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ABSTRACT

We study the problem of list-decodable (robust) Gaussian mean

estimation and the related problem of learning mixtures of separated

spherical Gaussians. In the former problem, we are given a set T

of points in Rn with the promise that an α-fraction of points in T ,

where 0 < α < 1/2, are drawn from an unknown mean identity

covariance Gaussian G, and no assumptions are made about the

remaining points. The goal is to output a small list of candidate

vectors with the guarantee that at least one of the candidates is

close to the mean of G . In the latter problem, we are given samples

from a k-mixture of spherical Gaussians on Rn and the goal is to

estimate the unknown model parameters up to small accuracy. We

develop a set of techniques that yield new efficient algorithms with

significantly improved guarantees for these problems. Specifically,

our main contributions are as follows:

List-Decodable Mean Estimation. Fix any d ∈ Z+ and 0 < α <

1/2.We design an algorithmwith sample complexityOd (poly(n
d/α ))

and runtime Od (poly(n/α )
d ) that outputs a list of O (1/α ) many

candidate vectors such that with high probability one of the candi-

dates is within ℓ2-distance Od (α
−1/(2d ) ) from the mean of G. The

only previous algorithm for this problem achieved error Õ (α−1/2)
under second moment conditions. For d = O (1/ε ), where ε > 0 is

a constant, our algorithm runs in polynomial time and achieves

error O (αε ). For d = Θ(log(1/α )), our algorithm runs in time

(n/α )O (log(1/α )) and achieves error O (log3/2 (1/α )), almost match-

ing the information-theoretically optimal bound of Θ(log1/2 (1/α ))

that we establish. We also give a Statistical Query (SQ) lower bound

suggesting that the complexity of our algorithm is qualitatively

close to best possible.

Learning Mixtures of Spherical Gaussians. We give a learning

algorithm for mixtures of spherical Gaussians, with unknown spher-

ical covariances, that succeeds under significantly weaker separa-

tion assumptions compared to prior work. For the prototypical case

of a uniform k-mixture of identity covariance Gaussians we obtain

the following: For any ε > 0, if the pairwise separation between

the means is at least Ω(kε +
√

log(1/δ )), our algorithm learns the

unknown parameters within accuracy δ with sample complexity
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and running time poly(n, 1/δ , (k/ε )1/ε ). Moreover, our algorithm is

robust to a small dimension-independent fraction of corrupted data.

The previously best known polynomial time algorithm required

separation at least k1/4polylog(k/δ ). Finally, our algorithm works

under separation of Õ (log3/2 (k ) +
√

log(1/δ )) with sample com-

plexity and running time poly(n, 1/δ ,k logk ). This bound is close to

the information-theoretically minimum separation of Ω(
√

logk ).

Ourmain technical contribution is a new technique, using degree-

d multivariate polynomials, to remove outliers fromhigh-dimensional

datasets where the majority of the points are corrupted.
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1 INTRODUCTION

1.1 Background

This paper is concerned with the problem of efficiently learning

high-dimensional spherical Gaussians in the presence of a large

fraction of corrupted data, and in the related problem of parameter

estimation for mixtures of high-dimensional spherical Gaussians

(henceforth, spherical GMMs). Before we state our main results, we

describe and motivate these two fundamental learning problems.

The first problem we study is the following:

Problem 1: List-Decodable Gaussian Mean Estimation.

Given a set T of points in Rn and a parameter α ∈ (0, 1/2]

with the promise that an α-fraction of the points in T are

drawn from G ∼ N (µ, I ) Ð an unknown mean, identity

covariance Gaussian Ð we want to output a łsmallž list of

candidate vectors {µ̂1, . . . , µ̂s } such that at least one of the

µ̂i ’s is łclosež to the mean µ of G, in Euclidean distance.

A few remarks are in order: We first note that we make no

assumptions on the remaining (1 − α )-fraction of the points in T .

These points can be arbitrary and may be chosen by an adversary

that is computationally unbounded and is allowed to inspect the
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set of good points. We will henceforth call such a set of points α-

corrupted. Ideally, wewould like to output a single hypothesis vector

µ̂ that is close to µ (with high probability). Unfortunately, this goal

is information-theoretically impossible when the fraction α of good

samples is less than 1/2. For example, if the input distribution is a

uniform mixture of 1/α many Gaussians whose means are pairwise

far from each other, there are Θ(1/α ) different valid answers and

the list must by definition contain approximations to each of them.

It turns out that the information-theoretically best possible size of

the candidates list is s = Θ(1/α ). Therefore, the feasible goal is to

design an efficient algorithm that minimizes the Euclidean distance

between the unknown µ and its closest µ̂i .

The second problem we consider is the familiar task of learning

the parameters of a spherical GMM. Let us denote by N (µ, Σ) the

Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n . A Gaussian

is called spherical if its covariance is a multiple of the identity, i.e.,

Σ = σ 2 · I , for σ ∈ R+. An n-dimensional k-mixture of spherical

Gaussians (spherical k-GMM) is a distribution on Rn with den-

sity function F (x ) =
∑k
i=1wiN (µi ,σ

2
i · I ), where wi ,σi ≥ 0, and

∑k
i=1wi = 1.

Problem 2: Parameter Estimation for Spherical GMMs.

Given k ∈ Z+, a specified accuracy δ > 0, and samples from

a spherical k-GMM F (x ) =
∑k
i=1wiN (µi ,σ

2
i · I ) on R

n , we

want to estimate the parameters {(wi , µi ,σi ), i ∈ [k]} up
to accuracy δ . More specifically, we want to return a list

{(ui ,νi , si ), i ∈ [k]} so that for some permutation π ∈ Sk , we
have that for all i ∈ [k]: |wi −uπ (i ) | ≤ δ , ∥µi − νπ (i ) ∥2/σi ≤
δ/wi , and |σi − sπ (i ) |/σi ≤ (δ/wi )/

√
n.

If F ′ =
∑k
i=1 uiN (νi , s

2
i · I ) is the hypothesis distribution, the

above definition implies that dTV (F , F
′) = O (kδ ). We will also be

interested in the robust version of Problem 2. This corresponds to

the setting when the input is an η-corrupted set of samples from a

k-mixture of spherical Gaussians, where η ≪ mini wi .

Before we proceed with a detailed background and motivation,

we point out the connection between these two problems. Intu-

itively, Problem 2 can be reduced to Problem 1, as follows: We

can think of the samples drawn from a spherical GMM as a set of

corrupted samples from a single Gaussian Ð where the Gaussian

in question can be any of the mixture components. The output of

the list decoding algorithm will produce a list of hypotheses with

the guarantee that every mean vector in the mixture is relatively

close to some hypothesis. If in addition the distances between the

means and their closest hypotheses are substantially smaller than

the distances between the means of different components, this will

allow us to reliably cluster our sample points based on which hy-

pothesis they are closest to. We can thus cluster points based on

which component they came from, and then we can learn each

component independently.

1.2 List-Decodable Robust Learning

The vast majority of efficient high-dimensional learning algorithms

with provable guarantees make strong assumptions about the input

data. In the context of unsupervised learning (which is the focus

of this paper), the standard assumption is that the input points are

independent samples drawn from a known family of generative

models (e.g., a mixture of Gaussians). However, this simplifying

assumption is rarely true in practice and it is important to design

estimators that are robust to deviations from their model assump-

tions.

The field of robust statistics [27, 31] traditionally studies the

setting where we can make no assumptions about a łsmallž constant

fraction η of the data. The term łsmallž here means that η < 1/2,

hence the input data forms a reasonably accurate representation

of the true model. From the information-theoretic standpoint, ro-

bust estimation in this łsmall error regimež is fairly well under-

stood. For example, in the presence of η-fraction of corrupted data,

where η < 1/2, the Tukey median [48] is a robust estimator of loca-

tion that approximates the mean of a high-dimensional Gaussian

within ℓ2-error O (η) Ð a bound which is known to be information-

theoretically best possible for any estimator. The catch is that com-

puting the Tukey median can take exponential time (in the dimen-

sion). This curse of dimensionality in the running time holds for

essentially all known estimators in robust statistics [8].

This phenomenon had raised the following question: Can we

reconcile computational efficiency and robustness in high dimensions?

Recent work in the TCS community made the first algorithmic

progress on this front: Two contemporaneous works [13, 37] gave

the first computationally efficient robust algorithms for learning

high-dimensional Gaussians (and many other high-dimensional

models) with error close to the information-theoretic optimum.

Specifically, for the problem of robustly learning an unknown

mean Gaussian N (µ, I ) from an η-corrupted set of samples, η <

1/2, we now know a polynomial-time algorithm that achieves the

information-theoretically optimal error of O (η) [15].

The aforementioned literature studies the setting where the frac-

tion of corrupted data is relatively small (smaller than 1/2), therefore

the real data is the majority of the input points. A related setting

of interest focuses on the regime when the fraction α of real data

is small Ð strictly smaller than 1/2. From a practical standpoint,

this łlarge error regimež is well-motivated by a number of pressing

machine learning applications (see, e.g., [11, 44, 45]). From a the-

oretical standpoint, understanding this regime is of fundamental

interest and merits investigation in its own right. A specific moti-

vation comes from a previously observed connection to learning

mixture models: Suppose we are given samples from the mixture

α ·N (µ, I ) + (1−α )E, i.e., α-fraction of the samples are drawn from

an unknown Gaussian, while the rest of the data comes from several

other populations for which we have limited (or no) information.

Can we approximate this łgoodž Gaussian component, independent

of the structure of the remaining components?

