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Abstract

We use a tangent method approach to obtain the arctic curve in a model
of non-intersecting lattice paths within the first quadrant, including a
g-dependent weight associated with the area delimited by the paths. Our
model is characterized by an arbitrary sequence of starting points along the
positive horizontal axis, whose distribution involves an arbitrary piecewise
differentiable function. We give an explicit expression for the arctic curve in
terms of this arbitrary function and of the parameter g. A particular emphasis
is put on the deformation of the arctic curve upon varying ¢, and on its limiting
shapes when ¢ tends to O or infinity. Our analytic results are illustrated by a
number of detailed examples.
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1. Introduction

The study of two-dimensional non intersecting lattice path (NILP) configurations is a subject
of constant investigation, in particular because they provide alternative descriptions for a num-
ber of statistical models, including tiling problems [CEP96, JPS98] or dimer models on regu-
lar lattices. Quite generally, their statistics exhibits a number of interesting properties, among
which is the remarkable arctic curve phenomenon which may be described as follows: for
prescribed boundary conditions (obtained for instance by fixing the starting and ending points
of the paths), the paths may by construction visit only a fixed domain D in the lattice. In the
thermodynamic limit, i.e. for a large number of paths and under the appropriate scaling, this
accessible domain D is then split into one or several liquid disordered phases in which paths
may fluctuate with a finite entropy, and frozen (crystalline) ordered phases in which paths
develop some underlying order generally imposed by some nearby boundary. Frozen phases
may correspond either to fully filled regions with a compact arrangement of the paths charac-
terized by a fixed common orientation or, on the contrary, to regions not visited by paths. In
the thermodynamic limit, the transition between frozen and liquid phases is sharp and takes
place along a well defined arctic curve (with possibly several connected components) whose
shape depends only on the boundary conditions and on some local weights possibly attached
to the paths. The arctic curve phenomenon was described in a quite general setting in [KOS06,
K006, KOO7]. Several methods were designed to obtain, for specific NILP problems, the
precise location of their arctic curve. These are in general based on the identification of the
various phases in the bulk and their implementation, which requires the evaluation of bulk
expectation values, is achieved by use of quite involved techniques such as inversion of the
Kasteleyn matrix, or more recently by exploiting the underlying cluster integrable system
structure of the equivalent dimer problem [DFSG14, KP13b].

On the other hand, an elegant new technique, referred to as the rangent method, was
recently invented by Colomo and Sportiello [CS16]: it produces the arctic curve via a simple
geometric construction, without recourse to any bulk order parameter evaluation. The idea is
the following: many NILP problems have several equivalent formulations involving different
families of paths and a given portion of the arctic curve may always in practice be understood,
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for the appropriate path family, as the separation between a liquid phase and a region empty
of all paths. In particular, the shape of the arctic curve is dictated by the most likely trajecto-
ries of outermost paths in the NILP configuration since these are precisely the paths which
delimit the visited region. Based on this remark, the tangent method consists in reconstructing
the arctic curve from the location of the outermost path trajectories for the various equivalent
path families defining the model. In practice, the trajectory of the outermost path is obtained
by perturbing it upon moving one of its endpoints outside of the originally allowed domain
D, so as to force it to cross the empty region before it eventually exits D. The perturbed and
unperturbed trajectories are expected to share a common part before they eventually split
tangentially (hence the name of the method). After splitting, the perturbed trajectory which
takes place in some empty region is somewhat trivial as it is no longer influenced by the other
paths: as a consequence, it follows a geodesic and one may thus easily reconstruct the posi-
tion of the tangency (splitting) point from that of the point where the path most likely exits
D. The latter is determined by a variational principle. By varying the displaced endpoint, one
then reconstructs the entire unperturbed outermost trajectory as the envelope of the family of
geodesics thus produced, yielding the desired portion of arctic curve. The tangent method was
tested successfully in a number of problems [CS16, DFL18, DFG18] where it was shown to
reproduce already known results and yielded new explicit predictions.

In a recent paper [DFG18], we concentrated on a particular NILP problem involving paths
traveling up and left along the edges of the first quadrant of a regular square lattice and with
an arbitrary sequence of starting points along the positive horizontal axis, with abscissa
ay = 0,ay,a, ...,a,, and with the fixed sequence of endpoints along the positive vertical
axis at positions 0, 1,2, ..., n. Applying the tangent method, we were able to obtain the corre-
sponding arctic curve in terms of the asymptotic distribution of starting points in the thermo-
dynamic limit. In particular, this allowed us to recover via simple geometrical constructions
the results of [DM15] and de facto to validate the tangent method.

In the present paper, we address the same question of the arctic curve, for the same NILP
problem, but including a new g-dependent weight for the NILP configurations, associated
with the area under the paths. More precisely, let A; be the area delimited by the coordinate
axes and a path P; in the first quadrant. A NILP configuration then receives a total statistical
weight g2 4 where the sum runs over all the paths in the configuration. A small value of ¢
favors configurations in which the paths are squeezed towards the origin of the first quadrant
so as to lower the cumulative area ) . A;. On the contrary, a large value of ¢ pushes the paths
away from this origin. Such choice of g-dependent weight is quite natural and was already
considered in [MP17] in a more specific situation®, and in [BGR10] for a special case thereof,
corresponding to the example of section 7.4 below. There the model is presented in its equiva-
lent tiling formulation, which may itself be viewed as a plane partition, or equivalently as a
three-dimensional piling of elementary cubic bricks (see [MP17, DFG18]). In this language,
the above cumulative area ) _; A; has a nice geometrical interpretation as a measure of the vol-
ume below the surface of the brick piling (and above some appropriate base plane, see [MP17]
for details). Alternatively, this plane partition model may be rephrased as a free fermion five-
vertex model [NK94] and our area weight corresponds to its particular g-weighted version of
[KP13a] with inhomogeneous weights controlled by a single parameter g.

Our main result is an explicit parametric expression for the arctic curve in terms of the
(arbitrary, piecewise differentiable) distribution of starting points a(u) = lim, o @y, /7,
u € [0, 1], and of the renormalized parameter q = q'’/m:

3 This situation corresponds in fact to a particular instance of our general framework with a sequence of starting
points corresponding to so-called freezing boundaries only.

3
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Theorem 1.1. Let x(¢) be the q-deformed exponential moment-generating function for the
distribution o(u) of starting points, namely:

L du
x(t)i=q "0 T (1.1)

The arctic curve for the asymptotic configurations of NILP with prescribed endpoints is given
in the following parametric form (X (1), Y(t)), for admissible ranges of t € R:

0 = ¥ (1) g0 = tx'() + 1 —x(¢)
tx'(2) + x(1)(1 — x(¢))’ txX' (1) + x(6)(1 — x(2)) ~

(1.2)

The precise relevant admissible domains for  are discussed in the paper. Using this result,
we may follow the deformation of the arctic curve for varying ¢, and obtain its limiting shape
whenever ¢ tends to 0 or to infinity.

The paper is organized as follows. In section 2, we give a precise definition of the NILP
problem under study, which is first presented in its ‘original’ form (section 2.1) involving a
first family of paths along the edges of the first quadrant of a regular square lattice, and then
reformulated in terms of a second, dual family of paths (section 2.2), with a detailed analysis
of the mapping between these two formulations. The model is entirely characterized by its
fixed arbitrary sequence of starting points as well as by the weight parameter ¢ and we give
in section 2.1 an explicit expression for its partition function. Section 3 is devoted to the com-
putation of the basic quantities required to apply the tangent method to our problem. These
include in particular the so-called one-point function, computed in section 3.1, which enumer-
ates path configurations in which the outermost path is perturbed so as to exit the allowed
domain D at a prescribed exit point. The associated scaling expression in the thermodynamic
limit of a large number of paths is discussed in section 3.2 where we also analyze the position
of the most likely exit point. Section 4 proves our main result, namely the above parametric
equation (1.2) for the arctic curve. Its derivation requires computing the equation for ‘geodes-
ics’ (section 4.1), i.e. free trajectories of the (perturbed) outermost path within an unvisited
region empty of all the other paths. The arctic curve is then obtained from the tangent method
principle as the envelope of the geodesics passing via the previously identified most likely exit
points (section 4.2). The above construction, based exclusively on the original path family of
section 2.1, produces only one portion of the arctic curve, its so-called ‘right part’. We show
in section 5 how to get other portions of the arctic curve, a generic ‘left part’ (section 5.1)
obtained from outermost trajectories in the second path family of section 2.2, as well as possi-
ble additional portions (section 5.2) arising for so-called ‘freezing boundaries’ in the presence
of either fully filled intervals or gaps in the sequence of starting points. Section 6 is devoted
to the description of the arctic curve in the limit where g tends to O or to infinity, either via
heuristic arguments (section 6.1) based on the identification of the most likely limiting NILP
configuration, or via a rigorous treatment analyzing the limit of the arctic curve equation (1.2)
when ¢ becomes large (section 6.2) or small (section 6.3). Section 7 presents a number of
explicit examples of this deformation of the arctic curve when ¢ varies for a fairly generic
class of starting point distributions (section 7.1), including situations with freezing boundaries
resulting from a fully filled interval in the starting point sequence (section 7.2) or from a gap
(section 7.3). As a final example we revisit the path formulation of the classical rhombus tiling
problem of a hexagonal domain [CLP98] in section 7.4. We show how the arctic curve, known
to be an ellipse for ¢ = 1 is deformed for large or small g as a result of the invasion of the
liquid phase by frozen regions. We gather a few concluding remarks in section 8.
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2. Partition function for g-weighted non-intersecting lattice paths

2.1. Direct path formulation

As in [DFG18], we consider configurations of non-intersecting lattice paths consisting of
(n+ 1) paths P;, i = 0,1, - ,n, making west- or north-oriented unit steps along the edges
of the regular square lattice Z2, starting at respective position O; = (a;,0) along the x-axis
and ending at position E; = (0, i) along the y-axis. Here (a;)o<;<» denotes an arbitrarily fixed
strictly increasing sequence of integers with ap = 0. The paths are non-intersecting in the
sense that any two distinct paths may not share a common vertex. Clearly, the domain D acces-
sible to the paths is a rectangle of size a, x n in the first quadrant, with its lower left corner
at the origin.

The novelty of the present paper is that each path P; now receives a weight ¢**/, where
q is some arbitrary positive real number and A; measures the area ‘to the left of the path’
P;, i.e. the number of unit squares in the domain delimited by the path P; and its projection
along the y-axis (see figure 1). Note that in the present case, this area may also be viewed as
the area ‘under the path’, i.e. the number of unit squares in the domain delimited by P; and
its projection along the x-axis. The total weight of a NILP configuration is then the prod-
uct of its path weights, namely g>i=o*"i. Alternatively, the weight g™ of the path P; may
be obtained by assigning to each north-oriented step (x,y) — (x,y + 1) of the path a local
weight ¢*. Since this latter formulation involves only local edge weights, the partition function
Z,(q) = Z,(q; (a;)o<i<n) of the model may be obtained via the famous Lindstrom—Gessel-
Viennot (LGV) lemma [Lin73, GV85] as

Zy(g) = det (41 (9))ocsjc) @.1)

where A; j(g) denotes the partition function of a single path P (made of west- and north-ori-
ented steps) connecting O; to Ej, and with weight g’ if A is the area to the left of the path P.
Since a path from O; to E; is made of a total of a; + j steps among which exactly j are oriented
north, we have clearly
Aij(q) = {al ﬂ}
I g

in terms of the g-binomial

a hqurafbil
=J1L—— fora=b>0 .
] A

and [Z] .= 0 otherwise®. As in [DFG18], the value of the determinant (2.1) is easily obtained
by performing the LU decomposition of the matrix A(g) with elements A; ;(¢) above, i.e. upon
writing A(g) as the product of a uni>-lower triangular square matrix L(g) by an upper triangu-
lar square matrix U(g), so that Z,(q) = [[._, Uii(q).

