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ABSTRACT

We study the problem of testing conditional independence for dis-
crete distributions. Specifically, given samples from a discrete ran-
dom variable (X,Y,Z) on domain [A1] X [A2] X [n], we want to
distinguish, with probability at least 2/3, between the case that X
and Y are conditionally independent given Z from the case that
(X,Y,Z) is e-far, in £1-distance, from every distribution that has
this property. Conditional independence is a concept of central
importance in probability and statistics with a range of applica-
tions in various scientific domains. As such, the statistical task of
testing conditional independence has been extensively studied in
various forms within the statistics and econometrics communities
for nearly a century. Perhaps surprisingly, this problem has not been
previously considered in the framework of distribution property
testing and in particular no tester with sublinear sample complexity
is known, even for the important special case that the domains of
X and Y are binary.

The main algorithmic result of this work is the first conditional
independence tester with sublinear sample complexity for discrete
distributions over [A1] X [Az] X [n]. To complement our upper
bounds, we prove information-theoretic lower bounds establish-
ing that the sample complexity of our algorithm is optimal, up
to constant factors, for a number of settings. Specifically, for the
prototypical setting when A1, Az = O(1), we show that the sample
complexity of testing conditional independence (upper bound and
matching lower bound) is

@(max (nl/z/ez,min(n7/8/€, n6/7/€8/7))) .

To obtain our tester, we employ a variety of tools, including (1)
a suitable weighted adaptation of the “flattening” technique, and
(2) the design and analysis of an optimal (unbiased) estimator for
the following statistical problem of independent interest: Given a
degree-d polynomial Q: R” — R and sample access to a distribu-
tion p over [n], estimate Q(p1, . .., pn) up to small additive error.
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Obtaining tight variance analyses for specific estimators of this
form has been a major technical hurdle in distribution testing. As
an important contribution of this work, we develop a general theory
providing tight variance bounds for all such estimators. Our lower
bounds, established using the mutual information method, rely on
novel constructions of hard instances that may be useful in other
settings.
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1 INTRODUCTION
1.1 Background

Suppose we are performing a medical experiment. Our goal is to
compare a binary response (Y) for two treatments (X), using data
obtained at n levels of a possibly confounding factor (Z). We have
a collection of observations group in strata (fixed values of Z). The
stratified data are summarized in a series of 2X 2 contingency tables,
one for each strata. One of the most important hypotheses in this
context is conditional independence of X and Y given Z. How many
observations (X, Y, Z) do we need so that we can confidently test
this hypothesis?

The above scenario is a special case of the following statistical
problem: Given samples from a joint discrete distribution (X, Y, Z),
are the random variables X, Y independent conditioned on Z? This
is the problem of testing conditional independence — a fundamental
statistical task with a variety of applications in a variety of fields,
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including medicine, economics and finance, etc. (see, e.g., [35, 43, 49]
and references therein). Formally, we have the following definition:

Definition 1.1 (Conditional Independence). Let X,Y, Z be random
variables over discrete domains X, Y, Z respectively. We say that X
and Y are conditionally independent given Z, denoted by (X L Y) | Z,
ifforall (i, j,z) € XxYxZ wehavethat:Pr[ X =i, Y =j | Z=2z]=
Pr[X=i|Z=2z]-Prf[Y=j|Z=2z]

Conditional independence is an important concept in probability
theory and statistics, and is a widely used assumption in various
scientific disciplines [17]. Specifically, it is a central notion in mod-
eling causal relations [43] and of crucial importance in graphical
modeling [39]. Conditional independence is, sometimes, a direct
implication of economic theory. A prototypical such example is the
Markov property of a time series process. The Markov property
is a natural property in time series analysis and is broadly used
in economics and finance [27]. Other examples include distribu-
tional Granger non-causality [31] — which is a particular case of
conditional independence — and exogeneity [5].

Given the widespread applications of the conditional indepen-
dence assumption, the statistical question of testing conditional
independence has been studied extensively for almost a century. In
1924, R. A. Fisher [28] proposed the notion of partial correlation
coefficient, which leads to Fisher’s classical z-test for the case that
the data comes from a multivariate Gaussian distribution. For dis-
crete distributions, conditional independence testing is one of the
most common inference questions that arise in the context of con-
tingency tables [2]. In the context of graphical models, conditional
independence testing is a cornerstone in the context of structure
learning and testing of Bayesian networks (see, e.g., [9, 36, 37, 47]
and references therein). Finally, conditional independence testing
is a useful tool in recent applications of machine learning involving
fairness [32].

One of the classical conditional independence tests in the dis-
crete setting is the Cochran-Mantel-Haenszel test [13, 35], which
requires certain strong assumptions about the marginal distribu-
tions. When such assumptions do not hold, a common tester used
is a linear combination of y-squared testers (see, e.g., [2]). However,
even for the most basic case of distributions over {0, 1} X [n], no
finite sample analysis is known. A recent line of work in econo-
metrics has been focusing on conditional independence testing in
continuous settings [6, 18, 19, 29, 33, 34, 42, 44-46, 49, 51]. The the-
oretical results in these works are asymptotic in nature, while the
finite sample performance of their proposed testers is evaluated via
simulations.

In this paper, we will study the property of conditional inde-
pendence in the framework of distribution testing. The field of
distribution property testing [3] has seen substantial progress in the
past decade, see [8, 30, 41] for two recent surveys and books. A
large body of the literature has focused on characterizing the sam-
ple size needed to test properties of arbitrary distributions of a given
support size. This regime is fairly well understood: for many prop-
erties of interest there exist sample-efficient testers [1, 7, 11, 12, 20—
22, 24,30, 38, 48]. Moreover, an emerging body of work has focused
on leveraging a priori structure of the underlying distributions to
obtain significantly improved sample complexities [4, 9, 14-16, 23—
25].
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1.2 Our Contributions

Rather surprisingly, the problem of testing conditional indepen-
dence has not been previously considered in the context of distri-
bution property testing. In this work, we study this problem for
discrete distributions and provide the first conditional indepen-
dence tester with sublinear sample complexity. To complement our
upper bound, we also provide information-theoretic lower bounds
establishing that the sample complexity of our algorithm is opti-
mal for a number of important regimes. To design and analyze
our conditional independence tester, we employ a variety of tools,
including an optimal (unbiased) estimator for the following sta-
tistical task of independent interest: Given a degree-d polynomial
Q: R™ — R and sample access to a distribution p over [n], estimate
Q(p1,...,pn) up to small additive error.

In this section, we provide an overview of our results. We start
with some terminology. We denote by A(Q) the set of all distribu-
tions over domain Q. For discrete sets X, Y, Z, we will use P x, Y|z
to denote the property of conditional independence, i.e.,

Pxyiz = {peAXXYXZ) : f(X,Y,Z)~p, X LY)|Z}.

We say that a distribution p € A(X x Y x Z)is e-far from Py y |z,
if for every distribution g € Py, y|z we have that d(p,q) > .
We study the following hypothesis testing problem:

T (A1, A2, n,¢): Given sample access to a distribution p over
XxY xZ with |X| = A1, |Y| = Az, |Z| =n,and e > 0,
distinguish with probability at least 2/3 between the following
cases:

e Completeness: p € Px y|z-

e Soundness: drv(p, Px,y|z) = €

Even though the focus of this paper is on testing under the to-
tal variation distance metric (or equivalently the ¢1-distance), we
remark that our techniques yield algorithms under the mutual infor-
mation metric as well, near-optimal for a wide range of parameters.
The interested reader is referred to Section 6 for a short description
of these implications.

The property of conditional independence captures a number
of other important properties as a special case. For example, the
n = 1 case reduces to the property of independence over [A1]X[A2],
whose testing sample complexity was resolved only recently [22].
Arguably the prototypical regime of conditional independence cor-
responds to the other extreme. That is, the setting that the domains
X, Y are binary (or, more generally, of small constant size), while
the domain Z is large. This regime exactly captures the well-studied
and practically relevant setting of 2 X 2 X n contingency tables (men-
tioned in the motivating example of the previous section). For the
setting where X, Y are small, our tester and our sample complexity
lower bound match, up to constant factors. Specifically, we prove:

THEOREM 1.2. There exists a computationally efficient tester for
T(2,2,n,€) with sample complexity

O(max (\/ﬁ/ez,min<n7/8/s, n6/7/£8/7))) .