More broadly, we would like to understand what type of learn-

ing guarantees are possible when the fraction α of good data is

strictly less than 1/2. While outputting a single accurate hypoth-

esis is information-theoretically impossible, one may be able to

efficiently compute a small list of candidate hypotheses with the

guarantee that at least one of them is accurate. This is the notion

of list-decodable learning, a model introduced by [6]. Very recently,

[11] first studied the problem of robust high-dimensional estimation

in the list-decodable model. In the context of robust mean estima-

tion, [11] gave an efficient list-decodable learning algorithm with
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the following performance guarantee: Assuming the true distribu-

tion of the data has bounded covariance, their algorithm outputs

a list of O (1/α ) candidate vectors one of which is guaranteed to

achieve ℓ2-error Õ (α−1/2) from the true mean.

Perhaps surprisingly, several aspects of list-decodable robust

mean estimation are poorly understood. For example, is the Õ (α−1/2)
error bound of the [11] algorithm best possible? If so, can we obtain

significantly better error guarantees assuming additional structure

about the real data? Notably Ð and in contrast to the small error

regime Ð even basic information-theoretic aspects of the problem

are open. That is, ignoring statistical and computational efficiency

considerations, what is the minimum error achievable withO (1/α )

(or poly(1/α )) candidate hypotheses for a given family of distribu-

tions?

The main focus of this work is on the fundamental setting where

the good data comes from a Gaussian distribution. Specifically, we

ask the following question:

Question 1.1. What is the best possible error guarantee (information-

theoretically) achievable for list-decodable mean estimation, when the

true distribution is an unknown N (µ, I )? More importantly, what is

the best error guarantee that we can achieve with a computationally

efficient algorithm?

As our first main result, we essentially resolve Question 1.1.

1.3 Learning Mixtures of Separated Spherical

Gaussians

A mixture of Gaussians or Gaussian mixture model (GMM) is a

convex combination of Gaussian distributions, i.e., a distribution in

R
n of the form F =

∑k
i=1wiN (µi , Σi ), where the weightswi , mean

vectors µi , and covariance matrices Σi are unknown. GMMs are

one of the most ubiquitous and extensively studied latent variable

models in the literature, starting with the pioneering work of Karl

Pearson [40]. In particular, the problem of parameter learning of a

GMM from samples has received tremendous attention in statistics

and computer science. (See Section 1.5 for a summary of prior

work.)

In this paper, we focus on the natural and important case where

each of the components is spherical, i.e., each covariance matrix is

an unknown multiple of the identity. The majority of prior algo-

rithmic work on this problem studied the setting where there is a

minimum separation between the means of the components1. For

the simplicity of this discussion, let us consider the case that the

mixing weights are uniform (i.e., equal to 1/k , where k is the num-

ber of components) and each component has identity covariance.

(We emphasize that the positive results of this paper hold for the

general case of an arbitrary mixture of high-dimensional spherical

Gaussians, and apply even in the presence of a small dimension-

independent fraction of corrupted data.) The problem of learning

separated spherical GMMs was first studied by Dasgupta [12], fol-

lowed by a long line of works that obtained efficient algorithms

under weaker separation assumptions.

The currently best known algorithmic result in this context is the

learning algorithm by Vempala and Wang [49] from 2002. Vempala

1Without any separation assumptions, it is known that the sample complexity of the
problem becomes exponential in the number of components [28, 39].

and Wang gave a spectral algorithm with the following perfor-

mance guarantee [49]: their algorithm uses poly(n,k, 1/δ ) samples

and time, and learns a spherical k-GMM in n dimensions within

parameter distance δ , as long as the pairwise distance (separation)

between the component mean vectors is at least k1/4polylog(nk/δ ).

Obtaining a poly(n,k, 1/δ ) time algorithm for this problem that suc-

ceeds under weaker separation conditions has been an important

open problem since.

Interestingly enough, until very recently, even the information-

theoretic aspect of this problem was not understood. Specifically,

what is the minimum separation that allows the problem to be

solvable with poly(n,k, 1/δ ) samples? Recent work by Regev and

Vijayraghavan [41] characterized this aspect of the problem: Specif-

ically, [41] showed that the problem of learning spherical k-GMMs

(with equal weights and identity covariances) can be solved with

poly(n,k, 1/δ ) samples if and only if the means are pairwise sep-

arated by at least Θ(
√

logk ). Unfortunately, the approach of [41]

is non-constructive in high dimensions. Specifically, they gave a

sample-efficient learning algorithm whose running time is expo-

nential in the dimension. This motivates the following question:

Question 1.2. Is there a poly(n,k ) time algorithm for learning

spherical k-GMMs with separation o(k1/4), or better O (kε ), for any

fixed ε > 0? More ambitiously, is there an efficient algorithm that

succeeds under the information-theoretically optimal separation?

As our secondmain result, we make substantial progress towards

the resolution of Question 1.2.

1.4 Our Contributions

In this paper, we develop a set of techniques that yield new effi-

cient algorithms with significantly better guarantees for Problems 1

and 2. Our algorithms depend in an essential way on the analysis of

high degree multivariate polynomials. We obtain a detailed struc-

tural understanding of the behavior of high degree polynomials

under the standard multivariate Gaussian distribution, and lever-

age this understanding to design our learning algorithms. More

concretely, our main technical contribution is a new technique,

using degree-d multivariate polynomials, to remove outliers from

high-dimensional datasets where the majority of the points are

corrupted.

List-Decodable Mean Estimation. Our main result is an efficient

algorithm for list-decodable Gaussian mean estimation with a sig-

nificantly improved error guarantee:

Theorem 1.3 (List-Decodable Gaussian Mean Estimation).

Fix d ∈ Z+ and 0 < α < 1. There is an algorithm with the following

performance guarantee: Given d,α , and a set T ⊂ Rn of cardinality

|T | = O (d2d ) ·nO (d )/ poly(α ) with the promise that α -fraction of the

points in T are independent samples from an unknown G ∼ N (µ, I ),

µ ∈ Rn , the algorithm runs in time O (nd/α )O (d ) and with high

probability outputs a list of O (1/α ) vectors one of which is within

ℓ2-distance Õd (α
−1/(2d ) ) of the mean µ of G.

We note that the Õ (·) notation hides polylogarithmic factors in

its argument. See Theorem 3.1 for a more detailed formal statement.

Discussion and Comparison to Prior Work. As already mentioned

in Section 1.2, the only previously known algorithm for list-decodable
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mean estimation (for α < 1/2) is due to [11] and achieves error

Õ (α−1/2) under a bounded covariance assumption for the good

data. As we will show later in this section (Theorem 1.5), this error

bound is information-theoretically (essentially) best possible under

such a second moment condition. Hence, additional assumptions

about the good data are necessary to obtain a stronger bound. It

should also be noted that the algorithm [11] does not lead to a

better error bound, even for the case that the good distribution is

an identity covariance Gaussian2.

Our algorithm establishing Theorem 1.3 achieves substantially

better error guarantees under stronger assumptions about the good

data. The parameter d quantifies the tradeoff between the error

guarantee and the sample/computational complexity of our algo-

rithm. Even though it is not stated explicitly in Theorem 1.3, we

note that for d = 1 our algorithm straightforwardly extends to all

subgaussian distributions (with parameter ν = O (1)), and gives

error Õ (α−1/2). We also remark that our algorithm is spectral Ð in

contrast to [11] that relies on semidefinite programming Ð and it

may be practical for small constant values of d .

There are two important parameter regimes we would like to

highlight: First, for d = O (1/ε ), where ε > 0 is an arbitrarily

small constant, Theorem 1.3 yields a polynomial time algorithm

that achieves error of O (αε ). Second, for d = Θ(log(1/α )), Theo-

rem 1.3 yields an algorithm that runs in time (n/α )O (log(1/α )) and

achieves error of Õ (log3/2 (1/α )). This error bound comes close to

the information-theoretic optimum of Θ(
√

log(1/α )), established

in Theorem 1.5. In the full version of this paper, we show that an

adaptation of our algorithm works under the optimal separation of

O (
√

log(1/α )).

A natural question is whether there exists a poly(n/α ) time list-

decodable mean estimation algorithm with error polylog(1/α ), or

even Θ(
√

log(1/α )). In Theorem 1.6, we prove a Statistical Query

(SQ) lower bound suggesting that the existence of such an algorithm

is unlikely. More specifically, our SQ lower bound gives evidence

that the complexity of our algorithm is qualitatively best possible.

High-Level Overview of Technical Contributions. Let G ∼ N (µ, I )

be the unknown mean Gaussian from which the α-fraction of good

samples S are drawn, andT be the α-corrupted set of points given as

input. We design an algorithm that iteratively detects and removes

outliers from T , until we are left with a collection of s = O (1/α )

many subsetsT1, . . . ,Ts ofT one of which is substantially łcleanerž

than T . Specifically, the empirical mean of at least one of the Ti ’s

will be Õd (α
−1/(2d ) ) close to the unknown mean µ of G. Our al-

gorithm is łspectralž in the sense that it works by analyzing the

eigendecomposition of certain matrices constructed from degree-d

moments of the empirical distribution. Specifically, to achieve error

of Õd (α
−1/(2d ) ), the algorithm of Theorem 1.3 works with matrices

of dimension O (nd ) ×O (nd ).

At a very high-level, our approach bears a similarity to the łfilterž

method Ð a spectral technique to iteratively detect and remove

outliers from a dataset Ð introduced in [13], for efficient robust

estimation in the łsmall error regimež (corresponding to α ≫ 1/2).

Specifically, our algorithm tries to identify degree-d polynomials p :

2Intuitively, this holds because the [11] algorithm only uses the first two empirical
moments. It can be shown that more moments are necessary to improve on the

O (α−1/2 ) error bound (see the construction in the proof of Theorem 1.6).

R
n → R such that the behavior of p on the corrupted set of samples

T is significantly different from the expected behavior of p on the

good set of samples S . One way to achieve this goal [13, 17] is by

finding polynomials p with unexpectedly large empirical variance.

