθi−1 ,−qθi ], i = 1, · · · , k. From the result of sec-
tion 6, we also know that each such subinterval [−qθi−1 ,−qθi ] is responsible for a portion of 
arctic curve parametrized by (α(τ) + 1 − τ , 1 − τ) for τ  such that in α(τ) ∈ [θi−1, θi], i.e. 

τ ∈ [
∑i−1

j=1 γj,
∑i

j=1 γj]. This now corresponds to a linear portion of arctic curve which is a 
segment of slope  −1/(p i  −  1) joining the points Mi−1 and Mi with coordinates

Mi :=

⎛
⎝1 +

i∑
j=1

( pj − 1)γj, 1 −
i∑

j=1

γj

⎞
⎠ =

⎛
⎝θk −

k∑
j=i+1

( pj − 1)γj,
k∑

j=i+1

γj

⎞
⎠ .

θi−1 θi

piγi

γi

θk

(θk, 1)

Figure 12. The configuration with highest weight when q → ∞ for a sequence 
(ai)0�i�n whose large n limit is a piecewise linear function α(u) as defined in the text. 
Each path is made of a single vertical north-oriented segment followed by a single 
horizontal west-oriented segment. In rescaled coordinates, the location of the change 
from vertical to horizontal follows a piecewise linear curve from (0, 0) to (θk, 1) made 
of a succession of segments of slope 1/p i. Each segment is the top side of a vertical strip 
in which all the paths are separated by the same spacing. The thick red curve and the 
thick blue vertical segment are the q → ∞ limit of the left and right parts of the arctic 
curve respectively.
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The concatenation of these segments for i = 1, · · · , k produces the desired piecewise linear 
curve from (1, 1) to (θk, 0) displayed in figure 13. As for the left part of the arctic curve, it 
tends as we know to the segment joining (0, 0) to (1, 1).

The way the arctic curve approaches its limit is illustrated in figure 13 which displays in 
some particular case the actual arctic curves for decreasing values of q. A particular empha-
sis was put on the contribution of the various subintervals so as to follow their deformation 
toward the associated limiting portion of arctic curve.

For q → ∞, the left part of the arctic curve is now obtained by letting t vary in ]−∞, 1[ 
which we may decompose into

]−∞, 1[=]−∞,−qθk ] ∪
(

k∏
i=1

[−qθi ,−qθi−1 ]

)
∪ [−1, 1[ . (7.3)

Apart from the external subintervals ]−∞,−qθk ] and [−1, 1[ responsible for the extremities 
(θk, 1) and (0, 0) of the left part of the arctic curve, the respective portions of arctic curve cre-

ated by the k intermediate subintervals [−qθi ,−qθi−1 ], i = 1, · · · , k are now parametrized by 

(α(τ), τ) for τ ∈ [
∑i−1

j=1 γj,
∑i

j=1 γj]. These are now segments of slope 1/p i joining the points 
Ni−1 and Ni with coordinates

1

1

(pi−1)γi

γi

0 θk =
k∑

i=1
piγiθi−1 θi

Mi

Mi−1

Figure 13. Top: a schematic picture of the q → 0 limiting shape of the left (red) and 
right (blue) parts of the arctic curve for a piecewise linear α(u). The liquid phase below 
the curve eventually crystallizes at q = 0 in a configuration as in figure 11. Bottom: 
an example of approach of this limit by letting q take smaller and smaller values (here 
q = 10−2, 10−3 and 10−4) for k  =  3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p 2  =  4. The 
different colors of the right part correspond to the contribution of the various intervals 
of the parameter t in the decomposition (7.2).
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Ni :=

⎛
⎝θk −

k∑
j=i+1

pjγj, 1 −
k∑

j=i+1

γj

⎞
⎠ =

⎛
⎝ i∑

j=1

pjγj,
i∑

j=1

γj

⎞
⎠ .