Let us show that we may take for L(g) the inverse of the uni-lower triangular matrix L~'(g)
with matrix elements

4Note that the product expression for the g-binomial is in practice valid for all @ > 0 as it gives 0 for 0 < a < b.
Note also that [Z] .= [af b] p
3 By uni-lower triangular, we mean a lower triangular matrix with all its diagonal elements equal to 1.

5
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i.e. that U(q) :

O4

0 2 3 6 10 12 15

»
|

Figure 1. A sample configuration of n + 1 = 7 non-intersecting lattice paths made of
west- or north-oriented unit steps. The ith path P; starts at position O; = (g;,0) and
ends at position E; = (0,i) (here for the sequence (a;)o<i<» = (0,2, 3, 6,10, 12, 15)). For
illustration, we colored the domain ‘to the left of the path’ P4 whose number of unit

squares defines the area A4 (here =31). The weight of the configuration is g>i=o
(here @O t1+5HI6+31453475 _ 181

i—1
IT(q" —q")
= fori>j,
L7Yg)ij = T1(q—q%) 2.3)
i
0 fori <,

= L~'(¢q) A(q) is upper triangular. We may compute directly

i—1

Uste) = (17 @A @), =30 5 | ]

k=0 H (qak — qas) ]
g
i—1 j !
dr 1 tqg’ — 1
:H(qa,_qa;)f T ; H . s
0 g e iy 20T g —1
=0 (4%0.q"1,+- q") [1(t—g%) s=1

s=0

where the contour C(¢g“, ¢g*', - - - , ¢%) encircles all the finite poles ¢*, g*', - - - , g% of the inte-
grand. The contour integral is then easily obtained as minus the residue of its integrand at
t = oo, which clearly vanishes if j < i since the integrand is an O(# ") at large ¢: this shows
that U(g) is upper triangular as announced. Moreover, picking the residue at # = co when
Jj =i, we also have

i—1 i i—1

o =TT~ T 725 = T4

s=0 s=1 qS -1 - s=0 qi - qs
and the partition function finally reads
- 1 Ag®,q", g, ,q")
Z,(q: (a)osica) = [ [ Uiilq) = ge" DD : (24)
n n g A(l,q,QZ’,_,’qn)

where A(xo, x1,%2, -+, %) = [[;;(x; — x;) is the Vandermonde determinant.
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Figure 2. The second set of paths (in red) associated to the original configuration
(in blue) of figure 1. For illustration, we colored the domain ‘to the left of
the path’ P,, with area Ay =39. The weight of the new configuration is
gXimo i = OH14H26434439440428 — 4181 equa] to that of the original configuration.

2.2. Alternative path formulation

As explained in [DFG18], the NILP configurations of our model may be bijectively trans-
formed into particular tiling configurations which in turn may be reformulated into alternative
path configurations. Here we shall concentrate on one particular alternative path description
of our model, referred to as the ‘second set’ of paths in [DFG18]. Its configurations consist
again of (n + 1) NILP P.i=0,1,---,n, now made of northeast- and east-oriented unit steps,
with respective starting points O; of coordinates (a,_; + 1/2, 0) along the x-axis and endpoints
E; of coordinates (a, + 1/2 + i, i) along the line y = x — a,, — 1/2 (see figure 2). The bijection
between the original NILP configurations and these second set of non-intersecting paths may
be obtained directly as follows: given the original NILP configuration, the ith path P; in the
associated second set of paths is obtained, starting from O, by performing east-oriented unit
steps as long as these steps do not intersect a path of the first original set and by overpassing
any encountered such path via a northeast-oriented step crossing a north-oriented step of the
original path (see figure 2). The procedure is continued until the final point E; is reached (after
i crossings, so that E; has the desired y-coordinate 7). Note that, as opposed to the original path
numbering from left to right, the paths in the second set are now numbered from right to left.
It is clear that the mapping from {P;}o<i<, to {jji}ogign is a bijection since, from the data
of any {j)i}ogign in the second set of paths, we may easily reconstruct its unique pre-image
{P:}o<i<n by a similar construction.

Let us now discuss how to transfer the weight of the original NILP configuration to its
image by the above bijection: this weight is clearly recovered in the second setting by assign-
ing to each northeast-oriented step (x — 1/2,y) — (x+ 1/2,y + 1) a weight ¢* as any such
step is ‘dual’ to a north-oriented step (x,y) — (x,y + 1) in the original configuration. By
performing a simple shear of the original unit squares into elementary rhombi of the same unit
area, this in turn corresponds to assigning a weight ¢’ to each path P; of the new configura-
tion, where jli denotes again the area to the left of jDi, now defined as the total area (number of
rhombi) of the domain delimited by the path P; and its projection along the ‘vertical sawtooth
line’ surrounding the y-axis (see figures 2 and 3). Again the total weight of a NILP configura-
tion is the product of its path weights, namely g2-i=o . With this weight, the partition function
of the second path configurations is, by construction, identical to that, Z,(g; (a;)o<i<n) of the
first path configurations, namely given by (2.4).
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As in [DFG18], we may, on the other hand, transform a path configuration in the sec-
ond NILP set back into a configuration made of north- and west-oriented steps in a much
more straightforward way: this direct transformation is achieved by first performing a shear
transformation (x,y) — (x — y,y) (transforming northeast-oriented steps into north-oriented
steps) followed by a reflection (x,y) — (a, + 1/2 — x,y) (transforming east-oriented steps
into west-oriented steps), as displayed in figure 3. The resulting mapping

R:(y) = (an+1/24+y—xy)

sends the endpoints E;to R(E;) = (0, i) and the starting points O; to R(0;) = (&;,0) involving
the strictly increasing sequence of integers (with @y = 0)

(~1,‘ =da, —ap—;. (25)
We thus recover path configurations as those of the original setting but with a new set of start-
ing points now characterized by the sequence (a;)o<i<n-

As for the weight ¢* assigned to any northeast-oriented step (x — 1/2,y) — (x +1/2,y + 1)
of, say, the path P;, it is attached after the mapping R, to a north-oriented step
(an+1+y—xy) = (@, + 14y —x,y+ 1) of the path R(P;), In other words®, any north-
oriented step (X,7) — (%, 5 + 1) of the path R(P;) receives a weight ¢**+'+7=, Since the path
R(P;) has exactly i north-oriented steps (%,7) — (%, 3 4 1) whose ordinates y take the respec-
tive integer values j =0, 1,---,i — 1, the above weight is recovered by assigning a weight

g~ to each north-oriented steps (%,7) — (%, + 1) together with a global weight

n i—1 n

2a, +i+1 1
Z i(a,,—l—l)—i—Zj :Ziu: nn+1)(3a, +n+2).

i=0 j=0 i=0 2 6
We deduce the identity
Zu(q: (ai)osica) = g¢" IO 7, (7Y (@)o<icn) (2.6)

relating the partition functions of NILP configurations in the same original setting made of
north- and west-oriented steps but associated with different sequences (a;)o<i<n and (@;)o<i<n
respectively. This identity may also be verified by a direct calculation from the explicit expres-
sion (2.4) and the relation (2.5) between a; and a;.

The above (back and forth) bijective mappings between NILP configurations of the two
different settings may appear here as a pure academic exercise but they will prove very useful
in section 5.1 when using the second set of paths to compute the so-called ‘left part’ of the
arctic curve.

3. One-point function and free trajectory partition function

3.1. Exact expressions

The tangent method consists in slightly modifying the NILP configurations by moving the
endpoint E, of the nth path r steps north to the position E,(r) = (0,n + r). This forces this
path to exit the domain y < n (hence the domain D) by a north-oriented step at some x-
coordinate ¢ between 0 and a,. Let us denote by E(¢) = (¢, n) this ‘exit point’ (see figure 4).

®Note that R is an involution, hence setting (a, + 1 +y — x,y) = (X, ¥) amounts to setting
(y) = (@ +1+7-%5).
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Figure 3. The mapping R from the configuration of figure 2 to a NILP configuration
made of north- and west-oriented steps, now associated to the sequence

(ai)o<i<e = (0,3,5,9,12,13,15). The area to the left of the transformed path R(P;)
(shadeq domain) is given by (i (ag + 1) + Zi;i) y) — A; where A; is the area to the
left of P; before mapping (colored domain).

As in [DFG18], the so-called one-point function H,¢(q) := H,¢(q; (a;)o<i<n) corresponds
precisely to the partition function for configurations where we let the nth path P, stop at a
fixed exit point E({), normalized by the original partition function Z,(¢) (so that H, o(g) = 1
since E(0) = E,). Here, the weight of the truncated path P, is chosen to be g™, where A,
denotes the number of unit squares in the region delimited by this truncated path P, and its
projection along the y-axis. This corresponds to our notion of area ‘to the left of the path’, but
note that it is no longer identical to the area ‘under the (truncated) path’ whenever ¢ > 0 (the
difference between the two areas being n/).

Denoting by Z,(q,!) := Z,(q,¢; (a;)o<i<n) the partition function of these configurations
with exit point E(¢), the one-point function H, ¢ is simply obtained as the ratio

Z(g,4) _ det(A(g.0))

H,(q) = ;n(f])  det (A(g))

where the new LGV matrix A(g, £) differs from A(g) only in its last column:

A,J(q) forj <n,

Aij(q.0) =
nt [ﬂi+n—f

n ]q forj=n.

q

Since A(g, /) and A(g) differ only in their last column, the matrix U(q,¢) := L™'(q)A(qg,¢)
differs also from U(g) = L~'(g)A(g) in its last column only, hence it is upper triangular, lead-
ing immediately to H, ¢(q) = U,..(g,¢)/U,n(q), where
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E,(r)=(0,n+r)

Yir(q) | | E(6) = (6,n)

¥ ¥

Hn,ﬂ(q)

Figure 4. A modified NILP configuration where the nth path ends at position
E,(r) = (0, n + r). This forces this path to exit the domain y < n by a north-oriented
step at E(¢) = (¢,n) for some £ between 0 and a,. The (normalized) partition function
for the part of the configuration below the y = n line is given by H,,(q), including a
weight ¢"' corresponding to the area A, to the left of the portion of the nth path below
this line (colored domain). The partition function for the part of the configuration above
the y = n line is given by Y, ,.(g), including a weight ¢ for the first (shaded) strip.

n—1
" " ]:[0(61“" —q") ar+n—1
Unn(@:0) = D> Lt (@Aka(g,0) = 45— { ; }
k=0 k=0 [](q% —q*) a
o

n

s—0 1

1 ntq
11

g —1

n—1
dt
=q" [ (¢ - ¢*) j{
5s=0 e

- —
(g |a=2) 2im s:()t  —

Here the contour C(g|a; > ¢) encircles the finite poles g% of the integrand only for values of
k such that a; > £. Other values of k (with a; < f) are indeed absent de facto from the sum in
the first line due to the vanishing of the g-binomial [ "~

. whenever a; < /.
This yields the desired expression

n

Unn(q’f) 0—n( +])/27{ dr 1 )
Hylg) = 52050 = ¢ & (o). G
" (q) Un,n(Q) 4 (g% |ax>0) 21 poir t— g% H( q )

s=1

Note finally that the last product in the integrand vanishes fort = ¢ whena = ¢ —n,--- , £ — 1
so that the contour C(g%|a; > ¢) may be extended to C(g%|ay > ¢ — n) by also encircling
poles g% with £ — n < a; < ¢ since these poles contribute O to the integral.

