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Abstract

We study the fundamental problem of learning the
parameters of a high-dimensional Gaussian in the
presence of noise — where an ε-fraction of our
samples were chosen by an adversary. We give
robust estimators that achieve estimation error O(ε)
in the total variation distance, which is optimal up
to a universal constant that is independent of the
dimension.

In the case where just the mean is unknown,
our robustness guarantee is optimal up to a factor
of
√
2 and the running time is polynomial in d

and 1/ε. When both the mean and covariance
are unknown, the running time is polynomial in
d and quasipolynomial in 1/ε. Moreover all of
our algorithms require only a polynomial number of
samples. Our work shows that the same sorts of error
guarantees that were established over fifty years ago
in the one-dimensional setting can also be achieved
by efficient algorithms in high-dimensional settings.

1 Introduction

1.1 Background The most popular and widely
used modeling assumption is that data is approxi-
mately Gaussian. This is a convenient simplification
to make when modeling velocities of particles in an
ideal gas [Goo15], measuring physical characteristics
across a population (after controlling for gender), and
even modeling fluctuations in a stock price on a log-
arithmic scale. However, real data is not actually
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Gaussian and is at best crudely approximated by a
Gaussian (e.g., with heavier tails). What’s worse is
that estimators designed under this assumption can
perform poorly in practice and be heavily biased by
just a few errant samples that do not fit the model.

For over fifty years, the field of robust statis-
tics [HR09, HRRS86, RL05] has studied exactly this
phenomenon — the sensitivity or insensitivity of es-
timators to small deviations in the model. Unsur-
prisingly, one of the central questions that shaped
its development was the problem of learning the pa-
rameters of a one-dimensional Gaussian distribution
when a small fraction of the samples are arbitrarily
corrupted. More precisely, in 1964, Huber [Hub64]
introduced the following model:

Definition 1. In Huber’s contamination model, we
are given samples from a distribution

D = (1− ε)N (µ, σ2) + εZ ,

where N (µ, σ2) is a Gaussian of mean µ and variance
σ2, and Z is an arbitrary distribution chosen by an
adversary.

Intuitively, among our samples, about a (1 − ε)
fraction will have been generated from a Gaussian
and are called inliers, and the rest are called out-
liers or gross corruptions. We will work with an even
more challenging1 model — called the strong contam-
ination model (Definition 2) — where the adversary
is allowed to look at the inliers and then decide on the
outliers. The literature on robust statistics has given
numerous explanations and empirical investigations
[GCSR14, Ham01] into how such outliers might arise
as the result of equipment failure, data being entered
incorrectly, or even from a subpopulation that was
not accounted for in a medical study. These types of
errors are erratic and difficult to model, so instead
our goal is to design a procedure that accurately es-
timates µ and σ2 without making any assumptions
about them.

1None of the results in our paper were previously known

in Huber’s contamination model either. The reason we work
with this stronger model is because we can — nothing in our

analysis relies on the inliers and outliers being independent.
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In one dimension, the median and median abso-
lute deviation are well-known robust estimators for
the mean and variance respectively. In particular,
given samples X1, X2, . . . , Xn, we can compute

µ̂ = median(X1, X2, . . . , Xn)

and

σ̂ =
median(|Xi − µ̂|)

Φ−1(3/4)
,

where Φ is the cumulative distribution of the stan-
dard Gaussian. (This scaling constant is needed to
ensure that σ̂ is an unbiased estimator when there is
no noise.) If n ≥ C log 1/δ

ε2 , then with probability at
least 1 − δ we have that dTV (N (µ, σ2),N (µ̂, σ̂2)) ≤
Cε. In Huber’s contamination model, this is the
strongest type of error guarantee we could hope for2

and captures both the task of learning the underlying
parameters µ and σ2, and finding the approximately
best fit to the observed distribution within the family
of one-dimensional Gaussians. In fact there are plen-
tifully many other estimators — such as the trimmed
mean, winsorized mean, Tukey’s biweight function,
and the interquartile range — that achieve the same
sorts of error guarantees, up to constant factors. The
design of robust estimators for location (e.g., estimat-
ing µ) and scale (e.g., estimating σ2) is guided by
certain overarching principles, such as the notion of
the influence curve [HRRS86] or the notion of break-
down point [RL05]. In some cases, it is even possible
to design robust estimators that are minimax optimal
[Hub64].