Testing Conditional Independence of Discrete Distributions

Moreover, this sample upper bound is tight, up to constant factors.
That is, any tester for T (2, 2, n, €) requires at least

Q(max (\/E/gz’min(nws/g, n6/7/58/7)))

samples.

To the best of our knowledge, prior to our work, no o(n) sample
algorithm was known for this problem. Our algorithm is quite
simple: For every fixed value of z € [n], we consider the conditional
distribution p,. Note that p, is a distribution over X x Y. We
construct an unbiased estimator ® of the squared {2-distance of
any distribution on X X Y from the product of its marginals. Our
conditional independence tester uses this estimator in a black-box
manner for each of the p,’s. In more detail, our tester computes a
weighted linear combination of ®(p;), z € [n], and rejects if and
only if this exceeds an appropriate threshold.

To obtain the required unbiased estimator of the squared {z-
distance, we observe that this task is a special case of the following
more general problem of broader interest: For a distribution p =
(p1,- - .,pn) and an polynomial Q : R” — R, obtain an unbiased
estimator for the quantity Q(p1, . .., pn). We prove the following
general result:

THEOREM 1.3. For any degree-d polynomial Q : R* — R and
distribution p over [n], there exists a unique and explicit unbiased
estimator Uy for Q(p) given N > d samples. Moreover, this estimator
is linear in Q and its variance is at most

2
D (1_[1’ 63”5”Q(p)s ((N—nusn)!),
1 n .
A L o axs | \NTTTE !
1<||s||<d

which itself can be further bounded as a function of Q, the degree-d
polynomial obtained by taking the absolute values of all the coeffi-
cients of Q, and its partial derivatives.

We note that Theorem 1.3 can be appropriately extended to the
setting where we are interested in estimating Q(p, q), where p, q are
discrete distributions over [n] and Q is a real degree-d polynomial
on 2n variables.

In addition to being a crucial ingredient for our general con-
ditional independence tester, we believe that Theorem 1.3 is of
broader interest. In a number of distribution testing problems, we
need unbiased estimators for some specific polynomial Q of a distri-
bution p (or a pair of distributions p, g). For example, the {,-tester
of [12] (which has been used as a primitive to obtain a wide range
of sample-optimal testers [22]) is an unbiased estimator for the
squared {>-distance between two distributions p, g over [n]. While
designing such an unbiased estimator may be relatively simple, its
analysis is typically highly non-trivial. Specifically, obtaining tight
bounds for the variance of such estimators has been a major tech-
nical hurdle in distribution testing. As an important contribution
of this work, we develop a general theory providing tight variance
bounds for all such estimators.

The conditional independence tester Theorem 1.2 straightfor-
wardly extends to larger domains X, Y, alas its sample complexity
becomes at least linear in the size of these sets. To obtain a sublin-
ear tester for this general case, we require a number of additional
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conceptual and technical ideas. Our main theorem for conditional
independence testing for domain [A1] X [Az] X [n] is the following:

THEOREM 1.4. There exists a computationally efficient tester for
T (A1, Az, n, €) with sample complexity

7/8A1/4 0 1/4 /7 A2]7 £2]7
o (.(n/Al A nSITATTAS
max| min

)

£ ’ 58/7

3/4,1/2,1/2  2/3,2/3,1/3 1/21/2,1/2
mAAYEAE nBATPAYE n AT EA,

£ ’ £4/3 ’ £2

Y

where we assume without loss of generality A1 > Aj.

The expression of the sample complexity in Theorem 1.4 may
seem somewhat unwieldy. In an attempt to interpret this bound,
we consider several important special cases of interest:

e For A; = Ay = O(1), (1) reduces to the binary case for X, Y,
recovering the tight bound of Theorem 1.2.

e Forn = 1 (and A; > A2), (1) recovers the optimal sample
complexity of independence testing, i.e.,

®(max(A?/3A;/3/£4/3, M/ez))

(see [22]).

e For A; = Az = n(and ¢ = Q(1)), the sample complexity of
(1) becomes O(n”/*). In Theorem 1.5 below, we show that
this bound is optimal as well.

We conclude with the aforementioned tight sample lower bound
for constant values of ¢, in the setting where all three coordinates
are of approximately the same cardinality:

THEOREM 1.5. Any tester for 7 (n,n,n,1/20) requires Q(n’lY
samples.

1.3 Some Notation

For n € N, we write [n] for the set {1, ..., n}, and log for the binary
logarithm. A probability distribution over discrete domain Q is
a function p: Q — [0, 1] such that [|p||; = X ,eqp(w) = 1. We
denote by A(Q) the set of all probability distributions over domain
Q. Recall that for two probability distributions p, g € A(Q), their
total variation distance is defined as drvy(p, q) := supgcq(p(S) —
q(9) = 3 Yweq Ip(@) - q(@)l, ie., drv(p.q) = 3llp - qll;- Their
{o-distance is the distance ||p — g||, between their probability mass
functions. Given a subset £ C A(Q) of distributions, the distance
from p to P is then defined as drv(p, P) := infyep drv(p. ). If
drv(p, P) > &, we say that p is e-far from P; otherwise, it is e-close.

1.4 Organization

Due to space limitations, most of the proofs and many results (in-
cluding the lower bounds and testing algorithms for the general
case) have been deferred to the full version of this paper [10]. The
structure of this extended abstract is as follows: In Section 2, we give
a detailed outline of our techniques; Section 3 provides some neces-
sary preliminaries and notation, before we describe in Section 4 our
algorithm for the case of constant |X|, || with a detailed sketch
of its analysis. Section 5 then contains the details of our polynomial
estimator bounds, and Section 6 outlines the generalization of our
results to testing udner conditional mutual information.
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2 OUR TECHNIQUES

2.1 Conditional Independence Tester for
Binary X, Y

In the case where X and Y are binary, for each bin z € Z we will
attempt to estimate the squared £,-distance of the corresponding
conditional distribution and the product of its conditional marginals.
In particular, if X = Y = {0, 1} the square of poop11 — po1p10, where
pij is the probability that X = iand Y = j, for Z = z, is proportional
to this difference. Since this square is a degree-4 polynomial in the
samples, there is an unbiased estimator of this quantity that can
be computed for any value z € Z from which we have at least 4
samples. Furthermore, for values of z € Z for which we have more
than 4 samples, the additional samples can be used to reduce the
error of this estimator. The final algorithm computes a weighted
linear combination of these estimators (weighted so that the more
accurate estimators from heavier bins are given more weight) and
comparing it to an appropriate threshold.

The correctness of this estimator requires a rather subtle anal-
ysis. Recall that there are three different regimes of ¢ versus n in
the optimal sample complexity and the tester achieves this bound
without a case analysis. As usual, we require a bound on the vari-
ance of our estimator and a lower bound on the expectation in the
soundness case.

On the one hand, a naive bound on the variance for our estimator
for an individual bin turns out to be insufficient for our analysis.
In particular, let p be a discrete probability distribution and Q(p) a
polynomial in the individual probabilities of p. Given m > deg(Q)
independent samples from p, it is easy to see that there is a unique
symmetric, unbiased estimator for Q(p), which we call U, Q. Our
analysis will depend on obtaining tight bounds for the variance of
Um Q. Tt is not hard to show that this variance scales as O(1/m), but
this turns out to be insufficient for our purposes. In order to refine
this estimate, we show that Var(U,,Q) = R(p)/m + O(1/m?), for
some polynomial R for which we devise a general formula. From
this point on, we can show that for our Q (or in general any Q
which is the square of a lower degree polynomial) Var(U,,Q) =
O(Q(p)/m + 1/m?). This provides us with a much sharper estimate
on the variance of our estimator, except in cases where the mean is
large enough that the extra precision is not necessary.