The concatenation of these segments for i = 1, · · · , k produces the desired piecewise linear 
curve from (0, 0) to (θk, 1) displayed in figure 14, while the segment joining the point (θk, 1) 
to the point (θk, 0) forms the right part of the arctic curve. Here again, we illustrate in figure 14 
how the arctic curve approaches its limit for increasing values of q. As we shall now discuss, 
the above results still hold in the presence of frozen boundaries with p m  =  1 or ∞ for some m, 
with moreover interesting new phenomena.

7.2. Example of freezing boundary resulting from a fully filled interval

The case of a freezing boundary resulting from a fully filled interval is encountered within 
the framework of a piecewise liner α(u) in the particular case where p m  =  1 for some m in 
�1, k�. Here we assume for simplicity that m �= 1 and m �= k . The case p 1  =  1 (respectively 
p k  =  1), referred to as ‘freezing the left (respectively the right) edge’ in [DFG18], is indeed 
special and would deserve a more subtle treatment. For p m  =  1, the expression (7.1) is now 

1

piγi

0 θk =
k∑

i=1
piγi

γi

θi−1 θi

Ni−1

Ni

Figure 14. Top: a schematic picture of the q → ∞ limiting shape of the left (red) and 
right (blue) parts of the arctic curve for a piecewise linear α(u). The liquid phase below 
the curve eventually crystallizes at q = ∞ in a configuration as in figure 12. Bottom: 
an example of approach of this limit by letting q take larger and larger values (here 
q = 20, 100 and 1000) for k  =  3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p 2  =  4. The 
different colors of the left part correspond to the contribution of the various intervals of 
the parameter t in the decomposition (7.3).
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well defined for t ∈]qθm−1 , qθm [ whenever q > 1 (respectively t ∈]qθm , qθm−1 [ whenever q < 1), 
with expression

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−q−1

m−1∏
i=1

(
t−qθi

t−qθi−1

) 1
pi ×

(
qθm−t

t−qθm−1

)
×

k∏
i=m+1

(
qθi−t

qθi−1−t

) 1
pi

q > 1

−q−1
m−1∏
i=1

(
qθi−t

qθi−1−t

) 1
pi ×

(
t−qθm

qθm−1−t

)
×

k∏
i=m+1

(
t−qθi

t−qθi−1

) 1
pi

q < 1

 

(7.4)

displaying its negative real value. This in turn creates for finite q a new portion of arctic curve 
emerging above the segment [θm−1, θm] (see for instance the bottom left part of figure 15 or 16) 
below which the path configuration is frozen.

Looking at the q → 0 limit, the discussion of the previous section still holds16 and now leads 
for the right part of the arctic curve to a portion with slope −1/( pm − 1) = −∞, i.e. a vertical 

segment joining Mm−1 to Mm (which now have the same X-coordinate 1 +
∑m−1

j=0 ( pj − 1)γj). 
More interestingly, the new frozen region below the new portion of arctic curve is deformed 
so as to fill entirely the 45◦ strip whose edge is the above vertical segment (dashed domain 
in figure 15). To understand this property, we start by parametrizing t ∈] + qθm ,+qθm−1 [ as 
t = qτ  with τ ∈]θm−1, θm[ and plug this value in (7.4). This yields

x(t) ∼
q→0

−q
−1+

∑m−1
i=1

θi−θi−1
pi

+τ−θm−1
(

1 + O
(
qmin(τ−θm−1,θm−τ)

))
= −q

∑m−1
i=1 γi−1+τ−θm−1

(
1 + O

(
qmin(τ−θm−1,θm−τ)

))
→ ∞ .