The hope is that if we find such a polynomial, we can then use it to

identify a set of points with a large fraction of corrupted samples

and remove it to clean up our data set. This idea was previously

used for robust estimation in the small error regime.

A major complication that occurs in the regime of α < 1/2 is

that since fewer than half of our samples are good, the values of

such a polynomial p might concentrate in several clusters. As a

consequence, we will not necessarily be able to identify which clus-

ter contains the good samples. In order to deal with this issue, we

need to develop new techniques for outlier removal that handle the

setting that the good data is a small fraction of our dataset. Roughly

speaking, we achieve this by performing a suitable clustering of

points based on the values of p, and returning multiple (potentially

overlapping) subsets of our original dataset T with the guarantee

that at least one of them will be a cleaner version of T . This new

paradigm for performing outlier removal in the large error regime

may prove useful in other contexts as well.

A crucial technical contribution of our approach is the use of

degreemore than one polynomials for outlier removal in this setting.

The intuitive reason for using polynomials of higher degree is this:

A small fraction of points that are far from the true mean in some

particular direction will have a more pronounced effect on higher

degree moments. Therefore, taking advantage of the information

contained in higher moments should allow us to discern smaller

errors in the distance from the true mean. The difficulty is that it

is not clear how to algorithmically exploit the structure of higher

degree moments in this setting.

The major obstacle is the following: Since we do not know the

mean µ ofG Ð this is exactly the quantity we are trying to approxi-

mate! Ð we are also not able to evaluate the variance Var[p (G )] of

p (G ). If p was a degree-1 polynomial, this would not be a problem,

as the variance Var[p (G )] does not depend on µ. But for degree at

least 2 polynomials, the dependence of Var[p (G )] on µ becomes

a fundamental difficulty. Thus, although we can potentially find

polynomials with unexpectedly large empirical variance, we will

have no way of knowing whether this is due to corrupted points

x ∈ T (on which p (x ) is abnormally far from its true mean), or

due to errors in our estimation of the mean of G causing us to

underestimate the variance Var[p (G )].

In order to circumvent this difficulty, we require a number of

new ideas, culminating in an algorithm that allows us to either

verify that the variance of p (G ) is close to what we are expecting,

or to find some other polynomial that allows us to remove outliers.

Learning Mixtures of Separated Spherical GMMs. We leverage the

connection between list-decodable learning and learning mixture

models to obtain an efficient algorithm for learning spherical GMMs

under much weaker separation assumptions. Specifically, by using

the algorithm of Theorem 1.3 combined with additional algorithmic

ideas, we obtain our second main result:

Theorem 1.4 (Learning Separated Spherical GMMs). There

is an algorithm with the following performance guarantee: Given

d ∈ Z+, α > 3δ ≥ 0, and sample access to a k-mixture of spherical
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Gaussians F =
∑k
i=1wiN (µi ,σ

2
i I ) on R

n , where n = Ω(log(1/α )),

withwi ≥ α for all i , and so that ∥µi − µ j ∥2/(σi + σj ) is at least

S
def
= C

(

α−1/(2d )
√
d (d + log(1/α )) log (2 + log(1/α ))2 +

√

log(k/δ )
)

,

for all i , j, for C > 0 a sufficiently large constant, the algorithm

draws poly(n, (dk/δ )d ) samples from F , runs in time poly(n, (dk/δ )d ),

and with high probability returns a list {(ui ,νi , si ), i ∈ [k]}, such that
the following conditions hold (up to a permutation): |ui −wi | = O (δ ),

∥µi − νi ∥2/σi = O (δ/wi ), and |si − σi |/σi = O (δ/wi )/
√
n.

The reader is also referred to Proposition 4.3 for a more detailed

statement that also allows a small, dimension-independent fraction

of adversarial noise in the input samples.

Discussion and High-Level Overview. To provide a cleaner in-

terpretation of Theorem 1.4, we focus on the prototypical case

of a uniform mixture of identity covariance Gaussians. For this

case, Theorem 1.4 reduces to the following statement (see Corol-

lary 4.10): For any ε > 0, if the pairwise separation between

the means is at least Ω(kε +
√

log(k/δ )), our algorithm learns

the parameters up to accuracy δ in time poly
(

n, 1/δ , (k/ε )1/ε
)

.

Prior to our work, the best known efficient algorithm [49] re-

quired separation Ω(k1/4 +
√

log(k/δ )). Also note that by setting

d = Θ(logk ), we obtain a learning algorithm with sample com-

plexity and running time poly(n, 1/δ ,k logk ) that works with sepa-

ration of Õ (log3/2 (k ) +
√

log(1/δ )). This separation bound comes

close to the information-theoretically minimum of Ω(
√

logk ) [41].

(We also note that improving the error bound in Theorem 1.3 to

O (
√

log(1/α )), for d = O (log(1/α )), directly improves our separa-

tion bound to O (
√

logk ).)

We now provide an intuitive explanation of our spherical GMM

learning algorithm. First, we note that we can reduce the dimension

of the problem from n down to some function of k . When the

covariance matrices of the components are nearly identical, this can

be done with a twist of standard techniques. For the case of arbitrary

covariances, we need to employ a few additional ingredients.

When each component has the same covariance matrix, the

learning algorithm is quite simple: We start by running our list-

decoding algorithm (Theorem 1.3) with appropriate parameters to

get a small list of hypothesis means. We then associate each sample

with the closest element of our list. At this point, we can cluster

the points based on which means they are associated to and use

this clustering to accurately learn the correct components.

The general case, when the covariances of the components are

arbitrary, is significantly more complex. In this case, we can recover

a list H of candidate means only after first guessing the radius of

the component that we are looking for. Without too much difficulty,

we can find a large list of guesses and thereby produce a list of

hypotheses of size poly(n/α ). However, clustering based on this

list now becomes somewhat more difficult, as we do not know the

radius at which to cluster. We address this issue by performing a

secondary test to determine whether or not the cluster that we have

found contains many points at approximately the correct distance

from each other.

Minimax Error Bounds and SQ Lower Bounds. As mentioned in

Section 1.2, even the following information-theoretic aspect of list-

decodable mean estimation is open: Ignoring sample complexity

and running time, how small a distance from the true mean can be

achievedwith poly(1/α )many hypotheses or number of hypotheses

that is only a function of α , i.e., independent of the dimension n?

Theorem 1.3 implies that we can achieve error polylog(1/α ) for

Gaussians. We show that the optimal error bound (upper and lower

bound) for the case N (µ, I ) and more generally for subgaussian

distributions is in fact Θ(
√

log(1/α )). Moreover, under bounded k-

th moment assumptions, for even k , the optimal error is Θk (α
−1/k ).

Theorem 1.5 (Minimax Error Bounds). Let 0 < α < 1/2. There

exists an (inefficient) algorithm that given a set ofα -corrupted samples

from a distribution D, where (a) D is subgaussian with bounded

variance in each direction, or (b) D has bounded first k moments, for

even k , outputs a list ofO (1/α ) vectors one of which is within distance

д(α ) from the mean µ of D, and д(α ) = O (
√

log(1/α )) in case (a)

and д(α ) = Ok (α
−1/k ) in case (b). Moreover, these error bounds are

optimal, up to constant factors. Specifically, the error bound of (a)

cannot be asymptotically improved even if D = N (µ, I ), as long as the

list size is poly(1/α ). The error bound of (b) cannot be asymptotically

improved as long as the list size is only a function of α .

For the detailed statements, the reader is referred to the full version.

We now turn to our computational lower bounds. Given The-

orem 1.5, the following natural question arises: For the case of

Gaussians, can we achieve the minimax bound in polynomial time?

We provide evidence that this may not be possible, by proving a

Statistical Query (SQ) lower bound for this problem. Recall that a

Statistical Query (SQ) algorithm [35] relies on an oracle that given

any bounded function on a single domain element provides an

estimate of the expectation of the function on a random sample

from the input distribution. This is a restricted but broad class of al-

gorithms, encompassing many algorithmic techniques in machine

learning. A recent line of work [21ś24] developed a framework

of proving unconditional lower bounds on the complexity of SQ

algorithms for search problems over distributions.

By leveraging this framework, using the techniques of our pre-

vious work [17], we show that any SQ algorithm for list-decodable

Gaussian mean estimation that guarantees error α−1/d , for some

d ≥ 2, requires either high accuracy queries or exponentially many

queries:

Theorem 1.6 (SQ Lower Bounds). Any SQ list-decodable mean

estimation algorithm for G ∼ N (µ, I ) that returns a list of sub-

exponential size so that some element in the list is within distance

O (α−1/d ) of the mean µ of G requires either queries of accuracy

2O ((1/α )2/d ) · n−Ω(d ) or 2n
Ω(1)

queries.

The reader is referred to the full version for the formal statement

and proof.

1.5 Related Work

Robust Estimation. The field of robust statistics [27, 31, 32, 42, 47]

studies the design of estimators that are stable to model misspeci-

fication. After several decades of investigation, the statistics com-

munity has discovered a number of estimators that are provably
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robust in the sense that they can tolerate a constant (less than

1/2) fraction of corruptions, independent of the dimension. While

the information-theoretic aspects of robust estimation have been

understood, the central algorithmic question Ð that of designing

robust and computationally efficient estimators in high-dimensions

Ð had remained open.

Recent work in computer science [13, 37] shed light to this ques-

tion by providing the first efficient robust learning algorithms for

a variety of high-dimensional distributions. Specifically, [13] gave

the first robust learning algorithms that can tolerate a constant frac-

tion of corruptions, independent of the dimension. Subsequently,

there has been a flurry of research activity on algorithmic robust

high-dimensional estimation. This includes robust estimation of

graphical models [16], handling a large fraction of corruptions in the

list-decodable model [11, 43], developing robust algorithms under

sparsity assumptions [5], obtaining optimal error guarantees [15],

establishing computational lower bounds for robust estimation [17],

establishing connections with robust supervised learning [18], and

designing practical algorithms for data analysis applications [14].