Another technical piece of our analysis is relating the mean of
our estimator to the total variation distance of our distribution
from being conditionally independent. In particular, our estimator
is roughly the sum (over the Z-bins with enough samples) of the
squared ¢, distance that the conditional distribution is from being
independent. When much of the distance from conditionally inde-
pendence comes from relatively heavy bins, this relation is a more
or less standard ¢1 /{2 inequality. However, when the discrepancy
is concentrated on very light bins, the effectiveness of our tester
is bounded by the number of these bins which obtain at least four
samples, and a somewhat different analysis is required. In fact, out
of the different cases in the performance of our algorithm, one of
the boundaries is determined by a transition between the hard cases
involving discrepancies supported on light bins to ones where the
discrepancy is supported on heavy bins.

If the variables X and Y are no longer binary, our estimates for the
discrepancy of an individual bin must be updated. In particular, we
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similarly use an unbiased estimator of the ¢, distance between the
conditional distribution and the product of its conditional marginals.
We note however that variance of this estimator is large if the
marginal distributions have large £, norms. Therefore, in bins for
which we have a large number of samples, we can employ an idea
from [22] and use some of our samples to artificially break up
the heavier bins, thus flattening these distributions. We elaborate
on this case, and the required ingredients it entails, in the next
subsection.

2.2 General Conditional Independence Tester

Assuming that we take at least four samples from any bin z € Z,
we can compute an unbiased estimator for the squared ¢, distance
between p;, the conditional distribution, and g, the product of its
conditional marginals. It is easy to see that this expectation is at
least £2/(|X||Y|), where ¢, is the £; distance between the condi-
tional distribution and the closest distribution with independent
X and Y coordinates. At a high level, our algorithm takes a linear
combination of these bin-wise estimators (over all bins from which
we got at least 4 samples), and compares it to an appropriate thresh-
old. There is a number of key ideas that are needed so that this
approach gives us the right sample complexity.

Firstly, we use the idea of flattening, first introduced in [22]. The
idea here is that the variance of the ¢, estimator is larger if the £,
norms of p and g are large. However, we can reduce this variance
by artificially breaking up the heavy bins. In particular, if we have
m samples from a discrete distribution of support size n, we can
artificially add m bins and reduce the 2 norm of the distribution
(in expectation) to at most O(1/+/m). We note that it is usually
not a good idea to employ this operation for m > n, as it will
substantially increase the number of bins. Nor do we want to use
all of our samples for flattening (since we need to use some for the
actual tester). Trading off these considerations, using min(m/2, n)
of our samples to flatten is a reasonable choice. We also remark that
instead of thinking of p and q as distributions over |X| |Y| bins, we
exploit the fact that g is a two-dimensional product distribution over
|X| % |Y|. By flattening these marginal distributions independently,
we can obtain substantially better variance upper bounds.

Secondly, we need to use appropriate weights for our bin-wise
estimator. To begin with, one might imagine that the weight we
should use for the estimator of a bin z € Z should be proportional
to the probability mass of that bin. This is a natural choice because
heavier bins will contribute more to the final ¢; error, and thus,
we will want to consider their effects more strongly. The proba-
bility mass of a bin is approximately proportional to the number
of samples obtained from that bin. Therefore, we might want to
weight each bin by the number of samples drawn from it. However,
there is another important effect of having more samples in a given
bin. In particular, having more samples from a bin allows us to do
more flattening of that bin, which decreases the variance of the
corresponding bin-wise estimator. This means that we will want to
assign more weight to these bins based on how much flattening is
being done, as they will give us more accurate information about
the behavior of that bin.

Finally, we need to analyze our algorithm. If the bin weights
are chosen appropriately, we show that the final estimator A has
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Var[A] = O(min(n, m) + E[A] + E[A]*/2), where m is the number of
samples we take and n is the number of bins. Furthermore, in the
completeness case, we have that E[A] = 0. In order to be able to dis-
tinguish between completeness and soundness, we need it to be the
case that for all distributions e-far from conditional independence it
holds that E[A] > /min(n, m). We know that if we are ¢-far from
conditional independence, we must have that ), e;w, > ¢, where
wy is the probability that Z = z. In order to take advantage of this,
we will need to separate the Z-bins into four cases based on the
size of the w;. Indeed, if we are far from conditional independence,
then for at least one of these cases the sum of £, w, over bins of
that type only will be > ¢. Each of these four cases will require a
slightly different analysis:

e Case 1: w; < 1/m. In this case, the expected number of
samples from bin z is small. In particular, the probability
of even seeing 4 samples from the bin might well be small.
Here, the expectation is dominated by the probability that
we see enough samples from the bin.

e Case 2: 1/m < w; < |X| /m: In this case, we are likely to get
our 4 samples from the bin, but probably will get fewer than
|X|. This means that our flattening will not saturate either
of the marginal distributions and we can reduce the squared
{2 norm of g by a full factor of m, (where m; is the number
of samples from this bin).

e Case 3: |X|/m < w, < |Y]|/m. In this case, we are likely
to saturate our flattening over the X-marginal but not the
Y-marginal. Thus, our flattening only decreases the {2 norm
of the conditional distribution on that bin by a factor of
Y |X|m;.

e Case 4: |Y| /m < w;: Finally, in this case we saturate both
the X- and Y-marginals, so our flattening decreases the {3

norm by a factor of /|X||Y].

Within each sub-case, the expectation of A is a polynomial in
m, |X|,|Y| multiplied by the sum over z € Z of some polyno-
mial in ¢; and w,. We need to bound this from below given that
.2 €2wz > ¢, and then set m large enough so that this lower bound
is more than y/min(n, m). We note that only in Case 1, is the case
where m < n relevant. Thus, our final bound will be a maximum
over the 4 cases of the m required in the appropriate case.

2.3 Sample Complexity Lower Bound
Construction for Binary X, Y

We begin by reviewing the lower bound methodology we follow:
In this methodology, a lower bound is shown by adversarially con-
structing two distributions over pseudo-distributions (i.e., finite
measures, not necessarily summing to one). Specifically, we con-
struct a pair of ensembles D and D’ of pairs of nearly-normalized
pseudo-distributions such that distributions from D have the de-
sired property and from D’ are ¢-far from it with high probability,
and such that Poisson(s) samples from a distribution are insufficient
to reliably determine from which ensemble the distribution was
taken from, unless s is large enough.

To formally prove our lower bounds, we will use the mutual
information method, as in [22]. In this section, we provide an intu-
itive description of our sample complexity lower bound for testing
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conditional independence, when X = Y = {0,1} and Z = [n]. (Our
lower bound for the regime X = Y = Z = [n] is proved using
the same methodology, but relies on a different construction.) We
construct ensembles D and D’ — where draws from D are condition-
ally independent and draws from D’ are ¢-far from conditionally
independent with high probability — and show that s samples from
a distribution on (X, Y, Z) are insufficient to reliably distinguish
whether the distribution came from D or D’, when s is small. We
define D and D’ by treating each bin z € [n] of Z independently. In
particular for each possible value z € [n] for Z, we proceed as fol-
lows: (1) With probability min(s/n, 1/2), we assign the point Z = z
probability mass max(1/s, 1/n) and let the conditional distribution
on (X,Y) be uniform. Since the distribution is conditionally inde-
pendent on these bins and identical in both ensembles, these “heavy”
bins will create “noise” to confuse an estimator. (2) With probability
1—min(s/n, 1/2), we set the probability that Z = z to be ¢/n, and let
the conditional distribution on (X, Y) be taken from either C or C’,
for some specific ensembles C and C’. In particular, we pick C and
C’ so that a draw from C is independent and a draw from C’ is far
from independent. These bins provide the useful information that
allows us to distinguish between the two ensembles D and D’. The
crucial property is that we can achieve the above while guaranteeing
that any third moment from C agrees with the corresponding third
moment from C’. This guarantee implies that if we draw 3 (or fewer)
samples of (X, Y) from some bin Z = z, then the distribution on
triples of (X, Y) will be identical if the conditional was taken from
C or if it was taken from C’. That is, all information about whether
our distribution came from D or D’ will come from bins of type
(2) for which we have at least 4 samples, of which there will be
approximately n(se/n)*. On the other hand, there will be about
min(s, n) bins of type (1) with 4 samples in random configuration
adding noise. Thus, we will not be able to distinguish reliably unless
n(se/n)* > /min(s, n), as otherwise the “noise” due to the heavy
bins will drown out the “signal” of the light ones.