This also implies t x′(t) ∼ −q
∑m−1

i=1 γi−1+τ−θm−1
(
1 + O

(
qmin(τ−θm−1,θm−τ)

))
 so that 

t x′(t)− x(t) ∼ O
(
q
∑m−1

i=1 γi−1+τ−θm−1+min(τ−θm−1,θm−τ)
)
 which tends to infinity since the 

exponent varies between 
∑m−1

i=1 γi − 1 and 
∑m

i=1 γi − 1 which are both negative. We deduce

qX(t) ∼ t2x′(t)
−(x(t))2 ∼ q1−∑m−1

i=1 γi+θm−1

qY(t) ∼ t x′(t)− x(t)
−(x(t))2 ∼ q1−∑m−1

i=1 γi−τ+θm−1+min(τ−θm−1,θm−τ),

hence

X(t) = 1 −
m−1∑
i=1

γi + θm−1 = 1 −
m−1∑
i−1

( pi − 1)γi

Y(t) = 1 −
m−1∑
i=1

γi + θm−1 − τ +min(τ − θm−1, θm − τ)

= 1 −
m−1∑
i=1

γi +min(0, θm−1 + θm − 2τ)

with min(0, θm−1 + θm − 2τ) varying from 0 to θm−1 − θm = −γm. This curve is precisely 
the vertical segment [Mm−1, Mm] on the right of the dashed domain in figure  15. The new 

16 The actual calculation when p m  =  1 is slightly more subtle than for for pm �= 1 since, when estimating qY(t) via 
(1.2), the dominant part t x′(t)− x(t) of its numerator cancels exactly at leading order and the calculation must be 
pushed to the next order (see a similar discussion just below). The corresponding portion of arctic curve is  
nevertheless not affected by this subtlety.

P Di Francesco and E Guitter J. Phys. A: Math. Theor.  ( ) 115205



33

portion of arctic curve therefore sticks to this segment when q → 0 but this should still 
be reconciled with the fact that for t exactly equal to qθm (respectively to qθm−1), we have 
(X(t), Y(t)) = (θm, 0) (respectively (θm−1, 0)), as easily verified from (7.4) and (1.2). As we 
shall now see, the connection from these points to the segment [Mm−1, Mm] is done by the 
two segments at 45◦ which delimit the dashed domain of figure 15. These new segments arise 
from values of t in the immediate vicinity of qθm (respectively of qθm−1) which are not treated 
properly by the above estimate. For t → qθm, a more precise estimate of x(t) is

x(t) ∼
q→0

−q
−1+

∑m−1
i=1

θi−θi−1
pi

(
t − qθm

qθm−1

)(
qθm

t − qθm

) 1
pm+1

= −q
∑m

i=1 γi−1
(

t − qθm

qθm

)1− 1
pm+1

which allows to view the contribution of the immediate vicinity of qθm by setting t = qθm(1 + qρ) 
for some positive ρ . After some straightforward manipulations, this yields

X(t) = θm +max

(
1 −

m∑
i=1

γi − ρ
2pm+1 − 1

pm+1
, 0

)
, Y(t) = max

(
1 −

m∑
i=1

γi − ρ
2pm+1 − 1

pm+1
, 0

)

which is the segment from (θm, 0) (for ρ = (1 −∑m
i=1 γi) pm+1/(2pm+1 − 1) or larger) to 

Mm = (θm + 1 −∑m
i=1 γi, 1 −∑m

i=1 γi) (for ρ = 0). In other words, the immediate vicin-
ity t = qθm produces the 45◦ lower segment bordering the frozen dashed region in figure 15.  

1

1

γm

0 θk =
k∑

i=1
piγiθm−1 θm

Mm

Mm−1

FR
O
ZE

N

Figure 15. Top: a schematic picture of the q → 0 limiting shape of the left (red) and 
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a fully 
filled interval. The condition p m  =  1 gives rise to a vertical segment within the right part 
of the curve. Bottom left: the arctic curve for finite q (here q = 10−2) also has a new 
(orange) portion below which the paths are frozen (represented here for k  =  3, m  =  2 
with γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p 2  =  1). Bottom right: for decreasing q 
(here q = 10−2, 10−3 and 10−5), the frozen phase fills the 45◦ strip whose edge is the 
above vertical segment (dashed region in the top figure).
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A similar analysis for the immediate vicinity of qθm−1 would now produce the 45◦ upper seg-
ment bordering the frozen region and connecting (θm−1, 0) to Mm−1.