Learning GMMs. A long line of work initiated by Dasgupta [12],

see, e.g., [2, 4, 10, 34, 49], provides computationally efficient al-

gorithms for recovering the parameters of a GMM under various

separation assumptions between the mixture components. More

recently, efficient parameter learning algorithms were obtained [7,

28, 39] under minimal information-theoretic separation assump-

tions. Without separation conditions, the sample complexity of

parameter estimation is known to scale exponentially with the

number of components, even in one dimension [28, 39]. To circum-

vent this information-theoretic bottleneck of parameter learning, a

related line of work has studied parameter learning in a smoothed

setting [3, 9, 25, 26, 30]. The related problems of density estima-

tion and proper learning for GMMs have also been extensively

studied [1, 20, 28, 38, 39, 46]. In density estimation (resp. proper

learning), the goal is to output some hypothesis (resp. GMM) that

is close to the unknown mixture in total variation distance.

Most relevant to the current work is the classical work of Vem-

pala and Wang [49] and the very recent work by Regev and Vi-

jayraghavan [41]. Specifically, [49] gave an efficient algorithm that

learns the parameters of spherical GMMs under the weakest separa-

tion conditions known to date. On the other hand, [41] characterize

the separation conditions underwhich parameter learning for spher-

ical GMMs can be solvedwith poly(n,k, 1/δ ) samples.Whether such

a separation can be achieved with an efficient algorithm was left

open in [41]. Our work makes substantial progress in this direction.

1.6 Concurrent Works

Two concurrent and independent works [29, 36] used the sum-of-

squares hierarchy to obtain qualitatively similar algorithmic results

to ours for learning mixtures of spherical Gaussians.

1.7 Detailed Overview of Techniques

1.7.1 List-Decodable Mean Estimation:

Outlier Removal and Challenges of the Large Error Regime. We

start by reviewing the framework of [13] for robust mean estimation

in the small error regime, followed by an explanation of the main

difficulties that arise in the large error regime of the current paper.

In the small error regime, the łfilteringž algorithm of [13] for

robust Gaussian mean estimation works by iteratively detecting

and removing outliers (corrupted samples) until the empirical vari-

ance in every direction is not much larger than expected. If every

direction has small empirical variance, then the true mean and the

empirical mean are close to each other [13]. Otherwise, the [13]

algorithm projects the input points in a direction of maximum

variance and throws away those points whose projections lie un-

expectedly far from the empirical median in this direction. While

this iterative spectral technique for outlier removal is by now well-

understood for the small error regime (and has been applied to

various settings), there are two major obstacles that arise if one

wants to generalize it to the large error regime, i.e., where only a

small fraction α of samples are good.

The first difficulty is that even the one-dimensional version of

the problem in the large error regime is non-trivial. Specifically, con-

sider a direction v of large empirical variance. The [13] algorithm

exploits the fact that the empirical median is a robust estimator of

the mean in the one-dimensional setting. In contrast, in the large

error regime, it is not clear how to approximate the true mean of a

one-dimensional projection. This holds for the following reason:

The input distribution can simulate a mixture of 1/α many Gaus-

sians whose means are far from each other, and the algorithm will

have no way of knowing which is the real one. In order to get

around this obstacle, we construct more elaborate outlier-removal

algorithms, which we call multifilters. Roughly speaking, a mul-

tifilter can return several (potentially overlapping) subsets of the

original dataset T with the guarantee that at least one of these

subsets is substantially łcleanerž than T .

The second difficulty is somewhat harder to deal with. As already

mentioned, the filtering algorithm of [13] iteratively removes out-

liers by looking for directions in which the empirical distribution

has a substantially larger variance than it should. In the low error

regime, this approach does a good job of detecting are removing

the corrupted points that can move the empirical mean far from the

true mean. In the large error regime, the situation is substantially

different. In particular, it is entirely possible that the empirical dis-

tribution does not have abnormally large variance in any direction,

while still the empirical mean is Ω(
√
1/α )-far from the true mean.

That is, considering the variance of one-dimensional projections

of our dataset in various directions seems inadequate in order to

improve the O (
√
1/α ) error bound. This obstacle is inherent: the

variance of linear polynomials (projections) is not a sufficiently

accurate method of detecting a small fraction of good samples be-

ing substantially displaced from the mean of the bad samples. To

circumvent this obstacle, we will use higher degree polynomials,

which are much more sensitive to a small fraction of points being

far away from the others. In particular, our algorithms will search

for degree-d polynomials that have abnormally large expectation

or variance, and use such polynomials to construct our multifilters.

Overview of List-DecodableMean Estimation Algorithm. The basic

overview of our algorithm is as follows: We compute the sample

mean µT of the α-corrupted setT , and then search for (appropriate)

degree-d polynomials whose empirical expectation or variance is
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too large relative to what it should be, assuming that the good

distribution G is N (µT , I ) Ð an identity covariance Gaussian with

mean µT . We note that this task can be done efficiently with an

eigenvalue computation, by taking advantage of the appropriate

orthogonal polynomials. If there are no degree-d polynomials with

too large variance, we can show that the sample mean µT is within

distance Õd (α
−1/(2d ) ) from the true mean. On the other hand, if

we do find a degree-d polynomial with abnormally large variance,

we will be able to produce a multifilter and make progress.

We now sketch how to exploit the existence of a large variance

polynomial p to construct a multifilter. Intuitively, the existence of

such a polynomial p suggests that there are many points that are

far away from other points, and therefore separating these points

into (potentially overlapping) clusters should guarantee that almost

all good points are in the same cluster. Unfortunately, for this idea

to work, we need to know that the variance of p on the good set of

points S is not too large. For degree-1 polynomials p this condition

holds automatically. If S is a sufficiently large set of samples from

G ∼ N (µ, I ) and p is a normalized linear form, then Var[p (S )] ≈
Var[p (G )] = 1. But if p has degree at least 2, the variance Var[p (S )]

depends on the true mean µ, which unfortunately is unknown.

Fortunately, there is a way to circumvent this obstacle by either

producing a multifilter or verifying that the variance Var[p (G )] is

not too large.

We do this as follows: Firstly, we show that the variance Var[p (G )],

G ∼ N (µ, I ), can be expressed as an average of p2i (µ ) for some ex-

plicitly computable, normalized, homogeneous polynomials pi . We

then need to algorithmically verify that the polynomials pi (µ ) are

not too large. This is difficult to do directly, so instead we replace

each pi by the corresponding multilinear polynomial qi , and note

that pi (µ ) is the average value of qi at many independent copies

of G. If this is large, then it means that evaluating qi at a random

tuple of samples will often have larger than expected size.

This idea will allow us to produce a multifilter for the follow-

ing reason: Since each qi is multilinear, this essentially allows us

to write it as a composition of linear functions. More rigorously,

we use the following iterative process: We iteratively plug-in vari-

ables one at a time to qi . If at any step the size of the resulting

polynomial jumps substantially, then the fact that this size is not

well-concentrated as we try different samples will allow us to pro-

duce a multifilter.

1.7.2 Learning Spherical GMMs:

The Identity Covariance Case. Since a Gaussian mixture model

can simultaneously be thought of as a mixture of any one of its com-

ponents with some error distribution, applying our list-decoding

algorithm to samples from a GMM will return a list of hypotheses

so that every mean in the mixture is close to some hypothesis in the

list. We can then use this list to cluster our samples by component.

In particular, given samples from a Gaussian G = N (µ, I ) and

many possible means h1, . . . ,hm , we consider the process of associ-

ating a sample x fromG with the nearest hi . We note that x is closer

to hj than hi if and only if its projection onto the line between them

is. Now if hi is substantially closer to µ than hj is, then this requires

that this projection (which is Gaussian distributed) be far from

its mean, which happens with tiny probability. Thus, by a union

bound, as long as our list contains some hi that is close to µ, the

closest hypothesis to x with high probability is not much further. If

the separation between the means in our mixture is much larger

than the separation between the means and the closest hypotheses,

this implies that almost all samples are associated with one of the

hypotheses near its component mean, and this will allow us to

cluster samples by component. This idea of clustering points based

on which of a finite set they are close to is an important idea that

shows up in several related contexts in this paper.

The General Case. The above idea works more or less as stated for

mixtures of identity covariance Gaussians, but when dealing with

more general mixtures of spherical Gaussians several complications

arise. Firstly, in order to run out list-decoding algorithm, we need

to know (a good approximation to) the covariance matrix of each

component. The other difficulty is that, in order to cluster points,

we will take a set of all nearby hypotheses that have reasonable

numbers of samples associated with them. The issue is that we

no longer know what łnearbyž means, as it should depend on the

covariance matrix of the associated Gaussian.

To solve the first of these problems we use a trick that will be

reused several times. We note that two samples from the same

Gaussian N (µ,σ 2I ) have distance approximately Θ(σ
√
n), and that

even one sample from N (µ,σ 2I ) is unlikely to be much closer than

this to samples from different components. Therefore, by simply

looking at the distance to the closest other sample gives us a con-

stant factor approximation to the standard deviation of the corre-

sponding component. This allows us to write down a polynomial-

size list of viable hypothesis standard deviations. Running our

list decoding algorithm for each standard deviation, gives us a

polynomial-size list of hypothesis means.

To solve the second problem, we use the above idea to approxi-

mate the standard deviations associated to our sample points. When

clustering them, we look for collections of sample points with stan-

dard deviations approximately the same σ , whose closest hypothe-

ses are within some reasonable multiple of σ of each other. Since

we are able to approximate the size of the component that our

samples are coming from, we can guarantee that we aren’t acciden-

tally merging several smaller clusters together by using the wrong

radius.