To define C and C’, we find appropriate vectors p, g over {0, 1}?
so that p + q and p + 3q each are distributions with independent
coordinates, but p,p + 2q, p + 4q are not. We let C return p + ¢
and p + 3q each with probability 1/2, and let C’ return p, p + 2q
or p + 4q with probability 1/8,3/4, 1/8 respectively. If we wish to
find the probability that 3 samples from a distribution r come in
some particular pattern, we get f(r) for some degree-3 polynomial
f.If we want the difference in these probabilities for r a random
draw from C and a random draw from C’, we get f(p+q)/2+ f(p+
39)/2 - f(p)/8— f(p+29)(3/4) — f(p + 4g)/8. We note that this is
proportional to the fourth finite difference of a degree-3 polynomial,
and is thus 0. Therefore, any combination of at most 3 samples are
equally likely to show up for some Z-bin from D as from D’.

To rigorously analyze the above sketched construction, we con-
sider drawing Poisson(s) samples from a random distribution from
either D or D’, and bound the shared information between the set of
samples and the ensemble they came from. Since the samples from
each bin are conditionally independent on the ensemble, this is at
most n times the shared information coming from a single bin. By
the above, the probabilities of seeing any triple of samples are the
same for either D or D’ and thus contribute nothing to the shared
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information. For sets of 4 or more samples, we note that the differ-
ence in probabilities comes only from the case where 4 samples are
drawn from a bin of type (2), which happens with probability at
most O(se/n)*. However, this is counterbalanced by the fact that
these sample patterns are seen with much higher frequency from
bins of type (1) (as they have larger overall mass). Thus, the shared
information for a combination including m > 4 samples will be
(O(se/n)™)? /min(s/n, 1/2) - Q(1)™. The contribution from m > 4
can be shown to be negligible, thus the total shared information
summed over all bins is O(min(s, n) - (s¢/n)?). This must be Q(1) in
order to reliably distinguish, and this proves our lower bound.

3 PRELIMINARIES AND BASIC FACTS

For a distribution p we write X ~ p to denote that the random
variable X is distributed according to p. Finally, for p € A(Q1),q €
A(Q2) we let p ® g € A(Q1 X Q) be the product distribution with
marginals p and q.

Property Testing. We work in the standard setting of distribution
testing: a testing algorithm for a property P C A(Q) is an algorithm
which, granted access to independent samples from an unknown
distribution p € A(Q) as well as distance parameter ¢ € (0, 1],
outputs either accept or reject, with the following guarantees.

o if p € P, then it outputs accept with probability at least 2/3;
o if dry(p, P) > ¢, then it outputs reject with probability at
least 2/3.
The two measures of interest here are the sample complexity of the
algorithm (i.e., the number of samples from the distribution it takes
in the worst case), and its running time.

Conditional Independence. We study the problem of testing condi-
tional independence of discrete distributions. Let X, Y, Z be random
variables over discrete domains X, Y, Z respectively. Given sam-
ples from the joint distribution of (X, Y, Z), we want to determine
whether X and Y are conditionally independent given Z, denoted by
(X LY)| Z, versus ¢e-far in total variation distance from every dis-
tribution of random variables (X', Y’, Z”) such that (X’ L Y’) | Z’.

Definition 3.1 (Conditional Independence). Let X,Y, Z be random
variables over discrete domains X, Y, Z respectively. We say that X
and Y are conditionally independent given Z, denoted by (X L Y) | Z,
ifforall (i, j, z) € XxYxZ wehavethat:Pr[ X =i,Y=j | Z=2z]=
Pr[X=i|Z=z]-Prf[Y=j|Z=2z].

For discrete sets X, Y, Z, we will denote by Px_y |z the prop-
erty of conditional independence, i.e.,

Pxyiz = {peMXXYXZ) : if(X,Y,2)~p, (X LY)|Z}.

Recall that we say that a distribution p € A(X X Y x Z) is e-far
from Py yz, if for every distribution q € Px y |z we have that
dpy(p,q) > e Fix a distribution g € P y|z of minimum total
variation distance to p. Then the marginals of g on each of the three
coordinates may have different distributions.

We will also define testing conditional independence with respect
to a different metric, namely the conditional mutual information [26,
50]. For three random variables X, Y, Z as above, the conditional
mutual information of X and Y with respect to Z is defined as

IX;Y|Z) :=Ez[I(X:Y) | Z)]
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i.e., as the expected (with respect to Z) Kullback-Leibler divergence
between the distributions of (X,Y) | Z and the product of the
distributions of (X | Z) and (Y | Z). In this variant of the problem
(considered in Section 6), we will want to distinguish I(X;Y|Z) = 0
from I(X;Y|Z) > «.

Notation. Let p € A(X x Y x Z). For z € Z, we will denote by
pz € A(X X Y) the distribution defined by
i,j) = P X=i,Y=j|Z=
(1)) x. Y’rZ)Np[ LY=jlZ=z]
and by pz € A(Z) the distribution pz(2) == Pr(x,y,z)-p [Z = z].
By definition, for any p € A(X X Y x Z), we have that p(i, j, z) =
pz(2) - pz(i, j). For z € Z, we will denote by p, x € A(X) the dis-
tribution p; x (i) = Pr(x,y,z)~p [X =i | Z =z] and p, vy € A(Y)
the distribution p, y(j) = Pr(x,v,z)~p [Y =j | Z = z].

We can now define the product distribution of the conditional
marginals:

Definition 3.2 (Product of Conditional Marginals). Fix any p €
AX xY x Z). For z € Z, we define the product of conditional
marginals of p given Z = z to be the product distribution q, €

A(X x Y) defined by q; = Pz x ® Py, ie, CIz(i,j) = Pz,X(i) :
Pz v(j). We will also denote by g the mixture of product distribu-

tions q := Y ,c 7 pz(2)9z € Px,y |z, 1€, q(i,},2) = pz(z) - qz(i, ).
Basic Facts. =
We start with the following simple lemma:

LEmMA 3.3. Letp,p’ € A(X x Y x Z). Then we have that
dry(p.p’) < Z pz(2) - dpy (P2 p7) + dpy (p2.0%) - ()
zelZ
with equality if and only ifpz = p7,.

Using Lemma 3.3, we deduce the following useful corollary:
Fact 1. Ifp € A(X x Y x Z) ise-far from Px y |z, then, for every
p' € Py y|z cither (i) dTV(pZ,p’Z) > ¢/2, or (ii) $ye 7 pz(2) -
dTV(Pz,p;) > /2.

The next lemma shows a useful structural property of conditional
independence that will be crucial for our algorithm. It shows that
if a distribution p € A(X x Y x Z) is close to being conditionally
independent, then it is also close to an appropriate mixture of
its products of conditional marginals, specifically distribution ¢
from Definition 3.2:

LEMMA 3.4. Suppose p € MX XY x Z) is e-close to Px y|z-
Then, p is 4e-close to the distribution q = 3 ,c 7 p7(2)qz.

The Case Z = [n], X = Y = {0,1}. We now focus on the case
thatp e AKX x Y x Z) for X =Y = {0,1} and Z = [n]. With the
same notation we have previously established, for any z € [n] we
have that

ZdTv(Pz’ qz) = 41pz(0,0) - pz(1,1) — pz(0,1) - p(1,0)|
=4|Cov[X | Z=2),(Y | Z=2)]| ,

or equivalently

dry(pz.qz) = 2|Cov[(X | Z = 2),(Y | Z = 2)]| = [lpz = ¢zll5 -
(&)
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This expression for the total variation distance will be useful in the
analysis of the lower bound constructions.

Some technical result on Poisson random variables. We state below
a bound on the moments of truncated Poisson random variables,
which we will rely on in our analysis.

