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ABSTRACT

We study the problem of testing conditional independence for dis-

crete distributions. Specifically, given samples from a discrete ran-

dom variable (X ,Y ,Z ) on domain [Λ1] × [Λ2] × [n], we want to
distinguish, with probability at least 2/3, between the case that X

and Y are conditionally independent given Z from the case that

(X ,Y ,Z ) is ε-far, in ℓ1-distance, from every distribution that has

this property. Conditional independence is a concept of central

importance in probability and statistics with a range of applica-

tions in various scientific domains. As such, the statistical task of

testing conditional independence has been extensively studied in

various forms within the statistics and econometrics communities

for nearly a century. Perhaps surprisingly, this problem has not been

previously considered in the framework of distribution property

testing and in particular no tester with sublinear sample complexity

is known, even for the important special case that the domains of

X and Y are binary.

The main algorithmic result of this work is the first conditional

independence tester with sublinear sample complexity for discrete

distributions over [Λ1] × [Λ2] × [n]. To complement our upper

bounds, we prove information-theoretic lower bounds establish-

ing that the sample complexity of our algorithm is optimal, up

to constant factors, for a number of settings. Specifically, for the

prototypical setting when Λ1,Λ2 = O(1), we show that the sample

complexity of testing conditional independence (upper bound and

matching lower bound) is

Θ

(
max

(
n1/2/ε2,min

(
n7/8/ε,n6/7/ε8/7

)))
.

To obtain our tester, we employ a variety of tools, including (1)

a suitable weighted adaptation of the łflatteningž technique, and

(2) the design and analysis of an optimal (unbiased) estimator for

the following statistical problem of independent interest: Given a

degree-d polynomial Q : Rn → R and sample access to a distribu-

tion p over [n], estimate Q(p1, . . . ,pn ) up to small additive error.
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Obtaining tight variance analyses for specific estimators of this

form has been a major technical hurdle in distribution testing. As

an important contribution of this work, we develop a general theory

providing tight variance bounds for all such estimators. Our lower

bounds, established using the mutual information method, rely on

novel constructions of hard instances that may be useful in other

settings.
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1 INTRODUCTION

1.1 Background

Suppose we are performing a medical experiment. Our goal is to

compare a binary response (Y ) for two treatments (X ), using data

obtained at n levels of a possibly confounding factor (Z ). We have

a collection of observations group in strata (fixed values of Z ). The

stratified data are summarized in a series of 2×2 contingency tables,
one for each strata. One of the most important hypotheses in this

context is conditional independence ofX andY givenZ . Howmany

observations (X ,Y ,Z ) do we need so that we can confidently test

this hypothesis?

The above scenario is a special case of the following statistical

problem: Given samples from a joint discrete distribution (X ,Y ,Z ),
are the random variables X ,Y independent conditioned on Z? This

is the problem of testing conditional independence ś a fundamental

statistical task with a variety of applications in a variety of fields,
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includingmedicine, economics and finance, etc. (see, e.g., [35, 43, 49]

and references therein). Formally, we have the following definition:

Definition 1.1 (Conditional Independence). Let X ,Y ,Z be random

variables over discrete domainsX,Y,Z respectively. We say thatX

andY are conditionally independent givenZ , denoted by (X ⊥ Y ) | Z ,
if for all (i, j, z) ∈ X×Y×Zwehave that: Pr[X = i,Y = j | Z = z ] =
Pr[X = i | Z = z ] · Pr[Y = j | Z = z ].

Conditional independence is an important concept in probability

theory and statistics, and is a widely used assumption in various

scientific disciplines [17]. Specifically, it is a central notion in mod-

eling causal relations [43] and of crucial importance in graphical

modeling [39]. Conditional independence is, sometimes, a direct

implication of economic theory. A prototypical such example is the

Markov property of a time series process. The Markov property

is a natural property in time series analysis and is broadly used

in economics and finance [27]. Other examples include distribu-

tional Granger non-causality [31] Ð which is a particular case of

conditional independence Ð and exogeneity [5].

Given the widespread applications of the conditional indepen-

dence assumption, the statistical question of testing conditional

independence has been studied extensively for almost a century. In

1924, R. A. Fisher [28] proposed the notion of partial correlation

coefficient, which leads to Fisher’s classical z-test for the case that

the data comes from a multivariate Gaussian distribution. For dis-

crete distributions, conditional independence testing is one of the

most common inference questions that arise in the context of con-

tingency tables [2]. In the context of graphical models, conditional

independence testing is a cornerstone in the context of structure

learning and testing of Bayesian networks (see, e.g., [9, 36, 37, 47]

and references therein). Finally, conditional independence testing

is a useful tool in recent applications of machine learning involving

fairness [32].

One of the classical conditional independence tests in the dis-

crete setting is the CochranśMantelśHaenszel test [13, 35], which

requires certain strong assumptions about the marginal distribu-

tions. When such assumptions do not hold, a common tester used

is a linear combination of χ -squared testers (see, e.g., [2]). However,

even for the most basic case of distributions over {0, 1}2 × [n], no
finite sample analysis is known. A recent line of work in econo-

metrics has been focusing on conditional independence testing in

continuous settings [6, 18, 19, 29, 33, 34, 42, 44ś46, 49, 51]. The the-

oretical results in these works are asymptotic in nature, while the

finite sample performance of their proposed testers is evaluated via

simulations.

In this paper, we will study the property of conditional inde-

pendence in the framework of distribution testing. The field of

distribution property testing [3] has seen substantial progress in the

past decade, see [8, 30, 41] for two recent surveys and books. A

large body of the literature has focused on characterizing the sam-

ple size needed to test properties of arbitrary distributions of a given

support size. This regime is fairly well understood: for many prop-

erties of interest there exist sample-efficient testers [1, 7, 11, 12, 20ś

22, 24, 30, 38, 48]. Moreover, an emerging body of work has focused

on leveraging a priori structure of the underlying distributions to

obtain significantly improved sample complexities [4, 9, 14ś16, 23ś

25].

1.2 Our Contributions

Rather surprisingly, the problem of testing conditional indepen-

dence has not been previously considered in the context of distri-

bution property testing. In this work, we study this problem for

discrete distributions and provide the first conditional indepen-

dence tester with sublinear sample complexity. To complement our

upper bound, we also provide information-theoretic lower bounds

establishing that the sample complexity of our algorithm is opti-

mal for a number of important regimes. To design and analyze

our conditional independence tester, we employ a variety of tools,

including an optimal (unbiased) estimator for the following sta-

tistical task of independent interest: Given a degree-d polynomial

Q : Rn → R and sample access to a distribution p over [n], estimate

Q(p1, . . . ,pn ) up to small additive error.

In this section, we provide an overview of our results. We start

with some terminology. We denote by ∆(Ω) the set of all distribu-
tions over domain Ω. For discrete setsX,Y,Z, we will usePX,Y |Z
to denote the property of conditional independence, i.e.,

PX,Y |Z := { p ∈ ∆(X × Y ×Z) : if (X ,Y ,Z ) ∼ p, (X ⊥ Y ) | Z } .

We say that a distribution p ∈ ∆(X × Y ×Z) is ε-far from PX,Y |Z ,
if for every distribution q ∈ PX,Y |Z we have that dTV(p,q) > ε .

We study the following hypothesis testing problem:

T(Λ1,Λ2,n, ε): Given sample access to a distribution p over

X × Y × Z, with |X| = Λ1, |Y| = Λ2, |Z| = n, and ε > 0,

distinguish with probability at least 2/3 between the following

cases:

• Completeness: p ∈ PX,Y |Z .
• Soundness: dTV(p,PX,Y |Z) ≥ ε .

Even though the focus of this paper is on testing under the to-

tal variation distance metric (or equivalently the ℓ1-distance), we

remark that our techniques yield algorithms under the mutual infor-

mation metric as well, near-optimal for a wide range of parameters.

The interested reader is referred to Section 6 for a short description

of these implications.

The property of conditional independence captures a number

of other important properties as a special case. For example, the

n = 1 case reduces to the property of independence over [Λ1]×[Λ2],
whose testing sample complexity was resolved only recently [22].

Arguably the prototypical regime of conditional independence cor-

responds to the other extreme. That is, the setting that the domains

X, Y are binary (or, more generally, of small constant size), while

the domainZ is large. This regime exactly captures the well-studied

and practically relevant setting of 2×2×n contingency tables (men-

tioned in the motivating example of the previous section). For the

setting whereX,Y are small, our tester and our sample complexity

lower bound match, up to constant factors. Specifically, we prove:

Theorem 1.2. There exists a computationally efficient tester for

T(2, 2,n, ε) with sample complexity

O
(
max

(√
n/ε2,min

(
n7/8/ε,n6/7/ε8/7

)))
.



Testing Conditional Independence of Discrete Distributions STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Moreover, this sample upper bound is tight, up to constant factors.

That is, any tester for T(2, 2,n, ε) requires at least

Ω

(
max

(√
n/ε2,min

(
n7/8/ε,n6/7/ε8/7

)))
samples.

To the best of our knowledge, prior to our work, no o(n) sample

algorithm was known for this problem. Our algorithm is quite

simple: For every fixed value of z ∈ [n], we consider the conditional
distribution pz . Note that pz is a distribution over X × Y. We

construct an unbiased estimator Φ of the squared ℓ2-distance of

any distribution on X ×Y from the product of its marginals. Our

conditional independence tester uses this estimator in a black-box

manner for each of the pz ’s. In more detail, our tester computes a

weighted linear combination of Φ(pz ), z ∈ [n], and rejects if and

only if this exceeds an appropriate threshold.

To obtain the required unbiased estimator of the squared ℓ2-

distance, we observe that this task is a special case of the following

more general problem of broader interest: For a distribution p =

(p1, . . . ,pn ) and an polynomial Q : Rn → R, obtain an unbiased

estimator for the quantity Q(p1, . . . ,pn ). We prove the following

general result:

Theorem 1.3. For any degree-d polynomial Q : Rn → R and

distribution p over [n], there exists a unique and explicit unbiased

estimatorUN forQ(p) given N ≥ d samples. Moreover, this estimator

is linear in Q and its variance is at most

∑
s∈Nn

1≤∥s∥≤d

(
n∏
i=1

p
si
i

) (
∂ ∥s∥Q(p)

∂X
s1
1 . . . ∂X

sn
n

)2 (
(N − ∥s∥)!
N !

∏n
i=1 si !

)
,

which itself can be further bounded as a function of Q+, the degree-d

polynomial obtained by taking the absolute values of all the coeffi-

cients of Q , and its partial derivatives.

We note that Theorem 1.3 can be appropriately extended to the

setting where we are interested in estimatingQ(p,q), where p,q are

discrete distributions over [n] and Q is a real degree-d polynomial

on 2n variables.