These days, much of modern data analysis re-
volves around high-dimensional data — for example,
when we model documents [BNJ03], images [OF96],
and genomes [NJB+08] as vectors in a very high-
dimensional space. The need for robust estimators
is even more pressing in these applications, since it
is infeasible to remove obvious outliers by inspec-
tion. However, adapting robust statistics to high-
dimensional settings is fraught with challenges. The
principles that guided the design of robust estima-
tors in one dimension seem to inherently lead to
high-dimensional estimators that are hard to com-
pute [Ber06, HM13].

In this paper, we focus on the central problem of
learning the parameters of a multivariate Gaussian
N (µ,Σ) in the strong contamination model. The
textbook estimators for the mean and covariance –
such as the Tukey median [Tuk75] and minimum vol-
ume enclosing ellipsoid [Rou85] – essentially search
for directions where the projection of D is suitably
non-Gaussian. However, trying to find a direction

2See lower bounds in the appendix of the full version.

where the projection is non-Gaussian can be like look-
ing for a needle in an exponentially-large haystack
– these statistics are not efficiently computable, in
general. Furthermore, a random projection will look
Gaussian with high probability [Kla07].

In this paper, our main result is an efficiently
computable estimator for a high-dimensional Gaus-
sian that achieves error

dTV (N (µ,Σ),N (µ̂, Σ̂)) ≤ Cε
in the strong contamination model, for a universal
constant C that is independent of the dimension.
For a Gaussian distribution, we consider estimation
in terms of total variation distance, which is equiva-
lent to estimating the parameters under the natural
measures. Our main idea is to use various regularity
conditions satisfied by the inliers to make the prob-
lem of searching for non-Gaussian projections easier.
When just the mean µ is unknown, our algorithm
runs in time polynomial in the dimension d and 1/ε.
When both the mean and covariance are unknown,
our algorithm runs in time polynomial in d and quasi-
polynomial in 1/ε. All of our algorithms achieve poly-
nomial sample complexity.

Prior to our work, the best known algorithm of
Diakonikolas et al. [DKK+16] achieved estimation
error O(ε log 1/ε) for this problem3, again with re-
spect to total variation distance. Concurrently, Lai,
Rao and Vempala [LRV16] gave an algorithm which

achieves estimation error roughly O(ε1/2 log1/2 d). In
fact, the algorithm of Diakonikolas et al. [DKK+16]
works in a stronger model than what we consider
here, where an adversary gets to look at the sam-
ples and then decides on an ε-fraction to move ar-
bitrarily. Such errors are both additive and sub-
tractive (because inliers are removed). Interestingly,
Diakonikolas, Kane and Stewart [DKS17] proved
that any Statistical Query learning algorithm that
works in such an additive and subtractive model
and achieves an error guarantee asymptotically better
than O(ε log1/2 1/ε) must make a super-polynomial
number of statistical queries. Our work shows a natu-
ral conclusion that in an additive only model it is pos-
sible to algorithmically achieve the same error guar-
antees as are possible in the one-dimensional case, up
to a universal constant.

1.2 Our Results and Techniques In what fol-
lows, we will explain both our work as well as prior

3 We note that, as stated, the results in [DKK+16] give

estimation error O(ε log3/2 1/ε). However, combining the

techniques in [DKK+16] with the arguments in Section 7 of this
paper gives the stated bound. This argument will be included

in the full version of [DKK+16].
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work through the following lens:

At the core of any robust estimator is some
procedure to certify that the estimates have
not been moved too far away from the true
parameters by a small number of corrup-
tions.

First, we consider the subproblem where the
covariance Σ = I is known and only the mean µ
is unknown. In the terminology of robust statistics,
this is called robust estimation of location. If we
could compute the Tukey median, we would have an
estimate that satisfies dTV (N (µ, I),N (µ̂, I)) ≤ Cε.
The way that the Tukey median guarantees that it is
close to the true mean is that along every direction
u it is close to the median of the projection of the
samples. More precisely, at least a 1−ε

2 fraction of
the samples satisfy uTXi ≥ uT µ̂, and at least a
1−ε
2 fraction of the samples satisfy uT µ̂ ≥ uTXi.

However, if we have a candidate µ̂, finding a direction
u that violates this condition is again like searching
for a needle in an exponentially large haystack.