To obtain the full partition function for NILP configurations where the nth path ends at the
shifted position E,(r) = (0, n + r), we also need the partition function Yy, (g) of the remain-
ing part of the nth path, leading from E(¢) = (¢,n) to E,(r), hereafter referred to as the ‘free
trajectory’ of the nth path as it is not affected by the other paths. It is simply given by

(4+r—1
Yé,r(Q):qZ[ / :|
q
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since the first step must be north-oriented (with weight ¢*) and the g-binomial precisely incor-
porates the desired weight ¢”* for the area A to the left of the new portion of path lying above
the y = n + 1 line (see figure 4).

The modified (normalized) partition function for configurations with a fixed shifted end-
point E,(r) for the nth path is simply obtained by summing over all possible intermediate
positions E({) of the exit point, namely given by

D Hueq) Yer(q) - 32)
=0

3.2. Scaling limit

The tangent method uses the most likely value ¢ for the exit point E(¢), i.e. that which maxi-
mizes the modified partition function (3.2) for fixed r. The relation between the optimal ¢ and
ris easily obtained in the limit of large n by analyzing the asymptotics of the various functions
at hand under the appropriate scaling, namely

{=¢&n, r=2zn, a; =nali/n)

with £ and z remaining finite, and where «(u) is an increasing piecewise differentiable func-
tion for u € [0, 1] such that its derivative, when defined, satisfies o/ (u) > 1 since the sequence
(a;)o<i<n 18 strictly increasing. To get a non-trivial large » limit, it is also necessary to adjust
the weight g by setting:
1
g=q'"

with a finite q.

From the product expression (2.2) for the g-binomial, we immediately deduce the
asymptotic equivalent:

Y, r(q) ~ e ({,z)7

13 qu+z -1
&(61)::/ duL0g<,,1>
0 q —

while, from the expression (3.1), we deduce

d
Hn,f(‘]) ~ % .76’1‘90([’5),

21w

1 1 =& _ 1
&ﬂnf)—»<£2>logm)+té duL0g<:ﬁ_qaw)> : (3.3)

Here the contour must encircle only those q*® such that a(u) = & For q>1 (ie. g > 1),
it must therefore surround the segment [q¢, q“(l)], hence cross the real axis anywhere in the
interval Jq¢~!, q¢[ (recall indeed that the poles g% for £ — n < a; < ¢ do not contribute to the
integral) and in the interval |q®(!), +-00[ (there are no poles larger than ¢®). Similarly, for
q <1 (i.e. ¢ < 1), it must surround the segment [q*(!), q¢], hence cross the real axis in the
interval | — oo, q*(!)[ and in the interval |q¢, q¢~'[. At large n, the integral is estimated by a
saddle-point method, namely

1
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H,i(q) ~ enSo(t*,ﬁ)’
08o(1,§)

ot z=z*_

The optimal value of £ for fixed z is then obtained by extremizing Sy(7*, &) + S1(&, z) with
respect to £ at fixed z. The two (saddle-point and extremization) operations may be performed
simultaneously by solving the two extremization conditions:

ISo(t, ) —0=— /I du gt B 1
ot 0 tqe8—1  t—qgoW
1 rq—qt /1 1
= L - du————,
tLog(q) Og( t—qt T

A(So(1.€) + S1(£.2)) gt -1 PR
o€ =0=Log (q ﬁ) —tLog(q) /0 dum .

Using the definition (1.1) for the q-defomed moment-generating function of the distribution
o, namely

x(r) = q I i

the above equations reduce to

[—q&- .x(t)—l, qqgi_lx(t)—l,
which yield the parametric solution (£(#), z(¢)) for the optimal £ at fixed z:
x(t) —1 t+x(r) =1
qﬁ(’) — IL, (1) — L . (34)
x(r) =1 tqx(t)

Since q¢ ) and qz(’) must be real,  must be real and therefore lie in the specific intervals men-
tioned above when discussing the intersection of the 7-contour with the real axis. It is easily
checked that (q®) —7)/(t — q¢®W~1) = —qx(¢) < 0 (since x(¢) > 0), hence ¢ cannot lie in
the interval |q¢~', q¢[ for q > 1 (respectively |q%, q¢~![ for q < 1). The solution above is thus
valid only for a parameter t in the range ]qa(l), +oo[ if ¢ > 1 and for a parameter t in the
range | — oo, ¢ [ whenever q < 1.

4. Arctic curve: first portion

4.1. Geodesic equation for the free trajectory

So far we obtained in (3.4) the most likely exit point E(¢ = n &) for a fixed shifted endpoint
E,(r = nz) in the scaling limit. The tangent method relies on the assumption that the ‘geo-
desic path’ connecting E(¢) to E,(r), i.e. the most likely free trajectory passing through these
two points, is fangent to the arctic curve at their meeting point. In other words, the nth path
(travelled backwards from E,(r)) continues to follow a geodesic trajectory below the y =n
line until it meets the other paths of the NILP configuration tangentially along the arctic curve.
Here it is important to note that, as opposed to the case ¢ = 1 considered in [DFG18], the
geodesic path is no longer a straight line but follows a certain curve depending on n, ¢, r and
on the parameter q.

12
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To compute the equation of this most likely free trajectory, let us consider the intersection
point between the path from (¢,n 4 1) (recall that the first step after E(¢) is a north-oriented
step) to E,(r) = (0, n + r) and, say, a vertical line x = m for m between 0 and £. If (m,n + p)
denotes this intersection point (with p between 1 and r), the free trajectory partition function
reads

oo r=p+m] [f—m+p—1
Yerla) =) 4" ”[ . ] { o ] :
p=1 p q p q

At large n, we use again scaling variables { = &n, m = pun, r =zn, p=¢nand g = qﬁ
to write

0

z—¢ qu+;t 1 [ qu+€—# -1
NONTRNS :wLOg(qH/ duLog (T T >+/ duLog (70(“ T ) .
0 - 0 -

For fixed £ and z, the most likely free trajectory ¢ = ¢(u) is obtained as the saddle-point of
the integrand via

98(¢, 13 €.2) ~ Log (¢ g1 gt 1\ 0
8(;5 qZ*¢>+H -1 q¢ —1 ’

namely
(1-9%)a” + (1 - q9)g" =1 — g+

Using rescaled Cartesian coordinates X = x/n, Y = y/n, this gives, for fixed £ and z, the most
likely free (rescaled) trajectory (X,Y) = (u, 1 + ¢) by letting u vary between 0 and & (or
equivalently letting ¢ vary between 0 and z). The above trajectory is equivalently rewritten as

1 — X 1 — Y—1
q + q
1—qf 1—q

-1 “4.1)

with 0 < X < & (or equivalently 1 < Y < 1 + z). The above expression for the geodesic path
emphasizes the fact that the rescaled endpoints (X,Y) = (0, 1 + z) (corresponding to E,(r))
and (X,Y) = (&, 1) (corresponding to E(¢)) lie on the curve, as wanted. The geodesic trajec-
tory is straightforwardly extended to values of X > ¢ (¥ < 1) and describes the most likely
rescaled position of the nth path until it reaches the other paths.

4.2. Tangent method and arctic curve

We are now ready to apply the tangent method principles: the arctic curve is obtained as the
envelope of the above geodesic trajectories (4.1) for varying endpoints (characterized by z in
the scaling limit) and their associated most likely exit point (characterized by &), i.e. for vary-
ing values of £ and z related via the parametric equation (3.4). Letting ¢ vary in (3.4) yields a
family of ‘tangent curves’ with equation

1— qX 1 — qY—l
1 — qE(f) 1 — qz(f) -

parametrized by z. Substituting the solution (3.4) for £(r) and z(f), we end up with the par-
ticularly simple equation for the tangent curves:

13
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x(1) q" + 1= *-1=0 4.2)

with x(¢) as in (1.1). The envelope of these curves is the solution of the linear (in ¢* and q")
system:

tx(t)q" + (1 —x(1)) g* — 1 =0,
(' (1) +x(1) a" =¥ (1) g* = 1 =0,

leading to the following explicit parametric equation for the arctic curve (X(¢), Y()) in terms
of the quantity x(r) defined in (1.1):

X0 _ 2 (1) S0 _ X0+ 1 (0
tx' (1) + x(6)(1 — x(¢))’ tx' (1) + x(6)(1 — x(2))’

with, as already discussed, # €]q*("), +-00[ whenever q > 1 and ¢ €] — co, ¢*")[ whenever
q < L. This proves a first instance of theorem 1.1, for the indicated ranges of 7.

For illustration, let us discuss the simple case where the sequence of starting points is taken
asa; =21i,i=1,---,n. This results in a linear function o(u) = 2u and the function x(7) is
easily computed from its general expression (1.1) as

(4.3)

1 jt—¢q?

x(t):a e

The corresponding arctic curve (4.3) is displayed in figure 5 together with the associated fam-
ily of tangent curves (as given by (4.2)) for ¢ = 3 and q = 1/3 respectively. Note that these
tangent curves are concave for ¢ = 3 and convex for q = 1/3, which is consistent with a ten-
dency for a free trajectory with fixed endpoints to increase the area to its left when q > 1 and,
on the contrary, to decrease it whenever q < 1. Note also that the parameter ¢ (in both (4.3)
and (4.2)) varies in ]q%, +00[=]9, +-00[ for ¢ = 3 and | — o0, q*[=] — o0, 1/9[ for q = 1/3.
As apparent in figure 5, restricting 7 to the above ranges builds only one portion of the arctic
curve, its so-called ‘right part’. This is due to the particular geometry that we used to apply the
tangent method, namely by shifting north the endpoint E,, of the outermost path in the original
NILP formulation of the model. As explained in [DFG18], other geometries may be used and
lead to other portions of the arctic curve. Let us now discuss how to obtain these other portions
in practice.

5. Other portions of the arctic curve

5.1. Left part of the arctic curve

Another portion of the arctic curve, hereafter called its ‘left part’ for obvious reasons, is obtained
by considering the alternative formulation of section 2.2 through NILP configurations with
northeast- and east-oriented steps. Moving the endpoint E, = (a, + 1/2 + n,n) of the nth
path r steps in the northeast direction to the position E,(r) = (a, + 1/2 + n + r,n + r) forces
this path to exit the domain y < n by a northeast-oriented step at some x-coordinate ¢ + 1/2
for some ¢ between n and a, + n. Let us denote by E(¢) = (£ + 1/2,n) this exit point (see
figure 6). We denote by H,¢(q) := H,(¢; (a;)o<i<n) the one-point function corresponding,

14
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0.5 1 1.5 2 2.5 3

Figure 5. The ‘right part’ of the arctic curve (thick solid blue line) as given by
(4.3) for the appropriate domain of 7 (see text) for ¢ = 3 (top) and q = 1/3 (bottom)
in the particular case «(u) = 2u. The extremities of this portion of curve are at
(Log (q(q +1)/2) /Log(q), 1) and (2,0). We also indicated members of the family of
tangent curves (thin lines) whose envelope defines the portion of arctic curve at hand.

as before, to the (normalized) partition function for configurations where we let the nth path
stop at a fixed exit point E(¢) and where the weight of this truncated nth path is ¢”* with A,
the area to the left of the path as before. Note that the normalization condition now implies that
Hya 1n(q) = 1since E(a, 4+ n) = E,.

