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ABSTRACT

We study the problem of list-decodable (robust) Gaussian mean
estimation and the related problem of learning mixtures of separated
spherical Gaussians. In the former problem, we are given a set T
of points in R” with the promise that an a-fraction of points in T,
where 0 < a < 1/2, are drawn from an unknown mean identity
covariance Gaussian G, and no assumptions are made about the
remaining points. The goal is to output a small list of candidate
vectors with the guarantee that at least one of the candidates is
close to the mean of G. In the latter problem, we are given samples
from a k-mixture of spherical Gaussians on R" and the goal is to
estimate the unknown model parameters up to small accuracy. We
develop a set of techniques that yield new efficient algorithms with
significantly improved guarantees for these problems. Specifically,
our main contributions are as follows:

List-Decodable Mean Estimation. Fix any d € Zy and 0 < & <
1/2. We design an algorithm with sample complexity Oy (poly(n? /a))
and runtime Oy (poly(n/ a)?) that outputs a list of O(1/«) many
candidate vectors such that with high probability one of the candi-
dates is within £,-distance Oy (a~1/2)y from the mean of G. The
only previous algorithm for this problem achieved error O(a~'/?)
under second moment conditions. For d = O(1/¢), where ¢ > 0 is
a constant, our algorithm runs in polynomial time and achieves
error O(a?). For d = O(log(1/a)), our algorithm runs in time
(n/ar)OUog(1/@)) and achieves error O(log3/2(1/a)), almost match-
ing the information-theoretically optimal bound of ©(log!/?(1/a))
that we establish. We also give a Statistical Query (SQ) lower bound
suggesting that the complexity of our algorithm is qualitatively
close to best possible.

Learning Mixtures of Spherical Gaussians. We give a learning
algorithm for mixtures of spherical Gaussians, with unknown spher-
ical covariances, that succeeds under significantly weaker separa-
tion assumptions compared to prior work. For the prototypical case
of a uniform k-mixture of identity covariance Gaussians we obtain
the following: For any ¢ > 0, if the pairwise separation between
the means is at least Q(k? + /log(1/9)), our algorithm learns the
unknown parameters within accuracy ¢ with sample complexity
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and running time poly(n, 1/8, (k/¢)'/€). Moreover, our algorithm is
robust to a small dimension-independent fraction of corrupted data.
The previously best known polynomial time algorithm required
separation at least k!/4polylog(k/6). Finally, our algorithm works
under separation of @(log3/2(k) + +/log(1/6)) with sample com-
plexity and running time poly(n, 1/9, k'°gk)_ This bound is close to
the information-theoretically minimum separation of Q(+/log k).

Our main technical contribution is a new technique, using degree-
d multivariate polynomials, to remove outliers from high-dimensional
datasets where the majority of the points are corrupted.
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1 INTRODUCTION
1.1 Background

This paper is concerned with the problem of efficiently learning

high-dimensional spherical Gaussians in the presence of a large

fraction of corrupted data, and in the related problem of parameter

estimation for mixtures of high-dimensional spherical Gaussians

(henceforth, spherical GMMs). Before we state our main results, we

describe and motivate these two fundamental learning problems.
The first problem we study is the following:

Problem 1: List-Decodable Gaussian Mean Estimation.
Given a set T of points in R” and a parameter a € (0,1/2]
with the promise that an a-fraction of the points in T are
drawn from G ~ N(y,I) — an unknown mean, identity
covariance Gaussian — we want to output a “small” list of
candidate vectors {[i1, . . ., is} such that at least one of the
Hi’s is “close” to the mean p of G, in Euclidean distance.

A few remarks are in order: We first note that we make no
assumptions on the remaining (1 — a)-fraction of the points in T.
These points can be arbitrary and may be chosen by an adversary
that is computationally unbounded and is allowed to inspect the
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set of good points. We will henceforth call such a set of points a-
corrupted. Ideally, we would like to output a single hypothesis vector
1 that is close to y (with high probability). Unfortunately, this goal
is information-theoretically impossible when the fraction a of good
samples is less than 1/2. For example, if the input distribution is a
uniform mixture of 1/a many Gaussians whose means are pairwise
far from each other, there are ©(1/«) different valid answers and
the list must by definition contain approximations to each of them.
It turns out that the information-theoretically best possible size of
the candidates list is s = ©(1/). Therefore, the feasible goal is to
design an efficient algorithm that minimizes the Euclidean distance
between the unknown p and its closest f;.

The second problem we consider is the familiar task of learning
the parameters of a spherical GMM. Let us denote by N(y, ) the
Gaussian with mean p € R and covariance > € R™", A Gaussian
is called spherical if its covariance is a multiple of the identity, i.e.,
% = ¢% -1, for 0 € Ry. An n-dimensional k-mixture of spherical
Gaussians (spherical k-GMM) is a distribution on R” with den-
sity function F(x) = Z{.‘zl w;iN (i, al.z - I), where wj,0; > 0, and
Zle wi = 1.

Problem 2: Parameter Estimation for Spherical GMMs.
Given k € Z,, a specified accuracy é > 0, and samples from
a spherical k-GMM F(x) = Z{'C:l wiN (u;, Uiz -I) on R", we
want to estimate the parameters {(w;, i, 07),i € [k]} up
to accuracy 8. More specifically, we want to return a list
{(ui, vi,si), i € [k]} so that for some permutation 7 € S, we
have that for all i € [k]: [w; —uz(;)| < &, [|pti = veiylla/oi <

8/wi, and |a; = s, ()| /i < (8/wi)/vn.

If F/ = Zlle uiN(v,-,s? - I) is the hypothesis distribution, the
above definition implies that dv (F, F’) = O(k§). We will also be
interested in the robust version of Problem 2. This corresponds to
the setting when the input is an n-corrupted set of samples from a
k-mixture of spherical Gaussians, where n < min; w;.

Before we proceed with a detailed background and motivation,
we point out the connection between these two problems. Intu-
itively, Problem 2 can be reduced to Problem 1, as follows: We
can think of the samples drawn from a spherical GMM as a set of
corrupted samples from a single Gaussian — where the Gaussian
in question can be any of the mixture components. The output of
the list decoding algorithm will produce a list of hypotheses with
the guarantee that every mean vector in the mixture is relatively
close to some hypothesis. If in addition the distances between the
means and their closest hypotheses are substantially smaller than
the distances between the means of different components, this will
allow us to reliably cluster our sample points based on which hy-
pothesis they are closest to. We can thus cluster points based on
which component they came from, and then we can learn each
component independently.

1.2 List-Decodable Robust Learning

The vast majority of efficient high-dimensional learning algorithms
with provable guarantees make strong assumptions about the input
data. In the context of unsupervised learning (which is the focus
of this paper), the standard assumption is that the input points are
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independent samples drawn from a known family of generative
models (e.g., a mixture of Gaussians). However, this simplifying
assumption is rarely true in practice and it is important to design
estimators that are robust to deviations from their model assump-
tions.

The field of robust statistics [27, 31] traditionally studies the
setting where we can make no assumptions about a “small” constant
fraction 7 of the data. The term “small” here means that 5 < 1/2,
hence the input data forms a reasonably accurate representation
of the true model. From the information-theoretic standpoint, ro-
bust estimation in this “small error regime” is fairly well under-
stood. For example, in the presence of n-fraction of corrupted data,
where < 1/2, the Tukey median [48] is a robust estimator of loca-
tion that approximates the mean of a high-dimensional Gaussian
within £2-error O(n) — a bound which is known to be information-
theoretically best possible for any estimator. The catch is that com-
puting the Tukey median can take exponential time (in the dimen-
sion). This curse of dimensionality in the running time holds for
essentially all known estimators in robust statistics [8].

This phenomenon had raised the following question: Can we
reconcile computational efficiency and robustness in high dimensions?
Recent work in the TCS community made the first algorithmic
progress on this front: Two contemporaneous works [13, 37] gave
the first computationally efficient robust algorithms for learning
high-dimensional Gaussians (and many other high-dimensional
models) with error close to the information-theoretic optimum.
Specifically, for the problem of robustly learning an unknown
mean Gaussian N(y,I) from an n-corrupted set of samples, n <
1/2, we now know a polynomial-time algorithm that achieves the
information-theoretically optimal error of O(n) [15].

The aforementioned literature studies the setting where the frac-
tion of corrupted data is relatively small (smaller than 1/2), therefore
the real data is the majority of the input points. A related setting
of interest focuses on the regime when the fraction « of real data
is small — strictly smaller than 1/2. From a practical standpoint,
this “large error regime” is well-motivated by a number of pressing
machine learning applications (see, e.g., [11, 44, 45]). From a the-
oretical standpoint, understanding this regime is of fundamental
interest and merits investigation in its own right. A specific moti-
vation comes from a previously observed connection to learning
mixture models: Suppose we are given samples from the mixture
a-N(p,I)+ (1—-a)E, ie., a-fraction of the samples are drawn from
an unknown Gaussian, while the rest of the data comes from several
other populations for which we have limited (or no) information.
Can we approximate this “good” Gaussian component, independent
of the structure of the remaining components?