In addition to being a crucial ingredient for our general con-

ditional independence tester, we believe that Theorem 1.3 is of

broader interest. In a number of distribution testing problems, we

need unbiased estimators for some specific polynomialQ of a distri-

bution p (or a pair of distributions p,q). For example, the ℓ2-tester

of [12] (which has been used as a primitive to obtain a wide range

of sample-optimal testers [22]) is an unbiased estimator for the

squared ℓ2-distance between two distributions p,q over [n]. While

designing such an unbiased estimator may be relatively simple, its

analysis is typically highly non-trivial. Specifically, obtaining tight

bounds for the variance of such estimators has been a major tech-

nical hurdle in distribution testing. As an important contribution

of this work, we develop a general theory providing tight variance

bounds for all such estimators.

The conditional independence tester Theorem 1.2 straightfor-

wardly extends to larger domains X,Y, alas its sample complexity

becomes at least linear in the size of these sets. To obtain a sublin-

ear tester for this general case, we require a number of additional

conceptual and technical ideas. Our main theorem for conditional

independence testing for domain [Λ1] × [Λ2] × [n] is the following:

Theorem 1.4. There exists a computationally efficient tester for

T(Λ1,Λ2,n, ε) with sample complexity

O

(
max

(
min

(
n7/8Λ1/4

1 Λ
1/4
2

ε
,
n6/7Λ2/7

1 Λ
2/7
2

ε8/7

)
,

n3/4Λ1/2
1 Λ

1/2
2

ε
,
n2/3Λ2/3

1 Λ
1/3
2

ε4/3
,
n1/2Λ1/2

1 Λ
1/2
2

ε2

))
, (1)

where we assume without loss of generality Λ1 ≥ Λ2.

The expression of the sample complexity in Theorem 1.4 may

seem somewhat unwieldy. In an attempt to interpret this bound,

we consider several important special cases of interest:

• For Λ1 = Λ2 = O(1), (1) reduces to the binary case for X ,Y ,

recovering the tight bound of Theorem 1.2.

• For n = 1 (and Λ1 ≥ Λ2), (1) recovers the optimal sample

complexity of independence testing, i.e.,

Θ

(
max

(
Λ
2/3
1 Λ

1/3
2 /ε

4/3,
√
Λ1Λ2/ε2

))
(see [22]).

• For Λ1 = Λ2 = n (and ε = Ω(1)), the sample complexity of

(1) becomes O(n7/4). In Theorem 1.5 below, we show that

this bound is optimal as well.

We conclude with the aforementioned tight sample lower bound

for constant values of ε , in the setting where all three coordinates

are of approximately the same cardinality:

Theorem 1.5. Any tester for T(n,n,n, 1/20) requires Ω(n7/4)
samples.

1.3 Some Notation

For n ∈ N, we write [n] for the set {1, . . . ,n}, and log for the binary
logarithm. A probability distribution over discrete domain Ω is

a function p : Ω → [0, 1] such that ∥p∥1 :=
∑
ω ∈Ω p(ω) = 1. We

denote by ∆(Ω) the set of all probability distributions over domain

Ω. Recall that for two probability distributions p,q ∈ ∆(Ω), their
total variation distance is defined as dTV(p,q) := supS ⊆Ω(p(S) −
q(S)) = 1

2

∑
ω ∈Ω |p(ω) − q(ω)| , i.e., dTV(p,q) = 1

2 ∥p − q∥1. Their
ℓ2-distance is the distance ∥p − q∥2 between their probability mass

functions. Given a subset P ⊆ ∆(Ω) of distributions, the distance
from p to P is then defined as dTV(p,P) := infq∈P dTV(p,q). If
dTV(p,P) > ε , we say that p is ε-far from P; otherwise, it is ε-close.

1.4 Organization

Due to space limitations, most of the proofs and many results (in-

cluding the lower bounds and testing algorithms for the general

case) have been deferred to the full version of this paper [10]. The

structure of this extended abstract is as follows: In Section 2, we give

a detailed outline of our techniques; Section 3 provides some neces-

sary preliminaries and notation, before we describe in Section 4 our

algorithm for the case of constant |X| , |Y| with a detailed sketch

of its analysis. Section 5 then contains the details of our polynomial

estimator bounds, and Section 6 outlines the generalization of our

results to testing udner conditional mutual information.
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2 OUR TECHNIQUES

2.1 Conditional Independence Tester for

Binary X,Y
In the case where X and Y are binary, for each bin z ∈ Z we will

attempt to estimate the squared ℓ2-distance of the corresponding

conditional distribution and the product of its conditional marginals.

In particular, ifX = Y = {0, 1} the square of p00p11−p01p10, where
pi j is the probability thatX = i andY = j , for Z = z, is proportional

to this difference. Since this square is a degree-4 polynomial in the

samples, there is an unbiased estimator of this quantity that can

be computed for any value z ∈ Z from which we have at least 4

samples. Furthermore, for values of z ∈ Z for which we have more

than 4 samples, the additional samples can be used to reduce the

error of this estimator. The final algorithm computes a weighted

linear combination of these estimators (weighted so that the more

accurate estimators from heavier bins are given more weight) and

comparing it to an appropriate threshold.

The correctness of this estimator requires a rather subtle anal-

ysis. Recall that there are three different regimes of ε versus n in

the optimal sample complexity and the tester achieves this bound

without a case analysis. As usual, we require a bound on the vari-

ance of our estimator and a lower bound on the expectation in the

soundness case.

On the one hand, a naive bound on the variance for our estimator

for an individual bin turns out to be insufficient for our analysis.

In particular, let p be a discrete probability distribution and Q(p) a
polynomial in the individual probabilities of p. Givenm ≥ deg(Q)
independent samples from p, it is easy to see that there is a unique

symmetric, unbiased estimator for Q(p), which we callUmQ . Our

analysis will depend on obtaining tight bounds for the variance of

UmQ . It is not hard to show that this variance scales asO(1/m), but
this turns out to be insufficient for our purposes. In order to refine

this estimate, we show that Var(UmQ) = R(p)/m + O(1/m2), for
some polynomial R for which we devise a general formula. From

this point on, we can show that for our Q (or in general any Q

which is the square of a lower degree polynomial) Var(UmQ) =
O(Q(p)/m + 1/m2). This provides us with a much sharper estimate

on the variance of our estimator, except in cases where the mean is

large enough that the extra precision is not necessary.

Another technical piece of our analysis is relating the mean of

our estimator to the total variation distance of our distribution

from being conditionally independent. In particular, our estimator

is roughly the sum (over theZ-bins with enough samples) of the

squared ℓ2 distance that the conditional distribution is from being

independent. When much of the distance from conditionally inde-

pendence comes from relatively heavy bins, this relation is a more

or less standard ℓ1/ℓ2 inequality. However, when the discrepancy

is concentrated on very light bins, the effectiveness of our tester

is bounded by the number of these bins which obtain at least four

samples, and a somewhat different analysis is required. In fact, out

of the different cases in the performance of our algorithm, one of

the boundaries is determined by a transition between the hard cases

involving discrepancies supported on light bins to ones where the

discrepancy is supported on heavy bins.

If the variablesX andY are no longer binary, our estimates for the

discrepancy of an individual bin must be updated. In particular, we

similarly use an unbiased estimator of the ℓ2 distance between the

conditional distribution and the product of its conditional marginals.

We note however that variance of this estimator is large if the

marginal distributions have large ℓ2 norms. Therefore, in bins for

which we have a large number of samples, we can employ an idea

from [22] and use some of our samples to artificially break up

the heavier bins, thus flattening these distributions. We elaborate

on this case, and the required ingredients it entails, in the next

subsection.

2.2 General Conditional Independence Tester

Assuming that we take at least four samples from any bin z ∈ Z,

we can compute an unbiased estimator for the squared ℓ2 distance

between pz , the conditional distribution, and qz the product of its

conditional marginals. It is easy to see that this expectation is at

least ε2z/(|X| |Y|), where εz is the ℓ1 distance between the condi-

tional distribution and the closest distribution with independent

X and Y coordinates. At a high level, our algorithm takes a linear

combination of these bin-wise estimators (over all bins from which

we got at least 4 samples), and compares it to an appropriate thresh-

old. There is a number of key ideas that are needed so that this

approach gives us the right sample complexity.

Firstly, we use the idea of flattening, first introduced in [22]. The

idea here is that the variance of the ℓ2 estimator is larger if the ℓ2
norms of p and q are large. However, we can reduce this variance

by artificially breaking up the heavy bins. In particular, if we have

m samples from a discrete distribution of support size n, we can

artificially addm bins and reduce the ℓ2 norm of the distribution

(in expectation) to at most O(1/√m). We note that it is usually

not a good idea to employ this operation for m ≫ n, as it will

substantially increase the number of bins. Nor do we want to use

all of our samples for flattening (since we need to use some for the

actual tester). Trading off these considerations, using min(m/2,n)
of our samples to flatten is a reasonable choice. We also remark that

instead of thinking of p and q as distributions over |X| |Y| bins, we
exploit the fact thatq is a two-dimensional product distribution over

|X| × |Y|. By flattening these marginal distributions independently,

we can obtain substantially better variance upper bounds.

Secondly, we need to use appropriate weights for our bin-wise

estimator. To begin with, one might imagine that the weight we

should use for the estimator of a bin z ∈ Z should be proportional

to the probability mass of that bin. This is a natural choice because

heavier bins will contribute more to the final ℓ1 error, and thus,

we will want to consider their effects more strongly. The proba-

bility mass of a bin is approximately proportional to the number

of samples obtained from that bin. Therefore, we might want to

weight each bin by the number of samples drawn from it. However,

there is another important effect of having more samples in a given

bin. In particular, having more samples from a bin allows us to do

more flattening of that bin, which decreases the variance of the

corresponding bin-wise estimator. This means that we will want to

assign more weight to these bins based on how much flattening is

being done, as they will give us more accurate information about

the behavior of that bin.

Finally, we need to analyze our algorithm. If the bin weights

are chosen appropriately, we show that the final estimator A has
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Var[A] = O(min(n,m)+E[A]+E[A]3/2), wherem is the number of

samples we take and n is the number of bins. Furthermore, in the

completeness case, we have that E[A] = 0. In order to be able to dis-

tinguish between completeness and soundness, we need it to be the

case that for all distributions ε-far from conditional independence it

holds that E[A] ≫
√
min(n,m). We know that if we are ε-far from

conditional independence, we must have that
∑
z εzwz ≫ ε , where

wz is the probability that Z = z. In order to take advantage of this,

we will need to separate the Z -bins into four cases based on the

size of thewz . Indeed, if we are far from conditional independence,

then for at least one of these cases the sum of εzwz over bins of

that type only will be≫ ε . Each of these four cases will require a

slightly different analysis:

• Case 1: wz < 1/m. In this case, the expected number of

samples from bin z is small. In particular, the probability

of even seeing 4 samples from the bin might well be small.