The approach of Diakonikolas et al. [DKK+16]
was essentially a data-dependent way to search for
appropriate directions u, by looking for directions
where the empirical variance is larger than it should
be (if there were no corruptions). However, because
their approach considers only a single direction at a
time, it naturally gets stuck at error Θ(ε log1/2 1/ε).
This is because along the direction u, only when a
point is Ω(log1/2 1/ε) away from most of the rest of
the samples can we be relatively confident that it is
an outlier. Thus, an adversary could safely place all
the corruptions in the tails and move the mean by
as much as Θ(ε log1/2 1/ε). This would not affect
the Tukey median by as much, but would affect an
estimate based on the empirical mean (because the
algorithm could find no other outliers to remove) by
considerably more.

Our approach is to consider logarithmically many
directions at once. Even though an inlier can be loga-
rithmically many standard deviations away from the
mean along a single direction u with reasonable prob-
ability, it is unlikely to be that many standard devi-
ations away simultaneously across many orthogonal
directions. Essentially, this allows us to remove the
influence of outliers on all but a logarithmic dimen-
sional subspace. Combining this with an algorithm
for robustly learning the mean in time exponential
in the dimension (but polynomial in the number of
samples), we obtain our first main result:

Theorem 1.1. Suppose we are given a set of n =
poly(d, 1/ε) samples from the strong contamination

model, where the underlying d-dimensional Gaussian
is N (µ, I). Let ε ≤ ε0, where ε0 is a positive
universal constant. For any β > 0, there is an
algorithm to learn an estimate N (µ̂, I) that with high
probability satisfies

dTV (N (µ, I),N (µ̂, I)) ≤
(

1√
2
+O

(
1√
β
+ ε2

))
ε .

Moreover, the algorithm runs in time poly(n, (1/ε)β).

We prove an almost matching lower bound of ε
2+

Ω(ε2) on the estimation error. Thus, our robustness
guarantee is optimal up to a factor of

√
2, even

among computationally inefficient robust estimators.
Interestingly, our extra factor of

√
2 comes from the

following geometric fact which we make crucial use of:
Any convex body of diameter D in any dimension can
be covered by a ball of radius D/

√
2, and moreover

such a ball can be (approximately) found in time
exponential in the dimension. Suppose that along
some direction u we have an estimate p that is
guaranteed to be within ε/2 of the projection of the
true mean µ. We can now confine µ to a slab of width
ε, and by taking the intersection of all such slabs we
get a convex body that contains µ and has diameter
of at most ε. By covering the body with a ball of
radius ε/

√
2, we are guaranteed that the center of

the ball is within ε/
√
2 of the true mean. This gives

us a general way to combine one-dimensional robust
estimates along a net of directions.

We note that, for general isotropic sub-
Gaussian distributions, the bound of O(ε log1/2 1/ε)
of [DKK+17] is optimal for robust mean estimation,
even in one dimension. See the full version of this pa-
per for a proof of this fact. However, our results can
be seen to hold more generally than stated above –
indeed, the same arguments work for a class of sym-
metric isotropic sub-Gaussian distributions which are
sufficiently smooth near their mean. More precisely,
we require that along any univariate projection, the
mean is robustly estimated by the median.

We next consider the subproblem where the mean
µ = 0 is known and only the covariance Σ is unknown.
In the terminology of robust statistics, this is called
robust estimation of scale. In this case, we want to
compute an estimate Σ̂ that satisfies4 ‖Σ−Σ̂‖F ≤ Cε.
When Σ̂ does not satisfy this condition, it can be

4More precisely, to obtain O(ε) error guarantee with re-

spect to the total variation distance, we need to robustly ap-
proximate Σ within O(ε) in Mahalanobis distance, which is a

stronger metric than the Frobenius norm. As part of our ap-

proach, we are able to efficiently reduce to the case that Σ is
close to the identity matrix, in which case the Frobenius error

suffices.
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shown (in Section 6.2.3) that there is a degree-two
polynomial p(X), where

E
X∼N (0,Σ)

[p(X)] = 1 and E
X∼N (0,Σ̂)

[p(X)] = 1 + C ′ε .

It turns out that, even given the polynomial p(X),
deciding whether or not the above conditions ap-
proximately hold is challenging. Given p(X) and

Σ̂, we can certainly compute EX∼N (0,Σ̂)[p(X)].