By a straightforward generalization of the argument leading to (2.6) based on the mapping
R, we immediately deduce the relation, valid forn < ¢ < a, + n:

H,.o(q; (ai)ogi<n) = H,,,g(lfl, (@i)o<i<n)s (=a,+n—1{

with no g-dependent prefactor since the proportionality factor appearing in (2.6) eventually
drops out in the ratio defining the one-point functions (which are normalized partition func-
tions by definition, in particular H,, y, = H,o = 1 for any value of the parameter ¢ and of
the sequence (a;)o<i<n). Here 7 is nothing but the x-coordinate of R(E(¢)). This leads directly
from the expression (3.1) to

15
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E,(r) = (an+1/24n+r,n+r)

7

(41 !

</
L/

E(£) = (£+1/2,2)

/

4
S S S S
LSS S
LSS S SN

0 Qnp

Figure 6. A modified NILP configuration where the endpoint of the nth path is moved
to position E,(r) = (a, +1/2+n+r,n+r). The partition function H,¢(g) for
the lower part of the configuration with exit point E(¢) is obtained via some general
symmetry principle (see text). The partition function f’g,r (g) of the upper part involves
the area of the shaded domain, divided for convenience into three regions. The leftmost
shaded region is responsible for a weight ¢""~"? and the central shaded region for
a weight ¢’“t1). As for the rightmost part, which involves a summation over path
configurations from (¢ + 3/2,n + 1) to (a, + 1/2 + n + r,n + r) with area equal to the
(indicated in blue) rightmost shaded region, it yields, by a simple up-down reflection of

the path, to a weight [@r‘:l} . [ﬂ;;‘] .

H ‘ a1 )
n C(g~%|a=0) 2im iy t—q % 51;[1
n

dr + 1
=g g i T a —a g stetn=t _ 1
! 1 ﬁ(q"k”nakgg_n) 21w H — qan—s*ﬂn H( q )

s=0 s=1
n n

= q"f—n(n—l)/zf Lﬂ # H(t/ qn—x—f . 1)
Cq% |ar<f—n) i 0 t— gt

s=1

_ qnéfn(nfl)/zjg dr ﬁ 1 nl:‘[l(tqsfé _ 1)
e t—q* ’

(gla<e—n) 2T G =0

where we performed the change of variable ¥ = 7 ¢™ (then called ¢ again in the fourth line).

Note that this expression is very similar to that (3.1) for H, ¢(q). Apart from minor shifts in the

indices, the main difference comes from the contour of integration which now encircles those

g™ with a; < ¢ — n. As before, this contour may be extended’ to the ¢* with a; < ¢ since the
last product in the integral vanishes for t = ¢%,¢*~',--- ,¢""*.

We finally need the partition function of the free trajectory, easily computed as (see figure 6)

V0 () = gD+ -1/ [5 + 2— 1] .

q

We deduce the asymptotic equivalent

7 Using this extended domain, it is easily verified by a simple contour deformation that H, ¢(¢) + H,¢—1(q) = 1 for
all £. This remarkable identity has in fact a simple combinatorial explanation discussed in [DFG18].
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Ver(g) ~ €969,

~ a(l)+1-¢& qu+z 1
Siea) —clerz/atos+ [ antop (TS
0 -

while

] ~ i nSo(1.€)

Hasla) ~ 509,
with the same function Sy(z,€) as in (3.3) for H, ¢(q). Here however, the contour must encir-
cle only those qo‘(”) such that a(u) < & — 1. For q > 1, it must therefore surround the seg-
ment [1, g~ '], hence cross the real axis in the interval | — oo, 1] (there are no poles less than
g“ = 1) and in the interval ]¢*~", ¢%[ (the poles ¢ for £ — n < a; < ¢ do not contribute to
the integral). For q < 1, it must surround the segment [qf’l, 1], hence cross the real axis in the
interval ]qg, q¢~![ and in the interval |1, +oco[. As before, at large n, the integral is estimated
by a saddle-point method and the optimal value of ¢ for fixed z is obtained from the two
extremization conditions:

1 u—¢ 1
aso(ta 6) —0= / du q _ ,
ot 0 tqe¢—1  t—qo

8(So(t,§) —+ S‘1 (£9Z)) . 1 qa(1)+1—5 —1 1 qu_
¢ =0=Log|(q W —tLog(q) /0 dutq“_T—l'

These equations reduce to:

ta—q° c @WHE—T
g 0= e e 0 =
with x(¢) as in (1.1), hence the parametric solution (£(¢),z(1)):
€0 _ qx(t) — 1 a0 _ i _ 1
T T T T G 0 (=) ol

As before, the range ¢ €]q*~!, q¢[ for q > 1 (respectively t €]q¢, q*~![ for q < 1) is ruled out
since (q€) —7)/(r — q¢®~1) = —qx(¢) < 0. The parameter ¢ is therefore now restricted to
the range 7 €] — oo, 1] whenever q > 1 (respectively ¢ €]1, +oo[ whenever q < 1).

In order to obtain a new family of tangent curves, we must compute the equivalent of equa-
tion (4.1) for the present geometry, i.e. find in the present setting the most likely free (rescaled)
trajectory (X,Y) from (&, 1) (point E(£)) to (a(1) 4z, 1+ z) (point E,(r)). Fortunately, a
simple symmetry argument allows us to get the new equation for geodesics directly from
(4.1) by (i) applying to this latter equation the (rescaled) transformation R, i.e. the change
(X,Y) = (a(l) + Y — X,Y) and (ii) changing q — 1/q. Indeed, in configurations enumer-
ated by f/g,,(q), the varying part, for fixed /, of the weight of a free trajectory may be written
as ¢’* if A denotes the area on top of the path (the rightmost blue shaded domain in figure 6).
After the mapping R, this area is still on top of the path rather than under it as in the computa-
tion leading to (4.1). This difference simply amounts to changing ¢ — 1/¢ up to global factor
(which is fixed for fixed ¢ and r). To summarize, we deduce, by applying (i) and (ii) to (4.1),
the new equation for geodesics in the present geometry:

1 — qf(a(1)+Y7X) 1 — qf(yfl) _

_|_

(g T g
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Picking for £ and z the values £(7) and z(z) of (5.1), this yields a parametric equation for a new
family of tangent curves, namely after substitution:

1 — x(t
t(>qx

x(t)q" + —1=0.
Remarkably, we obtain for our new family the same expression as that obtained in (4.2) for the
family of tangent curves associated with the first portion (right part) of arctic curve. The result
for the second portion of arctic curve boils down again to equation (1.2) of theorem 1.1, but
with now a different domain of variation for the parameter ¢, namely ¢ €] — oo, 1] whenever
q > land ¢ €]1, +o00[ whenever q < 1.

The complete arctic curve, incorporating both the right and left parts, is displayed in fig-
ure 7 in the particular case o(u) = 2u.

5.2. Portions induced by freezing boundaries

Recall that, by construction, the scaling function a(u) is an increasing piecewise differentiable
function for u € [0, 1], such that o’ (#) > 1 when o/ (u) is defined. For a generic such function,
the quantity x(7) given by (1.1) is well-defined and real only for 7 in the already encountered
allowed domains, namely ¢ €] — oo, 1{U]q*("), +00[ for g > 1 and ¢ €] — 00, q*(V[U]1, +o0]
for g < 1. This is due heuristically to the fact that fol du1/(t — q*®) is generically not defined
for ¢ in the interval [q®(*), g*(] = [1,q*(M] for g > 1 (respectively [q*(V), q*(©] = [q(1), 1]
for q < 1) since q“(”) spans this interval when u varies between 0 and 1. As a consequence,
the arctic curve for a generic a(u) consists only of the two portions computed so far, namely
its left and right part above.

As explained in [DFG18], there exist however some particular realizations of «(u) giv-
ing rise to extra domains of 7 for which x(z), as given by (1.1) (possibly through some ana-
Iytic continuation), remains well defined and real. This in turns leads through (1.2) to extra
portions of arctic curve by letting ¢ span these new domains. This phenomenon appears in
the particular case of so-called ‘freezing boundaries’, corresponding to a situation where the
sequence (a;)o<i<n contains either macroscopic ‘gaps’, i.e. has no element in one or several
intervals of the form [A,,, A, + A, ] with A, o n for large n, or, on the contrary, to a situation
where the sequence has ‘fully filled intervals’, i.e. includes all the successive integer values
of one or several intervals [A},, A, + A} ]. Both situations correspond to freezing boundaries
in the sense that they induce domains just above the x-axis where the paths configurations are
fully frozen, which serve as germs for larger frozen domains in the limit of large n, hence to
new portions of arctic curve (see [DFG18] for details).

In terms of the function a(u), the first situation corresponds to a discontinuity d,, = A,,/n
at the value u,, = A,,/n, namely:

a(wh) —au,) =0, .

m

In this case, the quantity fol du1/(t — q*®) is now well-defined for ¢ € [q*®), g*(4)] for
q > 1 (respectively t € [qo‘(’*jr ), qa(”f;)] for q < 1) since this interval is no longer spanned by
q*) when u varies between 0 and 1. This in turns creates an extra domain of  on which x(1)
remains well-defined and real positive.

The second situation corresponds instead to a function «(u) with derivative equal to 1 on
some segment (recall that, by definition, o/ (1) > 1 when defined), namely:

o' (u) =1 foru €lul,, u, + o, .
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Figure 7. The complete arctic curve including its right part (thick solid blue) and its
left part (thick red line) as given by (1.2) for the appropriate respective domains of 7,
here for ¢ = 3 (top) and q = 1/3 (bottom) and in the particular case «(u) = 2u. We also
indicated members of the family of tangent curves (thin lines) whose envelope defines
the left part of the arctic curve.

In this case, the quantity fol du/(r — q*™) has a logarithmic cut for 7 along [q(“n), q@(“)+%]
a(ul)

for q > 1 (respectively [q®()+0n, q()] for q < 1) but, since o(u) = a(u,) + u — u,, for
u € [ul,,ul, + 6, ], we have along this interval a discontinuity

0y, +38,, / alu )+6!,
1 1) 1 m)t0m
/ dy———— =" - ———(Log qi, +inw
y t+ie—q>® ¢t rLog(q) t— qo(u)

m

which, when exponentiated in (1.1), contributes to x(7) via a (multiplicative) factor

s qa(u:n)""éz,n —t

T T et

with a global sign e*™ = —1, but with no cut in x(¢) along [q*“"), g+ The quantity

x(#) remains thus well-defined and real for ¢ in this interval, but it now takes a negative value.
In both cases of gaps or fully filled intervals, the extra domains of ¢ leading to real val-

ues for x(1), once inserted in (1.2), create new pieces of curve and it was conjectured® in

[DFG18] that these pieces are indeed actual additional portions of the arctic curve, separating

8 A particular instance of this conjecture was actually proved in [DFG18] in the case of a fully filled interval placed
at the end of the sequence of starting points.
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the liquid phase from new frozen domains directly induced by the boundary conditions (hence
the denomination ‘freezing boundaries’). Quite recently, this conjecture was proved in all gen-
erality by Debin and Ruelle in [DR18] for the ¢ = 1 version of the model. There it was shown
how to extend the tangent method to arbitrary freezing boundaries and get these new portions
of arctic curve by performing some clever shift below the x-axis of the starting points for those
paths originally originating from one of the extremities of the freezing boundary. This nice
proof clearly extends to the case of arbitrary q. Many examples of freezing boundaries are
discussed in [DFG18] when ¢ = 1 and we will now revisit some of them in the present design
incorporating a g-dependent weight.

6. The g — 0 and g — oc limits

6.1. Heuristic argument

It is interesting to look at the limit of the arctic curve when ¢ — 0 (i.e. ¢ — 0) or ¢ — oo (i.e.
q — 00). To address this question, a first heuristic approach consists in identifying, in each
case, the most probable limiting path configuration, i.e. that with the highest weight. Indeed,
let us recall the precise meaning of the left and right parts of the arctic curve for finite ¢ in
terms of the original NILP configurations. The right part of the arctic curve is the frontier
between a liquid phase (below the curve) and a frozen region which is not visited by any of the
paths’®. As for the left part, it separates the liquid phase from a frozen region in which the paths
all follow horizontal segments towards their respective endpoints'®. Finding the arctic curve
when g — 0 or ¢ — oo therefore boils down identifying the location where these separations
take place in the most probable limiting path configuration.