The fact that the new portion of arctic curve and the right part merge along the vertical seg-
ment [Mm−1, Mm] when q → 0 means that the liquid phase narrows and forms a strait around 
the segment for very small q (see figure 15, bottom right) before it eventually crystallizes right 
at q = 0.

The discussion of the q → ∞ limit is quite similar and now leads for the left part of the 
arctic curve to a portion with slope 1/p m  =  1, i.e. a 45◦ segment joining Nm−1 to Nm. More 
interestingly, the new frozen region below the new portion of arctic curve is now deformed 
so as to fill entirely the vertical strip below [Nm−1, Nm] (dashed domain in figure 16). The new 
portion of arctic curve and the left part therefore merge along the segment [Nm−1, Nm] when 
q → ∞. In other words, the liquid phase narrows around the segment for very large q (see 
figure 16, bottom right) before it eventually crystallizes right at q = ∞.

7.3. Example of freezing boundary resulting from a gap

The case of a freezing boundary resulting from a gap is also encountered within the frame-
work of a piecewise linear α(u), now in the case where pm → ∞, γm → 0 with δm = pmγm 
finite, for some m in �2, k − 1� (again we avoid the cases m �= 1 and m �= k  which are more 

1

γm

0 θm

γm

θk =
k∑

i=1
piγiθm−1

Nm−1

Nm

F
R

O
ZE

N

Figure 16. Top: a schematic picture of the q → ∞ limiting shape of the left (red) 
and right (blue) parts of the arctic curve in the presence of a freezing boundary due 
to a fully filled interval. The condition p m  =  1 gives rise to a 45◦ segment within 
the left part of the curve. Bottom left: the arctic curve for finite q (here q = 5) also 
has a new (orange) portion below which the paths are frozen (represented here for 
k  =  3, m  =  2 with γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p 2  =  1). Bottom right: for 
increasing q (here q = 5, 50 and 10 000), the frozen phase fills the vertical strip 
whose upper edge is the above 45◦ segment (dashed region in the top figure).
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subtle). For pm = ∞, the expression (7.1) is well defined also for t ∈]qθm−1 , qθm [ whenever 
q > 1 (respectively t ∈]qθm , qθm−1 [ whenever q < 1), with expression

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q−1

m−1∏
i=1

(
t−qθi

t−qθi−1

) 1
pi ×

k∏
i=m+1

(
qθi−t

qθi−1−t

) 1
pi

q > 1

q−1
m−1∏
i=1

(
qθi−t

qθi−1−t

) 1
pi ×

k∏
i=m+1

(
t−qθi

t−qθi−1

) 1
pi

q < 1

displaying its positive real value. As before, this creates for finite q a new portion of arctic curve 
emerging above the segment [θm−1, θm] (see for instance the middle part of figure 17 or 18)  
below which the path configuration is frozen.

When q → 0, our general discussion now leads for the right part of the arctic curve to a 
portion with slope  −1/(p m  −  1)  =  0, i.e. a horizontal segment joining Mm−1 to Mm (which 

1

1

δm

0 θk =
k∑

i=1
piγiθm−1 θm

Mm−1 Mm

FROZEN

Figure 17. Top: a schematic picture of the q → 0 limiting shape of the left (red) and 
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a 
gap. The condition pm = ∞ = δm/γm  (with δm finite) gives rise to a horizontal segment 
within the right part of the curve. Middle: the arctic curve for finite q (here q = .3) also 
has a new (orange) portion below which the paths are frozen (represented here for k  =  3, 
m  =  2 with γ1 = γ3 = 1/2, γ2 → 0, p1 = p3 = 2 and p2 → ∞ with p2γ2 → δ2 = 1). 
Bottom: for decreasing q (here q = .3, .05 and .005), the frozen phase fills the 45◦ strip 
whose edge is the above horizontal segment (dashed region in the top figure).
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now have the same Y-coordinate 1 −∑m−1
j=0 γj but X-coordinates which differ by δm).  