More broadly, we would like to understand what type of learn-
ing guarantees are possible when the fraction a of good data is
strictly less than 1/2. While outputting a single accurate hypoth-
esis is information-theoretically impossible, one may be able to
efficiently compute a small list of candidate hypotheses with the
guarantee that at least one of them is accurate. This is the notion
of list-decodable learning, a model introduced by [6]. Very recently,
[11] first studied the problem of robust high-dimensional estimation
in the list-decodable model. In the context of robust mean estima-
tion, [11] gave an efficient list-decodable learning algorithm with
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the following performance guarantee: Assuming the true distribu-
tion of the data has bounded covariance, their algorithm outputs
a list of O(1/a) candidate vectors one of which is guaranteed to
achieve £5-error O(a~1/2) from the true mean.

Perhaps surprisingly, several aspects of list-decodable robust
mean estimation are poorly understood. For example, is the O(a~1/2)
error bound of the [11] algorithm best possible? If so, can we obtain
significantly better error guarantees assuming additional structure
about the real data? Notably — and in contrast to the small error
regime — even basic information-theoretic aspects of the problem
are open. That is, ignoring statistical and computational efficiency
considerations, what is the minimum error achievable with O(1/«)
(or poly(1/e)) candidate hypotheses for a given family of distribu-
tions?

The main focus of this work is on the fundamental setting where
the good data comes from a Gaussian distribution. Specifically, we
ask the following question:

QUESTION 1.1. What is the best possible error guarantee (information-

theoretically) achievable for list-decodable mean estimation, when the
true distribution is an unknown N (y, I) ? More importantly, what is
the best error guarantee that we can achieve with a computationally
efficient algorithm?

As our first main result, we essentially resolve Question 1.1.

1.3 Learning Mixtures of Separated Spherical
Gaussians

A mixture of Gaussians or Gaussian mixture model (GMM) is a
convex combination of Gaussian distributions, i.e., a distribution in
R" of the form F = Z{?:l wiN (u;, 2i), where the weights w;, mean
vectors p;, and covariance matrices X; are unknown. GMMs are
one of the most ubiquitous and extensively studied latent variable
models in the literature, starting with the pioneering work of Karl
Pearson [40]. In particular, the problem of parameter learning of a
GMM from samples has received tremendous attention in statistics
and computer science. (See Section 1.5 for a summary of prior
work.)

In this paper, we focus on the natural and important case where
each of the components is spherical, i.e., each covariance matrix is
an unknown multiple of the identity. The majority of prior algo-
rithmic work on this problem studied the setting where there is a
minimum separation between the means of the components'. For
the simplicity of this discussion, let us consider the case that the
mixing weights are uniform (i.e., equal to 1/k, where k is the num-
ber of components) and each component has identity covariance.
(We emphasize that the positive results of this paper hold for the
general case of an arbitrary mixture of high-dimensional spherical
Gaussians, and apply even in the presence of a small dimension-
independent fraction of corrupted data.) The problem of learning
separated spherical GMMs was first studied by Dasgupta [12], fol-
lowed by a long line of works that obtained efficient algorithms
under weaker separation assumptions.

The currently best known algorithmic result in this context is the
learning algorithm by Vempala and Wang [49] from 2002. Vempala

!Without any separation assumptions, it is known that the sample complexity of the
problem becomes exponential in the number of components [28, 39].
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and Wang gave a spectral algorithm with the following perfor-
mance guarantee [49]: their algorithm uses poly(n, k, 1/5) samples
and time, and learns a spherical k-GMM in n dimensions within
parameter distance J, as long as the pairwise distance (separation)
between the component mean vectors is at least k'/*polylog(nk/5).
Obtaining a poly(n, k, 1/8) time algorithm for this problem that suc-
ceeds under weaker separation conditions has been an important
open problem since.

Interestingly enough, until very recently, even the information-
theoretic aspect of this problem was not understood. Specifically,
what is the minimum separation that allows the problem to be
solvable with poly(n, k, 1/8) samples? Recent work by Regev and
Vijayraghavan [41] characterized this aspect of the problem: Specif-
ically, [41] showed that the problem of learning spherical k-GMMs
(with equal weights and identity covariances) can be solved with
poly(n, k, 1/8) samples if and only if the means are pairwise sep-
arated by at least ©(4/log k). Unfortunately, the approach of [41]
is non-constructive in high dimensions. Specifically, they gave a
sample-efficient learning algorithm whose running time is expo-
nential in the dimension. This motivates the following question:

QuUEsTION 1.2. Is there a poly(n, k) time algorithm for learning
spherical k-GMMs with separation o(k'/*), or better O(k?), for any
fixed ¢ > 0? More ambitiously, is there an efficient algorithm that
succeeds under the information-theoretically optimal separation?

As our second main result, we make substantial progress towards
the resolution of Question 1.2.

1.4 Our Contributions

In this paper, we develop a set of techniques that yield new effi-
cient algorithms with significantly better guarantees for Problems 1
and 2. Our algorithms depend in an essential way on the analysis of
high degree multivariate polynomials. We obtain a detailed struc-
tural understanding of the behavior of high degree polynomials
under the standard multivariate Gaussian distribution, and lever-
age this understanding to design our learning algorithms. More
concretely, our main technical contribution is a new technique,
using degree-d multivariate polynomials, to remove outliers from
high-dimensional datasets where the majority of the points are
corrupted.

List-Decodable Mean Estimation. Our main result is an efficient
algorithm for list-decodable Gaussian mean estimation with a sig-
nificantly improved error guarantee:

THEOREM 1.3 (L1ST-DECODABLE GAUSSIAN MEAN ESTIMATION).
Fixd € Zy and 0 < a < 1. There is an algorithm with the following
performance guarantee: Given d, a, and a set T C R" of cardinality
IT| = O(d??)-n©(d) poly(a) with the promise that a-fraction of the
points in T are independent samples from an unknown G ~ N(u,I),
i € R", the algorithm runs in time O(nd/a)°?) and with high
probability outputs a list of O(1/a) vectors one of which is within
lo-distance éd(a_l/(Zd)) of the mean p of G.

We note that the O(-) notation hides polylogarithmic factors in
its argument. See Theorem 3.1 for a more detailed formal statement.

Discussion and Comparison to Prior Work. As already mentioned
in Section 1.2, the only previously known algorithm for list-decodable
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mean estimation (for ¢« < 1/2) is due to [11] and achieves error
O(~1/2) under a bounded covariance assumption for the good
data. As we will show later in this section (Theorem 1.5), this error
bound is information-theoretically (essentially) best possible under
such a second moment condition. Hence, additional assumptions
about the good data are necessary to obtain a stronger bound. It
should also be noted that the algorithm [11] does not lead to a
better error bound, even for the case that the good distribution is
an identity covariance Gaussian®.

Our algorithm establishing Theorem 1.3 achieves substantially
better error guarantees under stronger assumptions about the good
data. The parameter d quantifies the tradeoff between the error
guarantee and the sample/computational complexity of our algo-
rithm. Even though it is not stated explicitly in Theorem 1.3, we
note that for d = 1 our algorithm straightforwardly extends to all
subgaussian distributions (with parameter v = O(1)), and gives
error O(a~1/%). We also remark that our algorithm is spectral — in
contrast to [11] that relies on semidefinite programming — and it
may be practical for small constant values of d.

There are two important parameter regimes we would like to
highlight: First, for d = O(1/¢), where ¢ > 0 is an arbitrarily
small constant, Theorem 1.3 yields a polynomial time algorithm
that achieves error of O(a?). Second, for d = ©(log(1/a)), Theo-
rem 1.3 yields an algorithm that runs in time (n/ a)OUog(1/a)) anq
achieves error of O(log3/ 2(1/a)). This error bound comes close to
the information-theoretic optimum of ®(+/log(1/«)), established
in Theorem 1.5. In the full version of this paper, we show that an
adaptation of our algorithm works under the optimal separation of
O(y/log(1/a)).

A natural question is whether there exists a poly(n/a) time list-
decodable mean estimation algorithm with error polylog(1/a), or
even ©(+4/log(1/a)). In Theorem 1.6, we prove a Statistical Query
(SQ) lower bound suggesting that the existence of such an algorithm
is unlikely. More specifically, our SQ lower bound gives evidence
that the complexity of our algorithm is qualitatively best possible.

High-Level Overview of Technical Contributions. Let G ~ N(u,I)
be the unknown mean Gaussian from which the a-fraction of good
samples S are drawn, and T be the a-corrupted set of points given as
input. We design an algorithm that iteratively detects and removes
outliers from T, until we are left with a collection of s = O(1/«)
many subsets Ty, . .., Ts of T one of which is substantially “cleaner”
than T. Specifically, the empirical mean of at least one of the T;’s
will be O 4 (a~1/@)y close to the unknown mean p of G. Our al-
gorithm is “spectral” in the sense that it works by analyzing the
eigendecomposition of certain matrices constructed from degree-d
moments of the empirical distribution. Specifically, to achieve error
of Og(a~1/(24)), the algorithm of Theorem 1.3 works with matrices
of dimension O(n4) x O(n9).