Let us start with the simplest ¢ — oo limit. Letting ¢ tend to infinity selects, in the original
NILP setting, a configuration such that each path has the largest possible area compatible with
the sequence of origins O; and endpoints E;, i.e. is pushed as much as possible towards the
upper-right corner (a,,n). Clearly, as displayed in figure 8, this configuration is such that the
path P; is made of a vertical segment of length i from O;, followed by a horizontal segment of
length a; to E;. The transition from vertical to horizontal takes place at position (a;,i) and the
curve joining these transition points for increasing i is the limit of the region in which path are
frozen horizontally, hence a natural candidate for the ¢ — oo limit of the left part of the arctic
curve. In rescaled coordinates, this curve is parametrized by («(u),u) for u € [0, 1] and goes
from (0, 0) to («(1), 1) with slope 1/¢ () (between 0 and 1) at x-coordinate c(u).

On the other hand, the vertical segment joining («(1), 1) to («(1),0) defines the limit of
the region visited by the paths and is therefore a natural candidate for the ¢ — oo limit of the
right part of the arctic curve.

To summarize, we expect that the left and right parts of the arctic curve tend for ¢ — oo
to the above described limiting curve and segment, see figure 8. From this analysis, we also
expect that the liquid phase, which remains liquid as long as ¢ remains finite, eventually
crystallizes right at ¢ = oo into a sequence of frozen vertical paths whose relative spacing is
directly measured by the function a(u).

Let us now come to the ¢ — 0 limit. This now selects a configuration such that each path
has the smallest possible area compatible with the non-intersection constraint, i.e. is pushed
as much as possible towards the lower-left corner. As displayed in figure 9, this configuration
is best described if we now use the second set of paths made of east- and northeast-oriented

? For the second set of paths, this region corresponds instead to paths frozen along horizontal segments.
10 For the second set of paths, this corresponds indeed to a region not visited by any of the paths.
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(a(1),1)

! ! \ \
L0 A/

0 a(l)

Figure 8. The NILP configuration with highest weight when g — oo for an arbitrary
strictly increasing sequence (a;)o<i<,» whose large n limit is characterized by the
function «(u). Each path is made of a single vertical north-oriented segment followed
by a single horizontal west-oriented segment. In rescaled coordinates, the change from
vertical to horizontal occurs at position (a(u),u) with u € [0,1]. The corresponding
curve connects the point (0, 0) to the point («(1), 1). The thick red curve and the thick
blue vertical segment are natural candidates for the ¢ — oo limit of the left and right
parts of the arctic curve respectively.

Figure 9. The NILP configuration with highest weight when ¢ — O for an arbitrary
strictly increasing sequence (a;)o<i<,» whose large n limit is characterized by the
function a(u). The path configuration (solid thin blue) is the pre-image by the bijection
of section 2.2 of a configuration of paths (dashed red) made of a single northeast-
oriented segment followed by a single horizontal east-oriented segment (we did not
represent here the rightmost parts of these horizontal segments as they carry no relevent
information). In rescaled coordinates, the location of the limit of the region not visited
by paths is given by («(1 — u) + u,u) with u € [0, 1]. This connects the point (1,1)
to the point («(1),0). The thick red segment and the thick blue curve are natural
candidates for the ¢ — 0 limit of the left and right parts of the arctic curve respectively.

steps, as these paths must now be pushed as much as possible towards the upper left cor-
ner to reduce the area on their left. Clearly, the path P; is then made a northeast-oriented
segment from O; = (ay—; + 1/2,0) to the point (a,_; + 1/2 + i, i), followed by a horizontal
segment towards E;. The curve joining the transition points (a,_; + 1/2 + i,i) for increasing
i delimits the region where the paths become horizontal, a criterion which, for the original
NILP configuration, corresponds instead to a region not visited by any of the paths. In other
words, this curve is a natural candidate for ¢ — 0 limit of the right part of the arctic curve. In
rescaled coordinates, it is parametrized by («(1 — u) + u,u) for u € [0, 1] and connects (1, 1)
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(for u = 1) to («(1),0) (for u = 0). In particular, it has a slope —1/(a/(1 — u) — 1) (between
0 and —o0) at x-coordinate (1 — u) + u.

On the other hand, the outermost path P, starts, in the most probable configuration, by a
northeast-oriented segment from (1,/2,0)to (n + 1/2,n) which defines the limit of the region
where the original paths are frozen into horizontal lines and this segment is a natural candidate
for the ¢ — 0 limit of the left part of the arctic curve. In rescaled coordinates, it is nothing but
the segment joining (0, 0) to (1, 1).

To summarize, we expect that the right and left parts of the arctic curve tend for ¢ — 0
to the above described curve and segment, see figure 9. We also expect that, below the arctic
curve, the liquid phase which remains liquid as long as g > 0, crystallizes right at ¢ = O into a
sequence of frozen paths whose shape is the same'! as that of the right part of the arctic curve
travelled downwards from the point (1, 1), but are shifted southwest so as to start instead from
any point (1 —v,1 —v) (v € [0, 1]) along the left part of the arctic curve, until they eventually
reach the x-axis at («(1 — v),0). In particular, the (negative) slope of the paths is the same
along 45° oriented lines (see figure 9). Let us now validate the above heuristic arguments by
a more precise study of the limiting shape of the arctic curve, as given by (1.2), when q — 00
orq— 0.

6.2. Analytic treatment for q — oo

For q > 1, the left part of the arctic curve is obtained by letting 7 vary in | — oo, 1[. Let us for
convenience decompose this interval into

] — oo, 1[=] — 0o, —q*WD]U] — ¢, —1[U[- 1, 1] (6.1)

and study the respective portions of arctic curve coming from each of the three subinter-
vals when q — co. We start with the middle subinterval, which is best studied by setting
t= fqo‘(T) with 7 €]0, 1[. From (1.1), we may then write

1
1
Log(x(t)) = *Log(CI)/O d”m

T 1 1 1
:i%@<ld%+wwa@+1d%+wwam>

~ —Log(q) 7

q—0o0

since, for u €]0, 7[, we have a(u) — a(7) < 0 hence the integrand in the first integral tends
to 1, while for u €]7, 1[, a(u) — a(7) > 0 and the integrand in the second integral tends to 0.
This yields

1
-7 ’ T
)~ g )~
o o YO e L o, L e o
(1) + x(1) a(r)—17 tx! (1) + x(1) o (r) =17

which implies at leading order

X(1) = afr), Y(r)=1.

"'n other words, the paths are parametrized by («(1 — u) + u — v,u — v) for u € [v, 1], with v € [0, 1].
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When 7 varies between 0 and 1, this gives precisely the curve announced in section 6.1 (with
the identification 7 = u). Here we assumed implicitly that o/ (7) > 1 but having o/ (7) = 1 at
isolated points would not cause any problem. On the other hand, having o’(7) = 1 along some
interval, which corresponds to a freezing boundary with a fully filled interval, would require
a more involved analysis. We will discuss such a case in section 7.2 below. A interesting out-
come of our analysis is that, when q — oo, the left part of the arctic curve seems to be entirely
produced by the middle subinterval in the decomposition (6.1) above. This is indeed the case
since, as we will now show, the contribution of the subinterval | — co, —q®(!|[ reduces to a
single point («(1), 1) at the right extremity of the left part of the arctic curve while that of the
subinterval | — 1, 1] reduces to the point (0,0) at its left extremity. For ¢ €] — oo, —q*(1], we
set 1 = —q*D*7 with 7 > 0 and get

1

1T qe—ati— o3 2@

1
Log(x(1)) = ~Log(a) | du
0
since for u € [0, 1], we have a(u) — a(1) < 0 hence the integrand tends to 1. We deduce
x(t) ~ q~'. By differentiation, we also have

a(u)—a(l)—7

1 1
= 9 77’/‘ a(u)—a(l) -7
=—-Lo du ~ —Lo du ~ =
g(q)/o (1 + gt a5 g(q) g | dua S (1)

since the last integral vanishes'? as 1/(a’(1) Log(q)). This now yields

70 Y (1) ~ g 1 g0 ~ B q
x(1) a/(1)° x(1) ’

hence (X(f),Y(t)) tends to (a(1),1) for all ¢ €] — oo, —q*(V)[. For the last subinterval
t €] —1,1], we set t = £q7 with 7 < 0 and obtain

T

1
1
+Log(q) q” / dug ™ q

TF o7 o5 ) as T a/(0)

1
Iwmm=¢mwlm

hence x(r) ~ 1 £ ;774" and

/ 1 a(u)—7
tx (t) _ —Log(q) / du:Fq—z
X([) 0 (1 ¥ qa(u)—T)

1
1
~ Log(a(r) + Logla) [ du——
0 (1 ¥ qa(u)—‘r)
so that
1x'(1) P 1
— L ¢ ~ L T d a(u) 27 )
iy oel) o Log(a)a /0 uq e 2000

Using Log(x(1)) = (x(t) = 1) + O ((x(r) — 1)*) with x() =1+ 0(q"), we now get
1xX (1) +x(t)(1 = x(1)) = 0 (q*7), tx'(1)+ (1 —x(t)) =0 (¢*") and X(t) =0 (q*),
which implies that ¢¥(*) and q"") tend to finite constants, hence (X(z), Y(7)) tends to (0,0) for
all + €] — 1, 1]. To summarize, the two extremal subintervals in (6.1) contribute only to the two
points at the extremities of the left part of the arctic curve.

12 This may be shown by a saddle point method upon setting u = 1 — 7/Log(q) so that the integral has asymptotic
value (1/Log(a)) [y~ dne="( = 1/(a/(1) Log(q)).
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Let us now discuss the limiting shape of the right part of the arctic curve, coming from
values of 7 in the range |q®("), +-00[. Writing ¢ = q*(V'w with w > 1, we may write

1
1
Log(x(1)) = —Log(q) /0 dul T qe =D

so the calculation seems at first very similar to that for the interval | — co, —q®(")[ and we
could be tempted to conclude that this again leads to a unique limiting point (c(1), ). This
reasoning however ignores the fact that the denominator in the integrand may remain small for
values of w close enough to 1. As we shall now see, there exists indeed an appropriate domain
of w close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if w — 1
does not scale properly with q) is modified and depends on w. More precisely, writing

L L Y A it
t = — _— s
og(x(1)) og(q) | 1+ /0 e qo—aD

the last integral may be evaluated by a saddle point method upon setting u = 1 — 1/Log(q).
The asymptotic value of this additional correction reads
1 /°° e (n I Log(l—1)

0

= = () Logla)

Log(q)

which is finite when w is chosen so that (I — 1/w) =q~?, i.e. w=1/(1 — q~*) for some
positive p. Otherwise stated, we have asymptotically

i
1 o’ (D)
—1 -
x(t) q—00 q (1 [q—a(l))

with a non trivial limiting value when we take r = q®(!) /(1 — q~*). In this case, we obtain
directly'? from (1.2):

O ~qeD GO o qmﬂX(l—ﬂ(l—ﬁ)*")

which leads to

R () B e

This parametric curve is nothing but the vertical segment from («(1), 1) to («(1),0), which
confirms our heuristic result for the ¢ — oo limit of the right part of the arctic curve. Note that
the above result requires /(1) > 1. For o/(1) = 1, the right part of the arctic curve reduces
instead to the single point (cr(1), 1). We will see such an example in section 7.4 below.