Dimension Reduction. One slightwrinklewith the above sketched

learning algorithm is that since the number of candidate hypotheses

is polynomial in n, the separation between the components will be

required to be at least
√

log(n). This bound is suboptimal, when n is

very large. Another issue is that the overall runtime of the learning

algorithm would not be a fixed polynomial in n, but would scale as

nd . There is a way around both these issues, by reducing to a lower

dimensional problem.

In particular, standard techniques involve looking at the k largest

principle values that allow one to project onto a subspace of dimen-

sion k without losing too much. Unfortunately, these ideas require

that all of the Gaussians involved have roughly the same covariance.

Fortunately, if n is large, our ability to approximate the covariance

associated to a sample by looking at its distances to other samples

becomes more accurate. Using a slightly modification of this idea,

we can actually break our samples into subsets so that each subset
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is a mixture of Gaussians of approximately the save covariance. By

projecting each of these in turn, we can reduce the original problem

to a poly(k ) number of dimensions and eliminate this extra term.

1.7.3 Minimax Error Bounds: We now explain our approach

to pin down the information-theoretic optimal error for the list-

decodable mean estimation problem. Concretely, for the identity

covariance Gaussian case we show that there is an (inefficient) algo-

rithm that guarantees that some hypothesis is withinO (
√

log(1/α ))

of the true mean. The basic idea is that the true mean must have

the property that there is an α-fraction of samples that are well-

concentrated (in the sense of having good tail bounds in every

direction) about the point. The goal of our (inefficient) algorithm

will be to find a small number of balls of radius O (
√

log(1/α )) that

covers the set of all such points. We show that such a set exists

using the covering/packing duality. In particular, we note that if

there are a large number of such sets with means far apart, we get

a contradiction since the sets must be individually large but their

overlaps must be pairwise small (due to concentration bounds).

This approach immediately generalizes to provide a list-decodable

mean estimation algorithm for any distribution with known tail

bounds, providing an error O (t ), where only an α-fraction of the

points are more than t-far from the mean in any direction. This

generic statement has a number of implications for various families.

In particular, it gives a (tight) error upper bound of O (
√

log(1/α ))

for subgaussian distributions with bounded variance in each direc-

tion. Previously, no upper bound better than Õ (1/
√
α ) was known

for these families. For distributions whose first k central moments

are bounded from above (for even k), we obtain a tight error upper

bound of Ok (α
−1/k ).

Regarding lower bounds, [11] showed an Ω(
√

log(1/α )) error

lower bound for N (µ, Σ), where Σ is unknown and Σ ⪯ I . We

strengthen this result by showing that the Ω(
√

log(1/α )) lower

bound holds even forN (µ, I ). We also prove matching lower bounds

of Ωk (α
−1/k ) for distributions with bounded moments. Our proofs

proceed by exhibiting distributions X , so that X can be written as

X = αXi + (1− α )Ei for many different Xi satisfying the necessary

hypotheses. Then any list-decoding algorithm must return a list

of hypotheses close to the mean of every Xi . If there are many

such Xi ’s with means pairwise separated, then the list-decoding

algorithm must either return many hypotheses or have large error.

1.7.4 SQ Lower Bounds: Finally, we prove lower bounds for list-

decoding algorithms in the Statistical Query (SQ) model. Roughly

speaking, we show that any SQ algorithm must either spend nd

time or have accuracy higher than α−1/2d , suggesting that our list-

decoding algorithm is qualitatively tight in its tradeoff between

runtime and sample complexity.

We prove these bounds using the technology developed in [17].

This basically reduces to finding a 1-dimensional distribution whose

first many moments agree with the corresponding moments of a

standard Gaussian. In our case, this amounts to constructing a

one-dimensional distribution A = αN (α−1/d , 1) + (1 − α )E, so

that A’s first d moments agree with those of a standard Gaussian.

This can be done essentially because the αN (α−1/d , 1) part of the
distribution only contributes at most a constant to any of the first

d moments. This allows us to take E approximately Gaussian but

slightly tweaked near 0 in order to fix these first few moments.

We note however, that if we move the error component much

further from 0, its contribution to the dth moment becomes super-

constant and thus impossible to hide. This corresponds to the fact

that degree-d moments are sufficient (and necessary) in order to

detect errors of size α−1/d .

1.8 Organization

The structure of this extended abstract is as follows: In Section 2, we

provide the necessary definitions and technical facts. In Section 3,

we present a detailed overview of our list-decoding algorithm. Sec-

tion 4 gives our algorithm for GMMs. Due to space limitations, most

proofs are deferred to the full version [19].

2 DEFINITIONS AND PRELIMINARIES

2.1 Notation and Basic Definitions

Notation. For n ∈ Z+, we denote by [n] the set {1, 2, . . . ,n}. If v
is a vector, let ∥v ∥2 denote its Euclidean norm. IfM is a matrix, let

∥M ∥F denote its Frobenius norm.

Our algorithm and its analysis will make essential use of tensor

analysis. For a tensor A, we will denote by ∥A∥2 the ℓ2-norm of its

entries.

Let T ⊂ Rn be a finite multiset. We will use X ∈u T to denote

that X is drawn uniformly from T . For a function f : Rn → R, we
will denote by f (T ) the random variable f (X ), X ∈u T .

Our basic objects of study are the Gaussian distribution and finite

mixtures of spherical Gaussians:

Definition 2.1. The n-dimensional Gaussian N (µ, Σ) with mean

µ ∈ Rn and covariance Σ ∈ Rn×n is the distribution with density

function f (x ) = (2π )−n/2 det(Σ)−1/2 exp(−(1/2) (x − µ )T Σ−1 (x −
µ )). A Gaussian is called spherical if its covariance is a multiple of

the identity, i.e., Σ = σ 2 · I , for σ ∈ R+.
Definition 2.2. An n-dimensional k-mixture of spherical Gaus-

sians (spherical k-GMM) is a distribution on Rn with density function

F (x ) =
∑k
j=1w jN (µ j ,σ

2
j · I ), where w j ≥ 0, σj ≥ 0, for all j, and

∑k
j=1w j = 1.

Definition 2.3. The total variation distance between two dis-

tributions (with probability density functions) P ,Q : Rn → R+ is

defined to be dTV (P ,Q )
def
= (1/2) · ∥P −Q ∥1 = (1/2) ·

∫

x ∈Rn |P (x ) −
Q (x ) |dx .

2.2 Formal Problem Definitions

We record here the formal definitions of the problems that we study.

Our first problem is robust mean estimation in the list-decodable

learning model. We start by defining the list-decodable model:

Definition 2.4 (List Decodable Learning, [6]). We say that

a learning problem is (m, ε )-list decodably solvable if there exists

an efficient algorithm that can output a set ofm hypotheses with the

guarantee that at least one is accurate to within error ε with high

probability.

Our notion of robust estimation relies on the following model of

corruptions:
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Definition 2.5 (Corrupted Set of Samples). Given 0 < α ≤ 1

and a distribution family D, an α-corrupted set of samples T of

sizem is generated as follows: First, a set S of α ·m many samples

are drawn independently from some unknown D ∈ D. Then an

omniscient adversary, that is allowed to inspect the set S , adds an

arbitrary set of (1−α ) ·m many points to the set S to obtain the setT .

We are now ready to define the problem of list-decodable robust

mean estimation:

Definition 2.6 (List-Decodable Robust Mean Estimation).

Fix a family of distributions D on Rn . Given a parameter 0 < α ≤ 1

and an α-corrupted set of samples T from an unknown distribution

D ∈ D , with unknown mean µ ∈ Rn , we want to output a list

of s = poly(1/α ) candidate mean vectors µ̂1, . . . , µ̂s such that with

high probability it holds minsj=1 ∥µ̂ j − µ∥2 = д(α ), for some function

д : R→ R. We say that д(α ) is the error guarantee achieved by the

algorithm.

Our main algorithmic result is for the important special case

thatD is the family of unknown mean known covariance Gaussian

distributions. We also establish minimax bounds that apply for

more general distribution families.

Our second problem is that of learning mixtures of separated

spherical Gaussians:

Definition 2.7 (Parameter Estimation for Spherical GMMs).

Given a positive integer k and samples from a spherical k-GMM

F (x ) =
∑k
i=1wiN (µi ,σ

2
i · I ), we want to estimate the parameters

{(wi , µi ,σi ), i ∈ [k]} up to a required accuracy δ . More specifically,

we would like to return a list {(ui ,νi , si ), i ∈ [k]} so that with high

probability the following holds: For some permutation π ∈ Sk we

have that for all i ∈ [k]: |wi − uπ (i ) | ≤ δ , ∥µi − νπ (i ) ∥2/σi ≤ δ/wi ,

and |σi − sπ (i ) |/σi ≤ (δ/wi )/
√
n.

The above approximation of the parameters implies that

dTV (

k
∑

i=1

wiN (µi ,σ
2
i I ),

k
∑

i=1

uiN (νi , s
2
i I )) = O (kδ ) .

The sample complexity (hence, also the computational complexity)

of parameter estimation depends on the smallest weight mini wi

and the minimum separation between the components.

2.3 Basics of Hermite Analysis and

Concentration

We briefly review the basics of Hermite analysis over Rn under

the standard n-dimensional Gaussian distribution N (0, I ). Consider

L2 (Rn ,N (0, I )), the vector space of all functions f : Rn → R such

that Ex∼N (0, I )[f (x )
2] < ∞. This is an inner product space under

the inner product

⟨f ,д⟩ = EX∼N (0, I )[f (X )д(X )] .