Cram 1. There exists an absolute constant C > 0 such that, for
N ~ Poisson(A),

Var[N1n>4}] < CE[NL{n54] -

Moreover, one can take C = 4.22.

4 CONDITIONAL INDEPENDENCE TESTER:
THE CASE OF CONSTANT |X|, | Y|

Let p € A(X XY X z). In this section, we describe and analyze
our sample-optimal conditional independence tester for the case
that |X|,|Y| = O(1). Our tester uses as a black-box an unbiased
estimator for the t’g—distance between a 2-dimensional distribution
and the product of its marginals. Specifically, we assume that we
have access to an estimator ® with the following performance:
Given N samples s = (s1, . .., sN) from a distribution p € A(X x V),
O satisfies:

E[®(s)] = [lp — px ® py I3 )

Var[®(s)] < C (@ + %) , ©)

for some absolute constant C > 0. Such an estimator follows as a
special case of our generic polynomial estimator in Theorem 1.3
whose proof is given in Section 5.

Notation. Given p € A(X X V), we denote its marginal distribu-
tions by px, py. That is, we have that py € A(X) with pyx(x) :=
Pr(x,y)~p [X = x], x € X, and similarly for py. Then, given p €
A(X x Y x Z), for any z € Z we will denote by g, the product
distribution p, x ® p, vy.

Let M be a Poisson(m) random variable representing the number
of samples drawn from p € A(X X Y x Z). Given the multi-set
S of M samples drawn from p, let S; := { (x,y) : (x,y,2) €S}
denote the multi-set of pairs (x,y) € X X Y corresponding to
samples (x,y,z) € S, i.e., the multi-set of samples coming from
the conditional distribution p,. For convenience, we will use the
notation o, = |S;|. Let A, := o, - O(S;) - Lo, >4y forallz € Z.
Our final estimator is

A= A

zeZ

We set ¢’ := £

VIXIY]
m > fmax (\/ﬁ/e'z,min(nm;/e',n6/7/€'8/7)) s 6)

= 0(¢), and choose

for a sufficiently large absolute constant § > 0. Our tester outputs
“accept” if A > 7 and “reject” otherwise, where 7 is selected to be

@(\/min(n, m)) A detailed pseudo-code for the algorithm is given
in Algorithm 1.
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Algorithm 1 TESTCONDINDEPENDENCE

Require: Parameter n := | Z|, A1 := |X|, Az := | Y], ¢ € (0, 1], and

sample access to p € A(X X Y x 2Z).

1: Set m « pmax (\/ﬁ/s’z,min(nﬂg/e’, n6/7/£'8/7)), where
¢ = e/[VAiAz

2: Set 7 «— {y/min(n, m)
small constant)

3. Draw M ~ Poisson(m) samples from p and let S be the multi-set
of samples.

4 forall ze Z do

5 Let S, € X X Y be the multi-set S, :=
{(xy: (xy2) €S}

> f > 1is a sufficiently large constant
> Threshold for accepting ({ > 0 is a

6: if |Sz| > 4 then > Enough samples to call ®
7: Compute O(S;).

8: Set Ay «— [S,| - D(Sy).
9: else

10: Set A, « 0.

11: end if

12: end for

13: if A:=3,c7z Az <7 then
14: return accept

15: else

16: return reject

17: end if

4.1 Proof of Correctness

In this section, we prove correctness of Algorithm 1. Specifically,
we will show that: (1) If p € Py y|z (completeness), then Algo-
rithm 1 outputs “accept” with probability at least 2/3, and (2) If
drv(p, Px,y|z) > & then Algorithm 1 outputs “reject” with proba-
bility at least 2/3. The proof proceeds by analyzing the expectation
and variance of our statistic A and using Chebyshev’s inequality.
We note that f, {’ are absolute constants defined in the algorithm’s
pseudo-code.

4.1.1  Analyzing the Expectation of A. The main result of this
subsection is the following proposition establishing the existence of
a gap in the expected value of A in the completeness and soundness
cases:

ProposITION 4.1. We have the following: (a) Ifp € Px vy |z, then
E[A] = 0. (b) Ifd—fv(p, Px,y|z) > ¢, then

E[A] > y min(me’?, m*e"* /8n®) > ﬂTY - y/min(n, m),
for some absolute constant y > 0.

The rest of this subsection is devoted to the outline of the proof
of Proposition 4.1. We start by providing a convenient lower bound
on the expectation of A. We prove the following lemma:

LEMMA 4.2. Forz € Z, let 6, == ||pz — qzlly and oz := m - pz(2).
Then, we have that:

E[A] >y ) 62min(as,al) . (7)
zeZ
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Given the expression of E[A] as linear combination of the §2’s,
the first statement of Proposition 4.1 is immediate. Indeed, if p
is conditionally independent, then all §,’s are zero. To establish
the second statement, we will require a number of intermediate
lemmata. We henceforth focus on the analysis of the soundness

case, i.e., we will assume that d-, (p, PX,yIZ) > ¢. We require the

following useful claim:

CLAIM 2. IdeV(p, PX,y|Z) > ¢, then ¥ e 7 0, > 2me’.

Lemma 4.2 suggests the existence of two distinct regimes: the
value of the expectation of our statistic is dominated by (1) the
“heavy” elements z € Z for which @, > 1, or (2) the “light” elements
z € Z for which a; < 1. Formally,let Zg :={ze€Z : a; > 1}

and Zp :={z€Z: a; <1}, sothat
Z 82 min(a,, af) = Z 82, + Z 8at . 3)
zeZ z€Zn zeZr

By Claim 2, at least one of the followmg two casesholds: (1) Y. ;e z,, 620z >r < 8/§ E[A] <

me’ or (2) Y ez, 6zaz > me’. We analyze each case separately,
establishing overall that

E[A] > ymin(mf'z, 4803 ) ,

which gives the first inequality of Proposition 4.1 (b). To complete
the proof of the proposition, it suffices to show that

mte’* n3 ) > ymin(n, m) .

We show this by considering the two ranges for ¢, 0 < ¢’ < 1/n'/8
and 1/n'/8 < ¢’ < 1. For each range, we recall our setting of
m and analyze the cases that could arise in the above expression
(depending on the two min’s). This completes the proof of Proposi-
tion 4.1. O

min(ms

4.1.2  Analyzing the Variance of A. We establish an upper bound
on the variance of A as a function of its expectation:

PROPOSITION 4.3. For some absolute constant C"" > 0, we have
Var[A] < C” (min(n, m) + E[A]) . 9)

This subsection is devoted to the proof sketch of Proposition 4.3.
By the law of total variance, we have that:

Var A = E[Var[A | o]] + VarE[A | o] .
We will proceed to bound each term from above, which will give
the result. We start with the first term. Conditioned on o, =
[Sz|, Eq. (5) gives that Var[A; | 0] < CU:ZZ (i—% + aiﬁ) Lo, >4y =
C(1+E[Az | 0z]) 15, »4)-Hence, for o := (07);¢ 7, we can write

Var[A | o] £ C(min(n,M) +E[A| o ]),
where we used the inequality >, c 7 15 >4) < 2zez (g, 21} <
min(n, M). From this we readily get

E[Var[A | ¢]] < C (min(n, m) + E[A]) ,

as desired. We now proceed to bound the second term. As shown
in Lemma 4.2, E[A| o] = ¥ ez 01521{52 >4)- By the indepen-
dence of the o,’s, we obtain that

Var[E[A| o] = Z §2Var[o;1 (o, 54)] - (10)
zeZ
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From (10) and Claim 1, recalling that §, < 2,z € Z, we get that

Var[E[A | 0]] <4C" )" 62E[021 o, 54)] = 4C'E[A] .
zeZ
This completes the proof of Proposition 4.3.