As for the new frozen region below the new portion of arctic curve, it is now deformed so 
as to fill entirely the 45◦ strip whose edge is the above horizontal segment (dashed domain 
in figure 17). In particular, the new portion of arctic curve and the right part merge along the 
horizontal segment [Mm−1, Mm] when q → 0, and the liquid phase narrows around the segment 
for very small q (see figure 17, bottom) before it eventually crystallizes right at q = 0.

The q → ∞ limit is similar: the left part of the arctic curve now has a portion with slope 
1/p m  =  0, i.e. a horizontal segment joining Nm−1 to Nm. The new frozen region below the new 
portion of arctic curve is deformed so as to fill entirely the vertical strip below [Nm−1, Nm] 
(dashed domain in figure 18). In particular, the new portion of arctic curve and the left part 
merge along the horizontal segment [Nm−1, Nm] when q → ∞, meaning once again that the 
liquid phase narrows around the segment for very large q (see figure 18, bottom) before it 
eventually crystallizes right at q = ∞.

1

δm

0 θm θk =
k∑

i=1
piγiθm−1

Nm

Nm−1

FROZEN

Figure 18. Top: a schematic picture of the q → ∞ limiting shape of the left (red) 
and right (blue) parts of the arctic curve in the presence of a freezing boundary due 
to a gap. The condition pm = ∞ = δm/γm  (with δm finite) gives rise to a horizontal 
segment within the left part of the curve. Middle: the arctic curve for finite q (here 
q = 3) also has a new (orange) portion below which the paths are frozen (represented 
here for k  =  3, m  =  2 with γ1 = γ3 = 1/2, γ2 → 0, p1 = p3 = 2 and p2 → ∞ with 
p2γ2 → δ2 = 1). Bottom: for increasing q (here q = 3, 30 and 300), the frozen phase 
fills the vertical strip whose upper edge is the above horizontal segment (dashed region 
in the top figure).
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7.4. q-deformation of the ellipse

Another interesting and quite studied geometry corresponds to paths connecting the opposite 
sides of a hexagon, which is nothing but the path formulation of the classical rhombus tiling 
problem of a hexagonal domain [CLP98]. This geometry is obtained in our setting by taking an 
entirely freezing boundary with a sequence (ai)1�i�n made of two fully filled intervals of width 
Δ′

1 and Δ′
3 = n −Δ′

1 − 1 (so that the total number of paths is (Δ′
1 + 1) + (Δ′

3 + 1) = n + 1) 
separated by a gap of width Δ2. Using the original path formulation, it is easily seen that the 
paths are in practice frozen outside a hexagon (of total height n) with pairwise parallel sides 
oriented respectively vertically (with height Δ′

1), horizontally (with width Δ2) and at 45◦. In 
other words, the domain D where fluctuations may arise is reduced in practice from its original 
rectangular shape to a smaller effective domain D′ with the above hexagonal geometry. The 
non-frozen part of the NILP corresponds moreover to a set of Δ′

3 + 1 paths whose origins 
span all the vertices of the rightmost 45◦ side of the hexagon and whose endpoints span all the 
vertices of the opposite (leftmost 45◦) side.

This situation corresponds after scaling to a piecewise linear function α(u) as above with 
k  =  3, p1 = p3 = 1, p2 → ∞ and γ2 → 0 with p2γ2 = δ2 finite17. The resulting model there-
fore depends on two geometrical degrees of freedom γ1 = 1 − γ3 and δ2, which correspond 
respectively to the length of the vertical and horizontal sides of the hexagon after rescaling 
(see figure 19). At q  =  1 (i.e. q = 1), the frozen domain extends inside the hexagon and sur-
rounds a central liquid phase. The shape of the separating arctic curve is then an ellipse tan-
gent to the six sides of the hexagon (see for instance [Eyn09] for a matrix model derivation 
or [DFG18] for a tangent method derivation). The domain lying in-between the hexagon and 
the ellipse is split into six parts: two opposite parts E1 and E2 correspond to regions empty of 
all paths, two opposite parts H1 and H2 correspond to regions filled with horizontal paths and 
two opposite parts V1 and V2 correspond to regions filled with vertical paths (see figure 19). 