Atavery high-level, our approach bears a similarity to the “filter”
method — a spectral technique to iteratively detect and remove
outliers from a dataset — introduced in [13], for efficient robust
estimation in the “small error regime” (corresponding to a > 1/2).
Specifically, our algorithm tries to identify degree-d polynomials p :

Intuitively, this holds because the [11] algorithm only uses the first two empirical
moments. It can be shown that more moments are necessary to improve on the
O(a~"/?) error bound (see the construction in the proof of Theorem 1.6).
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R™ — R such that the behavior of p on the corrupted set of samples
T is significantly different from the expected behavior of p on the
good set of samples S. One way to achieve this goal [13, 17] is by
finding polynomials p with unexpectedly large empirical variance.
The hope is that if we find such a polynomial, we can then use it to
identify a set of points with a large fraction of corrupted samples
and remove it to clean up our data set. This idea was previously
used for robust estimation in the small error regime.

A major complication that occurs in the regime of @ < 1/2 is
that since fewer than half of our samples are good, the values of
such a polynomial p might concentrate in several clusters. As a
consequence, we will not necessarily be able to identify which clus-
ter contains the good samples. In order to deal with this issue, we
need to develop new techniques for outlier removal that handle the
setting that the good data is a small fraction of our dataset. Roughly
speaking, we achieve this by performing a suitable clustering of
points based on the values of p, and returning multiple (potentially
overlapping) subsets of our original dataset T with the guarantee
that at least one of them will be a cleaner version of T. This new
paradigm for performing outlier removal in the large error regime
may prove useful in other contexts as well.

A crucial technical contribution of our approach is the use of
degree more than one polynomials for outlier removal in this setting.
The intuitive reason for using polynomials of higher degree is this:
A small fraction of points that are far from the true mean in some
particular direction will have a more pronounced effect on higher
degree moments. Therefore, taking advantage of the information
contained in higher moments should allow us to discern smaller
errors in the distance from the true mean. The difficulty is that it
is not clear how to algorithmically exploit the structure of higher
degree moments in this setting.

The major obstacle is the following: Since we do not know the
mean p of G — this is exactly the quantity we are trying to approxi-
mate! — we are also not able to evaluate the variance Var[p(G)] of
p(G). If p was a degree-1 polynomial, this would not be a problem,
as the variance Var[p(G)] does not depend on u. But for degree at
least 2 polynomials, the dependence of Var[p(G)] on u becomes
a fundamental difficulty. Thus, although we can potentially find
polynomials with unexpectedly large empirical variance, we will
have no way of knowing whether this is due to corrupted points
x € T (on which p(x) is abnormally far from its true mean), or
due to errors in our estimation of the mean of G causing us to
underestimate the variance Var[p(G)].

In order to circumvent this difficulty, we require a number of
new ideas, culminating in an algorithm that allows us to either
verify that the variance of p(G) is close to what we are expecting,
or to find some other polynomial that allows us to remove outliers.

Learning Mixtures of Separated Spherical GMMs. We leverage the
connection between list-decodable learning and learning mixture
models to obtain an efficient algorithm for learning spherical GMMs
under much weaker separation assumptions. Specifically, by using
the algorithm of Theorem 1.3 combined with additional algorithmic
ideas, we obtain our second main result:

THEOREM 1.4 (LEARNING SEPARATED SPHERICAL GMMs). There
is an algorithm with the following performance guarantee: Given
d € Zy, a > 36 > 0, and sample access to a k-mixture of spherical
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Gaussians F = Zile wiN(pi,O'iZI) on R™, where n = Q(log(1/a)),
withw; > a for all i, and so that ||p; — pjll2/(o; + of) is at least

s % ¢ (o= COVG(d +10g(1/a)) log (2 + log(1/a))? + \Jlog(k/8))
g g g g

foralli # j, for C > 0 a sufficiently large constant, the algorithm
drawspoly(n, (dk/5)%) samples from F, runs in time poly (n, (dk/5)%),
and with high probability returns a list {(u;, vi, si), i € [k]}, such that
the following conditions hold (up to a permutation): |u; — w;i| = O(9),
lpi = villz/oi = O(8/wi), and |s; — ail/ai = O(5/w)//n.

The reader is also referred to Proposition 4.3 for a more detailed
statement that also allows a small, dimension-independent fraction
of adversarial noise in the input samples.

Discussion and High-Level Overview. To provide a cleaner in-
terpretation of Theorem 1.4, we focus on the prototypical case
of a uniform mixture of identity covariance Gaussians. For this
case, Theorem 1.4 reduces to the following statement (see Corol-
lary 4.10): For any ¢ > 0, if the pairwise separation between
the means is at least Q(k® + 4/log(k/d)), our algorithm learns
the parameters up to accuracy § in time poly (n, 1/9, (k/e)l/g),
Prior to our work, the best known efficient algorithm [49] re-
quired separation Q(k!/* + \flog(k/5)). Also note that by setting
d = O(logk), we obtain a learning algorithm with sample com-
plexity and running time poly(n, 1/6, k'°gk) that works with sepa-
ration of é(logg/z(k) + 4/log(1/9)). This separation bound comes
close to the information-theoretically minimum of Q(+/log k) [41].
(We also note that improving the error bound in Theorem 1.3 to
O(y/log(1/a)), for d = O(log(1/a)), directly improves our separa-
tion bound to O(+/logk).)

We now provide an intuitive explanation of our spherical GMM
learning algorithm. First, we note that we can reduce the dimension
of the problem from n down to some function of k. When the
covariance matrices of the components are nearly identical, this can
be done with a twist of standard techniques. For the case of arbitrary
covariances, we need to employ a few additional ingredients.

When each component has the same covariance matrix, the
learning algorithm is quite simple: We start by running our list-
decoding algorithm (Theorem 1.3) with appropriate parameters to
get a small list of hypothesis means. We then associate each sample
with the closest element of our list. At this point, we can cluster
the points based on which means they are associated to and use
this clustering to accurately learn the correct components.

The general case, when the covariances of the components are
arbitrary, is significantly more complex. In this case, we can recover
a list H of candidate means only after first guessing the radius of
the component that we are looking for. Without too much difficulty,
we can find a large list of guesses and thereby produce a list of
hypotheses of size poly(n/a). However, clustering based on this
list now becomes somewhat more difficult, as we do not know the
radius at which to cluster. We address this issue by performing a
secondary test to determine whether or not the cluster that we have
found contains many points at approximately the correct distance
from each other.
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Minimax Error Bounds and SQ Lower Bounds. As mentioned in
Section 1.2, even the following information-theoretic aspect of list-
decodable mean estimation is open: Ignoring sample complexity
and running time, how small a distance from the true mean can be
achieved with poly(1/a) many hypotheses or number of hypotheses
that is only a function of «, i.e., independent of the dimension n?

Theorem 1.3 implies that we can achieve error polylog(1/a) for
Gaussians. We show that the optimal error bound (upper and lower
bound) for the case N(u,I) and more generally for subgaussian
distributions is in fact ®(q/log(1/)). Moreover, under bounded k-
th moment assumptions, for even k, the optimal error is O (a~!/ ky.

THEOREM 1.5 (MINIMAX ERROR BOUNDS). Let0 < a < 1/2. There
exists an (inefficient) algorithm that given a set of a-corrupted samples
from a distribution D, where (a) D is subgaussian with bounded
variance in each direction, or (b) D has bounded first k moments, for
even k, outputs a list of O(1/a) vectors one of which is within distance
g(a) from the mean p of D, and g(a) = O(y/log(1/a)) in case (a)
and g(a) = O (@~ k) in case (b). Moreover, these error bounds are
optimal, up to constant factors. Specifically, the error bound of (a)
cannot be asymptotically improved even if D = N(u, I), as long as the
list size is poly(1/a). The error bound of (b) cannot be asymptotically
improved as long as the list size is only a function of a.

For the detailed statements, the reader is referred to the full version.

We now turn to our computational lower bounds. Given The-
orem 1.5, the following natural question arises: For the case of
Gaussians, can we achieve the minimax bound in polynomial time?
We provide evidence that this may not be possible, by proving a
Statistical Query (SQ) lower bound for this problem. Recall that a
Statistical Query (SQ) algorithm [35] relies on an oracle that given
any bounded function on a single domain element provides an
estimate of the expectation of the function on a random sample
from the input distribution. This is a restricted but broad class of al-
gorithms, encompassing many algorithmic techniques in machine
learning. A recent line of work [21-24] developed a framework
of proving unconditional lower bounds on the complexity of SQ
algorithms for search problems over distributions.

By leveraging this framework, using the techniques of our pre-
vious work [17], we show that any SQ algorithm for list-decodable
Gaussian mean estimation that guarantees error a4 for some
d > 2, requires either high accuracy queries or exponentially many
queries:

THEOREM 1.6 (SQ LowER BoUuNDs). Any SQ list-decodable mean
estimation algorithm for G ~ N(u,I) that returns a list of sub-
exponential size so that some element in the list is within distance
O(a~1/4) of the mean u of G requires either queries of accuracy
20((1/@)*'9) . p=Q(d) 4 pn® queries.

The reader is referred to the full version for the formal statement
and proof.

1.5 Related Work

Robust Estimation. The field of robust statistics [27, 31, 32, 42, 47]
studies the design of estimators that are stable to model misspeci-
fication. After several decades of investigation, the statistics com-
munity has discovered a number of estimators that are provably
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robust in the sense that they can tolerate a constant (less than
1/2) fraction of corruptions, independent of the dimension. While
the information-theoretic aspects of robust estimation have been
understood, the central algorithmic question — that of designing
robust and computationally efficient estimators in high-dimensions
— had remained open.