This inner product space has a complete orthogonal basis given

by the Hermite polynomials. For univariate degree-i Hermite poly-

nomials, i ∈ N, we will use the probabilist’s Hermite polynomials,

denoted by Hei (x ), x ∈ R, which are scaled to be monic, i.e., the

lead term of Hei (x ) is x
i . For a ∈ Nn , the n-variate Hermite polyno-

mial Hea (x ), x = (x1, . . . ,xn ) ∈ Rn , is of the form
∏n

i=1 Heai (xi ),

and has degree ∥a∥1 =
∑

ai . These polynomials form a basis for

the vector space of all polynomials which is orthogonal under

this inner product. For a polynomial p : Rn → R, its L2-norm is

∥p∥2
def
=

√

⟨p,p⟩ = EX∼N (0, I )[p (X )2]1/2.

We will need the following standard concentration bound for

degree-d polynomials over independent Gaussians (see, e.g., [33]):

Fact 2.8 (łdegree-d Chernoff boundž). Let G ∼ N (µ, I ), µ ∈
R
n . Let p : Rn → R be a real degree-d polynomial. For any t > 0, we

have that Pr
[��p (G ) − E[p (G )]�� ≥ t ·

√

Var[p (G )]
]
≤ exp(−Ω(t2/d )).

3 LIST-DECODABLE ROBUST MEAN

ESTIMATION ALGORITHM

In this section, we provide a detailed outline of our main algorithmic

result on list-decodable mean estimation:

Theorem 3.1 (List-Decodable Mean Estimation). There exists

an algorithm List-Decode-Gaussian that, given 0 < α < 1/2, d ∈
Z+, a failure probability τ > 0, and a setT ofO (d!2 ·n4d ·log(1/τ )/α7)
points in Rn , of which at least a 2α -fraction are independent samples

from a Gaussian G ∼ N (µ, I ), runs in time (nd log(1/τ )/α )O (d ) and

returns a list of O (1/α ) points such that, with probability at least

1 − τ , the list contains an x ∈ Rn with

∥x − µ∥2 = O
(

α−1/(2d )
√
d (d + log(1/α )) log(2 + log(1/α ))2

)

.

Detailed Structure of Algorithm. The key idea procedure behind

our algorithm is a subroutine that given a set of samples either

cleans it up producing one or two subsets at least one of which

has substantially fewer errors than the original, or certifies that the

mean of G must be close to the empirical mean. Using this subrou-

tine, our final algorithm can be obtained by repeatedly applying

the subroutine recursively to the returned sets until they produce

vectors.

Before we can get into the detailed overview of this proof, it

is necessary to lay out some technical groundwork. First, we will

want to have a deterministic condition under which our algorithm

will succeed. To that end, we introduce two important definitions.

We say that a set S is representative of G if it behaves like a set of

independent samples ofG , in particular in the sense that it is a PRG

against low-degree polynomial threshold functions forG. We also

say that a larger set T is good if (roughly speaking) an α-fraction

of the elements of T are a representative set for G. For technical

reasons, will will also want the points of T to be not too far apart

from each other.

We show that given a large set of points that contain an α-

fraction of good points from, one can algorithmically find O (1/α )

many subsets so that with high probability at least one of them is

good (and thus can be fed into the rest of our algorithm). This would

be immediate if it were it not for the requirement that the points in

a good set be not too far apart. As it stands, this will require that

we perform some very basic clustering algorithms.

The actual design of our multifilter involves working with sev-

eral types of łpurež degree-d polynomials and their appropriate

tensors. In particular, we need to pay attention to harmonic polyno-

mials (which behave well with respect to L2-norms), homogeneous

polynomials, and multilinear polynomials.

The multifilter at its base level requires a routine that given

a polynomial p, where p (T ) behaves very differently from p (G ),
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allows us to use the values of p (x ) to separate the points coming

fromG from the errors. The basic idea of the technique is to cluster

the points p (x ), for x ∈ T , and throw away points that are too far

from any cluster large enough to correspond to the bulk of the

values of p (G ) (which must be well-concentrated), or to divide T

into two subsets with enough overlap to guarantee that any such

cluster could be entirely contained on one side or the other.

Given this basic multifilter, the high-level picture for our main

subroutine is as follows: Using spectral methods we can find if there

are any degree-d polynomials p where E[p (T )2] is substantially

larger than it should be if T consisted of samples from N (µT , I ). If

there are no such polynomials, it is not hard to see that ∥µ − µT ∥2
is small giving us our desired approximation. Otherwise, we would

like to apply our basic multifilter algorithm to get a refined version

of T .

Unfortunately, the application of the multifilter in the application

above has a slight catch to it. Our basic multifilter will only apply

to p if we can verify that Var[p (G )] is not too large. This would be

easy to verify if we knew the mean of G, but unfortunately, we do

not and errors in our approximation may lead to Var[p (G )] being

much larger than anticipated, and in fact, potentially too large to

apply our filter productively. In order to correct this, we will need

new techniques to either prove that Var[p (G )] is small or to find a

filter in the process. Using analytic techniques, we show that the

Var[p (G )] is a weighted average of squares of qi (µ − µT ) for some

normalized, homogeneous polynomials qi . Thus, it suffices to verify

that each qi (µ − µT ) is small.

To deal with this issue, it is actually much easier to work with

multilinear polynomials, and so instead we deal with multilinear

polynomials ri so that ri (x , . . . , ,x ) = qi (x ). We thus need to verify

that ri (µ − µT , µ − µT , . . . , µ − µT ) is small.

In order to handle multilinear polynomials, we treat them as

a sequence of linear polynomials. We note that if r (µ, µ, . . . , µ ) is

abnormally large, then so is E[r (G,G, . . . ,G )]. This means that if

we evaluate r at d random elements of T , we are relatively likely

to get an abnormally large value, our goal is to find some linear

polynomial L for which the distribution of L(T ) has enough dis-

crepancies that we can filter T based on L. To do this, consider

starting with r (x1,x2, . . . ,xd ) where xi are separate n-coordinate

variables, and replacing the xi one at a time with random ele-

ments of T . Since there is a decent probability that r (t1, . . . , td )

is large, it is reasonably likely that at some phase of this process,

setting one of the variables causes the L2-norm of r to jump by

some substantial amount. In particular, there must be some set-

tings of t1, . . . , ta−1 so that for a random element t of T , we have

that r (t1, . . . , ta−1, t ,xa+1, . . . ,xd ) will have substantially larger

L2-norm than r (t1, . . . , ta−1,xa ,xa+1, . . . ,xd ) with non-negligible

probability. We note that this would only rarely happen if t were

distributed as N (0, I ), and this will allow us to filter.

To make this algorithm work, we note that

|r (t1, . . . , ta−1,X ,xa+1, . . . ,xd ) |22,xa+1, ...,xd
is a degree-2 polynomial with bounded trace-norm. Therefore, we

need an algorithm so that if A is such a polynomial where E[A(T −
µT )] is large, we can produce a multifilter. This is done by writing

A as an average of squares of linear polynomials. We thus note

that there must be some linear polynomial L, where E[L(T − µT )2]

is abnormally large. In particular, this implies that L(T ) and L(G )

have substantially different distributions, which should allow us

to apply our basic multifilter. Also since L is degree-1, we have

a priori bounds on Var[L(G )], which avoids the problem that has

been plaguing us for much of this argument.

4 LEARNING SPHERICAL GAUSSIAN

MIXTURE MODELS

In Section 4.1, we present a simpler learning algorithm that works

when the components have the same covariancematrix. The general

case of unknown (potentially different) covariances is more complex

and is handled in Section 4.2. Section 4.3 contains our dimension-

reduction procedures. In Section 4.4, we put everything together to

obtain our final learning guarantees, including Theorem 1.4.

4.1 Learning Spherical GMMs: The Identity

Covariance Case

We start by handling the important special case of this problem

where each Gaussian component has identity covariance matrix.

Note that our learning algorithm is robust to a small constant

fraction of corrupted samples:

Proposition 4.1. There is an algorithm that given a positive

integer d , constants 1/2 > α > 4ε ≥ 0, 0 < τ < 1, and sample

access to a probability distribution X = (1 − ε )M + εY , where M =
∑

wiN (µi , I ) is a mixture of identity covariance Gaussians withwi ≥
α for all i , and so that ∥µi − µ j ∥2 is at least

S
def
= C (α−1/(2d )

√
d (d + log(1/α )) (log(2+ log(1/α )))2+

√

log(1/ε ))

for all i , j, takes poly((nd )d log(1/τ )/(εα )) samples from X , runs

in time poly((nd log(1/τ )/α )O (d ) , 1/ε ), and, with probability at least

1 − τ , returns a list of pairs (ui ,νi ), so that up to some permutation

|ui −wi | = O (ε ) and ∥µi − νi ∥2 = Õ (ε/wi ).

Proof. The algorithm itself is very simple. We run our list-

decoding algorithm to get a list of hypothesis means. We then

associate each sample with the closest element of our list. We can

then cluster points based on which means they are associated to

and use this to learn the correct components. The algorithm is as

follows:



List-Decodable Robust Mean Estimation and Learning Mixtures of ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Algorithm LearnIdentityCovarianceGMM

Input: Parameters k,d ∈ Z+, τ , ε > 0 and sample access to X .

(1) Let T be a set of sufficiently many

poly((nd )d log(1/τ )/α ) samples from X .

(2) Run Algorithm List-Decode-Gaussian using T to ob-

tain a list H = (h1,h2, . . . ,hm ) withm = O (1/α ).

(3) Let T ′ be a set of sufficiently many poly(nk/ε ) samples

from X .

(4) For each sample from T ′ associate it to the closest ele-

ment of H in ℓ2-distance.

(5) LetH ′ be the set ofh ∈ H so that at least a 2α/3-fraction

of the elements of T ′ are associated to an element of H

at most S/10 away from h.

(6) Define the relation on H ′ that h ∼ h′ if and only if

∥h − h′∥2 ≤ S/3. If this does not define an equivalence

relation on H ′ return łFAILž.

(7) For each equivalence class C of H ′, let TC be the set of

points in T ′ that are associated to elements of C ⊂ H .