Here, the expectation is dominated by the probability that

we see enough samples from the bin.

• Case 2: 1/m < wz < |X| /m: In this case, we are likely to get

our 4 samples from the bin, but probably will get fewer than

|X|. This means that our flattening will not saturate either

of the marginal distributions and we can reduce the squared

ℓ2 norm of q by a full factor ofmz (wheremz is the number

of samples from this bin).

• Case 3: |X| /m < wz < |Y| /m. In this case, we are likely

to saturate our flattening over the X -marginal but not the

Y -marginal. Thus, our flattening only decreases the ℓ2 norm

of the conditional distribution on that bin by a factor of√
|X|mz .

• Case 4: |Y| /m < wz : Finally, in this case we saturate both

the X - and Y -marginals, so our flattening decreases the ℓ2
norm by a factor of

√
|X| |Y|.

Within each sub-case, the expectation of A is a polynomial in

m, |X| , |Y| multiplied by the sum over z ∈ Z of some polyno-

mial in εz and wz . We need to bound this from below given that∑
z εzwz ≫ ε , and then setm large enough so that this lower bound

is more than
√
min(n,m). We note that only in Case 1, is the case

wherem < n relevant. Thus, our final bound will be a maximum

over the 4 cases of them required in the appropriate case.

2.3 Sample Complexity Lower Bound

Construction for Binary X,Y
We begin by reviewing the lower bound methodology we follow:

In this methodology, a lower bound is shown by adversarially con-

structing two distributions over pseudo-distributions (i.e., finite

measures, not necessarily summing to one). Specifically, we con-

struct a pair of ensembles D and D ′ of pairs of nearly-normalized

pseudo-distributions such that distributions from D have the de-

sired property and from D ′ are ε-far from it with high probability,

and such that Poisson(s) samples from a distribution are insufficient

to reliably determine from which ensemble the distribution was

taken from, unless s is large enough.

To formally prove our lower bounds, we will use the mutual

information method, as in [22]. In this section, we provide an intu-

itive description of our sample complexity lower bound for testing

conditional independence, whenX = Y = {0, 1} andZ = [n]. (Our
lower bound for the regime X = Y = Z = [n] is proved using

the same methodology, but relies on a different construction.) We

construct ensemblesD andD ′ Ðwhere draws fromD are condition-

ally independent and draws from D ′ are ε-far from conditionally

independent with high probability Ð and show that s samples from

a distribution on (X ,Y ,Z ) are insufficient to reliably distinguish

whether the distribution came from D or D ′, when s is small. We

define D and D ′ by treating each bin z ∈ [n] of Z independently. In

particular for each possible value z ∈ [n] for Z , we proceed as fol-

lows: (1) With probability min(s/n, 1/2), we assign the point Z = z

probability mass max(1/s, 1/n) and let the conditional distribution

on (X ,Y ) be uniform. Since the distribution is conditionally inde-

pendent on these bins and identical in both ensembles, these łheavyž

bins will create łnoisež to confuse an estimator. (2) With probability

1−min(s/n, 1/2), we set the probability that Z = z to be ε/n, and let
the conditional distribution on (X ,Y ) be taken from either C or C ′,
for some specific ensembles C and C ′. In particular, we pick C and

C ′ so that a draw from C is independent and a draw from C ′ is far
from independent. These bins provide the useful information that

allows us to distinguish between the two ensembles D and D ′. The
crucial property is that we can achieve the above while guaranteeing

that any third moment from C agrees with the corresponding third

moment fromC ′. This guarantee implies that if we draw 3 (or fewer)

samples of (X ,Y ) from some bin Z = z, then the distribution on

triples of (X ,Y ) will be identical if the conditional was taken from

C or if it was taken from C ′. That is, all information about whether

our distribution came from D or D ′ will come from bins of type

(2) for which we have at least 4 samples, of which there will be

approximately n(sε/n)4. On the other hand, there will be about

min(s,n) bins of type (1) with 4 samples in random configuration

adding noise. Thus, we will not be able to distinguish reliably unless

n(sε/n)4 ≫
√
min(s,n), as otherwise the łnoisež due to the heavy

bins will drown out the łsignalž of the light ones.

To define C and C ′, we find appropriate vectors p,q over {0, 1}2
so that p + q and p + 3q each are distributions with independent

coordinates, but p,p + 2q,p + 4q are not. We let C return p + q

and p + 3q each with probability 1/2, and let C ′ return p,p + 2q

or p + 4q with probability 1/8, 3/4, 1/8 respectively. If we wish to

find the probability that 3 samples from a distribution r come in

some particular pattern, we get f (r ) for some degree-3 polynomial

f . If we want the difference in these probabilities for r a random

draw fromC and a random draw fromC ′, we get f (p+q)/2+ f (p+
3q)/2 − f (p)/8 − f (p + 2q)(3/4) − f (p + 4q)/8. We note that this is

proportional to the fourth finite difference of a degree-3 polynomial,

and is thus 0. Therefore, any combination of at most 3 samples are

equally likely to show up for some Z -bin from D as from D ′.
To rigorously analyze the above sketched construction, we con-

sider drawing Poisson(s) samples from a random distribution from

eitherD orD ′, and bound the shared information between the set of

samples and the ensemble they came from. Since the samples from

each bin are conditionally independent on the ensemble, this is at

most n times the shared information coming from a single bin. By

the above, the probabilities of seeing any triple of samples are the

same for either D or D ′ and thus contribute nothing to the shared



STOC’18, June 25–29, 2018, Los Angeles, CA, USA C. L. Canonne, I. Diakonikolas, D. M. Kane, and A. Stewart

information. For sets of 4 or more samples, we note that the differ-

ence in probabilities comes only from the case where 4 samples are

drawn from a bin of type (2), which happens with probability at

most O(sε/n)4. However, this is counterbalanced by the fact that

these sample patterns are seen with much higher frequency from

bins of type (1) (as they have larger overall mass). Thus, the shared

information for a combination including m ≥ 4 samples will be

(O(sε/n)m )2/min(s/n, 1/2) · Ω(1)m . The contribution fromm > 4

can be shown to be negligible, thus the total shared information

summed over all bins isO(min(s,n) · (sε/n)8). This must be Ω(1) in
order to reliably distinguish, and this proves our lower bound.

3 PRELIMINARIES AND BASIC FACTS

For a distribution p we write X ∼ p to denote that the random

variable X is distributed according to p. Finally, for p ∈ ∆(Ω1) ,q ∈
∆(Ω2) we let p ⊗ q ∈ ∆(Ω1 × Ω2) be the product distribution with

marginals p and q.

Property Testing. We work in the standard setting of distribution

testing: a testing algorithm for a property P ⊆ ∆(Ω) is an algorithm

which, granted access to independent samples from an unknown

distribution p ∈ ∆(Ω) as well as distance parameter ε ∈ (0, 1],
outputs either accept or reject, with the following guarantees.

• if p ∈ P, then it outputs accept with probability at least 2/3;
• if dTV(p,P) > ε , then it outputs reject with probability at

least 2/3.
The two measures of interest here are the sample complexity of the

algorithm (i.e., the number of samples from the distribution it takes

in the worst case), and its running time.

Conditional Independence. We study the problem of testing condi-

tional independence of discrete distributions. LetX ,Y ,Z be random

variables over discrete domains X,Y,Z respectively. Given sam-

ples from the joint distribution of (X ,Y ,Z ), we want to determine

whether X and Y are conditionally independent given Z , denoted by

(X ⊥ Y ) | Z , versus ε-far in total variation distance from every dis-

tribution of random variables (X ′,Y ′,Z ′) such that (X ′ ⊥ Y ′) | Z ′.

Definition 3.1 (Conditional Independence). Let X ,Y ,Z be random

variables over discrete domainsX,Y,Z respectively. We say thatX

andY are conditionally independent givenZ , denoted by (X ⊥ Y ) | Z ,
if for all (i, j, z) ∈ X×Y×Zwehave that: Pr[X = i,Y = j | Z = z ] =
Pr[X = i | Z = z ] · Pr[Y = j | Z = z ].

For discrete sets X,Y,Z, we will denote by PX,Y |Z the prop-

erty of conditional independence, i.e.,

PX,Y |Z := { p ∈ ∆(X × Y ×Z) : if (X ,Y ,Z ) ∼ p, (X ⊥ Y ) | Z } .
Recall that we say that a distribution p ∈ ∆(X × Y ×Z) is ε-far
from PX,Y |Z , if for every distribution q ∈ PX,Y |Z we have that

dTV(p,q) > ε . Fix a distribution q ∈ PX,Y |Z of minimum total

variation distance to p. Then the marginals of q on each of the three

coordinates may have different distributions.

Wewill also define testing conditional independencewith respect

to a different metric, namely the conditional mutual information [26,

50]. For three random variables X ,Y ,Z as above, the conditional

mutual information of X and Y with respect to Z is defined as

I (X ;Y |Z ) := EZ [(I (X ;Y ) | Z )]

i.e., as the expected (with respect to Z ) Kullback-Leibler divergence

between the distributions of (X ,Y ) | Z and the product of the

distributions of (X | Z ) and (Y | Z ). In this variant of the problem

(considered in Section 6), we will want to distinguish I (X ;Y |Z ) = 0

from I (X ;Y |Z ) ≥ ε .

Notation. Let p ∈ ∆(X × Y ×Z). For z ∈ Z, we will denote by

pz ∈ ∆(X × Y) the distribution defined by

pz (i, j) := Pr
(X ,Y ,Z )∼p

[X = i,Y = j | Z = z ]

and by pZ ∈ ∆(Z) the distribution pZ (z) := Pr(X ,Y ,Z )∼p [Z = z ].
By definition, for any p ∈ ∆(X × Y ×Z), we have that p(i, j, z) =
pZ (z) · pz (i, j). For z ∈ Z, we will denote by pz,X ∈ ∆(X) the dis-
tribution pz,X (i) = Pr(X ,Y ,Z )∼p [X = i | Z = z ] and pz,Y ∈ ∆(Y)
the distribution pz,Y (j) = Pr(X ,Y ,Z )∼p [Y = j | Z = z ].

We can now define the product distribution of the conditional

marginals:

Definition 3.2 (Product of Conditional Marginals). Fix any p ∈
∆(X × Y ×Z). For z ∈ Z, we define the product of conditional

marginals of p given Z = z to be the product distribution qz ∈
∆(X × Y) defined by qz := pz,X ⊗ pz,Y , i.e., qz (i, j) = pz,X (i) ·
pz,Y (j). We will also denote by q the mixture of product distribu-

tions q :=
∑
z∈Z pZ (z)qz ∈ PX,Y |Z , i.e., q(i, j, z) := pZ (z) ·qz (i, j).