4.1.3 Completing the Proof. Recall that the threshold of the
algorithm is defined to be 7 := {y/min(n, m). In the completeness
case, by Proposition 4.1 (a), we have that E[A] = 0. Proposition 4.3
then gives that Var[A] < C” - min(n, m). Therefore, by Chebyshev’s
inequality we obtain

Var[A] < iC" min(n, m)
72 2
where the last inequality follows by choosing the constant { to be
sufficiently small (compared to C"’).
In the soundness case, by Chebyshev’s inequality and recalling
the lower bound on E[A] from Proposition 4.1 (b) (which implies

PrlA>17] < <

1
min(n,m) = 3’

E[A] /2 as long as { is chosen sufficiently small)

we get
Pr[A < 7] < Pr[|A-E[A]| = E[A] /2] < 472[1;]
< gy (min(rm) 1) 1
B E[AP  ElA]) 3’

where the third inequality uses Proposition 4.3 and the fourth in-
equality uses Proposition 4.1 (b), assuming S is sufficiently large.
This completes the proof of correctness. O

5 ESTIMATION OF A POLYNOMIAL IN p

In this section, we consider the following general problem: “given
a degree-d n-variate polynomial Q € Ry[Xj,...,Xn] and access
to i.i.d. samples from a distribution p € A([n]), how to estimate
Q@) = Q(p1, . . ., pn) to an additive error £?”

In particular, we will analyze an unbiased estimator for Q(p),
and provide quantitative bounds on its variance. (Due to space
constraints, we do not provide here the proof all results stated in
this section, which can be found in the full version of this paper.)

Remark 1 (Reduction to homogeneous polynomials). It is suffi-
cient to consider, without loss of generality, the case where Q €
Ry[X1,...,Xn] is a homogeneous polynomial, i.e., a sum of mono-
mials of total degree exactly d. This is because otherwise one can
multiply any monomial of total degree d’ < d by (X7 X,-)d_d/:
since 3.7, pi = 1, this does not affect the value of Q(p)

Based on the above remark, we hereafter assume Q is a homo-
geneous polynomial of degree d. Before stating the results, we
will need to set some notation. Given a multi-set S of indepen-
dent samples from a distribution p € A([n]), we let &5 denote the
fingerprint of S, ie., the vector (®s,1,...,Ps, ) € N” of counts:
2, ®s; = |S], and ®g,; is the number of occurrences of i in
S. Moreover, for a vector @ = (al, ...,an) € N we write X%
for the monomial X% := [[7 ||0(|| for the £; norm 37, a;,

i= 1
and (”a”) for the multinomial coefﬁ(:lent ” H . Finally, for any
integer d > 0 we denote by Hy C Rd[Xl, .. Xn] the set of homo-

geneous degree-d n-variate polynomials.
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PROPOSITION 5.1 (EXISTENCE). For every N > d, there exists an

unbiased linear estimator for Q(p), i.e., a linear function
Un: Ry[X1,...,Xn] = Ry[X1, ..., Xn]

such that E[UNQ(®s)] = Q(p), where S is obtained by drawing N
independent samples from p.

Proor. Fix N > d.Since we aim for a linear operator, it is enough
to define it on all monomials X¢ for ||«|| < d. Let

. N Ra)'e
UnX?® := (a,N_”a”) ﬂ(ai). 11)

i=1

Note that deg UNX* < |||l < d, so that indeed we have UyX* €
R4[X1,...,Xn]. Moreover, for S obtained from N independent sam-
ples from a distribution p € A([n]),

(%)

i=1

-1
E[UnX%(@s)] = (a’Nl\_]”a”) E

However, since ®@g is distributed according to a multinomial distri-
bution with parameters N and p1, . . . pn,

- 2, G

i=1
- E e
fen VB \B] T @il(Bi = an)!

E

pa
N! L 1
= — p —_—
i @il AN =1 B!
Bza
N ) Z 8 L 1
= PNl [ | 7—
(cx,N — |||l IATN i1 (Bi — ai)!
pa
(N N\ ﬁ_,,,(N— ||a||)
" g, e
B>a
N ) . Y(N—nan)
= p P
(“’N_ a7 N e Y
— N a
B (a,N— ||a||)P

the last equality recognizing the sum of the probability mass func-
tion of a multinomial distribution with parameters N — |||| and
P1,- - - pn. This shows that E[UyX%(®s)] = p%; by linearity, we
conclude that our estimator is indeed unbiased, i.e., E[UnNQ(®s)] =
Q(p) for all Q € Ry[Xj, ..., Xn] O

ProPOSITION 5.2 (UNIQUENESS). This unbiased estimator is unique:

that is, for every N > d, for any estimator Viy : [n]N — R satisfying

E[VN(S)] = Q).

where S is a multiset of N independent samples drawn from p, one
must have VN (S) = UNQ(®s) for all S.
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Proor. First, we can assume without loss of generality that Vi
is a function of the fingerprint only, instead of the multiset of N
samples itself. This is an immediate consequence of the fact that
this fingerprint is a sufficient statistic (or, more elementary, that
since all permutations of the samples are equally likely, one can
consider instead VJ(] = # Y.oceSy VN © o). Therefore, we assume
from now on that our estimator is of the form Vj : N* — R, and is
restricted to inputs summing to N.

For every k, N, let UI;V be the mapping from degree-d homoge-
neous polynomials to the set of their unbiased estimators on N
samples.! We first show that it is sufficient to establish uniqueness
only for the case d = N, i.e., to show that Ug maps polynomials to
singletons. To argue this is enough, suppose N > d, and with have
two different N-sample estimators Vn, Wy for a homogeneous

degree-d polynomial Q. Considering R := (X7, Xi)N_d Q which
is homogeneous of degree N and agrees with Q on every proba-
bility distribution p, we obtain two different N-sample estimators
VN, Wn for a homogeneous degree-N polynomial.

To prove the base case, we first describe a bijection ¢ (which will
turn out to be UZ) between the set &, of d-sample estimators and
that of homogeneous polynomial ;. Specifically, given a polyno-
mial Q € H; written as a weighted sum of degree-d monomials,
Q = Xja|=d ca X%, we let ¢(Q) be the estimator whose value on a
multiset S of d samples is

pQ@s) = > Elg g (12)

||er]|=d (g)

where a = (a1, . .., ap). In particular, it immediately follows from
the definition of the multinomial distribution that E[¢(Q)(®s)] =
Q(p), when S is a multiset of d independent samples drawn from p:

ElpQ@s) = Y, ~SPids=a]= Y %“(d)l_[p,-“"
laT=d (&) lalzd (o) \*/) =1

it
llall=d =1

a

It is also clear that ¢: Hy — & is a bijection.

Suppose now by contradiction that we have two different d-
sample estimators Vz, W; € &, for a single homogeneous poly-
nomial Q € Hy. As then ¢~ (V) # ¢ 1(W,), we may assume
without loss of generality that ¢~ !(V;) # Q, which implies that V
is an unbiased estimator for two distinct degree-d homogeneous
polynomials, namely Q and R := ¢~ (V).

In turn, we get that for every p € A([n]), O(p) = Es[V4(®s)] =
R(p); hence there difference D := Q — R is a non-zero homogeneous
degree-d polynomial which vanishes on every point (x1,...,x,) €
N" with 37 | x; = 1. By homogeneity, for every non-zero x =
(x1,...,xn) € RY,

X

_ d
D(x) = ||x||1D(”X||1

)=||x||‘f~o=o

IThe notation va, reminiscent of our linear estimator Uy, is not innocuous: indeed,

after uniqueness is established we will see that U’f\, is the restriction of Un (where

Un Q is viewed as the singleton {Un Q}) to degree-d homogeneous polynomials.
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and therefore D vanishes on the whole non-negative quadrant R} =
{xeR": x; > 0foralli}. Being identically zero on an open set,
D must be the zero polynomial, leading to a contradiction. O

The above shows existence and uniqueness of an unbiased es-
timator, provided the number of samples N is at least the degree
d of the polynomial (in p) we are trying to estimate. The proposi-
tion below shows this is necessary: if N < d, there is no unbiased
estimator in general.

PROPOSITION 5.3. Let Q € Hy be a homogeneous n-variate poly-
nomial such that Z” X does not divide Q. Then, there exists no
unbiased estlmatorfor Q(p) from N samples unless N > d.