(8) Let uC = |TC |/|T ′ | for each C .
(9) For each C , run Filter-Gaussian-Unknown-Mean

from [13] on TC , and let νC be the approximation of

the mean obtained.

(10) Return the list of (uC ,νC ).

Note that for each i , X is simultaneously a mixture of N (µi , I )

with weight α and some other distribution with weight (1 − α ).

Therefore, for each i with probability at least 1 − τ/(10k ), there is
some hj ∈ H with

∥hi−µi ∥2 = O (α−1/(2d )
√
d (d+log(1/α )) (log(2+log(1/α )))2) ≤ S/100 ,

forC is sufficiently large. By a union bound, with probability at least

1 − τ/10, this occurs for every i . We assume this holds throughout

the remainder of our analysis.

Let Si be the set of elements of T ′ drawn from the component

N (µi , I ).

Lemma 4.2. With probability 1 − exp(−Ω(S2)) over the samples

from T ′, all but an exp(−Ω(S2))-fraction of the elements of Si are

associated with elements h ∈ H with ∥h − µi ∥2 ≤ S/20.

Proof. The basic idea of the proof is the following: For any

given h ∈ H that is far from µi , there will be some h′ ∈ H that is

much closer. A given sample point x will only be closer to h than

h′ if its projection to the line between them is more than half way

there. However, this projection is distributed as a Gaussian, and

therefore the probability that it is much larger than its mean is

small.

It suffices to show that for each h ∈ H with ∥h − µi ∥2 > S/20 the

following holds: less than a exp(−Ω(S2))-fraction of the elements

of Si are associated with h.

Firstly, assuming that the first step was successful, we know that

there is an h′ ∈ H with ∥h′ − µi ∥2 < S/100.

Let v be the unit vector in the direction of h −h′. We note that x

is closer to h than h′ if and only ifv ·x ≥ v · (h+h′)/2. However, we
note thatv · µi ≤ v ·h′+S/100, whereas,v ·h = v ·h′+ ∥h−h′∥2 ≥
v · h′ + S/20. The probability that v · X ≥ E[v · X ] + S/50 for X

drawn from N (µi , I ) is exp(−Ω(S2)). Thus, the probability that a

sample drawn from N (µi , I ) is closer to h than h′ is exp(−Ω(S2)).

Thus, by Markov’s inequality, the probability that more than

a exp(−Ω(S2))-fraction of the elements of Si are associated to h

(with suitably small constant in the Ω(·)), is exp(−Ω(S2)). Taking

a union bound over h, does not change this asymptotic. □

Taking a union bound over i , we can assume that, with probabil-

ity at least 1−τ/10, we have that all but an exp(−Ω(S2)) fraction of

the points of Si are associatedwith somehj where ∥hj−µi ∥2 ≤ S/20.

In particular, this implies that every element of H within distance

S/20 of some µi is inH
′. Indeed, this holds for the following reason:

With high probability, |Si | ≥ (3α/4) · |T ′ | and at least 8/9 fraction

of elements in Si are associated with hj ’s that are within distance

S/20 of µi . By the triangle inequality these hj ’s are within distance

S/3 of h. Conversely, any element of H not within distance S/20

of some µi has associated with it at most an ε/10-fraction of the

elements of the union of the Si ’s. This implies that with high proba-

bility less than 1.2ε < 2α/3 fraction of points in T are associated to

any point of H not within distance S/20 of some µi . Therefore, all

points of H ′ are within distance 3S/20 of some µi , which implies

that the relation on H ′ is an equivalence relation. Specifically, each

equivalence class consists of the points in H ′ within distance 3S/20

of some particular mean µi . Note in particular that this implies that

there is exactly one equivalence class C for each µi .

Furthermore, Lemma 4.2 implies that all but an ε/(10k )-fraction

of the samples from N (µi , I ) are associated with elements of H in

the class associated with µi . Furthermore, at most an ε-fraction of

the other samples from T are associated to elements of this class.

From this it immediately follows that |ui −wi | ≤ 1.2ε . Furthermore,

the points associated with this class are an O (ε/wi )-noisy version

of N (µi , I ). Therefore, Filter-Gaussian-Unknown-Mean returns

a mean νi with ∥νi − µi ∥2 = Õ (ε/wi ). This completes the proof of

Proposition 4.1. □

4.2 Learning Spherical GMMs: The General

Case

We now generalize the algorithm from the previous subsection to

handle arbitrary mixtures of spherical Gaussians. When it is not

the case that all of the covariance matrices are the same, things are

substantially more complicated.We can recover a listH of candidate

means only after first guessing the radius of the component that we

are looking for. We can produce a large list of guesses and thereby

obtain a list of hypotheses of size poly(n/α ). However, clustering

becomes somewhat more difficult, as we do not know the radius at

which to cluster. In particular, Steps 6 and 7 become difficult not

knowing at what distance to stop considering two hypotheses part

of the same cluster. This difficulty can be dealt with by doing a

secondary test to determine whether or not the cluster that we have

found contains many points at approximately the correct distance

from each other.

Proposition 4.3. There is an algorithm that, given a positive inte-

ger d , constants 1/2 > α > 3ε ≥ 0, and sample access to a probability

distribution X = (1 − ε )M + εY , in dimension n larger than a suffi-

ciently large multiple of log(τ/α ), whereM =
∑k
i=1wiN (µi ,σ

2
i I ) is

a mixture of spherical Gaussians with wi ≥ α for all i , and so that
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∥µi − µ j ∥2/(σi + σj ) is at least

S
def
= C (α−1/(2d )

√
d (d+log(1/α )) (log(2+log(1/α )))2+

√

log(nk/ε )) ,

for all i , j, where C is a sufficiently large universal constant, takes

poly((dn)d log(1/τ )/(αε )) samples from X , runs in time

poly((dn log(1/τ )/α )d/ε )

and, with probability at lest 1 − τ , returns a list of triples (ui ,νi , si ),
that satisfy the following conditions (up to some permutation): |ui −
wi | = O (ε ), ∥µi −νi ∥2 = Õ (ε/wi )σi , and |si −σi |/σi = Õ (ε/wi )/

√
n.

The detailed proof is given in the full version.

4.3 Dimension Reduction

In this section, we describe our dimension reduction scheme for the

case of spherical mixtures. When the components have the same

covariance, dimension reduction is quite simple and allows us to

assume without loss of generality that the ambient dimension is

k − 1. The effect of dimension reduction for this case is that the

runtime of the learning algorithm becomes somewhat better as a

function of n.

When the components have arbitrary spherical covariances, we

require a more complicated procedure that allows us to reduce

the dimension down to poly(k/ε ). In addition to improving the

dependence on n in the runtime, this has the effect of removing the

Ω(
√

log(n)) dependence in the separation condition of Proposition

4.3.

For the case of identity covariance components, we will require

the following generalization of Theorem 4.2 of [41] or Corollary 3

of [50]:

Lemma 4.4. Given ε > 0, suppose we takeΩ(n log(k/τ )/(ε4w4
min))

independent samples from X =
∑k
i=1wiN (µi ,σ

2
i I ), where wi ≥

wmin, and letW be the affine subspace of dimension k − 1 containing
the empirical mean µ̃ and spanned by the top k − 1 eigenvectors of the
empirical covariance Σ̃. Then, with probability at least 1 − τ , for all i ,
µ ′i , the orthogonal projection of µi ontoW , satisfies ∥µ ′i − µi ∥2 ≤ εσ ,

where σ 2
=

∑

i wiσ
2
i .

Note that unlike Corollary 3 of [50], we only needW to be k − 1
dimensional and unlike Theorem 4.2 of [41], we do not need the

means µi to be bounded.

Proof. We first use standard facts about the empirical mean and

covariance matrix of a single Gaussian:

Fact 4.5. If we take Ω(n log(1/τ )/ε2) independent samples from

a Gaussian N (µ, Σ), then, except with probability τ , we have that the

empirical covariance Σ̃ and empirical mean µ̃ satisfy (1 − ε )Σ ⪯ Σ̃ ⪯
(1 + ε )Σ and (µ̃ − µ )T Σ(µ̃ − µ ) ≤ ε2.

Let δ = ε2wmin/12. By Chernoff bounds, the above fact and

a union bound, we have that except with probability τ , since we

have Ω(n log(k/τ )/(δ2w2
min)) samples, the fraction of samples from

N (µi ,σ
2
i I ), w̃i , satisfies (1 − δ )wi ≤ w̃i ≤ (1 + δ )wi , and the

empirical covariance Σ̃i and mean µ̃i of the samples coming from

N (µi ,σ
2
i I ) satisfy (1−δ )σ

2
i I ⪯ Σ̃i ⪯ (1+δ )σ 2

i I and ∥µ̃i−µi ∥2 ≤ δσi .

We assume that this holds.

Next note that we can write the empirical covariance as

Σ̃ =

k
∑

i=1

w̃i

(

Σ̃i + (µ̃i − µ̃ ) (µ̃i − µ̃ )T
)

.

Since µ̃ is a convex combination µ̃ =
∑k
j=1 w̃ j µ̃ j of the µ̃ j , the

vectors µ̃i − µ̃ span a (k − 1)-dimensional subspace. For any unit

vector v in the (n − k + 1)-dimensional subspace orthogonal to this

subspace, we have

vT Σ̃v =

k
∑

i=1

w̃iv
T Σ̃iv ≤

k
∑

i=1

(1 + δ )wi (1 + δ )σ
2
i ≤ (1 + 3δ )σ 2 .

Thus, the bottom n − k + 1 eigenvalues of Σ̃ are at most (1 + 3δ )σ 2.