Recent work in computer science [13, 37] shed light to this ques-
tion by providing the first efficient robust learning algorithms for
a variety of high-dimensional distributions. Specifically, [13] gave
the first robust learning algorithms that can tolerate a constant frac-
tion of corruptions, independent of the dimension. Subsequently,
there has been a flurry of research activity on algorithmic robust
high-dimensional estimation. This includes robust estimation of
graphical models [16], handling a large fraction of corruptions in the
list-decodable model [11, 43], developing robust algorithms under
sparsity assumptions [5], obtaining optimal error guarantees [15],
establishing computational lower bounds for robust estimation [17],
establishing connections with robust supervised learning [18], and
designing practical algorithms for data analysis applications [14].

Learning GMMs. A long line of work initiated by Dasgupta [12],
see, e.g., [2, 4, 10, 34, 49], provides computationally efficient al-
gorithms for recovering the parameters of a GMM under various
separation assumptions between the mixture components. More
recently, efficient parameter learning algorithms were obtained (7,
28, 39] under minimal information-theoretic separation assump-
tions. Without separation conditions, the sample complexity of
parameter estimation is known to scale exponentially with the
number of components, even in one dimension [28, 39]. To circum-
vent this information-theoretic bottleneck of parameter learning, a
related line of work has studied parameter learning in a smoothed
setting [3, 9, 25, 26, 30]. The related problems of density estima-
tion and proper learning for GMMs have also been extensively
studied [1, 20, 28, 38, 39, 46]. In density estimation (resp. proper
learning), the goal is to output some hypothesis (resp. GMM) that
is close to the unknown mixture in total variation distance.

Most relevant to the current work is the classical work of Vem-
pala and Wang [49] and the very recent work by Regev and Vi-
jayraghavan [41]. Specifically, [49] gave an efficient algorithm that
learns the parameters of spherical GMMs under the weakest separa-
tion conditions known to date. On the other hand, [41] characterize
the separation conditions under which parameter learning for spher-
ical GMMs can be solved with poly(n, k, 1/8) samples. Whether such
a separation can be achieved with an efficient algorithm was left
open in [41]. Our work makes substantial progress in this direction.

1.6 Concurrent Works

Two concurrent and independent works [29, 36] used the sum-of-
squares hierarchy to obtain qualitatively similar algorithmic results
to ours for learning mixtures of spherical Gaussians.

1.7 Detailed Overview of Techniques
1.7.1  List-Decodable Mean Estimation:

Outlier Removal and Challenges of the Large Error Regime. We
start by reviewing the framework of [13] for robust mean estimation
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in the small error regime, followed by an explanation of the main
difficulties that arise in the large error regime of the current paper.

In the small error regime, the “filtering” algorithm of [13] for
robust Gaussian mean estimation works by iteratively detecting
and removing outliers (corrupted samples) until the empirical vari-
ance in every direction is not much larger than expected. If every
direction has small empirical variance, then the true mean and the
empirical mean are close to each other [13]. Otherwise, the [13]
algorithm projects the input points in a direction of maximum
variance and throws away those points whose projections lie un-
expectedly far from the empirical median in this direction. While
this iterative spectral technique for outlier removal is by now well-
understood for the small error regime (and has been applied to
various settings), there are two major obstacles that arise if one
wants to generalize it to the large error regime, i.e., where only a
small fraction a of samples are good.

The first difficulty is that even the one-dimensional version of
the problem in the large error regime is non-trivial. Specifically, con-
sider a direction v of large empirical variance. The [13] algorithm
exploits the fact that the empirical median is a robust estimator of
the mean in the one-dimensional setting. In contrast, in the large
error regime, it is not clear how to approximate the true mean of a
one-dimensional projection. This holds for the following reason:
The input distribution can simulate a mixture of 1/a¢ many Gaus-
sians whose means are far from each other, and the algorithm will
have no way of knowing which is the real one. In order to get
around this obstacle, we construct more elaborate outlier-removal
algorithms, which we call multifilters. Roughly speaking, a mul-
tifilter can return several (potentially overlapping) subsets of the
original dataset T with the guarantee that at least one of these
subsets is substantially “cleaner” than T.

The second difficulty is somewhat harder to deal with. As already
mentioned, the filtering algorithm of [13] iteratively removes out-
liers by looking for directions in which the empirical distribution
has a substantially larger variance than it should. In the low error
regime, this approach does a good job of detecting are removing
the corrupted points that can move the empirical mean far from the
true mean. In the large error regime, the situation is substantially
different. In particular, it is entirely possible that the empirical dis-
tribution does not have abnormally large variance in any direction,
while still the empirical mean is Q(v/1/a)-far from the true mean.
That is, considering the variance of one-dimensional projections
of our dataset in various directions seems inadequate in order to
improve the O(v/1/a) error bound. This obstacle is inherent: the
variance of linear polynomials (projections) is not a sufficiently
accurate method of detecting a small fraction of good samples be-
ing substantially displaced from the mean of the bad samples. To
circumvent this obstacle, we will use higher degree polynomials,
which are much more sensitive to a small fraction of points being
far away from the others. In particular, our algorithms will search
for degree-d polynomials that have abnormally large expectation
or variance, and use such polynomials to construct our multifilters.

Overview of List-Decodable Mean Estimation Algorithm. The basic
overview of our algorithm is as follows: We compute the sample
mean pi7 of the a-corrupted set T, and then search for (appropriate)
degree-d polynomials whose empirical expectation or variance is
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too large relative to what it should be, assuming that the good
distribution G is N(ut,I) — an identity covariance Gaussian with
mean p7. We note that this task can be done efficiently with an
eigenvalue computation, by taking advantage of the appropriate
orthogonal polynomials. If there are no degree-d polynomials with
too large variance, we can show that the sample mean pt is within
distance Oy (a~/ (24)) from the true mean. On the other hand, if
we do find a degree-d polynomial with abnormally large variance,
we will be able to produce a multifilter and make progress.

We now sketch how to exploit the existence of a large variance
polynomial p to construct a multifilter. Intuitively, the existence of
such a polynomial p suggests that there are many points that are
far away from other points, and therefore separating these points
into (potentially overlapping) clusters should guarantee that almost
all good points are in the same cluster. Unfortunately, for this idea
to work, we need to know that the variance of p on the good set of
points S is not too large. For degree-1 polynomials p this condition
holds automatically. If S is a sufficiently large set of samples from
G ~ N(p,I) and p is a normalized linear form, then Var[p(S)] ~
Var[p(G)] = 1. But if p has degree at least 2, the variance Var[p(S)]
depends on the true mean p, which unfortunately is unknown.
Fortunately, there is a way to circumvent this obstacle by either
producing a multifilter or verifying that the variance Var[p(G)] is
not too large.

We do this as follows: Firstly, we show that the variance Var[p(G)],
G ~ N(u,I), can be expressed as an average ofp? (p) for some ex-
plicitly computable, normalized, homogeneous polynomials p;. We
then need to algorithmically verify that the polynomials p; () are
not too large. This is difficult to do directly, so instead we replace
each p; by the corresponding multilinear polynomial q;, and note
that p;(p) is the average value of g; at many independent copies
of G. If this is large, then it means that evaluating q; at a random
tuple of samples will often have larger than expected size.

This idea will allow us to produce a multifilter for the follow-
ing reason: Since each g¢; is multilinear, this essentially allows us
to write it as a composition of linear functions. More rigorously,
we use the following iterative process: We iteratively plug-in vari-
ables one at a time to g;. If at any step the size of the resulting
polynomial jumps substantially, then the fact that this size is not
well-concentrated as we try different samples will allow us to pro-
duce a multifilter.

1.7.2  Learning Spherical GMMs:

The Identity Covariance Case. Since a Gaussian mixture model
can simultaneously be thought of as a mixture of any one of its com-
ponents with some error distribution, applying our list-decoding
algorithm to samples from a GMM will return a list of hypotheses
so that every mean in the mixture is close to some hypothesis in the
list. We can then use this list to cluster our samples by component.

In particular, given samples from a Gaussian G = N(y,I) and
many possible means hy, . .., by, we consider the process of associ-
ating a sample x from G with the nearest h;. We note that x is closer
to hj than h; if and only if its projection onto the line between them
is. Now if h; is substantially closer to y than hj is, then this requires
that this projection (which is Gaussian distributed) be far from
its mean, which happens with tiny probability. Thus, by a union
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bound, as long as our list contains some h; that is close to y, the
closest hypothesis to x with high probability is not much further. If
the separation between the means in our mixture is much larger
than the separation between the means and the closest hypotheses,
this implies that almost all samples are associated with one of the
hypotheses near its component mean, and this will allow us to
cluster samples by component. This idea of clustering points based
on which of a finite set they are close to is an important idea that
shows up in several related contexts in this paper.