But given only contaminated samples from N (0,Σ)
and without knowing what Σ is, can we estimate
EX∼N (0,Σ)[p(X)]?

Often, univariate robust estimation problems are
considered easy, with a simple recipe: Construct an
unbiased estimator for the statistic for which each
sample point has low influence. However, in our
setting, it is highly non-trivial to construct such an
estimator. The naive attempt in this case would
be the median – this immediately fails since the
distribution of p(X) is asymmetric. Even if there
were no noise, that would not necessarily be an
unbiased estimator. So how can we dampen the
influence of outliers, if there is no natural symmetry
in the distribution? We construct a robust estimator
crucially using the fact that p(X) is the weighted
sum of chi-squared random variables when there is
no noise. The key structural fact we exploit is the
following: Given two sums of chi-squared random
variables, if the random variables are far in total
variation distance, most of their difference must lie
close to their means. We use this fact to show
how, given a weak estimate of the mean (i.e., one
which is only accurate up ω(ε)), one can improve the
estimate by a constant factor. Our result follows by
an iterative application of this technique.

However, there is still a major complication in
utilizing our low-dimensional estimator to obtain a
high-dimensional estimator. In the unknown mean
case, we knew the higher-order moments (since we
assumed that the covariance is the identity). Here,
we do not have control over the higher-order moments
of the unknown Gaussian. Overcoming this difficulty
requires several new techniques, which are quite
complicated, and we defer the full details to Section
6. Our second main result is:

Theorem 1.2. Suppose we are given a set of n =
poly(d, 1/ε) samples from the strong contamina-
tion model, where the underlying d-dimensional
Gaussian is N (0,Σ). There is an algorithm

to learn an estimate N (0, Σ̂) that runs in time

poly(n, (1/ε)O(log4 1/ε)) and with high probability sat-
isfies

dTV (N (0,Σ),N (0, Σ̂)) ≤ Cε ,

for a universal constant C that is independent of the
dimension.

A key technical problem arises when we attempt
to combine estimates for the covariance restricted to
a subspace and its orthogonal complement. We refer
to this as a stitching problem, where if we write Σ as

Σ =

[
ΣV AT

A ΣV ⊥

]
,

and have accurate estimates for ΣV and ΣV ⊥ , we
still need to accurately estimate A. Our algorithm
utilizes an unexpected connection to the unknown
mean case: We show that, under a carefully chosen
projection scheme, we can simulate noisy samples
from a Gaussian with identity covariance, where the
mean of this distribution encodes the information
needed to recover A. We defer the full details to
Section 6.4.

It turns out that we can solve the general case
when both µ and Σ are unknown, by directly reduc-
ing to the previous subproblems, exactly as was done
in [DKK+16] (with some caveats, addressed in Sec-
tion 4.4). Since all of our error guarantees are optimal
up to constant factors, there is only a constant factor
loss in this reduction. Finally, we obtain the following
corollary:

Corollary 1.1. Suppose we are given a set of
n = poly(d, 1/ε) samples from the strong contam-
ination model, where the underlying d-dimensional
Gaussian is N (µ,Σ). There is an algorithm

to learn an estimate N (µ̂, Σ̂) that runs in time

poly(n, (1/ε)O(log4 1/ε)) and with high probability sat-
isfies

dTV (N (µ,Σ),N (µ̂, Σ̂)) ≤ Cε ,

for a universal constant C that is independent of the
dimension.

This essentially settles the complexity of robustly
learning a high-dimensional Gaussian. The sample
complexity of our algorithm depends polynomially on
d and 1/ε, and the running time depends polynomi-
ally on d and quasi-polynomially on 1/ε. Up to a
constant factor, ours is the first high-dimensional al-
gorithm that achieves the same error guarantees as in
the one-dimensional case, where results were known
for more than fifty years! It is an interesting open
problem to reduce the running time to polynomial in
1/ε (while still being polynomial in d). As we explain
in Section 6.6, this seems to require fundamentally
new ideas.
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More Related Work In addition to the works men-
tioned above, there has been an exciting flurry of
recent work on robust high-dimensional estimation.
This includes studying graphical models in the pres-
ence of noise [DKS16], tolerating much more noise by
allowing the algorithm to output a list of candidate
hypotheses [CSV17], formulating general conditions
under which robust estimation is possible [SCV18],
developing robust algorithms under sparsity assump-
tions [Li17, DBS17, BDLS17] where the number of
samples is sublinear in the dimension, and leverag-
ing theoretical insights to give practical algorithms
that can be applied to genomic data [DKK+17]. We
note that, in comparison to all these other works,
ours is the only to efficiently achieve the information-
theoretically optimal error guarantee (up to constant
factors). Despite all of this rapid progress, there are
still many interesting theoretical and practical ques-
tions left to explore.