Basic Facts. =

We start with the following simple lemma:

Lemma 3.3. Let p,p′ ∈ ∆(X × Y ×Z). Then we have that

dTV
(
p,p′

)
≤

∑
z∈Z

pZ (z) · dTV
(
pz ,p

′
z

)
+ dTV

(
pZ ,p

′
Z

)
, (2)

with equality if and only if pZ = p
′
Z
.

Using Lemma 3.3, we deduce the following useful corollary:

Fact 1. If p ∈ ∆(X × Y ×Z) is ε-far from PX,Y |Z , then, for every
p′ ∈ PX,Y |Z , either (i) dTV

(
pZ ,p

′
Z

)
> ε/2, or (ii) ∑

z∈Z pZ (z) ·
dTV

(
pz ,p

′
z

)
> ε/2.

The next lemma shows a useful structural property of conditional

independence that will be crucial for our algorithm. It shows that

if a distribution p ∈ ∆(X × Y ×Z) is close to being conditionally

independent, then it is also close to an appropriate mixture of

its products of conditional marginals, specifically distribution q

from Definition 3.2:

Lemma 3.4. Suppose p ∈ ∆(X × Y ×Z) is ε-close to PX,Y |Z .
Then, p is 4ε-close to the distribution q =

∑
z∈Z pZ (z)qz .

The Case Z = [n], X = Y = {0, 1}. We now focus on the case

that p ∈ ∆(X × Y ×Z) for X = Y = {0, 1} andZ = [n]. With the

same notation we have previously established, for any z ∈ [n] we
have that

2dTV(pz ,qz ) = 4 |pz (0, 0) · pz (1, 1) − pz (0, 1) · pz (1, 0)|
= 4 |Cov[(X | Z = z), (Y | Z = z)]| ,

or equivalently

dTV(pz ,qz ) = 2 |Cov[(X | Z = z), (Y | Z = z)]| = ∥pz − qz ∥2 .
(3)
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This expression for the total variation distance will be useful in the

analysis of the lower bound constructions.

Some technical result on Poisson random variables. We state below

a bound on the moments of truncated Poisson random variables,

which we will rely on in our analysis.

Claim 1. There exists an absolute constant C > 0 such that, for

N ∼ Poisson(λ),

Var[N1{N ≥4}] ≤ CE
[
N1{N ≥4}

]
.

Moreover, one can take C = 4.22.

4 CONDITIONAL INDEPENDENCE TESTER:

THE CASE OF CONSTANT |X|, |Y|
Let p ∈ ∆(X × Y × z). In this section, we describe and analyze

our sample-optimal conditional independence tester for the case

that |X|, |Y| = O(1). Our tester uses as a black-box an unbiased

estimator for the ℓ22-distance between a 2-dimensional distribution

and the product of its marginals. Specifically, we assume that we

have access to an estimator Φ with the following performance:

GivenN samples s = (s1, . . . , sN ) from a distributionp ∈ ∆(X × Y),
Φ satisfies:

E[Φ(s)] = ∥p − pX ⊗ pY ∥22 (4)

Var[Φ(s)] ≤ C

(
E[Φ(s)]

N
+

1

N 2

)
, (5)

for some absolute constant C > 0. Such an estimator follows as a

special case of our generic polynomial estimator in Theorem 1.3

whose proof is given in Section 5.

Notation. Given p ∈ ∆(X × Y), we denote its marginal distribu-

tions by pX , pY . That is, we have that pX ∈ ∆(X) with pX(x) :=
Pr(X ,Y )∼p [X = x ], x ∈ X, and similarly for pY . Then, given p ∈
∆(X × Y ×Z), for any z ∈ Z we will denote by qz the product

distribution pz,X ⊗ pz,Y .
LetM be a Poisson(m) random variable representing the number

of samples drawn from p ∈ ∆(X × Y ×Z). Given the multi-set

S of M samples drawn from p, let Sz := { (x ,y) : (x ,y, z) ∈ S }
denote the multi-set of pairs (x ,y) ∈ X × Y corresponding to

samples (x ,y, z) ∈ S , i.e., the multi-set of samples coming from

the conditional distribution pz . For convenience, we will use the

notation σz := |Sz |. Let Az := σz · Φ(Sz ) · 1{σz ≥4} , for all z ∈ Z.

Our final estimator is

A :=
∑
z∈Z

Az .

We set ε ′ := ε√
|X | |Y |

= Θ(ε), and choose

m ≥ β max
(√

n/ε ′2,min
(
n7/8/ε ′,n6/7/ε ′8/7

))
, (6)

for a sufficiently large absolute constant β > 0. Our tester outputs

łacceptž if A ≥ τ and łrejectž otherwise, where τ is selected to be

Θ

(√
min(n,m)

)
. A detailed pseudo-code for the algorithm is given

in Algorithm 1.

Algorithm 1 TestCondIndependence

Require: Parameter n := |Z|, Λ1 := |X|, Λ2 := |Y|, ε ∈ (0, 1], and
sample access to p ∈ ∆(X × Y ×Z).

1: Set m ← β max
(√

n/ε ′2,min
(
n7/8/ε ′,n6/7/ε ′8/7

))
, where

ε ′ := ε/
√
Λ1Λ2 ▷ β ≥ 1 is a sufficiently large constant

2: Set τ ← ζ
√
min(n,m) ▷ Threshold for accepting (ζ > 0 is a

small constant)

3: DrawM ∼ Poisson(m) samples fromp and let S be the multi-set

of samples.

4: for all z ∈ Z do

5: Let Sz ⊆ X × Y be the multi-set Sz :=

{ (x ,y) : (x ,y, z) ∈ S }.
6: if |Sz | ≥ 4 then ▷ Enough samples to call Φ

7: Compute Φ(Sz ).
8: Set Az ← |Sz | · Φ(Sz ).
9: else

10: Set Az ← 0.

11: end if

12: end for

13: if A :=
∑
z∈Z Az ≤ τ then

14: return accept

15: else

16: return reject

17: end if

4.1 Proof of Correctness

In this section, we prove correctness of Algorithm 1. Specifically,

we will show that: (1) If p ∈ PX,Y |Z (completeness), then Algo-

rithm 1 outputs łacceptž with probability at least 2/3, and (2) If

dTV(p,PX,Y |Z) > ε , then Algorithm 1 outputs łrejectž with proba-

bility at least 2/3. The proof proceeds by analyzing the expectation

and variance of our statistic A and using Chebyshev’s inequality.

We note that β , ζ are absolute constants defined in the algorithm’s

pseudo-code.

4.1.1 Analyzing the Expectation of A. The main result of this

subsection is the following proposition establishing the existence of

a gap in the expected value ofA in the completeness and soundness

cases:

Proposition 4.1. We have the following: (a) If p ∈ PX,Y |Z , then
E[A] = 0. (b) If dTV

(
p,PX,Y |Z

)
> ε , then

E[A] > γ min
(
mε ′2,m4ε ′4/8n3

)
≥ β · γ

8
·
√
min(n,m) ,

for some absolute constant γ > 0.

The rest of this subsection is devoted to the outline of the proof

of Proposition 4.1. We start by providing a convenient lower bound

on the expectation of A. We prove the following lemma:

Lemma 4.2. For z ∈ Z, let δz := ∥pz − qz ∥2 and αz :=m · pZ (z).
Then, we have that:

E[A] ≥ γ ·
∑
z∈Z

δ2z min(αz ,α4z ) . (7)
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Given the expression of E[A] as linear combination of the δ2z ’s,

the first statement of Proposition 4.1 is immediate. Indeed, if p

is conditionally independent, then all δz ’s are zero. To establish

the second statement, we will require a number of intermediate

lemmata. We henceforth focus on the analysis of the soundness

case, i.e., we will assume that dTV

(
p,PX,Y |Z

)
> ε . We require the

following useful claim:

Claim 2. If dTV

(
p,PX,Y |Z

)
> ε , then

∑
z∈Z δzαz > 2mε ′.

Lemma 4.2 suggests the existence of two distinct regimes: the

value of the expectation of our statistic is dominated by (1) the

łheavyž elements z ∈ Z for whichαz > 1, or (2) the łlightž elements

z ∈ Z for which αz ≤ 1. Formally, letZH := { z ∈ Z : αz > 1 }
andZL := { z ∈ Z : αz ≤ 1 }, so that∑

z∈Z
δ2z min(αz ,α4z ) =

∑
z∈ZH

δ2zαz +
∑
z∈ZL

δ2zα
4
z . (8)

ByClaim 2, at least one of the following two cases holds: (1)
∑
z∈ZH δzαz >

mε ′ or (2)
∑
z∈ZL δzαz > mε ′. We analyze each case separately,

establishing overall that

E[A] > γ min
(
mε ′2,m4ε ′4/8n3

)
,

which gives the first inequality of Proposition 4.1 (b). To complete

the proof of the proposition, it suffices to show that

min
(
mε ′2,m4ε ′4/n3

)
≫

√
min(n,m) .

We show this by considering the two ranges for ε , 0 < ε ′ ≤ 1/n1/8
and 1/n1/8 ≤ ε ′ ≤ 1. For each range, we recall our setting of

m and analyze the cases that could arise in the above expression

(depending on the two min’s). This completes the proof of Proposi-

tion 4.1. □

4.1.2 Analyzing the Variance ofA. We establish an upper bound

on the variance of A as a function of its expectation:

Proposition 4.3. For some absolute constant C ′′ > 0, we have

Var[A] ≤ C ′′ (min(n,m) + E[A]) . (9)

This subsection is devoted to the proof sketch of Proposition 4.3.

By the law of total variance, we have that:

VarA = E[Var[A | σ ]] + VarE[A | σ ] .
We will proceed to bound each term from above, which will give

the result. We start with the first term. Conditioned on σz =

|Sz |, Eq. (5) gives that Var[Az | σz ] ≤ Cσ 2
z

(
δ 2
z

σz
+

1
σ 2
z

)
1{σz ≥4} =

C (1 + E[Az | σz ])1{σz ≥4} . Hence, forσ := (σz )z∈Z , we canwrite
Var[A | σ ] ≤ C (min(n,M) + E[A | σ ]) ,

where we used the inequality
∑
z∈Z 1{σz ≥4} ≤

∑
z∈Z 1{σz ≥1} ≤

min(n,M). From this we readily get

E[Var[A | σ ]] ≤ C (min(n,m) + E[A]) ,
as desired. We now proceed to bound the second term. As shown

in Lemma 4.2, E[A | σ ] = ∑
z∈Z σzδ

2
z1{σz ≥4} . By the indepen-

dence of the σz ’s, we obtain that

Var [E[A | σ ]] =
∑
z∈Z

δ4z Var[σz1{σz ≥4}] . (10)

From (10) and Claim 1, recalling that δz ≤ 2, z ∈ Z, we get that

Var [E[A | σ ]] ≤ 4C ′
∑
z∈Z

δ2zE
[
σz1{σz ≥4}

]
= 4C ′E[A] .