6.3. Analytic treatment for g — 0

For q < 1, the right part of the arctic curve is now obtained by letting 7 vary in | — co, ¢!
and we decompose this interval into

B 1t is indeed easily verified that £x' () ~ qa(l)_lﬂ(]_ﬁm), tx' (1) + (1 = x(1)) ~ qmax(o’_lﬂ(]_ﬁ))and
1% (6) + (0 (1 = x(1)) ~ g~ (1=75).

24



J. Phys. A: Math. Theor. 52 (2019) 115205 P Di Francesco and E Guitter

] - 00,q*W[ =] — 00, ~1]U] — 1, =gV [U[—q*"), g1 (6.2)

to better study the respective portions coming from each of the three subintervals when q — 0.
Again the non-trivial contribution is that of the middle subinterval, best expressed by setting
t = —q*) with 7 €]0, 1[. We have indeed

1
1
Log(x(t)) = *Log(CI)/O d“m

T 1 1 1
= —Log(q) (/0 dum*[ d”1+qa<u>a<f>>

~ —Log(q) (1-7)

q—0

since, for u €]0, 7[, we have a(u) — ae(7) < 0 hence the integrand in the first integral tends
to 0, while for u €]7, 1[, a(u) — a(7) > 0 and the integrand in the second integral tends to 1.
This yields

1
R I e
7O ~ X (1) g+ 'O ~ w'(1) = x(t) gl a/(r) — 1
—(x(0)? (1) —(x(n)? a(r)

which implies at leading order
X(r)=a(r)+1—m, Y(r)=1—7.

When 7 varies between 0 and 1, this gives precisely the curve announced in section 6.1
(with the identification 7 = 1 — u). Let us now discuss the contribution of the subintervals
] — oo, —1[and ] — g, q*M[. Fort €] — oo, —1[, we set 1 = —q" with 7 < 0 and get

1

-~ —L
T3 @@= oo og(q)

1
mmmzimmém

since for u € [0, 1], we have «(«) > 0 hence the integrand tends to 1. We deduce x(¢) ~ q~
By differentiation, we also have

1

1x'(1) /1 g - /1 1
= —LO dui ~ —LO T d),[ a<u) ~
x(1) g(a) o (1+ qa(u)—T)z q—0 gla)d 0 T O/(O)q

since the last integral vanishes'* as —1/(a/(0) Log(q)). This now yields

-7

2./
O X' (1) ] vy o 1
TGy T T T
hence (X(r),Y(r)) tends to (1,1) for all # €] — oo, —1]. For the other subinterval, i.e. for
te]— g, qa(l)[, we set 1 = £q**+7 with 7 > 0 and obtain

T

1 T : a(l)—a(u 1
~, FLog(a)a /oduq H=al) 3~

1 F qem—a)—7 4 a—0 /(1)

Iwmmzimwlm

14 This again is shown by a saddle point method upon setting u = —17/Log(q) so that the integral has asymptotic
value —(1/Log(a)) fy~ dne=' 7 = —1/(a’(0) Log(q)).
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1

hence x(1) ~ 1 F 5753

q” and

1 a(u)—a(l)—T
+4
:—Log(q)/ du 5
x(1) o (1 gew-a)-r)

I
1
~ Log(a(r) + Logla) | du
0 (1 F qa(u)fa(l)f'r)z
so that
tx'(1) o [ a)- 1
L ~ L T d (a(1)—a(u)) ~ ZT.
) oelx(n) ~ Log(a)a /O uq o 3

Using Log(x(1)) = (x(t) = 1) + O ((x(r) — 1)*) with x(r) =1+ 0(q"), we now get
tx' (1) +x(£) (1 — x(£)) = O (¢°7), tx'(t) + (1 — x(t)) = O (q*7) and 2 x'(t) = O (q*(V+27),
which implies that ¢*) ~ q*(!) while q"") tends to a finite constant, hence (X (1), Y(r)) tends
to («(1),0) forall 7 €] — 1, 1. We end up with the expected result that the two extremal sub-
intervals in (6.2) contribute only to the two extremities of the right part of the arctic curve.

Let us conclude our discussion with the limiting shape of the left part of the arctic curve,
corresponding to values of 7 in the range |1 4 oo[. Writing directly

1

1
L t)) =—L dy—m———
og(x(1) = ~Logl) | it

with 7 > 1, we again have to deal with values of ¢ close enough to 1 so that the denominator in
the integral remains small. As in the previous section, there exists an appropriate domain of ¢
close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if # — 1 does not
scale properly with q) is modified. Writing

1 a(u)
Log(a(r)) = ~Log(a) ( 1+ [ au T ).
0 r—q

the last integral may be evaluated by a saddle point method upon setting u = —n/Log(q) and
its asymptotic value reads

1 /md e ©n 1 Log(1—1)
Log(a) Jo '1—e 1 " a/(0) Logla)
which leads eventually to

1
1\ ¥©
—1 -
x(1) o q (1 t) .

Setting # = 1/(1 — g”) with p > 0, we obtain directly' from (1.2):

qx(l) -~ qmax(lfp(lfa%(m),O), qy(t) -~ qmax(lfp<lfa%(0)),0)

which leads to

5Tt is easily verified that t2x’(? ~ q’]*”(“r#m), tx'(t) + (1 = x(t)) ~ qfl*p(pr#ﬂ)) and
12 (0) + x(0)(1 — x(1)) ~ g (1= (+ ) 20

26



J. Phys. A: Math. Theor. 52 (2019) 115205 P Di Francesco and E Guitter

X(t):l—p(l—%), Y(t):l—p(l—ﬁ), 0<p<$.

This parametric curve is nothing but the segment joining (0, 0) to (1, 1), which confirms our
heuristic result for the ¢ — 0 limit of the left part of the arctic curve. Note that the above result
requires /(0) > 1. For o/ (0) = 1, the left part of the arctic curve reduces instead to the single
point (1, 1). We will see such an example in section 7.4 below.

7. Examples

A quite general situation, which displays most of the interesting phenomena for the arctic
curve, corresponds to the case when «(u) is piecewise linear. More precisely, we demand
that a(u) is made of k linear pieces, i.e. satisfies a(0) = 0, has slope p; on [0,7;], p2 on
[vism + 72, ccopionfy + -+ e,y + -+ + 7] for i up to k. Here the slopes p; of the
various pieces satisfy p; > 1,i = 1,--- ,k (to ensure o’ («) > 1 when defined), and the widths
~; of these pieces add up to Zf_l ~; = 1. In short, we take:

plu+z —pi)y,  foruey+-+yinm A+ +

fori=1,---,k.

Note that the case of frozen boundaries of section 5.2 may be realized in the present setting:
the case of a gap 9,, in «(u) for u = u,, = v; + - - - + y,—1 is obtained by sending simultane-
ously p,, — oo and ~,, — 0, keeping the product pm%, = J,, finite. As for the case of a fully
filled interval between u/, =, + -+ + V,—1 and u/, + 8/ = 1 + - - - + 7y, it is obtained by
simply taking p,, = 1 and ~,, = ¢/, Such cases will be discussed in sections 7.2 and 7.3 below.

Returning to the case of arb1trary pi’s, we introduce for convenience the notation

i i
0, = a Z,\/j :ij,\/.” i=1,--- .k
j=1 j=1

together with 6y := 0 by convention. We immediately obtain from (1.1) the expression

P H (rt—_qq, > 2

k L1 t>1  (g<1)
T (1= 1g%) 0 fore < O
) 1130( T") . TVi>a® (@>1)
B k 1 0<t<q’ (g<1)
—1 l‘_l 9"_1 Pi Pit1 f
i ,1;10( 4 ) " T lo<r<i (g>1)

with the convention that po = pr+1 = 00. The alternative expressions of the second line
emphasize that x(7) is well defined and real positive for the indicated domain of 7. Knowing
x(t), the two generic, left and right, portions of arctic curve are obtained from the general para-
metric expression (1.2) with ¢ €] — oo, 1[U]q%, +oo[ for ¢ > 1 and 7 €] — o0, q%[U]1, +-o0]
for q < 1since a(1) = 6y. Figure 10 gives an example of such arctic curves in some particular
case with k = 3 linear pieces, for two different values of ¢ (one larger and one smaller than 1).
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0.5 1 1.5 2 2.5

Figure 10. The left (red) and right (blue) portions of the arctic curve for a piecewise
linear ov(u) with k =3, v = v, =3 = 1/3, pi = p3 = 2 and p, = 4, here for q =5
and q = .2.

i

b1 i 0; Or

Figure 11. The configuration with highest weight when ¢ — 0 for a sequence (a;)o<i<n
whose large n limit is a piecewise linear function cv(u) as defined in the text. In rescaled
coordinates, the outermost path follows a piecewise linear curve from (1,1) to (6, 0)
made of a succession of segments of slope —1/(p; — 1). Each segment is the top side
of a 45° strip in which all the paths have the same slope as the segment. The thick red
segment and the thick blue curve are the q — O limit of the left and right parts of the
arctic curve respectively.

71 A look at the g — 0 and q — oo limits

Here again, it is interesting to have a look at the degenerate limit of the arctic curve when
q — 0 or ¢ — oo. Figure 11 displays the configuration selected for ¢ — 0, where each path
has the smallest possible area to its left. This configuration is clearly made of paths which
remain ‘parallel” with slope —1/(p; — 1) (i.e. are made of a sequence of blocks consisting in
pi — 1 west-oriented steps followed by a north-oriented step) within 45° strips whose base are,
after rescaling, the segments [0;_;,0;] for i = 1,--- , k. In particular, in rescaled coordinates,
the outermost path, travelled backwards, is horizontal from (0, 1) to (1, 1) and then follows
a piecewise linear curve from (1, 1) to (6, 0) made of a succession of segments of slope
—1l/(p; — 1) fori=1,---, k. From the discussion of section 6, this latter curve corresponds
to the ¢ — O limit of the right part of the arctic curve while the segment joining (0,0) to
(1, 1) constitutes its left part. Below the arctic curve, the liquid phase which remains liquid
as long as g > 0, crystallizes right at ¢ = 0 into a sequence of 45° macroscopic strips with a
prescribed frozen path orientation within each strip, as displayed in figure 11 .

The g — oo limit now selects a configuration displayed in figure 12, such that each path has
the largest possible area to its left. This configuration is made of a vertical segments of length i
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Figure 12. The configuration with highest weight when ¢ — oo for a sequence
(a;)o<i<n Whose large n limit is a piecewise linear function «(u) as defined in the text.
Each path is made of a single vertical north-oriented segment followed by a single
horizontal west-oriented segment. In rescaled coordinates, the location of the change
from vertical to horizontal follows a piecewise linear curve from (0,0) to (6, 1) made
of a succession of segments of slope 1/p;. Each segment is the top side of a vertical strip
in which all the paths are separated by the same spacing. The thick red curve and the
thick blue vertical segment are the q — oo limit of the left and right parts of the arctic
curve respectively.

from O;, followed by a horizontal segments of length a; to E;. In rescaled coordinates, the pas-
sage from vertical to horizontal follows a piecewise linear curve from (0, 0) to (6, 1) made of
a succession of segments of slope 1/p;. This path defines the ¢ — oo limit of the left part of the
arctic curve while the segment joining (6, 1) to (6, 0) now defines its right part. Here again,
the liquid phase, which remains liquid as long as g remains finite, is expected to crystallize
right at ¢ = oo into a sequence of macroscopic vertical strips filled with frozen vertical paths,
with a prescribed path spacing within each strip (see figure 12).