PRrOOF. Suppose by contradiction that, for such a Q € H,, there
exists an unbiased estimator for Q(p) with N < d samples. Then,
since U% (with the notation of the proof of Proposition 5.2) is
invertible, this estimator is also an unbiased estimator for some
homogeneous degree-N polynomial R € H . Therefore, it is also
a unbiased estimator for the degree-d homogeneous polynomial

=R-(X}_, X )N e ;. But by Proposition 5.2 one must then
have Q = R’, which is impossible as 37! | X does not divide Q. O

Having established existence and uniqueness of our unbiased
estimator, it remains to bound its variance.

THEOREM 5.4. Fix N > d, and let the mapping Un : Ry[X1, . ..

Ry4[X1,...,Xn] be as above. Then, for every Q € Hy,
E[(UnQ(®s))*] =
2
3 (usn) P [d"=lop) (N—d)( N
S Us Jlsllz | dxe d—sll/\llsll.d —lIsll, N — d
lIsll<d

(13)
where the expectation is over S obtained by drawing N independent

samples from p.

By the above theorem, in order to analyze the variance of the
estimator Var UyQ(®s) = E[(UnQ(®s))?] — E[UNQ(®s)]?, one
needs to bound the different terms of

E[(UNQ@S))Z]
~ < [d"0(p) 2IN—d N 1y
Z Z( dxs (d—h)(h,d—h,N—d) h?

) Al

d
= > Ti(Q.p.d.N)
h=0
letting Ty, (Q, p, d, N) denote the inner sum for a given 0 < h < d.
In the rest of this section, we provide some useful bounds on some
of these terms. First, we show that the first term will be mostly
taken care of in the variance by the subtracted squared expectation,

E[UNQ(®3)]* = Q(p)*:
Cram 3. To(Q,p,d, N) - Q(p)* = -Qp)? (& + 04 5)) < 0.

(For our applications, the non-positivity will be enough as we only
seek to upper bound the variance.)

s Xn] —
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In view of bounding the rest of the terms, let Ot € H; de-
note the polynomial obtained from Q by making all its coeffi-
cients non-negative: that is, if Q = X4 =4 ¢« X%, then ot =
2llall=d lcal X*. Then, we show the following:

LEMMA 5.5. Fixany0 < g < d. Then,

d"o(p)
dxs

d
D Th(@Q.p.d,N) =0 ( ) Q*(p) m
Pt slsiizg

5.1 Specific Case of Interest: £, Distance
Between p and px ® py

We now instantiate the results of Section 5 to a case of interest, the
polynomial Q corresponding to the {3 distance between a bivariate
discrete distribution and the product of its marginals. In more de-
tail, for any distribution p € A(X X YY) where |X| = A1, |Y]| = Az
(without loss of generality, we identify X and Y to [A;] and [Az]
respectively), we let pr := px ® py € A(X X Y) be the product of
its marginals. Moreover, define the degree-4 (A1Az)-variate poly-

nomial Q € Ry[X1,1,X2,1,. .. > XAL 1 XA 20 - ’XAl,Az] as
X115, XA A,)
Ay Ay )
=ZZ(X1-,]-ZZX,,,/—ZXI ]Zx,]) . (14)
i=1j=1 V#i j#j i'#i J#j

(An explicit expression for its unbiased estimator Un Q(®s) will be
given in Eq. (15)). Specifically, we shall prove the following result:

PROPOSITION 5.6. Let Q be as in Eq. (14), and suppose that b >
max(||pl3, llprll3). Then, for N > 4,

Var UNQ((DS) =0 Q(PA)[\/E + b ) .

N2

For consistency of notation with the previous section, we let n :=
A1/ in what follows.

Cram 4. For any p over X X Y, we have Q(p) = ||p —pn||%.

Firstly, we compute UxQ explicitly. By linearity of Uy, we can
compute the unbiased estimator for each term separately, after

writing Q(X) = Z ZAZ A;j(X)? where

lj(X)_Xl]ZZX '—ZX ZXU/'

i'#i j#j i'#i J#j

Now UnQ = UNA% and we want to compute UNA%. Note that the
sums in A;;(X) are over disjoint sets of X;j’s whose union is every
X;j. We can consider A;; as a polynomial over the probabilities of
a distribution with support of size 4, which consists of the events
given by whether the marginal X is equal to i, and whether the
marginal Y is equal to j. By uniqueness of the unbiased estimator,
UNAl? 18 the same on this distribution of support 4 as on the original
A1Az-size support distribution. Formally, we will write

l](X) =X ]X— i,—j - X, —]X—l]
whereX_,-,_j = Zi’#-i Zj':#j i ]/3X—lj = Zi’#i ir,j,andX,-,_j =
2 jr+j Xi,j - Squaring gives

Aij(X)* = X2 X2+ X2 X2,

0K XX = X X=X = X
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and it remains to apply Un to each of these terms. We see that

N!
o UNXi i Xoi X X = s, s, -, - DS, i, - P, i, »

(N =4
(N .4)1 UNXF X255 = @s,i,j(Ds,i,j = DPs,—i,-j(®s,—i—j — 1),
(N- 4);UNXE”X2_, = 0s,-ij(®s,-ij = DPs,ij(Ps,i—j = 1)-

These counts are similarly summed so that, for example, ®g ; —; =
2jr#j s, i, j7- Adding these together, we get that:

A Ay

(NN 4)! UnQ(®s)) = (NN'4)' )y Z UnAij(®@s))°

i=1 j=1

AL A
= Z Z (©s,1,j(®s,i,j — V®s,—i,—j(Ps,—i,—j = 1)

i=1j=1
+ @5 i j(Ps, i j — DPs i, —j(Ps,i,—j — 1)
- 205 ; jPs i —Ps,i,—jPs,—i j)

Ar Ay

= Z Z ((‘PS, ij 05, —i—j = O, jPs,—i,—j)

i=1 j=1
+ ®s,i, jPs,—i,—j(1 = Ps,i,j ~ Ps,~i,—j)
+ @5, jPs,i,—j(1 = Cs,—i.j = Ps,i,—j))
(15)
where q)S,fi,fj = Zilil‘ Zj'#j q)s,i’,j” cI>S’,,-’j = Zi’:ﬁi q)S,i’,j and
®s,i,—j = Xjr2j Ps,i,j- This yields the explicit formula for our
unbiased estimator of Q(p).

We then turn to bounding its variance. From Theorem 5.4, we then
have that, for N > 4,

E[(UNQ(®s))?] =

4 K\ p¢ [dP 2 -1

p° [d"Qp)| (N-4 N

f;)SEZN;" (S)W( dxs ) (4—h)(h,4—h,N—4)
Isll=h

(16)

The rest of this section is devoted to bounding this quantity. For

h€{0,...,4}, we let T,(N) be the inner sum corresponding to h,
so that E[(UnQ(®s))?] = X} _, Th(N).

For clarity, we (re-)introduce some notation: that is, we write

Q(X) = Ty 292 Aj(X)? where Ayj(X) i= Xi j X1 Lraj Xor,jr—

Dt X,-r,J ZJ #j Xi,j» as before. Each Ajj is a degree-2 polynomial,
with partial derivatives

Xi, j ifk#i,0+j
9Aij _ Yirgi Djj Xy Hk=i0=]
0Xy ¢ = Dizi Xirj ifk=il#j

=Dy Xij ifk#i,{=j

and
9%Ajj

= (5 , ,
an,[an’,f/ ( ik — lk )( ]f)

e The first contribution, for h = 0, is O(Q(p)z/N) by Claim 3
so we have Ty under control: indeed,

Q(p) < 2Vb
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by the triangle inequality and the definition of b; so that

To(N) - Q(p)? = O(Q(p)VB/N).

e The second, h = 1, contributes
do(p)\* (N -4 N o\
dxs 3 1,3, N -4

o 2" (5]

Since (N3_4)/(IZ) = O(1/N), it is enough to consider the

other factor,
dQ(p)\* _ dQ(p)
dXS) _;pk (dX )

2,7
We have, recalling the expression of the derivatives of A;;,

seN”
lIs|I=1

1d0 1 Z dhi;
20;

2dXp, 2 VX
:ZZXIJ zj(X)"‘Ak[(X)ZZXU
ik j#€ i#k j#l
- ZAkj(X)ZXi,j _ZAi{’(X)ZXi,j
j#l i#k ik j#l

Having this sum of four terms A1, Az, A3, A4 for d?(_f{ by

Cauchy-Schwarz ( dgl(Q ) < 4(A2 + A2 + A2 + Az) and so

we can bound each of the square of these terms separately,
ignoring cross factors.
— For the first, we have (again by Cauchy-Schwarz)

2
Z ZPi,inj(p) < (ZPi,inj(p)
ik j#€ iJj
<[ g
ij Lj

< bQ(p) < VbQ(p)

2
50 .kt (Zisk Tjwe piiBijp)) < bO).