This completes the proof of Proposition 4.3.

4.1.3 Completing the Proof. Recall that the threshold of the

algorithm is defined to be τ := ζ
√
min(n,m). In the completeness

case, by Proposition 4.1 (a), we have that E[A] = 0. Proposition 4.3

then gives that Var[A] ≤ C ′′ ·min(n,m). Therefore, by Chebyshev’s
inequality we obtain

Pr[A ≥ τ ] ≤ Var[A]
τ 2

≤ 1

ζ 2
C ′′

min(n,m)
min(n,m) ≤

1

3
,

where the last inequality follows by choosing the constant ζ to be

sufficiently small (compared to C ′′).
In the soundness case, by Chebyshev’s inequality and recalling

the lower bound on E[A] from Proposition 4.1 (b) (which implies

τ ≤ 8
ζ
βγ
E[A] ≤ E[A] /2 as long as ζ is chosen sufficiently small)

we get

Pr[A < τ ] ≤ Pr[ |A − E[A]| ≥ E[A] /2 ] ≤ 4
Var[A]
E[A]2

≤ 4C ′′
(
min(n,m)
E[A]2

+

1

E[A]

)
≤ 1

3
,

where the third inequality uses Proposition 4.3 and the fourth in-

equality uses Proposition 4.1 (b), assuming β is sufficiently large.

This completes the proof of correctness. □

5 ESTIMATION OF A POLYNOMIAL IN p

In this section, we consider the following general problem: łgiven

a degree-d n-variate polynomial Q ∈ Rd [X1, . . . ,Xn ] and access

to i.i.d. samples from a distribution p ∈ ∆([n]), how to estimate

Q(p) = Q(p1, . . . ,pn ) to an additive error ε?ž

In particular, we will analyze an unbiased estimator for Q(p),
and provide quantitative bounds on its variance. (Due to space

constraints, we do not provide here the proof all results stated in

this section, which can be found in the full version of this paper.)

Remark 1 (Reduction to homogeneous polynomials). It is suffi-

cient to consider, without loss of generality, the case where Q ∈
Rd [X1, . . . ,Xn ] is a homogeneous polynomial, i.e., a sum of mono-

mials of total degree exactly d . This is because otherwise one can

multiply any monomial of total degree d ′ < d by
(∑n

i=1 Xi
)d−d ′

:

since
∑n
i=1 pi = 1, this does not affect the value of Q(p).

Based on the above remark, we hereafter assume Q is a homo-

geneous polynomial of degree d . Before stating the results, we

will need to set some notation. Given a multi-set S of indepen-

dent samples from a distribution p ∈ ∆([n]), we let ΦS denote the

fingerprint of S , i.e., the vector (ΦS,1, . . . ,ΦS,n ) ∈ Nn of counts:∑n
i=1 ΦS,i = |S |, and ΦS,i is the number of occurrences of i in

S . Moreover, for a vector α = (α1, . . . ,αn ) ∈ Nn , we write Xα

for the monomial Xα :=
∏n

i=1 X
αi
i , ∥α ∥ for the ℓ1 norm

∑n
i=1 αi ,

and
( ∥α ∥
α

)
for the multinomial coefficient

∥α ∥!
α1!· · ·αn ! . Finally, for any

integer d ≥ 0 we denote byHd ⊆ Rd [X1, . . . ,Xn ] the set of homo-

geneous degree-d n-variate polynomials.
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Proposition 5.1 (Existence). For every N ≥ d , there exists an

unbiased linear estimator for Q(p), i.e., a linear function

UN : Rd [X1, . . . ,Xn ] → Rd [X1, . . . ,Xn ]

such that E[UNQ(ΦS )] = Q(p), where S is obtained by drawing N

independent samples from p.

Proof. FixN ≥ d . Sincewe aim for a linear operator, it is enough

to define it on all monomials Xα for ∥α ∥ ≤ d . Let

UNXα :=

(
N

α ,N − ∥α ∥

)−1 n∏
i=1

(
Xi

αi

)
. (11)

Note that degUNXα ≤ ∥α ∥ ≤ d , so that indeed we haveUNXα ∈
Rd [X1, . . . ,Xn ]. Moreover, for S obtained from N independent sam-

ples from a distribution p ∈ ∆([n]),

E
[
UNXα (ΦS )

]
=

(
N

α ,N − ∥α ∥

)−1
E

[
n∏
i=1

(
ΦS,i

αi

)]
.

However, since ΦS is distributed according to a multinomial distri-

bution with parameters N and p1, . . .pn ,

E

[
n∏
i=1

(
ΦS,i

αi

)]
=

∑
∥β ∥=N

(
N

β

)
pβ

n∏
i=1

(
βi

αi

)

=

∑
∥β ∥=N
β ≥α

(
N

β

)
pβ

(
N

β

)−1
N !∏n

i=1 αi !(βi − αi )!

=

N !∏n
i=1 αi !

∑
∥β ∥=N
β ≥α

pβ
n∏
i=1

1

(βi − αi )!

=

(
N

α ,N − ∥α ∥

) ∑
∥β ∥=N
β ≥α

pβ (N − ∥α ∥)!
n∏
i=1

1

(βi − αi )!

=

(
N

α ,N − ∥α ∥

)
pα

∑
∥β ∥=N
β ≥α

pβ−α
(
N − ∥α ∥
β − α

)

=

(
N

α ,N − ∥α ∥

)
pα

∑
∥γ ∥=N−∥α ∥

pγ
(
N − ∥α ∥

γ

)

=

(
N

α ,N − ∥α ∥

)
pα

the last equality recognizing the sum of the probability mass func-

tion of a multinomial distribution with parameters N − ∥α ∥ and
p1, . . .pn . This shows that E[UNXα (ΦS )] = pα ; by linearity, we

conclude that our estimator is indeed unbiased, i.e., E[UNQ(ΦS )] =
Q(p) for all Q ∈ Rd [X1, . . . ,Xn ]. □

Proposition 5.2 (Uniqeness). This unbiased estimator is unique:

that is, for every N ≥ d , for any estimator VN : [n]N → R satisfying

E[VN (S)] = Q(p) ,

where S is a multiset of N independent samples drawn from p, one

must have VN (S) = UNQ(ΦS ) for all S .

Proof. First, we can assume without loss of generality that VN
is a function of the fingerprint only, instead of the multiset of N

samples itself. This is an immediate consequence of the fact that

this fingerprint is a sufficient statistic (or, more elementary, that

since all permutations of the samples are equally likely, one can

consider instead V ′
N

:= 1
N !

∑
σ ∈SN VN ◦ σ ). Therefore, we assume

from now on that our estimator is of the formVN : Nn → R, and is
restricted to inputs summing to N .

For every k,N , let Uk
N

be the mapping from degree-d homoge-

neous polynomials to the set of their unbiased estimators on N

samples.1 We first show that it is sufficient to establish uniqueness

only for the case d = N , i.e., to show that Ud
d
maps polynomials to

singletons. To argue this is enough, suppose N > d , and with have

two different N -sample estimators VN ,WN for a homogeneous

degree-d polynomial Q . Considering R :=
(∑n

i=1 Xi
)N−d

Q which

is homogeneous of degree N and agrees with Q on every proba-

bility distribution p, we obtain two different N -sample estimators

VN ,WN for a homogeneous degree-N polynomial.

To prove the base case, we first describe a bijection φ (which will

turn out to be Ud
d
) between the set Ed of d-sample estimators and

that of homogeneous polynomialHd . Specifically, given a polyno-

mial Q ∈ Hd written as a weighted sum of degree-d monomials,

Q =
∑
∥α ∥=d cαX

α , we let φ(Q) be the estimator whose value on a

multiset S of d samples is

φ(Q)(ΦS ) :=
∑
∥α ∥=d

cα(d
α

) 1{ΦS=α } (12)

where α = (α1, . . . ,αn ). In particular, it immediately follows from

the definition of the multinomial distribution that E[φ(Q)(ΦS )] =
Q(p), when S is a multiset of d independent samples drawn from p:

E[φ(Q)(ΦS )] =
∑
∥α ∥=d

cα(d
α

) Pr[ΦS = α ] =
∑
∥α ∥=d

cα(d
α

)
(
d

α

) n∏
i=1

p
αi
i

=

∑
∥α ∥=d

cα

n∏
i=1

pα

It is also clear that φ : Hd → Ed is a bijection.

Suppose now by contradiction that we have two different d-

sample estimators Vd ,Wd ∈ Ed for a single homogeneous poly-

nomial Q ∈ Hd . As then φ−1(Vd ) , φ−1(Wd ), we may assume

without loss of generality that φ−1(Vd ) , Q , which implies that Vd
is an unbiased estimator for two distinct degree-d homogeneous

polynomials, namely Q and R := φ−1(Vd ).
In turn, we get that for every p ∈ ∆([n]), Q(p) = ES [Vd (ΦS )] =

R(p); hence there difference D := Q −R is a non-zero homogeneous

degree-d polynomial which vanishes on every point (x1, . . . ,xn ) ∈
N
n with

∑n
i=1 xi = 1. By homogeneity, for every non-zero x =

(x1, . . . ,xn ) ∈ Rn+,

D(x) = ∥x∥d1D
(

x

∥x∥1

)
= ∥x∥d1 · 0 = 0

1The notation Uk
N
, reminiscent of our linear estimatorUN , is not innocuous: indeed,

after uniqueness is established we will see that Uk
N

is the restriction of UN (where

UNQ is viewed as the singleton {UNQ }) to degree-d homogeneous polynomials.
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and thereforeD vanishes on the whole non-negative quadrantRn
+
=

{ x ∈ Rn : xi ≥ 0 for all i }. Being identically zero on an open set,

D must be the zero polynomial, leading to a contradiction. □

The above shows existence and uniqueness of an unbiased es-

timator, provided the number of samples N is at least the degree

d of the polynomial (in p) we are trying to estimate. The proposi-

tion below shows this is necessary: if N < d , there is no unbiased

estimator in general.

Proposition 5.3. Let Q ∈ Hd be a homogeneous n-variate poly-

nomial such that
∑n
k=1

X does not divide Q . Then, there exists no

unbiased estimator for Q(p) from N samples unless N ≥ d .

Proof. Suppose by contradiction that, for such aQ ∈ Hd , there

exists an unbiased estimator for Q(p) with N < d samples. Then,

since UN
N

(with the notation of the proof of Proposition 5.2) is

invertible, this estimator is also an unbiased estimator for some

homogeneous degree-N polynomial R ∈ HN . Therefore, it is also

a unbiased estimator for the degree-d homogeneous polynomial

R′ := R ·(∑n
k=1

Xk )d−N ∈ Hd . But by Proposition 5.2 onemust then

haveQ = R′, which is impossible as
∑n
k=1

X does not divideQ . □

Having established existence and uniqueness of our unbiased

estimator, it remains to bound its variance.