Now consider µ̃ ′i , the orthogonal projection of µ̃i ontoW . Let

v = (1/∥µ̃i − µ̃ ′i ∥2) (µ̃i − µ̃ ′i ). Since v is orthogonal to the top-k

eigenvectors of Σ̃, it follows that vT Σ̃v ≤ (1 + 3δ )σ 2. Since v is

orthogonal toW which contains µ̃ ′i and µ̃, we have vT (µ̃ ′i − µ̃ ) = 0.

Thus, we have

(1 + 3δ )σ 2 ≥ vT Σ̃v

=

k
∑

j=1

w̃ j

(

vT Σ̃jv + (vT (µ̃ j − µ̃ ))2
)

≥ (1 − δ )
k
∑

j=1

w j

(

(1 − δ )σ 2
j + (vT (µ̃ j − µ̃ ))2

)

≥ (1 − 2δ )σ 2
+ (1 − δ )wi (v

T (µ̃i − µ̃ ))2

= (1 − 2δ )σ 2
+ (1 − δ )wi (v

T (µ̃i − µ̃ ′i ) +v
T (µ̃ ′i − µ̃ ))

2

= (1 − 2δ )σ 2
+ (1 − δ )wi (∥µ̃i − µ̃ ′i ∥2 + 0)

2 .

Re-arranging, we have ∥µ̃i − µ̃ ′i ∥2 ≤
√

5δσ 2/((1 − δ )wi ). Setting

δ = ε2wmin/12 gives ∥µ̃i − µ̃ ′i ∥2 ≤ εσ/2.

Noting that projecting onto an orthogonal space reduces Eu-

clidean distance, we have ∥µ̃ ′i − µ ′i ∥2 ≤ ∥µ̃i − µi ∥2. The triangle
inequality gives ∥µi − µ ′i ∥2 ≤ ∥µ̃i − µi ∥2 + ∥µ̃i − µ̃

′
i ∥2 + ∥µ̃

′
i − µ

′
i ∥2 ≤

εσ/2+2δσi ≤ εσ/2+ε
√
wiσi/2 ≤ εσ . This completes the proof. □

We now handle the general case:

Proposition 4.6. Let X =
∑k
i=1wiN (µi ,σ

2
i I ) be a k-mixture of

spherical Gaussians in Rn withwi ≥ ε for all i , for some ε > 0. There

exists an algorithm that givenk and ε , draws poly(nk/ε ) samples from

X , runs in sample-polynomial time, and returns an affine subspace

W of dimension poly(k/ε ), so that with high probability each µi is

within distance O (εσi ) of its projection ontoW .

Remark.Note that the above proposition can be combinedwith our

algorithm from Section 4.2 by first findingW and then learning the

projection ofX ontoW . Sincewe are nowworking in only poly(k/ε )

dimensions, the latter does not require a log(n) dependence on S .

Proof. We start with the following observation: If we knew that

all of the σi ’s were within a constant multiple of some known σ , we

could simply scale X down by a factor of σ and then project onto

the top k eigenvectors of the empirical covariance. This approach is

used in [50]. The difficulty comes when the σi ’s are not close to each

other. Doing this in this case would only give errorO (ε
√

∑

j w jσ
2
j ),
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which will be larger than O (εσi ) for some i . To deal with this

issue, we notice that similar to the proof of Proposition 4.3, we can

approximate the σ associated to a given sample by measuring how

close it is to other samples. This will allow us to break our samples

into several subsets each of which is a mixture of Gaussians with

similar covariances.

It will also be important to note that our accuracy in measuring

the radius of a Gaussian based on a few samples gets better as the

dimension increases. Fortunately, we can assume without loss of

generality that n is sufficiently large, as otherwise we can simply

returnW = Rn . The dimension-reduction algorithm is as follows:

Algorithm DimensionReduce

Input: Parameters k ∈ Z+, ε > 0, and sample access to X .

(1) If n is not larger than a sufficiently large polynomial in

k/ε , returnW = Rn .

(2) LetU be a set of N = poly(nk/ε ) (for a sufficiently large

polynomial) samples from X .

(3) For each x ∈ U , let r (x ) = miny∈U ,y,x ∥x − y∥2/
√
n.

(4) Define a relation x ∼ y if r (x ) and r (y) are within a

multiplicative factor of (1±n−1/3). Let {Cj } be the equiv-
alence classes under the transitive closure of ∼.

(5) For each Cj :

(a) let sj be the minimum value of r (x ) for x ∈ Cj .

(b) Compute µ̃ j and Σ̃j , the empirical mean and covari-

ance matrix of Cj .

(c) Use PCA to find the k − 1 eigenvectors v1, . . . ,vk−1
of Σ̃j with the largest eigenvalues.

(d) LetWj = µ̃ j + span < v1, . . . ,vk−1 >.
(6) ReturnW , the affine span of theWj ’s.

We note that we can assume that n ≫ poly(N ), for a sufficiently

large polynomial or the algorithm trivially terminates in Step 1. We

assume this throughout the rest of this proof.

In order to analyze the algorithm, we need to understand the

distribution of the r (x ). To begin with, we note that:

Lemma 4.7. With high probability over our samples, for every

x , y from U , with x drawn from N (µi ,σ
2
i I ) and y drawn from

N (µ j ,σ
2
j I ), we have that ∥x −y∥

2
2 =
(

∥µi − µ j ∥22 + (σ 2
i + σ

2
j )n
)

(1+

o(n−1/3)).

Proof. We note that, for any given choice of i and j, a random

pair of x and y satisfy this except with exp(−Ω(n)) probability. The

lemma follows from a union bound over x and y. □

Taking a minimum, we find that:

Lemma 4.8. With high probability, for all x ∈ U drawn from

N (µi ,σ
2
i I ), we have that

r (x ) = min
j

(√

∥µi − µ j ∥22/n + (σ 2
i + σ

2
j )

)

(1 + o(n−1/3)).

Proof. Assuming the conclusion of Lemma 4.7 holds, then the

r (x ) is automatically at least this big and is at most this large assume

that at least one (other) sample was drawn from N (µ j ,σ
2
j I ) for the

minimizing j. This of course happens with high probability. □

Corollary 4.9. With high probability, for all x drawn from

N (µi ,σ
2
i I ) we have that

σi (1 − o(n−1/3)) ≤ r (x ) ≤
√
2σi (1 + o(n

−1/3)) .

Proof. The lower bound is immediate. The upper bound follows

from taking j = i . □

The above Corollary also has several other consequences. All of

the x ’s coming from the same component will have r (x ) close to

minj (
√

∥µi − µ j ∥22/n + (σ 2
i + σ

2
j )) and thus all lie in the same Cj .

This implies that there are at most k many classes Cj . Furthermore,

since thex ’s coming from a single Gaussian component all have r (x )

within a 1+ o(n−1/3) multiple of each other, it means that all of the

r (x ), for x ∈ Cj , are within a (1+n−1/3)O (k ) multiple of each other.

Therefore, for each j, all of the x ∈ Cj have r (x ) within a constant

multiple of sj . Thus, all of these x ’s come from Gaussians with σi
within a constant multiple of sj . Let Sj be the set of i such that all

samples from N (µi ,σi ) are in Cj . By Lemma 4.4, the orthogonal

projection µ ′i of µi for i ∈ Sj ontoWj satisfies ∥µ ′i − µi ∥2 ≤ εσ ,

where σ 2
=

(

∑

i ∈Sj wiσ
2
i

)

/
∑

i ∈Sj wi . Since σ = Θ(sj ) = Θ(σi ) for

each i ∈ Sj , we have that ∥µ ′i − µi ∥2 ≤ O (εσi ). Therefore, sinceW

containsWj , µi is within O (εσi ) of its projection ontoW for all i .

Finally, since eachWj has dimension at most k − 1 and sinceW

is the sum of at most k of them, we have that dim(W ) ≤ k2. This

completes the proof. □

4.4 Putting Everything Together

By combining Proposition 4.1 and Lemma 4.4, we immediately

obtain the following corollary:

Corollary 4.10. There is an algorithm that given a positive inte-

ger d , constants 1/2 > α > 4ε ≥ 0, 0 < τ < 1, and sample access to a

probability distributionM =
∑

wiN (µi , I ) withwi ≥ α for all i , and

so that ∥µi − µ j ∥2 is at least

S
def
= C (α−1/(2d )

√
d (d + log(1/α )) (log(2+ log(1/α )))2+

√

log(1/ε ))

for all i , j , takes poly
(

n(kd )d log(1/τ )/(εα )
)

samples fromX , runs

in time poly
(

n(kd log(1/τ )/α )O (d )/ε
)

, and, with probability at least

1 − τ , returns a list of pairs (ui ,νi ), so that up to some permutation

|ui −wi | = O (ε ) and ∥µi − νi ∥2 = Õ (ε/wi ).

Proof of Theorem 1.4. To prove this theorem, we will combine

Proposition 4.6 with Proposition 4.3 and a few additional ingre-

dients. In particular, running Proposition 4.6, we find a subspace

W , as required. We note that the projection of X ontoW is still a

mixture of Gaussians with appropriate separations between the

means to run Proposition 4.3. We note that because the dimension

is now only poly(k/δ ), the log(n) term in S becomes a log(k/δ ),

and the dependence on n in the sample complexity disappears. We

can then learn wi to error O (δ ) and the projection of µi toW to

error σiO (δ/wi ), which is within σiO (δ/wi ) of the true value of µi .

Learning approximations to the σi is slightly more difficult.

Naively, we should only be able to learn it within error

σiO (δ/wi )/
√

dim(W ), which is not good enough. However, we note

that samples from X can be reliably sorted (with δ probability of

error) by which Gaussian they came from by considering which



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart

equivalence class C from Proposition 4.3 the sample came from.

Looking at the distances between pairs of the original samples inRn

whose projections end up in the same class, and taking the median,

we can approximate σi to error σiO (δ/wi )/
√
n. This completes the

proof. □
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