1

1

γ1

0 θ3 = 1+δ2θ1 = γ1 θ2 = γ1+δ2

p1 =1 p3 =1

δ2

γ3 =1−γ1

E2

V2

V1

E1

H1

H2

p2 =∞

Figure 19. The phase diagram of NILP configurations for a piecewise linear function 
α(u) with k  =  3, p1 = p3 = 1, p2 → ∞, γ2 → 0 with p2γ2 → δ2. The paths are frozen 
by construction outside the indicated hexagon with vertical and horizontal sides of 
respective lengths γ1 and δ2. At q = 1, the frozen domain extends inside the hexagon 
and is separated from a central liquid phase by an arctic curve whose shape is an ellipse 
tangent to the six sides of the hexagon. The six regions in-between the hexagon and 
the ellipse are either empty of all paths (regions E1 and E2), filled with horizontal paths  
(H1 and H2) or filled with vertical paths (V1 and V2).

17 Note that this is a situation with a slope 1 for both the first and the last linear piece. As already mentioned, this 
case steps outside the generic treatment of sections 7.1–7.3.
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The deformation of the arctic ellipse with q was already addressed in [Eyn09, BGR10, MP17]. 
Let us now discuss how these regions evolve whenever q decreases to 0 or increases to ∞.

The function x(t) describing the situation at hand reads:

x(t) = q−1 (t − qγ1)
(
t − q1+δ2

)
(t − 1) (t − qγ1+δ2)

and we may easily plot the corresponding arctic curve obtained via (1.2).
For decreasing q, the tangency points of the ellipse with the hexagon are found to merge 

by pairs at three (pairwise non-consecutive) corners of the hexagon as indicated in figure 20, 
so that the three domains E2, H2 and V2 get smaller and eventually disappear when q → 0. 
On the contrary the three domains E1, H1 and V1 inflate so as to invade the liquid phase which 
reduces when q → 0 to the union of three segments [(γ1, 0), (1, 1 − γ1)], [(1, 1 − γ1), (1, 1)] 
and [(1, 1 − γ1), (1 + δ2, 1 − γ1)]. This splitting of the hexagon in three frozen domains is 
fully consistent with the path configuration selected right at q = 0 in which paths are pushed 
as much as possible towards the lower left corner (see figure 20).

For increasing q, the tangency points of the ellipse with the hexagon merge by pairs at the 
three complementary corners of the hexagon as indicated in figure 21, so that these are now 
the three domains E1, H1 and V1 which get smaller and eventually disappear when q → ∞. 

1

10

H1

E2

V1

V2V1

E1

E1H2

E2

H1

Figure 20. Deformation of the arctic curve of figure  19 (here for γ1 = 1/3 and 
δ2 = 1) when q → 0. Starting from an ellipse at q = 1 (top left) the boundary of the 
three domains E2, H2 and V2 are pushed towards the associated hexagon corners while 
that of the three domains E1, H1 and V1 are pushed to a central point with coordinates 
(1, 1 − γ1) (top right with q = .8, 10−1, 10−3 and 10−7) so that the liquid phase 
shrinks and reduces to the three indicated segments (bottom left). This splitting of the 
hexagon into three domains E1, H1 and V1 is consistent with the q → 0 most probable 
configuration (bottom right) where the paths are pushed as much as possible towards 
the lower left corner. Note that the path configuration outside the hexagon (light blue) 
is frozen by construction for any value of q. The colors of the arctic curve refer to the 
domain of variation of the parameter t, namely ]−∞, q1+δ2 [ (blue), ]q1+δ2 , 1[ (orange) 
and ]1,+∞[ (red).
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On the contrary the three domains E2, H2 and V2 inflate, letting the liquid phase reduce when 
q → ∞ to the union of three segments [(γ1, γ1), (γ1 + δ2, γ1)], [(γ1 + δ2, 0), (γ1 + δ2, γ1))] and 
[(γ1 + δ2, γ1), (1 + δ2, 1)]. This is now fully consistent with the path configuration selected 
right at q = ∞ in which paths are pushed as much as possible towards the upper right corner 
(see figure 21).