Theorem 5.4. FixN ≥ d , and let themappingUN : Rd [X1, . . . ,Xn ] →
Rd [X1, . . . ,Xn ] be as above. Then, for every Q ∈ Hd ,

E
[
(UNQ(ΦS ))2

]
=

∑
s∈Nn
∥s∥≤d

(
∥s∥
s

)
ps

∥s∥!2

(
d ∥s∥Q(p)

dX s

)2 (
N − d
d − ∥s∥

) (
N

∥s∥,d − ∥s∥,N − d

)−1

(13)

where the expectation is over S obtained by drawing N independent

samples from p.

By the above theorem, in order to analyze the variance of the

estimator VarUNQ(ΦS ) = E
[
(UNQ(ΦS ))2

]
− E[UNQ(ΦS )]2, one

needs to bound the different terms of

E
[
(UNQ(ΦS ))2

]
=

d∑
h=0

∑
s∈Nn
∥s∥=h

(
h

s

)
ps

(
dhQ(p)
dX s

)2 (
N − d
d − h

) (
N

h,d − h,N − d

)−1 1

h!2

=

d∑
h=0

Th (Q,p,d,N )

letting Th (Q,p,d,N ) denote the inner sum for a given 0 ≤ h ≤ d .

In the rest of this section, we provide some useful bounds on some

of these terms. First, we show that the first term will be mostly

taken care of in the variance by the subtracted squared expectation,

E[UNQ(ΦS )]2 = Q(p)2:

Claim 3. T0(Q,p,d,N ) −Q(p)2 = −Q(p)2
(
d2

N +Od

(
1
N 2

))
≤ 0.

(For our applications, the non-positivity will be enough as we only

seek to upper bound the variance.)

In view of bounding the rest of the terms, let Q+ ∈ Hd de-

note the polynomial obtained from Q by making all its coeffi-

cients non-negative: that is, if Q =
∑
∥α ∥=d cαX

α , then Q+ :=∑
∥α ∥=d |cα |Xα . Then, we show the following:

Lemma 5.5. Fix any 0 ≤ д ≤ d . Then,

d∑
h=д

Th (Q,p,d,N ) = O
(
1

Nд

)
2dQ+(p) max

s:∥s∥≥д

�����d
hQ(p)
dX s

����� .
5.1 Specific Case of Interest: ℓ2 Distance

Between p and pX ⊗ pY
We now instantiate the results of Section 5 to a case of interest, the

polynomial Q corresponding to the ℓ2 distance between a bivariate

discrete distribution and the product of its marginals. In more de-

tail, for any distribution p ∈ ∆(X × Y) where |X| = Λ1, |Y| = Λ2

(without loss of generality, we identify X and Y to [Λ1] and [Λ2]
respectively), we let pΠ := pX ⊗ pY ∈ ∆(X × Y) be the product of
its marginals. Moreover, define the degree-4 (Λ1Λ2)-variate poly-
nomial Q ∈ R4[X1,1,X2,1, . . . ,XΛ1,1,XΛ1,2, . . . ,XΛ1,Λ2

] as
Q(X1,1, . . . ,XΛ1,Λ2

)

:=

Λ1∑
i=1

Λ2∑
j=1

(
Xi, j

∑
i′,i

∑
j′,j

Xi′, j′ −
∑
i′,i

Xi′, j

∑
j′,j

Xi, j′
)2
. (14)

(An explicit expression for its unbiased estimatorUNQ(ΦS ) will be
given in Eq. (15)). Specifically, we shall prove the following result:

Proposition 5.6. Let Q be as in Eq. (14), and suppose that b ≥
max(∥p∥22, ∥pΠ ∥

2
2). Then, for N ≥ 4,

VarUNQ(ΦS ) = O
(
Q(p)
√
b

N
+

b

N 2

)
.

For consistency of notation with the previous section, we let n :=

Λ1Λ2 in what follows.

Claim 4. For any p over X ×Y, we have Q(p) = ∥p − pΠ ∥22.

Firstly, we computeUNQ explicitly. By linearity ofUN , we can

compute the unbiased estimator for each term separately, after

writing Q(X ) = ∑Λ1
i=1

∑Λ2
j=1 ∆i j (X )

2 where

∆i j (X ) := Xi, j

∑
i′,i

∑
j′,j

Xi′, j′ −
∑
i′,i

Xi′, j

∑
j′,j

Xi, j′ .

NowUNQ = UN ∆
2
i j and we want to computeUN ∆

2
i j . Note that the

sums in ∆i j (X ) are over disjoint sets of Xi j’s whose union is every

Xi j. We can consider ∆i j as a polynomial over the probabilities of

a distribution with support of size 4, which consists of the events

given by whether the marginal X is equal to i , and whether the

marginal Y is equal to j. By uniqueness of the unbiased estimator,

UN ∆
2
i j is the same on this distribution of support 4 as on the original

Λ1Λ2-size support distribution. Formally, we will write

∆i j (X ) := Xi, jX−i,−j − Xi,−jX−i, j
whereX−i,−j :=

∑
i′,i

∑
j′,j Xi′, j′ ,X−i, j :=

∑
i′,i Xi′, j , andXi,−j :=∑

j′,j Xi, j′ . Squaring gives

∆i j (X )2 = X 2
i, jX

2
−i,−j + X

2
i,−jX

2
−i, j − Xi, jX−i,−jXi,−jX−i, j ;
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and it remains to applyUN to each of these terms. We see that

N !

(N − 4)!UNXi, jX−i,−jXi,−jX−i, j = ΦS,i, jΦS,−i,−jΦS,i,−jΦS,−i, j ,

N !

(N − 4)!UNX 2
i, jX

2
−i,−j = ΦS,i, j (ΦS,i, j − 1)ΦS,−i,−j (ΦS,−i,−j − 1) ,

N !

(N − 4)!UNX 2
−i, jX

2
i,−j = ΦS,−i, j (ΦS,−i, j − 1)ΦS,i,−j (ΦS,i,−j − 1) .

These counts are similarly summed so that, for example, ΦS,i,−j =∑
j′,j ΦS,i, j′ . Adding these together, we get that:

N !

(N − 4)!UNQ(ΦS )) =
N !

(N − 4)!

Λ1∑
i=1

Λ2∑
j=1

UN ∆i j (ΦS ))2

=

Λ1∑
i=1

Λ2∑
j=1

(
ΦS,i, j (ΦS,i, j − 1)ΦS,−i,−j (ΦS,−i,−j − 1)

+ ΦS,−i, j (ΦS,−i, j − 1)ΦS,i,−j (ΦS,i,−j − 1)
− 2ΦS,i, jΦS,−i,−jΦS,i,−jΦS,−i, j

)
=

Λ1∑
i=1

Λ2∑
j=1

(
(ΦS,i, jΦS,−i,−j − ΦS,−i, jΦS,−i,−j )2

+ ΦS,i, jΦS,−i,−j (1 − ΦS,i, j − ΦS,−i,−j )
+ ΦS,−i, jΦS,i,−j (1 − ΦS,−i, j − ΦS,i,−j )

)
(15)

where ΦS,−i,−j :=
∑
i′,i

∑
j′,j ΦS,i′, j′ , ΦS,−i, j =

∑
i′,i ΦS,i′, j and

ΦS,i,−j =
∑
j′,j ΦS,i, j′ . This yields the explicit formula for our

unbiased estimator of Q(p).
We then turn to bounding its variance. From Theorem 5.4, we then

have that, for N ≥ 4,

E
[
(UNQ(ΦS ))2

]
=

4∑
h=0

∑
s∈Nn
∥s∥=h

(
h

s

)
ps

h!2

(
dhQ(p)
dX s

)2 (
N − 4
4 − h

) (
N

h, 4 − h,N − 4

)−1

(16)

The rest of this section is devoted to bounding this quantity. For

h ∈ {0, . . . , 4}, we let Th (N ) be the inner sum corresponding to h,

so that E
[
(UNQ(ΦS ))2

]
=

∑4
h=0

Th (N ).
For clarity, we (re-)introduce some notation: that is, we write

Q(X ) = ∑Λ1

i=1

∑Λ2

j=1 ∆i j (X )
2 where∆i j (X ) := Xi, j

∑
i′,i

∑
j′,j Xi′, j′−∑

i′,i Xi′, j
∑
j′,j Xi, j′ as before. Each ∆i j is a degree-2 polynomial,

with partial derivatives

∂∆i j

∂Xk, ℓ
=




Xi, j if k , i, ℓ , j∑
i′,i

∑
j′,j Xi′, j′ if k = i, ℓ = j

−∑
i′,i Xi′, j if k = i, ℓ , j

−∑
j′,j Xi, j′ if k , i, ℓ = j

and
∂2∆i j

∂Xk, ℓ∂Xk ′, ℓ′
= (δik − δik ′)(δjℓ − δjℓ′) .

• The first contribution, for h = 0, is O
(
Q(p)2/N

)
by Claim 3

so we have T0 under control: indeed,

Q(p) ≤ 2
√
b

by the triangle inequality and the definition of b; so that

T0(N ) −Q(p)2 = O
(
Q(p)
√
b/N

)
.

• The second, h = 1, contributes

T1(N ) =
∑
s∈Nn
∥s∥=1

ps
(
dQ(p)
dX s

)2 (
N − 4
3

) (
N

1, 3,N − 4

)−1

= 4

(N−4
3

)
(N
4

) ∑
s∈Nn
∥s∥=1

ps
(
dQ(p)
dX s

)2

Since
(N−4

3

)
/
(N
4

)
= O(1/N ), it is enough to consider the

other factor,∑
s∈Nn
∥s∥=1

ps
(
dQ(p)
dX s

)2
=

∑
k, ℓ

pk, ℓ

(
dQ(p)
dXk, ℓ

)2
.

We have, recalling the expression of the derivatives of ∆i j ,

1

2

dQ

dXk, ℓ
=

1

2

∑
i, j

2∆i j
d∆i j

dXk, ℓ

=

∑
i,k

∑
j,ℓ

Xi, j∆i j (X ) + ∆kℓ(X )
∑
i,k

∑
j,ℓ

Xi, j

−
∑
j,ℓ

∆k j (X )
∑
i,k

Xi, j −
∑
i,k

∆iℓ(X )
∑
j,ℓ

Xi, j

Having this sum of four terms A1,A2,A3,A4 for
dQ

dXk, ℓ
, by

CauchyśSchwarz
(

dQ
dXk, ℓ

)2
≤ 4(A2

1 +A
2
2 +A

2
3 +A

2
4), and so

we can bound each of the square of these terms separately,

ignoring cross factors.