The General Case. The above idea works more or less as stated for
mixtures of identity covariance Gaussians, but when dealing with
more general mixtures of spherical Gaussians several complications
arise. Firstly, in order to run out list-decoding algorithm, we need
to know (a good approximation to) the covariance matrix of each
component. The other difficulty is that, in order to cluster points,
we will take a set of all nearby hypotheses that have reasonable
numbers of samples associated with them. The issue is that we
no longer know what “nearby” means, as it should depend on the
covariance matrix of the associated Gaussian.

To solve the first of these problems we use a trick that will be
reused several times. We note that two samples from the same
Gaussian N (y, 62I) have distance approximately ©(cv/n), and that
even one sample from N (u, o2I) is unlikely to be much closer than
this to samples from different components. Therefore, by simply
looking at the distance to the closest other sample gives us a con-
stant factor approximation to the standard deviation of the corre-
sponding component. This allows us to write down a polynomial-
size list of viable hypothesis standard deviations. Running our
list decoding algorithm for each standard deviation, gives us a
polynomial-size list of hypothesis means.

To solve the second problem, we use the above idea to approxi-
mate the standard deviations associated to our sample points. When
clustering them, we look for collections of sample points with stan-
dard deviations approximately the same o, whose closest hypothe-
ses are within some reasonable multiple of ¢ of each other. Since
we are able to approximate the size of the component that our
samples are coming from, we can guarantee that we aren’t acciden-
tally merging several smaller clusters together by using the wrong
radius.

Dimension Reduction. One slight wrinkle with the above sketched
learning algorithm is that since the number of candidate hypotheses
is polynomial in n, the separation between the components will be
required to be at least y/log(n). This bound is suboptimal, when n is
very large. Another issue is that the overall runtime of the learning
algorithm would not be a fixed polynomial in n, but would scale as
n?. There is a way around both these issues, by reducing to a lower
dimensional problem.

In particular, standard techniques involve looking at the k largest
principle values that allow one to project onto a subspace of dimen-
sion k without losing too much. Unfortunately, these ideas require
that all of the Gaussians involved have roughly the same covariance.
Fortunately, if n is large, our ability to approximate the covariance
associated to a sample by looking at its distances to other samples
becomes more accurate. Using a slightly modification of this idea,
we can actually break our samples into subsets so that each subset
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is a mixture of Gaussians of approximately the save covariance. By
projecting each of these in turn, we can reduce the original problem
to a poly(k) number of dimensions and eliminate this extra term.

1.7.3  Minimax Error Bounds: We now explain our approach
to pin down the information-theoretic optimal error for the list-
decodable mean estimation problem. Concretely, for the identity
covariance Gaussian case we show that there is an (inefficient) algo-
rithm that guarantees that some hypothesis is within O(;/log(1/a))
of the true mean. The basic idea is that the true mean must have
the property that there is an a-fraction of samples that are well-
concentrated (in the sense of having good tail bounds in every
direction) about the point. The goal of our (inefficient) algorithm
will be to find a small number of balls of radius O(+4/log(1/a)) that
covers the set of all such points. We show that such a set exists
using the covering/packing duality. In particular, we note that if
there are a large number of such sets with means far apart, we get
a contradiction since the sets must be individually large but their
overlaps must be pairwise small (due to concentration bounds).

This approach immediately generalizes to provide a list-decodable
mean estimation algorithm for any distribution with known tail
bounds, providing an error O(t), where only an a-fraction of the
points are more than t-far from the mean in any direction. This
generic statement has a number of implications for various families.
In particular, it gives a (tight) error upper bound of O(+/log(1/a))
for subgaussian distributions with bounded variance in each direc-
tion. Previously, no upper bound better than O(1/+/a) was known
for these families. For distributions whose first k central moments
are bounded from above (for even k), we obtain a tight error upper
bound of O (a~/k).

Regarding lower bounds, [11] showed an Q(+/log(1/a)) error
lower bound for N(u, ), where ¥ is unknown and ¥ < I. We
strengthen this result by showing that the Q(q/log(1/a)) lower
bound holds even for N (i, I). We also prove matching lower bounds
of Q. (a~1/¥) for distributions with bounded moments. Our proofs
proceed by exhibiting distributions X, so that X can be written as
X = aX; + (1 — a)E; for many different X; satisfying the necessary
hypotheses. Then any list-decoding algorithm must return a list
of hypotheses close to the mean of every X;. If there are many
such X;’s with means pairwise separated, then the list-decoding
algorithm must either return many hypotheses or have large error.

1.7.4  SQ Lower Bounds: Finally, we prove lower bounds for list-
decoding algorithms in the Statistical Query (SQ) model. Roughly
speaking, we show that any SQ algorithm must either spend nd
time or have accuracy higher than o~/ 2d suggesting that our list-
decoding algorithm is qualitatively tight in its tradeoff between
runtime and sample complexity.

We prove these bounds using the technology developed in [17].
This basically reduces to finding a 1-dimensional distribution whose
first many moments agree with the corresponding moments of a
standard Gaussian. In our case, this amounts to constructing a
one-dimensional distribution A = aN(a"*/9,1) + (1 — a)E, so
that A’s first d moments agree with those of a standard Gaussian.
This can be done essentially because the aN(a~1/¢, 1) part of the
distribution only contributes at most a constant to any of the first
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d moments. This allows us to take E approximately Gaussian but
slightly tweaked near 0 in order to fix these first few moments.
We note however, that if we move the error component much
further from 0, its contribution to the d th moment becomes super-
constant and thus impossible to hide. This corresponds to the fact
that degree-d moments are sufficient (and necessary) in order to

detect errors of size ¢~ 1/9.

1.8 Organization

The structure of this extended abstract is as follows: In Section 2, we
provide the necessary definitions and technical facts. In Section 3,
we present a detailed overview of our list-decoding algorithm. Sec-
tion 4 gives our algorithm for GMMs. Due to space limitations, most
proofs are deferred to the full version [19].

2 DEFINITIONS AND PRELIMINARIES

2.1 Notation and Basic Definitions

Notation. For n € Z,, we denote by [n] the set {1,2,...,n}.Ifv
is a vector, let ||v||2 denote its Euclidean norm. If M is a matrix, let
||M||F denote its Frobenius norm.

Our algorithm and its analysis will make essential use of tensor
analysis. For a tensor A, we will denote by ||Al|2 the £3-norm of its
entries.

Let T c R™ be a finite multiset. We will use X €, T to denote
that X is drawn uniformly from T. For a function f : R” — R, we
will denote by f(T) the random variable f(X), X €, T.

Our basic objects of study are the Gaussian distribution and finite
mixtures of spherical Gaussians:

DEFINITION 2.1. The n-dimensional Gaussian N (y, X) with mean
u € R™ and covariance 3 € R™" is the distribution with density
function f(x) = (27)™"/2 det(£)™1/% exp(—(1/2)(x — )T =7 (x -
1)). A Gaussian is called spherical if its covariance is a multiple of
the identity, i.e, X = o1, foro e Ry.

DEFINITION 2.2. An n-dimensional k-mixture of spherical Gaus-
sians (spherical k-GMM) is a distribution on R™ with density function
F(x) = Z}C:l WjN(/Jj,(sz - 1), where w; > 0, 0j > 0, for all j, and
Z}Czl wj =1

DEFINITION 2.3. The total variation distance between two dis-

tributions (with probability density functions) P,Q : R" — Ry is

defined to be dry (P, Q) ' (1/2)-IIP = Qlli = (1/2) - [ pn IP(x) -

Q(x)ldx.

2.2 Formal Problem Definitions

We record here the formal definitions of the problems that we study.
Our first problem is robust mean estimation in the list-decodable
learning model. We start by defining the list-decodable model:

DEFINITION 2.4 (L1sT DECODABLE LEARNING, [6]). We say that
a learning problem is (m, ¢)-list decodably solvable if there exists
an efficient algorithm that can output a set of m hypotheses with the
guarantee that at least one is accurate to within error ¢ with high
probability.

Our notion of robust estimation relies on the following model of
corruptions:
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DEFINITION 2.5 (CORRUPTED SET OF SAMPLES). Given0 < a <1
and a distribution family D, an a-corrupted set of samples T of
size m is generated as follows: First, a set S of & - m many samples
are drawn independently from some unknown D € D. Then an
omniscient adversary, that is allowed to inspect the set S, adds an
arbitrary set of (1 — ) - m many points to the set S to obtain the set T.

We are now ready to define the problem of list-decodable robust
mean estimation:

DEFINITION 2.6 (L1ST-DECODABLE ROBUST MEAN ESTIMATION).
Fix a family of distributions D on R". Given a parameter0 < a < 1
and an a-corrupted set of samples T from an unknown distribution
D € D, with unknown mean u € R", we want to output a list
of s = poly(1/a) candidate mean vectors iy, . . ., jis such that with
high probability it holds rnin;=1 l5j = pll2 = g(a), for some function
g : R — R. We say that g(a) is the error guarantee achieved by the
algorithm.

Our main algorithmic result is for the important special case
that D is the family of unknown mean known covariance Gaussian
distributions. We also establish minimax bounds that apply for
more general distribution families.