We may also obtain the limiting shape of the arctic curve from its analytic expression, as
given by (1.2) for the particular x(¢) of equation (7.1), taken in the limit ¢ — 0 or ¢ — co. We
will not present the details of this analysis since we already performed it in all generality in
section 6 but we will still describe its outcome for illustration.

For q — 0, the right part of the arctic curve is obtained by letting ¢ vary in | — oo, q%],
naturally decomposed into

k
] = 00, % [=] = 00, ~1] U (H[—qe'-‘, —q""]> U [—q",q%[. (7.2)

i=1
As we know, the two extremal subintervals | — oo, —1] and [—q%, q%[ contribute only to the
extremal points (1, 1) and (0, 0) of the right part of the arctic curve, whose core is entirely
created by the k intermediate subintervals [—q%-', —q%],i = 1,-- - , k. From the result of sec-
tion 6, we also know that each such subinterval [—q%-', —q%] is responsible for a portion of
arctic curve parametrized by («(7) + 1 — 7,1 — 7) for 7 such that in «(7) € [0;—;, 0], i.e.
TE [Z’;i Yj» > iy 7 This now corresponds to a linear portion of arctic curve which is a

j j
segment of slope —1/(p; — 1) joining the points M;_; and M; with coordinates

k

k
=Y (p=D Y v

j=i+1 j=i+1

M= 14> (pi— Dyl =D
j=1 j=1
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Figure 13. Top: a schematic picture of the ¢ — O limiting shape of the left (red) and
right (blue) parts of the arctic curve for a piecewise linear «(u). The liquid phase below
the curve eventually crystallizes at ¢ = 0 in a configuration as in figure 11. Bottom:
an example of approach of this limit by letting q take smaller and smaller values (here
q=10"2,10"3and 107 fork =3,y =y = 13 = 1/3, p1 = p3 = 2 and p, = 4. The
different colors of the right part correspond to the contribution of the various intervals
of the parameter ¢ in the decomposition (7.2).

The concatenation of these segments for i = 1,-- - , k produces the desired piecewise linear
curve from (1, 1) to (6, 0) displayed in figure 13. As for the left part of the arctic curve, it
tends as we know to the segment joining (0,0) to (1, 1).

The way the arctic curve approaches its limit is illustrated in figure 13 which displays in
some particular case the actual arctic curves for decreasing values of q. A particular empha-
sis was put on the contribution of the various subintervals so as to follow their deformation
toward the associated limiting portion of arctic curve.

For q — o0, the left part of the arctic curve is now obtained by letting 7 vary in | — oo, 1]
which we may decompose into

k
] — 00, 1[=] — 00, —q*] U (H[q"'s q"*']) Ul-11[. (1.3)
i=1
Apart from the external subintervals | — oo, —q%] and [~1, 1] responsible for the extremities
(6, 1) and (0, 0) of the left part of the arctic curve, the respective portions of arctic curve cre-
ated by the k intermediate subintervals [—q%, —q%-1],i =1,--- , k are now parametrized by
(a(r),7) for T € [Z',;} Yj» 2 iy - These are now segments of slope 1/p; joining the points

j j
N;_1 and N; with coordinates
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Figure 14. Top: a schematic picture of the ¢ — oo limiting shape of the left (red) and
right (blue) parts of the arctic curve for a piecewise linear a(u). The liquid phase below
the curve eventually crystallizes at ¢ = oo in a configuration as in figure 12. Bottom:
an example of approach of this limit by letting q take larger and larger values (here
q =20, 100 and 1000) for k =3, vy =y, =73 = 1/3, p; =p3 =2 and p, = 4. The
different colors of the left part correspond to the contribution of the various intervals of
the parameter 7 in the decomposition (7.3).

k k i i
N;i:= | O — Z P 1 — Z 0/ ZPW]"ZVJ
j=1 j=1

J=i+1 J=i+1

The concatenation of these segments for i = 1,--- , k produces the desired piecewise linear
curve from (0,0) to (0, 1) displayed in figure 14, while the segment joining the point (6, 1)
to the point (6, 0) forms the right part of the arctic curve. Here again, we illustrate in figure 14
how the arctic curve approaches its limit for increasing values of q. As we shall now discuss,
the above results still hold in the presence of frozen boundaries with p,,, = 1 or oo for some m,
with moreover interesting new phenomena.

72. Example of freezing boundary resulting from a fully filled interval

The case of a freezing boundary resulting from a fully filled interval is encountered within
the framework of a piecewise liner () in the particular case where p,, = 1 for some m in
[1,k]. Here we assume for simplicity that m # 1 and m # k. The case p; = 1 (respectively
pr = 1), referred to as ‘freezing the left (respectively the right) edge’ in [DFG18], is indeed
special and would deserve a more subtle treatment. For p,, = 1, the expression (7.1) is now
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well defined for ¢ €]q% 1, %[ whenever q > 1 (respectively ¢ €]q%", %~ [ whenever q < 1),
with expression

m—1 0 N\ Om k 6; L
o I GE)" () < I ()" e
x(r) = .t LT (7.4)
o ()" () < I (59T e
i=1 i=m+1

displaying its negative real value. This in turn creates for finite q a new portion of arctic curve
emerging above the segment [6,,_1, 0,,] (see for instance the bottom left part of figure 15 or 16)
below which the path configuration is frozen.

Looking at the ¢ — 0 limit, the discussion of the previous section still holds'® and now leads
for the right part of the arctic curve to a portion with slope —1/(p,, — 1) = —o0, i.e. a vertical
segment joining M,,_; to M,, (which now have the same X-coordinate 1 -+ Z;":BI (pj — D).
More interestingly, the new frozen region below the new portion of arctic curve is deformed
so as to fill entirely the 45° strip whose edge is the above vertical segment (dashed domain
in figure 15). To understand this property, we start by parametrizing ¢ €] + g%, +q%-1] as
t =q" with 7 €]6,,1, 6,y and plug this value in (7.4). This yields

m—1 0i—6i_ .
x(t) - _q—l-‘rzi:ll TIJFT—QM—I (1 +0 <qmm(‘r—9,,,,1,9,,,—7’)))
q—0

— _qZ?:ll Ni—1+7—0,_1 (1 +0 (qmin(T_e’"_l’e'"_T)>> — 0.

This also implies 7x/(1) ~ —q=imt W= 14701 (1 4 O (@M —0n-100=7))) 50 that
tx'(t) — x(t) ~ O (qzﬁ‘:lI %’*”7’9'"*‘+min(7’9”’*"9m*7)) which tends to infinity since the

exponent varies between Z:’;l v — land }_" | 7 — 1 which are both negative. We deduce

KO X0 s,
—(x(1))?
Y(n) tx/(t) —X([) -~ qlfz:.":_ll Yi—T+0m—1+min(7—0,_1,0,,—T)
—(x(1))? |
hence
m—1 m—1
XO)=1= %i+b0p1=1=-> (pi—1)y
i=1 i1
m—1
Y(i1)=1- nyi + 0y —7+min(r — 01,60, — 7)
i=1
m—1
=1-> ~+min(0,0,_1 + 0, — 27)
i=1
with min(0, 6,,—; + 0,, — 27) varying from 0 to 6,,_; — 0,, = —~,,. This curve is precisely

the vertical segment [M,,_1, M,,] on the right of the dashed domain in figure 15. The new
16 The actual calculation when p,, = 1 is slightly more subtle than for for p,, # 1 since, when estimating qy<’) via
(1.2), the dominant part 7x’(r) — x(¢) of its numerator cancels exactly at leading order and the calculation must be
pushed to the next order (see a similar discussion just below). The corresponding portion of arctic curve is
nevertheless not affected by this subtlety.
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Figure 15. Top: a schematic picture of the ¢ — O limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a fully
filled interval. The condition p,, = 1 gives rise to a vertical segment within the right part
of the curve. Bottom left: the arctic curve for finite q (here q = 1072) also has a new
(orange) portion below which the paths are frozen (represented here for k =3, m =2
with v = v, =73 = 1/3, p = p3 =2 and p, = 1). Bottom right: for decreasing q
(here q = 1072, 10 and 10, the frozen phase fills the 45° strip whose edge is the
above vertical segment (dashed region in the top figure).

portion of arctic curve therefore sticks to this segment when q — O but this should still
be reconciled with the fact that for ¢ exactly equal to g (respectively to q%—1), we have
(X(2),Y(2)) = (0,4,0) (respectively (0,,—1,0)), as easily verified from (7.4) and (1.2). As we
shall now see, the connection from these points to the segment [M,,_1, M,,] is done by the
two segments at 45° which delimit the dashed domain of figure 15. These new segments arise
from values of # in the immediate vicinity of q% (respectively of q%»~1) which are not treated
properly by the above estimate. For ¢ — q%», a more precise estimate of x(r) is

1 1
e O On NP1 0u\ 't
2(f) ~ —q IS (1 N\ s (A
q O 9 q 9
q—0 q m—1 r— q m q m

which allows to view the contribution of the immediate vicinity of g% by setting r = ¢ (14+49°)
for some positive p. After some straightforward manipulations, this yields

X(t) = 0,, + max (1 — Z'yi pZPmH_l,O) , Y(r) = max (1 ZVipzl)er_l,O>
i=1

Pm+1 Pm+1

i=1

which is the segment from (6,,,0) (for p = (1 — 37", %) pmt1/(2pm+1 — 1) or larger) to
My = (0 +1=3" 7 1=3" ) (for p=0). In other words, the immediate vicin-
ity t = q% produces the 45° lower segment bordering the frozen dashed region in figure 15.
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Figure 16. Top: a schematic picture of the q¢ — oo limiting shape of the left (red)
and right (blue) parts of the arctic curve in the presence of a freezing boundary due
to a fully filled interval. The condition p,, = 1 gives rise to a 45° segment within
the left part of the curve. Bottom left: the arctic curve for finite q (here q = 5) also
has a new (orange) portion below which the paths are frozen (represented here for
k=3,m=2with~y =7 =~ =1/3, py = p3 =2 and p, = 1). Bottom right: for
increasing q (here q =5, 50 and 10000), the frozen phase fills the vertical strip
whose upper edge is the above 45° segment (dashed region in the top figure).

A similar analysis for the immediate vicinity of q%~! would now produce the 45° upper seg-
ment bordering the frozen region and connecting (6,,—1,0) to M,,_;.

The fact that the new portion of arctic curve and the right part merge along the vertical seg-
ment [M,,_1, M,] when ¢ — O means that the liquid phase narrows and forms a strait around
the segment for very small q (see figure 15, bottom right) before it eventually crystallizes right
atq=0.

The discussion of the q — oo limit is quite similar and now leads for the left part of the
arctic curve to a portion with slope 1/p,, = 1, i.e. a 45° segment joining N,,_; to N,,. More
interestingly, the new frozen region below the new portion of arctic curve is now deformed
so as to fill entirely the vertical strip below [N,,—1, N,,| (dashed domain in figure 16). The new
portion of arctic curve and the left part therefore merge along the segment [N,,_;, N,,] when
q — oo. In other words, the liquid phase narrows around the segment for very large q (see
figure 16, bottom right) before it eventually crystallizes right at q = oo.