ś For the first, we have (again by CauchyśSchwarz)

©­«
∑
i,k

∑
j,ℓ

pi, j∆i j (p)
ª®¬
2

≤ ©­«
∑
i, j

pi, j∆i j (p)
ª®¬
2

≤ ©­«
∑
i, j

p2i, j
ª®¬
©­«
∑
i, j

∆i j (p)2
ª®¬

≤ bQ(p) ≤
√
bQ(p)

so
∑
k, ℓ pk, ℓ

(∑
i,k

∑
j,ℓ pi, j∆i j (p)

)2
≤ bQ(p).

ś For the second, since
(
∆kℓ(p)

∑
i,k

∑
j,ℓ pi, j

)2
≤ ∆kℓ(p)2,

we have

∑
k, ℓ

pk, ℓ
©­«
∆kℓ(p)

∑
i,k

∑
j,ℓ

pi, j
ª®¬
2

≤
∑
k, ℓ

pk, ℓ∆kℓ(p)2

≤
√∑

k, ℓ

p2
k, ℓ

√∑
k, ℓ

∆kℓ(p)4

≤
√
b

√√√√√©­«
∑
k, ℓ

∆kℓ(p)2
ª®¬
2

which is equal to
√
bQ(p).
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ś For the third and fourth term (similarly handled by sym-

metry),

∑
k, ℓ

pk, ℓ
©­«
∑
j,ℓ

∆k j (p)
∑
i,k

pi, j
ª®¬
2

≤
∑
k, ℓ

pk, ℓ
©­«
∑
j

∆k j (p)
∑
i,k

pi, j
ª®¬
2

=

∑
k

©­«
∑
j

∆k j (p)
∑
i,k

pi, j
ª®¬
2 ∑

ℓ

pk, ℓ

≤
∑
k

©­«
∑
j

∆k j (p)2
∑
j

(∑
i,k

pi, j

)2ª®¬
∑
ℓ

pk, ℓ

(CauchyśSchwarz)

and hence

∑
k, ℓ

pk, ℓ
©­«
∑
j,ℓ

∆k j (p)
∑
i,k

pi, j
ª®¬
2

≤
∑
k

©­«
∑
j

∆k j (p)2
∑
j

(∑
i

pi, j

)2ª®¬
∑
ℓ

pk, ℓ

=

∑
j

(∑
i

pi, j

)2
·
∑
k

©­«
∑
j

∆k j (p)2
ª®¬
∑
ℓ

pk, ℓ

≤
∑
j

(∑
i

pi, j

)2√∑
k

(∑
j

∆k j (p)2
)2 ∑

k

(∑
ℓ

pk, ℓ

)2
(CauchyśSchwarz)

≤
√∑

j

(∑
i

pi, j

)2 ∑
k

(∑
ℓ

pk, ℓ

)2√∑
k

(∑
j

∆k j (p)2
)2

where the last step relies on
∑
j

( ∑
i pi, j

)2 ≤ 1 (since

it is the squared ℓ2 norm of a probability distribution,

that of the first marginal of p) to write
∑
j

( ∑
i pi, j

)2 ≤√∑
j

( ∑
i pi, j

)2
. Continuing from there, and using mono-

tonicity of ℓp norms to write
∑
i v

2
i ≤

( ∑
i |vi |

)2
,

∑
k, ℓ

pk, ℓ
©­«
∑
j,ℓ

∆k j (p)
∑
i,k

pi, j
ª®¬
2

≤
√∑

j

(∑
i

pi, j

)2 ∑
k

(∑
ℓ

pk, ℓ

)2 ∑
k

∑
j

∆k j (p)2

=

√∑
j

pY (k)2
∑
k

pX(j)2Q(p) =
√∑

k, j

pΠ(k, j)2Q(p)

≤
√
bQ(p)

and so T1(N ) = O
(
Q(p)
√
b/N

)
.

Gathering these four terms, and by the above discussion, we

obtain

T1(N ) = 4

(N−4
3

)
(N
4

) ∑
k, ℓ

pk, ℓ

(
dQ(p)
dXk, ℓ

)2
≤ 4

(N−4
3

)
(N
4

) · 8 · 4√bQ(p)

which is O

(√
bQ (p)
N

)
.

• Finally, for the rest of the contributions (h ≥ 2), we in-

voke Lemma 5.5. Specifically, we first observe that, for any

distribution p ∈ ∆(X × Y),

Q+(p) =
Λ1∑
i=1

Λ2∑
j=1

©­«
pi, j

∑
i′,i

∑
j′,j

pi′, j′ +
∑
i′,i

pi′, j

∑
j′,j

pi, j′
ª®¬
2

≤
∑
i, j

©­«
pi, j +

Λ1∑
i′=1

pi′, j

Λ2∑
j′=1

pi, j′
ª®¬
2

≤ 2
∑
i, j

©­«
p2i, j +

(
Λ1∑
i′=1

pi′, j

)2 ©­«
Λ2∑
j′=1

pi, j′
ª®¬
2ª®®¬

≤ 2
(
∥p∥22 + ∥pΠ ∥

2
2

)
≤ 4b .

Next, we need to upper bound the high-order derivatives of

Q . By Leibniz’s rule, for h ≥ 2 and ∥s∥ = h,

dhQ

dX s
=

∑
i, j

dh∆2
i j

dX s
=

∑
i, j

∑
s′≤s

n∏
ℓ=1

(
sℓ
s ′
ℓ

)
d ∥s

′ ∥
∆i j

dX s′
d ∥s∥−∥s

′ ∥
∆i j

dX s−s′

≤
∑
s′≤s

n∏
i=ℓ

(
sℓ
s ′
ℓ

)√√√√∑
i, j

(
d ∥s′ ∥∆i j
dX s′

)2 ∑
i, j

(
d ∥s−s′ ∥∆i j
dX s−s′

)2

(CauchyśSchwarz)

≤ max
s′≤s

∑
i, j

(
d ∥s

′ ∥
∆i j

dX s′

)2 ∑
s′≤s

n∏
i=ℓ

(
sℓ
s ′
ℓ

)

= 2h max
s′≤s

∑
i, j

(
d ∥s

′ ∥
∆i j

dX s′

)2
.

Since ∆i j has degree 2, to bound this maximum we have to

consider 3 cases: first,
∑
i, j

(
d0

∆i j (p)
dX 0

)2
= Q(p) ≤ 4. Second,

recalling the partial derivatives of ∆i j we computed earlier,

∑
i, j

(
d∆i j (p)
dXk, ℓ

)2
=

∑
i,k

∑
j,ℓ

p2
k, ℓ
+

©­«
∑
i′,k

∑
j′,ℓ

pi′, j′
ª®¬
2

+

∑
i′,k

p2i′, ℓ +
∑
j′,ℓ

p2
k, j′

≤ 4 .

Third,

∑
i, j

(
d2∆i j (p)

dXk, ℓdXk ′, ℓ′

)2
=

∑
i, j

(δik − δik ′)2(δjℓ − δjℓ′)2 ≤ 4 .
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Combining all of the above cases results in
���dhQdX s

��� ≤ 24 · 4
for any h ≥ 2 and ∥s∥ = h, and from there

4∑
h=2

Th (N ) = O
(
1

N 2

)
· 24 · 4 · 4b = O

(
b

N 2

)
.

Accounting for all the terms, we thus can bound the variance as

VarUNQ(ΦS ) = (T0(N ) −Q(p)2) +T1(N ) +
4∑

h=2

Th (N )

which isO

(
Q (p)

√
b

N +
b
N 2

)
; concluding the proof of Proposition 5.6.

Remark 2 (A Detour: Estimating a Polynomial under Poisson Sam-

pling). We observe that analogues of our theorems hold under

Poisson sampling (instead of multinomial sampling as treated in Sec-

tion 5). We defer these results, which follow from a straightforward

(yet slightly cumbersome) adaptation of the proofs of this section,

to the full version of this paper.

6 TESTINGWITH RESPECT TO MUTUAL

INFORMATION

We conclude by considering a slightly different model from the one

considered thus far. In particular, while the total variation metric

is a reasonable one to measure what it means for X and Y to be

far from conditionally independent, there is another metric that is

natural in this context: conditional mutual information. Specifically,

we modify the testing problem to distinguish between the cases

where X and Y are conditionally independent on Z and the case

where I (X ;Y |Z ) ≥ ε . Our picture here is somewhat less complete,

but we are still able to say something in the case where X ,Y are

binary.

Theorem 6.1. If X and Y are binary random variables and Z

has a support of size n, there exists a sample-efficient algorithm that

distinguishes between I (X ;Y |Z ) = 0 and I (X ;Y |Z ) ≥ ε with sample

complexity

O

(
max

(
min

(
n6/7

ε8/7
log8/7(1/ε), n

7/8

ε
log(1/ε)

)
,

√
n

ε2
log2(1/ε)

))
.

Proof. This follows immediately upon noting that by Lemma 6.2

(stated and proven later), that if X and Y are ε-close in total vari-

ation distance from being conditionally independent on Z , then

I (X ;Y |Z ) ≤ O(ε log(1/ε)); or, by the contrapositive, that I (X ;Y |Z ) ≥
ε implies that X and Y are Ω(ε/log(1/ε))-far in total variation dis-

tance from being conditionally independent on Z . Therefore, it

suffices to run our existing conditional independence tester with

parameter ε ′ := Ω(ε/log(1/ε)). The sample complexity of this tester

is as specified. □

Remark 3 (On the optimality of this bound). It is not difficult to

modify the analysis slightly in order to remove the logarithmic

factors from the first two terms in the above expression. Intuitively,

this is because these terms arise only when at least half of the

mutual information comes from łlightž bins, with mass at most

1/m. In this case, these bins contribute at leastm4 ∑
z ε

2
zpZ (z)4 ≫

m4 ∑
z (pZ (z)εz log(1/εz ))4 ≫m4ε4/n3 to the expectation of Z , and

the analysis proceeds from there as before.

It is also easy to show that in this regime our lower bounds still

apply, as the hard instances also produced distributions with mutual

information Ω(ε).2 Therefore, we have matching upper and lower

bounds as long as ε ≫ n−3/8/log2 n.
However, it seems likely that the correct behavior in the small ε

regime is substantially different when testingwith respect tomutual

information. The difficult cases for total variation distance testing

actually end up with mutual information merely I (X ;Y |Z ) = O(ε2).
It is quite possible that a better algorithm or a better analysis of the

existing algorithm could give substantially improved performance

when ε < n−3/8. In fact, it is conceivable that the sample complexity

of O(n7/8/ε) could be maintained for a broad range of ε . The only

lower bound that we know preventing this is a lower bound of

Ω(ε log(1/ε)) by noting that there are distributionswith I (X ;Y |Z ) ≥
ε , but where (X ,Y ,Z ) isO(ε/log(1/ε))-far in variation distance from
being conditionally independent.