8. Conclusion and discussion

To conclude this paper, let us make a few comments both on the tangent method itself and on 
its specific results in the present model.

First, we wish to stress the flexibility of the method, whose implementation for an arbitrary 
q is not different from what it was at q  =  1. In particular, the various technical tricks, such 
as the use of LGV matrices or that of the LU decomposition of [DFL18] work perfectly. As 
a result, the various discrete formulas for the partition function or the one-point function are 
natural q-analogs of their q  =  1 counterparts computed in [DFG18] and could have been pre-
dicted by some educated guess. Note also that, after scaling, the fact that the geodesic trajec-
tories (whose envelope gives the arctic curve) are not straight lines is actually not a problem, 
since the tangency principle underlying the method concerns only the splitting point where the 
perturbed outermost path changes its trajectory.

1

10

H2

E2

V2

V2V1

E2

E1H2

E2

H1

Figure 21. Deformation of the arctic curve of figure 19 (here for γ1 = 1/3 and δ2 = 1) 
when q → ∞. Starting from an ellipse at q = 1 (top left) the boundary of the three 
domains E1, H1 and V1 are pushed towards the associated hexagon corners while that 
of the three domains E2, H2 and V2 are pushed to a central point with coordinates 
(γ1 + δ2, γ1) (top right with q = 1.1, 10 , 50 and 1000) so that the liquid phase shrinks 
and reduces to the three indicated segments (bottom left). This splitting of the hexagon 
into three domains E2, H2 and V2 is consistent with the q → ∞ most probable 
configuration (bottom right) where the paths are pushed as much as possible towards 
the upper right corner. The colors of the arctic curve refer to the domain of variation 
of the parameter t, namely ]q1+δ2 ,+∞[ (blue), ]1, q1+δ2 [ (orange) and ]−∞, 1[ (red).
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In our solution, the way the arctic curve evolves upon varying q is quite interesting, in 
particular when q becomes either very small or very large. In a generic case without freez-
ing boundary, the arctic curve is made of only two portions, its right and left parts, which 
are smoothly deformed until they reach their limiting curve of figure 8 or 9, whose shape 
directly reflects the distribution α(u) of starting points. In particular, the liquid phase remains 
of macroscopic size for any finite q and occupies a fairly constant proportion of the allowed 
domain D for the paths. In rescaled coordinates, the area of the liquid phase tends indeed to ∫ 1

0 α(u)du for q → 0 and to the complementary value α(1)− ∫ 1
0 α(u)du for q → ∞. Both 

values are typically of the order of half of the total area α(1) of the domain D. The situation is 
more interesting in the presence of freezing boundaries with some ‘global freezing’ phenom-
enon: the frozen regions induced by freezing boundaries start to grow and invade the liquid 
phase, both for small or for large q, therefore creating straits separating macroscopic bodies 
of this liquid phase. The ‘global freezing’ becomes even more dramatic when the starting 
point sequence consists of freezing boundaries only (i.e. is made of a succession of fully filled 
intervals separated by gaps). This occurs for instance in the classical case of section 7.4 where 
the liquid phase of originally (i.e. at q  =  1) elliptic shape gets so squeezed that it eventually 
disappears at q  =  0 or infinity.

As a final question one may wonder if any generalization of the model (e.g. with position-
dependent inhomogenous weights) could still be solved using the techniques developed in the 
present paper, and we keep this as a direction of future research.
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