73. Example of freezing boundary resulting from a gap

The case of a freezing boundary resulting from a gap is also encountered within the frame-
work of a piecewise linear «(u), now in the case where p,, — 00, v, — 0 with d,, = Py
finite, for some m in [2,k — 1] (again we avoid the cases m # 1 and m # k which are more
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Figure 17. Top: a schematic picture of the ¢ — O limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a
gap. The condition p,, = 00 = d,, /7, (With ¢, finite) gives rise to a horizontal segment
within the right part of the curve. Middle: the arctic curve for finite q (here q = .3) also
has a new (orange) portion below which the paths are frozen (represented here for k = 3,
m=2withy; =~ =1/2,v — 0, p; =p3 =2 and p, — oo with pry, — & = 1).
Bottom: for decreasing q (here q = .3, .05 and .005), the frozen phase fills the 45° strip
whose edge is the above horizontal segment (dashed region in the top figure).

subtle). For p,, = 0o, the expression (7.1) is well defined also for # €]q’ !, q’ [ whenever
q > 1 (respectively ¢ €]q?", q%~'[ whenever q < 1), with expression

1
—qf%

m—1 L k . P
a1 (5)" > I (F55)7 e

0 0i—1_
_ =i \ma i=mp1 N
x(t) - m—1 o L k o L
—1 q i—t Pi t—q i Pi
11 (qe"*‘—t) x 11 (t—qe"*‘) q<1
i=1 i=m+1

displaying its positive real value. As before, this creates for finite g a new portion of arctic curve
emerging above the segment [0,,—1, 6,,] (see for instance the middle part of figure 17 or 18)
below which the path configuration is frozen.

When q — 0, our general discussion now leads for the right part of the arctic curve to a
portion with slope —1/(p,, — 1) =0, i.e. a horizontal segment joining M,,_; to M,, (which
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Figure 18. Top: a schematic picture of the q — oo limiting shape of the left (red)
and right (blue) parts of the arctic curve in the presence of a freezing boundary due
to a gap. The condition p,, = oo = 8,/ (With 4, finite) gives rise to a horizontal
segment within the left part of the curve. Middle: the arctic curve for finite q (here
q = 3) also has a new (orange) portion below which the paths are frozen (represented
here for k=3, m=2 with vy =3 =1/2, 2 = 0, p; = p3; =2 and p, — oo with
P22 — 92 = 1). Bottom: for increasing q (here q = 3, 30 and 300), the frozen phase
fills the vertical strip whose upper edge is the above horizontal segment (dashed region
in the top figure).

now have the same Y-coordinate 1 — Z]'.';l')g but X-coordinates which differ by &,,).

As for the new frozen region below the new portion of arctic curve, it is now deformed so
as to fill entirely the 45° strip whose edge is the above horizontal segment (dashed domain
in figure 17). In particular, the new portion of arctic curve and the right part merge along the
horizontal segment [M,, 1, M,,] when q — 0, and the liquid phase narrows around the segment
for very small q (see figure 17, bottom) before it eventually crystallizes right at q = 0.

The q — oo limit is similar: the left part of the arctic curve now has a portion with slope
1/p,, = 0, i.e. a horizontal segment joining N,,_; to N,,. The new frozen region below the new
portion of arctic curve is deformed so as to fill entirely the vertical strip below [N,,_, N,,]
(dashed domain in figure 18). In particular, the new portion of arctic curve and the left part
merge along the horizontal segment [N,,_;, N,,] when ¢ — 0o, meaning once again that the
liquid phase narrows around the segment for very large q (see figure 18, bottom) before it
eventually crystallizes right at q = oo.

36



J. Phys. A: Math. Theor. 52 (2019) 115205 P Di Francesco and E Guitter

v3=1-m

0 th=m 1 th=y1+0s  O3=1+0,

Figure 19. The phase diagram of NILP configurations for a piecewise linear function
a(u) withk =3, py = p3 = 1, pp — 00, 72 — 0 with py2 — &,. The paths are frozen
by construction outside the indicated hexagon with vertical and horizontal sides of
respective lengths ~; and d,. At q = 1, the frozen domain extends inside the hexagon
and is separated from a central liquid phase by an arctic curve whose shape is an ellipse
tangent to the six sides of the hexagon. The six regions in-between the hexagon and
the ellipse are either empty of all paths (regions €, and &,), filled with horizontal paths
(H; and H,) or filled with vertical paths (V; and V,).

74. g-deformation of the ellipse

Another interesting and quite studied geometry corresponds to paths connecting the opposite
sides of a hexagon, which is nothing but the path formulation of the classical rhombus tiling
problem of a hexagonal domain [CLP98]. This geometry is obtained in our setting by taking an
entirely freezing boundary with a sequence («;) <<, made of two fully filled intervals of width
A’ and A} = n — A} — 1 (so that the total number of paths is (A} + 1) + (A +1) =n+1)
separated by a gap of width A,. Using the original path formulation, it is easily seen that the
paths are in practice frozen outside a hexagon (of total height n) with pairwise parallel sides
oriented respectively vertically (with height A}), horizontally (with width A;) and at 45°. In
other words, the domain D where fluctuations may arise is reduced in practice from its original
rectangular shape to a smaller effective domain D’ with the above hexagonal geometry. The
non-frozen part of the NILP corresponds moreover to a set of A} + 1 paths whose origins
span all the vertices of the rightmost 45° side of the hexagon and whose endpoints span all the
vertices of the opposite (leftmost 45°) side.

This situation corresponds after scaling to a piecewise linear function «(u) as above with
k=3, p =p3 =1 py — ocoand v, — 0 with pyy, = &, finite!”. The resulting model there-
fore depends on two geometrical degrees of freedom -y, = 1 — ~3 and d,, which correspond
respectively to the length of the vertical and horizontal sides of the hexagon after rescaling
(see figure 19). At g =1 (i.e. g = 1), the frozen domain extends inside the hexagon and sur-
rounds a central liquid phase. The shape of the separating arctic curve is then an ellipse tan-
gent to the six sides of the hexagon (see for instance [Eyn09] for a matrix model derivation
or [DFG18] for a tangent method derivation). The domain lying in-between the hexagon and
the ellipse is split into six parts: two opposite parts £; and £, correspond to regions empty of
all paths, two opposite parts I{; and H{, correspond to regions filled with horizontal paths and
two opposite parts V; and V, correspond to regions filled with vertical paths (see figure 19).

17 Note that this is a situation with a slope 1 for both the first and the last linear piece. As already mentioned, this
case steps outside the generic treatment of sections 7.1-7.3.
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Figure 20. Deformation of the arctic curve of figure 19 (here for v; = 1/3 and
0, = 1) when g — 0. Starting from an ellipse at q = 1 (top left) the boundary of the
three domains &,, H, and V, are pushed towards the associated hexagon corners while
that of the three domains €, J{; and V; are pushed to a central point with coordinates
(1,1 — ) (top right with ¢ =.8, 107", 1073 and 1077) so that the liquid phase
shrinks and reduces to the three indicated segments (bottom left). This splitting of the
hexagon into three domains €;, H; and V; is consistent with the ¢ — 0 most probable
configuration (bottom right) where the paths are pushed as much as possible towards
the lower left corner. Note that the path configuration outside the hexagon (light blue)

is frozen by construction for any value of q. The colors of the arctic curve refer to the
domain of variation of the parameter 7, namely | — oo, q' %[ (blue), |q'*+%, 1] (orange)
and |1, +o0[ (red).

The deformation of the arctic ellipse with q was already addressed in [Eyn09, BGR10, MP17].
Let us now discuss how these regions evolve whenever q decreases to 0 or increases to co.
The function x(¢) describing the situation at hand reads:

o (l‘ _ q’Yl) ([_ q1+52)
X0 =TT g

and we may easily plot the corresponding arctic curve obtained via (1.2).

For decreasing q, the tangency points of the ellipse with the hexagon are found to merge
by pairs at three (pairwise non-consecutive) corners of the hexagon as indicated in figure 20,
so that the three domains &,, H, and V, get smaller and eventually disappear when q — 0.
On the contrary the three domains €, 3, and V, inflate so as to invade the liquid phase which
reduces when q — 0 to the union of three segments [(71,0), (1,1 — )], [(1, 1 — ), (1, 1)]
and [(1,1 — ), (1 + 02, 1 — v;)]. This splitting of the hexagon in three frozen domains is
fully consistent with the path configuration selected right at ¢ = 0 in which paths are pushed
as much as possible towards the lower left corner (see figure 20).

For increasing q, the tangency points of the ellipse with the hexagon merge by pairs at the
three complementary corners of the hexagon as indicated in figure 21, so that these are now
the three domains &, H; and V| which get smaller and eventually disappear when ¢ — 0.
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Figure 21. Deformation of the arctic curve of figure 19 (here for v; = 1/3 and 6, = 1)
when q — oo. Starting from an ellipse at ¢ = 1 (top left) the boundary of the three
domains &, H(; and V; are pushed towards the associated hexagon corners while that
of the three domains &,, H, and V, are pushed to a central point with coordinates
(v1 + d2,71) (top right with ¢ = 1.1, 10, 50 and 1000) so that the liquid phase shrinks
and reduces to the three indicated segments (bottom left). This splitting of the hexagon
into three domains &,, H, and V, is consistent with the g — oo most probable
configuration (bottom right) where the paths are pushed as much as possible towards

the upper right corner. The colors of the arctic curve refer to the domain of variation
of the parameter 7, namely |q'+%, +-co] (blue), ]1, q'+%[ (orange) and | — oo, 1[ (red).

On the contrary the three domains &,, H, and 'V, inflate, letting the liquid phase reduce when
q — oo to the union of three segments [(v1, 1), (71 + 02, 71)}: [(71 + 02,0), (71 + 02,71))] and
[(71 + d2.7), (1 + 62, 1)]. This is now fully consistent with the path configuration selected
right at ¢ = oo in which paths are pushed as much as possible towards the upper right corner
(see figure 21).

8. Conclusion and discussion

To conclude this paper, let us make a few comments both on the tangent method itself and on
its specific results in the present model.

First, we wish to stress the flexibility of the method, whose implementation for an arbitrary
q is not different from what it was at ¢ = 1. In particular, the various technical tricks, such
as the use of LGV matrices or that of the LU decomposition of [DFL18] work perfectly. As
a result, the various discrete formulas for the partition function or the one-point function are
natural g-analogs of their ¢ = 1 counterparts computed in [DFG18] and could have been pre-
dicted by some educated guess. Note also that, after scaling, the fact that the geodesic trajec-
tories (whose envelope gives the arctic curve) are not straight lines is actually not a problem,
since the tangency principle underlying the method concerns only the splitting point where the
perturbed outermost path changes its trajectory.
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In our solution, the way the arctic curve evolves upon varying ¢ is quite interesting, in
particular when g becomes either very small or very large. In a generic case without freez-
ing boundary, the arctic curve is made of only two portions, its right and left parts, which
are smoothly deformed until they reach their limiting curve of figure 8 or 9, whose shape
directly reflects the distribution «(u) of starting points. In particular, the liquid phase remains
of macroscopic size for any finite ¢ and occupies a fairly constant proportion of the allowed
domain D for the paths. In rescaled coordinates, the area of the liquid phase tends indeed to

fol a(u)du for g — 0 and to the complementary value (1) — fol a(u)du for g — oo. Both

values are typically of the order of half of the total area (1) of the domain D. The situation is
more interesting in the presence of freezing boundaries with some ‘global freezing” phenom-
enon: the frozen regions induced by freezing boundaries start to grow and invade the liquid
phase, both for small or for large ¢, therefore creating straits separating macroscopic bodies
of this liquid phase. The ‘global freezing’ becomes even more dramatic when the starting
point sequence consists of freezing boundaries only (i.e. is made of a succession of fully filled
intervals separated by gaps). This occurs for instance in the classical case of section 7.4 where
the liquid phase of originally (i.e. at ¢ = 1) elliptic shape gets so squeezed that it eventually
disappears at ¢ = 0 or infinity.

As a final question one may wonder if any generalization of the model (e.g. with position-
dependent inhomogenous weights) could still be solved using the techniques developed in the
present paper, and we keep this as a direction of future research.
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