Our second problem is that of learning mixtures of separated
spherical Gaussians:

DEFINITION 2.7 (PARAMETER ESTIMATION FOR SPHERICAL GMMs).
Given a positive integer k and samples from a spherical k-GMM
F(x) = Zile wiN (uj, oiz - I), we want to estimate the parameters
{(wi, pi, 0i), i € [k]} up to a required accuracy 8. More specifically,
we would like to return a list {(u;, vi,si),i € [k]} so that with high
probability the following holds: For some permutation &= € Si we
have that for alli € [K]: |wi —uz;)| < 8, i — va(i)llz/oi < 6/wi,
and |oj = sy(pyl/oi < (8/wi)/+n.

The above approximation of the parameters implies that
k k
dry () wiN(ui.of1). ) uiN(vi. s71) = O(ko) .
i=1 i=1
The sample complexity (hence, also the computational complexity)
of parameter estimation depends on the smallest weight min; w;
and the minimum separation between the components.

2.3 Basics of Hermite Analysis and
Concentration

We briefly review the basics of Hermite analysis over R" under
the standard n-dimensional Gaussian distribution N (0, I). Consider
LZ(R™, N(0,1)), the vector space of all functions f : R” — R such
that Ex _no, 1) [f (x)?] < co. This is an inner product space under
the inner product

(f+9) = Ex-n(o,n[f(X)g(X)] .
This inner product space has a complete orthogonal basis given
by the Hermite polynomials. For univariate degree-i Hermite poly-
nomials, i € N, we will use the probabilist’s Hermite polynomials,
denoted by He;(x), x € R, which are scaled to be monic, i.e., the
lead term of He; (x) is x. For a € N, the n-variate Hermite polyno-
mial Heg(x), x = (x1,...,xn) € R", is of the form []}_, Heg, (x;),
and has degree ||ally = Y a;. These polynomials form a basis for
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the vector space of all polynomials which is orthogonal under
this inner product. For a polynomial p : R* — R, its L?>-norm is

def
lipllz = V{p.pY = Ex~no.n[p(X)211/2.

We will need the following standard concentration bound for
degree-d polynomials over independent Gaussians (see, e.g., [33]):

FacT 2.8 (“DEGREE-d CHERNOFF BOUND”). Let G ~ N(u,I), pu €
R™. Letp : R® — R be a real degree-d polynomial. For any t > 0, we

have thatPr [|p(G) - E[p(G)]| > t - \Var[p(G)]] < exp(-Q(t*/9)).

3 LIST-DECODABLE ROBUST MEAN
ESTIMATION ALGORITHM

In this section, we provide a detailed outline of our main algorithmic
result on list-decodable mean estimation:

THEOREM 3.1 (LIST-DECODABLE MEAN ESTIMATION). There exists
an algorithm List-Decode-Gaussian that, given 0 < @ < 1/2,d €
Z4, a failure probabilityt > 0, and a set T of O(d'?-n*@-log(1/7)/a”)
points in R™, of which at least a 2a-fraction are independent samples
from a Gaussian G ~ N(u,I), runs in time (nd log(l/r)/a)o(d) and
returns a list of O(1/a) points such that, with probability at least
1 — 1, the list contains an x € R™ with

Il = pllo = O (™ CDVA(d + log(1/a)) log (2 + log(1/a))?*) -

Detailed Structure of Algorithm. The key idea procedure behind
our algorithm is a subroutine that given a set of samples either
cleans it up producing one or two subsets at least one of which
has substantially fewer errors than the original, or certifies that the
mean of G must be close to the empirical mean. Using this subrou-
tine, our final algorithm can be obtained by repeatedly applying
the subroutine recursively to the returned sets until they produce
vectors.

Before we can get into the detailed overview of this proof, it
is necessary to lay out some technical groundwork. First, we will
want to have a deterministic condition under which our algorithm
will succeed. To that end, we introduce two important definitions.
We say that a set S is representative of G if it behaves like a set of
independent samples of G, in particular in the sense that it is a PRG
against low-degree polynomial threshold functions for G. We also
say that a larger set T is good if (roughly speaking) an a-fraction
of the elements of T are a representative set for G. For technical
reasons, will will also want the points of T to be not too far apart
from each other.

We show that given a large set of points that contain an a-
fraction of good points from, one can algorithmically find O(1/«)
many subsets so that with high probability at least one of them is
good (and thus can be fed into the rest of our algorithm). This would
be immediate if it were it not for the requirement that the points in
a good set be not too far apart. As it stands, this will require that
we perform some very basic clustering algorithms.

The actual design of our multifilter involves working with sev-
eral types of “pure” degree-d polynomials and their appropriate
tensors. In particular, we need to pay attention to harmonic polyno-
mials (which behave well with respect to L2-norms), homogeneous
polynomials, and multilinear polynomials.

The multifilter at its base level requires a routine that given
a polynomial p, where p(T) behaves very differently from p(G),
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allows us to use the values of p(x) to separate the points coming
from G from the errors. The basic idea of the technique is to cluster
the points p(x), for x € T, and throw away points that are too far
from any cluster large enough to correspond to the bulk of the
values of p(G) (which must be well-concentrated), or to divide T
into two subsets with enough overlap to guarantee that any such
cluster could be entirely contained on one side or the other.

Given this basic multifilter, the high-level picture for our main
subroutine is as follows: Using spectral methods we can find if there
are any degree-d polynomials p where E[p(T)?] is substantially
larger than it should be if T consisted of samples from N (ur,I). If
there are no such polynomials, it is not hard to see that ||p — p7ll2
is small giving us our desired approximation. Otherwise, we would
like to apply our basic multifilter algorithm to get a refined version
of T.

Unfortunately, the application of the multifilter in the application
above has a slight catch to it. Our basic multifilter will only apply
to p if we can verify that Var[p(G)] is not too large. This would be
easy to verify if we knew the mean of G, but unfortunately, we do
not and errors in our approximation may lead to Var[p(G)] being
much larger than anticipated, and in fact, potentially too large to
apply our filter productively. In order to correct this, we will need
new techniques to either prove that Var[p(G)] is small or to find a
filter in the process. Using analytic techniques, we show that the
Var[p(G)] is a weighted average of squares of q;(u — pt) for some
normalized, homogeneous polynomials g;. Thus, it suffices to verify
that each q; (i — pr) is small.

To deal with this issue, it is actually much easier to work with
multilinear polynomials, and so instead we deal with multilinear
polynomials r; so thatr;(x, .. .,,x) = qi(x). We thus need to verify
that rj(u — pr, g — p1, . - ., — pr) is small.

In order to handle multilinear polynomials, we treat them as
a sequence of linear polynomials. We note that if r(u, 1, . .., p) is
abnormally large, then so is E[r(G,G, ..., G)]. This means that if
we evaluate r at d random elements of T, we are relatively likely
to get an abnormally large value, our goal is to find some linear
polynomial L for which the distribution of L(T) has enough dis-
crepancies that we can filter T based on L. To do this, consider
starting with r(x1, x2, . . ., x4) where x; are separate n-coordinate
variables, and replacing the x; one at a time with random ele-
ments of T. Since there is a decent probability that r(ty,..., ;)
is large, it is reasonably likely that at some phase of this process,
setting one of the variables causes the L?-norm of r to jump by
some substantial amount. In particular, there must be some set-

tings of t1, ..., tz—1 so that for a random element ¢ of T, we have
that r(t1,...,ta-1,t,Xa+1, . . ., xq) will have substantially larger
L2-norm than 7(t1, . . ., ta—1, Xa, Xa+1, - - - » Xg) With non-negligible

probability. We note that this would only rarely happen if t were
distributed as N (0, I), and this will allow us to filter.
To make this algorithm work, we note that

2
[r(t1, ... ta-1, X, Xa+1, - - -sxd)|2,xaﬂ’___’xd

is a degree-2 polynomial with bounded trace-norm. Therefore, we
need an algorithm so that if A is such a polynomial where E[A(T —
ur)] is large, we can produce a multifilter. This is done by writing
A as an average of squares of linear polynomials. We thus note
that there must be some linear polynomial L, where B[L(T — u7)?]
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is abnormally large. In particular, this implies that L(T) and L(G)
have substantially different distributions, which should allow us
to apply our basic multifilter. Also since L is degree-1, we have
a priori bounds on Var[L(G)], which avoids the problem that has
been plaguing us for much of this argument.

4 LEARNING SPHERICAL GAUSSIAN
MIXTURE MODELS

In Section 4.1, we present a simpler learning algorithm that works
when the components have the same covariance matrix. The general
case of unknown (potentially different) covariances is more complex
and is handled in Section 4.2. Section 4.3 contains our dimension-
reduction procedures. In Section 4.4, we put everything together to
obtain our final learning guarantees, including Theorem 1.4.

4.1 Learning Spherical GMMs: The Identity
Covariance Case

We start by handling the important special case of this problem
where each Gaussian component has identity covariance matrix.
Note that our learning algorithm is robust to a small constant
fraction of corrupted samples:

PrROPOSITION 4.1. There is an algorithm that given a positive
integer d, constants 1/2 > a > 4¢ > 0,0 < 7 < 1, and sample
access to a probability distribution X = (1 — )M + €Y, where M =
> wiN(ui, I) is a mixture of identity covariance Gaussians with w; >
a for alli, and so that ||p; — pjll2 is at least

5 % @V CDVG(d +10g(1/a)) (log(2 + log(1/a)))? + A[log(1/e))

for all i # j, takes poly((nd)? log(1/7)/(ea)) samples from X, runs
in time poly((nd log(l/r)/a)o(d), 1/¢), and, with probability at least
1 — 7, returns a list of pairs (u;, vi), so that up to some permutation
|ui — wil = O(e) and ||p; — villa = O(e/w;).