Lemma 6.2. Assume (X ,Y ,Z ) ∼ p, where p ∈ ∆(X × Y ×Z)
with |X| = Λ1, |Y| = Λ2, and |Z| = n. Then, for every ε ∈ (0, 1),
• If dTV

(
p,PX,Y |Z

)
≤ ε , then I (X ;Y |Z ) ≤ O(ε log(Λ1Λ2/ε));

• If dTV

(
p,PX,Y |Z

)
≥ ε , then I (X ;Y |Z ) ≥ 2ε2.

Proof. The second item is simply an application of Pinsker’s

inequality, recalling that

I (X ;Y |Z ) = dKL((X ,Y ) | Z | | (X | Z ) ⊗ (Y | Z )) .
i.e. the KullbackśLeibler divergence between the joint distribution

of (X ,Y | Z ) and the product of marginals (X | Z ) and (Y | Z ). As
for the first, it follows from the relation between conditional mutual

information and total variation distance obtained in [40]. □

ACKNOWLEDGMENTS

C. L. C. is a supported by a Motwani Postdoctoral Fellowship. Some

of this work was performed while visiting USC, and a graduate

student at Columbia University supported by NSF CCF-1115703 and

NSF CCF-1319788. I. D. is supported by NSF Award CCF-1652862

(CAREER) and a Sloan Research Fellowship. D. M. K. is supported

by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fel-

lowship.

REFERENCES
[1] J. Acharya, C. Daskalakis, and G. Kamath. 2015. Optimal Testing for Properties

of Distributions. In Proceedings of NIPS’15.
[2] A. Agresti. 1992. A Survey of Exact Inference for Contingency Tables. Statist. Sci.

7, 1 (02 1992), 131ś153.
[3] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. 2000. Testing that

distributions are close. In IEEE Symposium on Foundations of Computer Science.
259ś269. citeseer.ist.psu.edu/batu00testing.html

[4] T. Batu, R. Kumar, and R. Rubinfeld. 2004. Sublinear algorithms for testing mono-
tone and unimodal distributions. In ACM Symposium on Theory of Computing.
381ś390.

[5] R. Blundell and J. L. Horowitz. 2007. A Non-Parametric Test of Exogeneity. The
Review of Economic Studies 74, 4 (2007), 1035ś1058. http://www.jstor.org/stable/
4626172

[6] T. Bouezmarni and A. Taamouti. 2014. Nonparametric tests for conditional
independence using conditional distributions. Journal of Nonparametric Statistics
26, 4 (2014), 697ś719.

2I.e., the conditional mutual information of łno-distributionsž is easily seen to actually
be Ω(ε ), while applying the relation between total variation distance and conditional
mutual information as a black-box to the ε distance in total variation distance would
incur a quadratic loss in ε .



STOC’18, June 25–29, 2018, Los Angeles, CA, USA C. L. Canonne, I. Diakonikolas, D. M. Kane, and A. Stewart

[7] C. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld. 2016. Testing Shape
Restrictions of Discrete Distributions. In 33rd Symposium on Theoretical Aspects
of Computer Science, STACS 2016. 25:1ś25:14.

[8] C. L. Canonne. 2015. A Survey on Distribution Testing: Your Data is Big. But is it
Blue? Electronic Colloquium on Computational Complexity (ECCC) 22 (2015), 63.

[9] C. L. Canonne, I. Diakonikolas, D. M. Kane, and A. Stewart. 2017. Testing Bayesian
Networks. In Proceedings of the 30th Conference on Learning Theory, COLT 2017.
370ś448.

[10] Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stew-
art. 2017. Testing Conditional Independence of Discrete Distributions. CoRR
abs/1711.11560 (2017).

[11] C. L. Canonne, I. Diakonikolas, and A. Stewart. 2017. Fourier-Based Testing for
Families of Distributions. CoRR abs/1706.05738 (2017).

[12] S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. 2014. Optimal Algorithms for
Testing Closeness of Discrete Distributions. In SODA. 1193ś1203.

[13] W. G. Cochran. 1954. Some Methods for Strengthening the Common χ 2 Tests.
Biometrics 10, 4 (1954), 417ś451.

[14] C. Daskalakis, I. Diakonikolas, R. Servedio, G. Valiant, and P. Valiant. 2013. Testing
k -modal distributions: Optimal algorithms via reductions. In SODA. 1833ś1852.

[15] C. Daskalakis, N. Dikkala, and G. Kamath. 2018. Testing Ising Models. In SODA.
To appear.

[16] C. Daskalakis and Q. Pan. 2017. Square Hellinger Subadditivity for Bayesian
Networks and its Applications to Identity Testing. In Proceedings of the 30th
Conference on Learning Theory, COLT 2017. 697ś703.

[17] A. P. Dawid. 1979. Conditional Independence in Statistical Theory. Journal of
the Royal Statistical Society. Series B (Methodological) 41, 1 (1979), 1ś31. http:
//www.jstor.org/stable/2984718

[18] P. de Morais Andrade, J. M. Stern, and C. A. de Braganca Pereira. 2014. Bayesian
Test of Significance for Conditional Independence: The Multinomial Model. En-
tropy 16, 3 (2014), 1376ś1395.

[19] M. A. Delgado and W. G. Manteiga. 2001. Significance Testing in Nonparametric
Regression Based on the Bootstrap. The Annals of Statistics 29, 5 (2001), 1469ś
1507.

[20] I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price. 2016. Collision-based
Testers are Optimal for Uniformity and Closeness. Electronic Colloquium on
Computational Complexity (ECCC) 23 (2016), 178.

[21] I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price. 2017. Sample-Optimal
Identity Testing with High Probability. CoRR abs/1708.02728 (2017).

[22] I. Diakonikolas and D. M. Kane. 2016. A New Approach for Testing Properties of
Discrete Distributions. In FOCS. 685ś694. Full version available at abs/1601.05557.

[23] I. Diakonikolas, D. M. Kane, and V. Nikishkin. 2015. Optimal Algorithms and
Lower Bounds for Testing Closeness of Structured Distributions. In 56th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2015.

[24] I. Diakonikolas, D. M. Kane, and V. Nikishkin. 2015. Testing Identity of Structured
Distributions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015.

[25] I. Diakonikolas, D. M. Kane, and V. Nikishkin. 2017. Near-Optimal Closeness
Testing of Discrete Histogram Distributions. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017. 8:1ś8:15.

[26] R. L. Dobrušin. 1959. A general formulation of the fundamental theorem of
Shannon in the theory of information. Uspehi Mat. Nauk 14, 6 (90) (1959), 3ś104.

[27] D. Easley and M. O’Hara. 1987. Price, trade size, and information in securities
markets. Journal of Financial Economics 19, 1 (1987), 69 ś 90.

[28] R. A. Fisher. 1924. The distribution of the partial correlation coefficient. Metron 3
(1924), 329ś332.

[29] G. Geenens and L. Simar. 2010. Nonparametric tests for conditional independence
in two-way contingency tables. Journal of Multivariate Analysis 101, 4 (2010),

765ś788.
[30] O. Goldreich. 2017. Introduction to Property Testing. Forthcoming. http://www.

wisdom.weizmann.ac.il/~oded/pt-intro.html
[31] C.W.J. Granger. 1980. Testing for causality: A personal viewpoint. Journal of

Economic Dynamics and Control 2, Supplement C (1980), 329 ś 352.
[32] M. Hardt, E. Price, and N. Srebro. 2016. Equality of Opportunity in Supervised

Learning. In Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016. 3315ś3323.

[33] T.-M. Huang. 2010. Testing conditional independence using maximal nonlinear
conditional correlation. Ann. Statist. 38, 4 (08 2010), 2047ś2091.

[34] O. Linton and P. Gozalo. 1996. Conditional Independence Restrictions: Testing and
Estimation. Cowles Foundation Discussion Papers 1140. Cowles Foundation for
Research in Economics, Yale University.

[35] N. Mantel and W. Haenszel. 1959. Statistical aspects of the analysis of data from
retrospective studies of disease. Journal of the National Cancer Institute 22, 4
(April 1959), 719ś748. http://www.ncbi.nlm.nih.gov/pubmed/13655060 PMID:
13655060.

[36] K. Natori, M. Uto, and M. Ueno. 2017. Consistent Learning Bayesian Networks
with Thousands of Variables. In Proceedings of The 3rd International Workshop on
Advanced Methodologies for Bayesian Networks (Proceedings of Machine Learning
Research), Vol. 73. PMLR, 57ś68. http://proceedings.mlr.press/v73/natori17a.html

[37] R. E. Neapolitan. 2003. Learning Bayesian Networks. Prentice-Hall, Inc.
[38] L. Paninski. 2008. A coincidence-based test for uniformity given very sparsely-

sampled discrete data. IEEE Transactions on Information Theory 54 (2008), 4750ś
4755.

[39] J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[40] M. S. Pinsker. 2005. On the estimation of information via variation. Problemy
Peredachi Informatsii 41, 2 (2005), 3ś8. https://doi.org/10.1007/s11122-005-0012-8

[41] R. Rubinfeld. 2012. Taming big probability distributions. XRDS 19, 1 (2012),
24ś28.

[42] K. Song. 2009. Testing conditional independence via Rosenblatt transforms. Ann.
Statist. 37, 6B (12 2009), 4011ś4045.

[43] P. Spirtes, C. Glymour, and R. Scheines. 2000. Causation, Prediction, and Search
(2nd ed.). MIT press.

[44] L. Su and H. White. 2007. A consistent characteristic function-based test for
conditional independence. Journal of Econometrics 141, 2 (2007), 807 ś 834.

[45] L. Su and H. White. 2008. A Nonparametric Hellinger Metric Test for Conditional
Independence. Econometric Theory 24, 4 (2008), 829ś864.

[46] L. Su and H. White. 2014. Testing conditional independence via empirical likeli-
hood. Journal of Econometrics 182, 1 (2014), 27 ś 44. Causality, Prediction, and
Specification Analysis: Recent Advances and Future Directions.

[47] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. 2006. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning 65, 1 (01 Oct
2006), 31ś78.

[48] G. Valiant and P. Valiant. 2014. An Automatic Inequality Prover and Instance
Optimal Identity Testing. In FOCS.

[49] X. Wang and Y. Hong. 2017. Characteristic Function Based Testing For Con-
ditional Independence: A Nonparametric Regression Approach. Econometric
Theory (2017), 1ś35.

[50] A. D. Wyner. 1978. A definition of conditional mutual information for arbitrary
ensembles. Inform. and Control 38, 1 (1978), 51ś59. https://doi.org/10.1016/
S0019-9958(78)90026-8

[51] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. 2011. Kernel-based Conditional
Independence Test and Application in Causal Discovery. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI’11). AUAI
Press, 804ś813.