2
— For the second, since (Akg(p) Yitk Ljze Pi,j) < Are(p)?,
we have

ZPk | Drelp) Z sz il < ZPk Dre(p)’

i#k j#l
2
DI AN
k.t k,€

2

< Vb (| D Ake(p)?
[

which is equal to VbQ(p).
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- For the third and fourth term (similarly handled by sym-
metry),

2
ZPk,[ (Z Akj(p) Zpi,j)
P

j#t i#k

< (Z By p) Zpu)

?r

ik

(z%@zm) S

ik

¥[S0 5 (] | S

j \i#k
(Cauchy-Schwarz)

and hence

zpkf(zAkmzm)

pslpon
-l glga)zn
3 (o) (S er) X (Sree)

(Cauchy-Schwarz)
(zpusz(zAmm#
3 k J

where the last step relies on }; (Zipi,j)z < 1 (since
it is the squared ¢, norm of a probability distribution,
that of the first marginal of p) to write }}; (Zipi, j)z <

IA

<\ () 2

J 1

2 (Zipi, j)z. Continuing from there, and using mono-

tonicity of £, norms to write }; v? < (X lvil )2,

ZPk e(]; Akj(p);;pu)
2 (D) S(Sne) X oo

- \/Zpy(k)z pr(f)ZQ(p) = 3 btk 10p)
J k k,j

< Vb0(p)

and so T{(N) = O(Q(p)\/z/N).
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Gathering these four terms, and by the above discussion, we
obtain

(W)

TiN) = 4—2= " pres (3)%((”3) <y 4VbQ(p)

1) 1 ()

which is O % .

e Finally, for the rest of the contributions (b > 2), we in-
voke Lemma 5.5. Specifically, we first observe that, for any
distribution p € A(X X V),

Ay Az
Q*(p) = ZZ(PuZZPz,J’ +ZP1,J ZP:J)

i=1j EINEY i'#i J'#j

s;@ﬁﬁmgmj
x5

<2 (||p||§ +lpnl) < 4b.

Next, we need to upper bound the high-order derivatives of
Q. By Leibniz’s rule, for h > 2 and ||s|| = h,

"o s\ IS IA dlsi=Nsli,
axs Z v ZZH( ) dxs  dxss

i,j s’<s{=1

SIS 5

dxs—s'
(Cauchy-Schwarz)

s’ <s i=Cl Lj

dls=lIA;; )2

a3 () 511

i,j §<si=t ¢
d||S'||A..
:2hmaxz ,U
s’ <s 7 dxs

Since Aj;j has degree 2, to bound this maximum we have to
. d°Asi(p)\?

consider 3 cases: first, }; ; ( d)éo ) = Q(p) < 4. Second,

recalling the partial derivatives of A;; we computed earlier,

() 555 |

i,j ik j£€ i'£k j/#C
2 2
+ Z Pyt Z Dr,jr
i'#k 4
<4.
Third,

2
d*Aij(p)
——— | =) (Gix —Sip)*(Sje — i) < 4.
%;(dxk’gdxkr’[/ %: ik ik J J
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d"o
axs

<244

Combining all of the above cases results in |

for any h > 2 and ||s|| = h, and from there

iTh(NFO(%)-24-4-4b=o(i2).
h=2 N N

Accounting for all the terms, we thus can bound the variance as

4

Var Uy Q(®s) = (To(N) = Q(p)*) + Ty (N) + > Ty(N)
h=2
which is O(%5 + %) concluding the proof of Proposition 5.6.
Remark 2 (A Detour: Estimating a Polynomial under Poisson Sam-
pling). We observe that analogues of our theorems hold under
Poisson sampling (instead of multinomial sampling as treated in Sec-
tion 5). We defer these results, which follow from a straightforward
(yet slightly cumbersome) adaptation of the proofs of this section,
to the full version of this paper.

6 TESTING WITH RESPECT TO MUTUAL
INFORMATION

We conclude by considering a slightly different model from the one
considered thus far. In particular, while the total variation metric
is a reasonable one to measure what it means for X and Y to be
far from conditionally independent, there is another metric that is
natural in this context: conditional mutual information. Specifically,
we modify the testing problem to distinguish between the cases
where X and Y are conditionally independent on Z and the case
where I(X;Y|Z) > e. Our picture here is somewhat less complete,
but we are still able to say something in the case where X, Y are
binary.

THEOREM 6.1. If X and Y are binary random variables and Z
has a support of size n, there exists a sample-efficient algorithm that
distinguishes between I(X;Y|Z) = 0 and I(X; Y|Z) > ¢ with sample
complexity

\/ﬁ

6/7 7/8
(0] max(min(n— log8/7(1/5), nT log(l/e)), -z logz(l/e))) .

£8/7

Proor. This follows immediately upon noting that by Lemma 6.2
(stated and proven later), that if X and Y are e-close in total vari-
ation distance from being conditionally independent on Z, then
I(X;Y|Z) < O(elog(1/¢)); or, by the contrapositive, that I(X; Y|Z) >
¢ implies that X and Y are Q(¢/log(1/¢))-far in total variation dis-
tance from being conditionally independent on Z. Therefore, it
suffices to run our existing conditional independence tester with
parameter ¢’ := Q(¢/log(1/¢)). The sample complexity of this tester
is as specified. O

Remark 3 (On the optimality of this bound). It is not difficult to
modify the analysis slightly in order to remove the logarithmic
factors from the first two terms in the above expression. Intuitively,
this is because these terms arise only when at least half of the
mutual information comes from “light” bins, with mass at most
1/m. In this case, these bins contribute at least m* ¥, e2p~(2)* >
m* Y, (pz(2)ez log(1/e,))* > m*e* /n3 to the expectation of Z, and
the analysis proceeds from there as before.
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It is also easy to show that in this regime our lower bounds still
apply, as the hard instances also produced distributions with mutual
information Q(e).? Therefore, we have matching upper and lower
bounds as long as ¢ > n_3/8/log2 n.

However, it seems likely that the correct behavior in the small ¢
regime is substantially different when testing with respect to mutual
information. The difficult cases for total variation distance testing
actually end up with mutual information merely I(X; Y|Z) = O(¢?).
It is quite possible that a better algorithm or a better analysis of the
existing algorithm could give substantially improved performance
when ¢ < n=3/8 In fact, it is conceivable that the sample complexity
of O(n7/ 8 /&) could be maintained for a broad range of ¢. The only
lower bound that we know preventing this is a lower bound of
Q(elog(1/¢)) by noting that there are distributions with I(X; Y|Z) >
&, but where (X, Y, Z) is O(¢/log(1/¢))-far in variation distance from
being conditionally independent.

LEMMA 6.2. Assume (X,Y,Z) ~ p, wherep € A(X XY X Z)
with |X| = A1, | Y| = Az, and | Z| = n. Then, for every ¢ € (0, 1),

. IdeV(p, Px.y| z) < ¢, then I(X; Y|Z) < O(e log(A1As/e));
. Ifdrv(P’PX,yIZ) > ¢, then I(X;Y|Z) = 262

Proor. The second item is simply an application of Pinsker’s
inequality, recalling that

IX:Y|Z) = dg (X Y) [ Z || (X [ 2)® (Y | 2)).

i.e. the Kullback-Leibler divergence between the joint distribution
of (X,Y | Z) and the product of marginals (X | Z) and (Y | Z). As
for the first, it follows from the relation between conditional mutual
information and total variation distance obtained in [40]. O
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