Proor. The algorithm itself is very simple. We run our list-
decoding algorithm to get a list of hypothesis means. We then
associate each sample with the closest element of our list. We can
then cluster points based on which means they are associated to
and use this to learn the correct components. The algorithm is as
follows:
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Algorithm LearnIdentityCovarianceGMM
Input: Parameters k,d € Z,, 7, ¢ > 0 and sample access to X.

(1) Let T be a set of sufficiently many
poly((nd)d log(1/7)/a) samples from X.

(2) Run Algorithm List-Decode-Gaussian using T to ob-
tain a list H = (h1, ha, . . ., hy) with m = O(1/a).

(3) Let T’ be a set of sufficiently many poly(nk/¢) samples
from X.

(4) For each sample from T’ associate it to the closest ele-
ment of H in {3-distance.

(5) Let H’ be the set of h € H so that at least a 2a/3-fraction
of the elements of T’ are associated to an element of H
at most S/10 away from h.

(6) Define the relation on H’ that h ~ h’ if and only if
[lh — h’|l2 < S/3.If this does not define an equivalence
relation on H’ return “FAIL”.

(7) For each equivalence class C of H’, let T¢ be the set of
points in T’ that are associated to elements of C C H.

(8) Let uc = |T¢|/|T’| for each C.

(9) For each C, run Filter-Gaussian-Unknown-Mean
from [13] on T¢, and let v be the approximation of
the mean obtained.

(10) Return the list of (uc, ve).

Note that for each i, X is simultaneously a mixture of N (y;,I)

with weight @ and some other distribution with weight (1 — «).

Therefore, for each i with probability at least 1 — 7/(10k), there is
some h; € H with

Ihi—pillz = O(a~ CDVd(d+log(1/a)) (log(2+log(1/a)))?) < /100,

for C is sufficiently large. By a union bound, with probability at least
1 — 7/10, this occurs for every i. We assume this holds throughout
the remainder of our analysis.

Let S; be the set of elements of T’ drawn from the component
N (pi, I).

LEMMA 4.2. With probability 1 — exp(—Q(S?)) over the samples
from T’, all but an exp(—Q(S%))-fraction of the elements of S; are
associated with elements h € H with ||h — p;ll2 < §/20.

Proor. The basic idea of the proof is the following: For any
given h € H that is far from p;, there will be some h’ € H that is
much closer. A given sample point x will only be closer to h than
h’ if its projection to the line between them is more than half way
there. However, this projection is distributed as a Gaussian, and
therefore the probability that it is much larger than its mean is
small.

It suffices to show that for each h € H with ||h — ;|2 > S/20 the
following holds: less than a exp(—Q(S?))-fraction of the elements
of S; are associated with h.

Firstly, assuming that the first step was successful, we know that
there is an b’ € H with ||[h’ — p;|l2 < S/100.

Let v be the unit vector in the direction of & — h’. We note that x
is closer to h than A’ ifand only if v-x > v (h+h") /2. However, we
note that v y; < v-h’+S5/100, whereas,v-h=v-h’+||lh—h'|l2 >
v - b’ + §/20. The probability that v - X > E[v - X] + S/50 for X
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drawn from N(p;,I) is exp(=Q(S?)). Thus, the probability that a
sample drawn from N(y;, I) is closer to h than h’ is exp(—Q(S?)).

Thus, by Markov’s inequality, the probability that more than
a exp(—Q(S?))-fraction of the elements of S; are associated to h
(with suitably small constant in the Q(-)), is exp(—Q(S?)). Taking
a union bound over h, does not change this asymptotic. O

Taking a union bound over i, we can assume that, with probabil-
ity at least 1 — 7/10, we have that all but an exp(—Q(5?)) fraction of
the points of S; are associated with some h; where [|hj—p;ll2 < S/20.
In particular, this implies that every element of H within distance
S/20 of some y; is in H’. Indeed, this holds for the following reason:
With high probability, |S;| > (3a/4) - |T’| and at least 8/9 fraction
of elements in S; are associated with h;’s that are within distance
5/20 of y;. By the triangle inequality these h;’s are within distance
S/3 of h. Conversely, any element of H not within distance 5/20
of some y; has associated with it at most an ¢/10-fraction of the
elements of the union of the S;’s. This implies that with high proba-
bility less than 1.2¢ < 2a/3 fraction of points in T are associated to
any point of H not within distance S/20 of some y;. Therefore, all
points of H’ are within distance 35/20 of some p;, which implies
that the relation on H’ is an equivalence relation. Specifically, each
equivalence class consists of the points in H” within distance 35/20
of some particular mean y;. Note in particular that this implies that
there is exactly one equivalence class C for each p;.

Furthermore, Lemma 4.2 implies that all but an ¢/(10k)-fraction
of the samples from N(y;, I) are associated with elements of H in
the class associated with y;. Furthermore, at most an e-fraction of
the other samples from T are associated to elements of this class.
From this it immediately follows that |u; —w;| < 1.2¢. Furthermore,
the points associated with this class are an O(e/w;)-noisy version
of N(u;j,I). Therefore, Filter-Gaussian-Unknown-Mean returns
amean v; with |lv; — pill2 = é(e/wi). This completes the proof of
Proposition 4.1. m]

4.2 Learning Spherical GMMs: The General
Case

We now generalize the algorithm from the previous subsection to
handle arbitrary mixtures of spherical Gaussians. When it is not
the case that all of the covariance matrices are the same, things are
substantially more complicated. We can recover a list H of candidate
means only after first guessing the radius of the component that we
are looking for. We can produce a large list of guesses and thereby
obtain a list of hypotheses of size poly(n/a). However, clustering
becomes somewhat more difficult, as we do not know the radius at
which to cluster. In particular, Steps 6 and 7 become difficult not
knowing at what distance to stop considering two hypotheses part
of the same cluster. This difficulty can be dealt with by doing a
secondary test to determine whether or not the cluster that we have
found contains many points at approximately the correct distance
from each other.

PROPOSITION 4.3. There is an algorithm that, given a positive inte-
gerd, constants 1/2 > a > 3¢ > 0, and sample access to a probability
distribution X = (1 — €)M + €Y, in dimension n larger than a suffi-
ciently large multiple of log(t/a), where M = Z;‘:l wiN (i, aizl) is
a mixture of spherical Gaussians with w; > a for all i, and so that
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lpi = pjlla/ (o7 + o) is at least

5 % eV CDVG(d4log(1/a)) (log(2+log(1/a))) >+ /log(nk/e)) ,

for alli # j, where C is a sufficiently large universal constant, takes
poly((dn)? log(1/7)/(ace)) samples from X, runs in time

poly((dnlog(1/7)/a)?/e)

and, with probability at lest 1 — 7, returns a list of triples (u;, vi, si),
that satisfy the following conditions (up to some permutation): |u; —
wil = O(e), lui = villz = O(e/wi)oi, and |si = ail foi = O(e/wi)//n.

The detailed proof is given in the full version.

4.3 Dimension Reduction

In this section, we describe our dimension reduction scheme for the
case of spherical mixtures. When the components have the same
covariance, dimension reduction is quite simple and allows us to
assume without loss of generality that the ambient dimension is
k — 1. The effect of dimension reduction for this case is that the
runtime of the learning algorithm becomes somewhat better as a
function of n.

When the components have arbitrary spherical covariances, we
require a more complicated procedure that allows us to reduce
the dimension down to poly(k/¢). In addition to improving the
dependence on n in the runtime, this has the effect of removing the
Q(+/log(n)) dependence in the separation condition of Proposition
4.3.

For the case of identity covariance components, we will require
the following generalization of Theorem 4.2 of [41] or Corollary 3
of [50]:

LEMMA 4.4. Givene > 0, suppose we take Q(n log(k/r)/(€4wfnin))
independent samples from X = Zif:l wiN (ui, crl.ZI), where w; >
Wmin, and let W be the affine subspace of dimension k — 1 containing
the empirical mean 1 and spanned by the top k — 1 eigenvectors of the
empirical covariance 3. Then, with probability at least 1 — 7, for all i,
,ul’., the orthogonal projection of yi; onto W, satisfies ||,ulf —till2 < €0,
where 6% = Y; wioiz.

Note that unlike Corollary 3 of [50], we only need W to be k — 1
dimensional and unlike Theorem 4.2 of [41], we do not need the
means y; to be bounded.

ProoF. We first use standard facts about the empirical mean and
covariance matrix of a single Gaussian:

FAcT 4.5. If we take Q(nlog(1/7)/e?) independent samples from
a Gaussian N (u, ), then, except with probability T, we have that the
empirical covariance 3. and empirical mean [l satisfy (1 — €)% < % <
(1+6)3 and (7 — p) TS - p) < €2,

Let § = £2wpin/12. By Chernoff bounds, the above fact and
a union bound, we have that except with probability r, since we
have Q(n 10g(k/r)/(52w12nin)) samples, the fraction of samples from
N(,ui,O'iZI), wi, satisfies (1 — §)w; < w; < (1 + 8)w;, and the
empirical covariance %; and mean JI; of the samples coming from
N(,ui,aizl) satisfy (1—5)01.2[ <3< (1+5)cri21and lzi—pill < doi.
We assume that this holds.
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Next note that we can write the empirical covariance as

k
=y wi(Cir@m-mE-mT) .

i=1

Since Ji is a convex combination g = Z}‘zl wijp;j of the jij, the
vectors i; — I span a (k — 1)-dimensional subspace. For any unit
vector v in the (n — k + 1)-dimensional subspace orthogonal to this
subspace, we have

k k
TS0 = Z wiv Siv < Z(l +8)wi(1+8)o? < (1+38)0? .
i=1 i=1
Thus, the bottom n — k + 1 eigenvalues of = are at most (1 + 38)52.
Now consider i}, the orthogonal projection of i; onto W. Let
v = (/g = @ll2) (i — ;). Since v is orthogonal to the top-k
eigenvectors of 3, it follows that oS0 < (1 + 38)02. Since v is
orthogonal to W which contains i} and f, we have vT(ﬁlf - =0.
Thus, we have

(1+38)c? > oIS

k
= Z wj (vajv + (UT(ﬁj - ﬁ))z)

Jj=1

k
> (1-0) > w; ((1=8)a? + (07 (1 - 1)?)
j=1
> (1-28)0% + (1= 8)wi(o” (1 - 1))*
= (1-28)0% + (1= 8w (" (I — i} + o' (i} - }1))*
= (1-28)0% + (1= 8)wi(llm — flllz + 0)* .

Re-arranging, we have ||g; — [i}ll2 < v/5802/((1 — 6)w;). Setting
5 = X wamin/12 gives [|fi; — Iz < /2.

Noting that projecting onto an orthogonal space reduces Eu-
clidean distance, we have || — pll2 < [l — pill2. The triangle
inequality gives ||p; — pillz < Il — pillz + 15 — Bz + g5 = pillz <
£0/2+260; < €0/2+¢e4/w;ioi/2 < eo. This completes the proof. O

We now handle the general case:

PROPOSITION 4.6. Let X = Zle wiN (i, aizl) be a k-mixture of
spherical Gaussians in R with w; > ¢ for all i, for some ¢ > 0. There
exists an algorithm that givenk and e, draws poly(nk/e) samples from
X, runs in sample-polynomial time, and returns an affine subspace
W of dimension poly(k/¢), so that with high probability each y; is
within distance O(eo;) of its projection onto W.

Remark. Note that the above proposition can be combined with our
algorithm from Section 4.2 by first finding W and then learning the
projection of X onto W. Since we are now working in only poly(k/¢)
dimensions, the latter does not require a log(n) dependence on S.

Proor. We start with the following observation: If we knew that
all of the o;’s were within a constant multiple of some known o, we
could simply scale X down by a factor of ¢ and then project onto
the top k eigenvectors of the empirical covariance. This approach is
used in [50]. The difficulty comes when the o;’s are not close to each

other. Doing this in this case would only give error O(e /3’ wjaj?),
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which will be larger than O(eo;) for some i. To deal with this
issue, we notice that similar to the proof of Proposition 4.3, we can
approximate the o associated to a given sample by measuring how
close it is to other samples. This will allow us to break our samples
into several subsets each of which is a mixture of Gaussians with
similar covariances.

It will also be important to note that our accuracy in measuring
the radius of a Gaussian based on a few samples gets better as the
dimension increases. Fortunately, we can assume without loss of
generality that n is sufficiently large, as otherwise we can simply
return W = R". The dimension-reduction algorithm is as follows:

Algorithm DimensionReduce
Input: Parameters k € Z,., ¢ > 0, and sample access to X.

(1) If n is not larger than a sufficiently large polynomial in
k/e, return W = R™.
(2) Let U be aset of N = poly(nk/¢) (for a sufficiently large
polynomial) samples from X.
(3) Foreach x € U, let r(x) = minyey, y#x lIx - yll2/v/n.
(4) Define a relation x ~ y if r(x) and r(y) are within a
multiplicative factor of (1=n~1/3). Let {C;} be the equiv-
alence classes under the transitive closure of ~.
(5) For each Cj:
(a) let sj be the minimum value of r(x) for x € C;.
(b) Compute yj and ij, the empirical mean and covari-
ance matrix of C;.
(c) Use PCA to find the k — 1 eigenvectors vy, . . ., Ug_1
of 3 j with the largest eigenvalues.
(d) Let W; = pij + span < vy,...,0k_1 >.
(6) Return W, the affine span of the W}’s.

We note that we can assume that n > poly(N), for a sufficiently
large polynomial or the algorithm trivially terminates in Step 1. We
assume this throughout the rest of this proof.

In order to analyze the algorithm, we need to understand the
distribution of the r(x). To begin with, we note that:

LEMMA 4.7. With high probability over our samples, for every
x # y from U, with x drawn from N(pi,aizl) and y drawn from
N(pj, aj?I), we have that ||x—y||§ = (||Ili - /lj”% + (0[.2 + O'J?)n) 1+
o(n~1/%)).

Proor. We note that, for any given choice of i and j, a random
pair of x and y satisfy this except with exp(—Q(n)) probability. The
lemma follows from a union bound over x and y. O

Taking a minimum, we find that:

LEMMA 4.8. With high probability, for all x € U drawn from
N(ui, aizl), we have that

r(x) = min (\/Ilm — uill/n+ (oF + ajz)) (1+o(n™/3).

Proor. Assuming the conclusion of Lemma 4.7 holds, then the
r(x) is automatically at least this big and is at most this large assume
that at least one (other) sample was drawn from N(yj, o j?I ) for the
minimizing j. This of course happens with high probability. O
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COROLLARY 4.9. With high probability, for all x drawn from
N(pi, aiZI) we have that

ai(1-o(n™/?)) < r(x) < V2oi (1 +o(n™V/3)) .

Proor. The lower bound is immediate. The upper bound follows
from taking j = i. O

The above Corollary also has several other consequences. All of
the x’s coming from the same component will have r(x) close to

minj(\/II,ui - yj||§/n + (0'1.2 + aj.z)) and thus all lie in the same C;.
This implies that there are at most k many classes C;. Furthermore,
since the x’s coming from a single Gaussian component all have r(x)
within a 1+ o(n~'/3) multiple of each other, it means that all of the
r(x), for x € Cj, are within a (1 + n_1/3)o(k) multiple of each other.
Therefore, for each j, all of the x € C; have r(x) within a constant
multiple of s;. Thus, all of these x’s come from Gaussians with o;
within a constant multiple of s;. Let S; be the set of i such that all
samples from N(y;, 0;) are in C;. By Lemma 4.4, the orthogonal
projection p of y; for i € S;j onto W satisfies ||u] — pill2 < eo,
where o2 = (Ziesj wiaiz) [ Zies; wi- Since o = O(sj) = ©(o;) for
each i € Sj, we have that ||y} — y;ll2 < O(eo;). Therefore, since W
contains Wj, p; is within O(eo;) of its projection onto W for all i.
Finally, since each W} has dimension at most k — 1 and since W
is the sum of at most k of them, we have that dim(W) < k2. This
completes the proof. O

4.4 Putting Everything Together

By combining Proposition 4.1 and Lemma 4.4, we immediately
obtain the following corollary:

COROLLARY 4.10. There is an algorithm that given a positive inte-
gerd, constants 1/2 > a > 4¢ > 0,0 < 7 < 1, and sample access to a
probability distribution M = 3, wiN (y;, I) with w; > « for all i, and
so that ||p; — pjll2 is at least

5 % @V CDVG(d +10g(1/a)) (log(2 +og(1/a)))? +A[log(1/e))

foralli # j, takes poly (n(kd)d log(l/r)/(ea)) samples from X, runs
in time poly (n(kd log(l/r)/a)o(d)/s), and, with probability at least
1 — 7, returns a list of pairs (u;, v), so that up to some permutation
lui = wil = O(e) and llpi = villz = O(e/w).

Proof of Theorem 1.4. To prove this theorem, we will combine
Proposition 4.6 with Proposition 4.3 and a few additional ingre-
dients. In particular, running Proposition 4.6, we find a subspace
W, as required. We note that the projection of X onto W is still a
mixture of Gaussians with appropriate separations between the
means to run Proposition 4.3. We note that because the dimension
is now only poly(k/3), the log(n) term in S becomes a log(k/9),
and the dependence on n in the sample complexity disappears. We
can then learn w; to error O(§) and the projection of y; to W to
error 0;0(6/w;), which is within 6;0(6/w;) of the true value of ;.

Learning approximations to the o; is slightly more difficult.
Naively, we should only be able to learn it within error
0i0(8/w;)/+/dim(W), which is not good enough. However, we note
that samples from X can be reliably sorted (with § probability of
error) by which Gaussian they came from by considering which
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equivalence class C from Proposition 4.3 the sample came from.
Looking at the distances between pairs of the original samples in R”
whose projections end up in the same class, and taking the median,
we can approximate a; to error 6;0(8/w;)/+/n. This completes the
proof. O
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