1.3 Organization In Section 2, we go over pre-
liminaries and notation that we will use throughout
the paper. In Section 3, we describe an algorithm
for robustly estimating the mean of a Gaussian in
low-dimensional settings, and crucially apply it in
the design of an algorithm for mean-estimation in
high dimensions, described in Section 4. Similarly,
in Section 5, we give an algorithm for robustly esti-
mating the mean of degree-two polynomials in cer-
tain settings, which is applied in the context of our
covariance-estimation algorithm in Section 6. Finally,
we put these tools together and describe our general
algorithm for robustly estimating a Gaussian in Sec-
tion 7.

2 Preliminaries

In this section, we give various definitions and
lemmata we will require throughout the paper.
First, given a distribution F , we let EF [f(X)] =
EX∼F [f(X)] denote the expectation of f(X) un-
der F . If S is a finite set, we let ES [f(X)] =
EX∼unif(S)[f(X)] denote the expectation of f(X) un-
der the uniform distribution over points in S (i.e., the
empirical mean of f under S). Given any subspace
V ⊆ R

d, we let ΠV : Rd → R
d be the projection op-

erator onto V . If V = span(v) is 1-dimensional, we
will denote this projection as Πv.

2.1 The Strong Contamination Model Here
we formally define the strong contamination model.

Definition 2. Fix ε > 0. We say a set of samples
X1, . . . , Xn was generated from the strong contami-
nation model on a distribution F , if it was generated

via the following process:

1. We produce (1− ε)n i.i.d. samples G from F .

2. An adversary is allowed to observe these samples
and add εn points E arbitrarily.

We are then given the set of samples G∪E in random
order. Also, we will say that the samples X1, . . . , Xn

are ε-corrupted. Moreover given an ε-corrupted set
of samples S, we will write S = (G,E) where G is
the set of uncorrupted points and E is the set of
corrupted points. Moreover, given a subset S′ ⊂ S,
we will also write S′ = (G′, E′), where G′ = S′ ∩ G
and E′ = S′ ∩E denote the set of uncorrupted points
and corrupted points remaining in S′. L will denote
G \G′, which is the set of “lost” uncorrupted points.

Given a contaminated set S′ = (G′, E′) and a set
G so that G′ ⊆ G, define the following quantities

φ(S′, G) =
|G \G′|
|S′| , ψ(S′, G) =

|E′|
|S′|

∆(S′, G) = ψ(S′, G) + φ(S′, G) log
1

φ(S′, G)
.(2.1)

In particular, observe that if ∆(S′, G) < O(ε),
then a simple calculation implies that φ(S′, G) ≤
O(ε/ log 1/ε). Equivalently, we have removed at
most an O(ε/ log 1/ε) fraction of good points from
G. This is crucial, as if we throw out an ε-fraction
of good points then we essentially put ourselves in
the subtractive model, and there our guarantees no
longer hold.

There are two differences between the strong con-
tamination model and Huber’s contamination model.
First, the number of corrupted points is fixed to be
εn instead of being a random variable. However, this
difference is negligible. It follows from basic Chernoff
bounds that n samples from Huber’s contamination
model with parameter ε (for n sufficiently large) can
be simulated by a (1+o(1))ε-corrupted set of samples,
except with negligible failure probability. Hence, we
lose only an additive o(ε) term when translating from
Huber’s contamination model to the strong contami-
nation model, which will not change any of the guar-
antees in our paper. The second difference is that
the adversary is allowed to inspect the uncorrupted
points before deciding on the corrupted points. This
makes the model genuinely stronger since the samples
we are given are no longer completely independent of
each other.

2.2 Deterministic Regularity Conditions In
analyzing our algorithms, we only need certain deter-
ministic regularity conditions to hold on the uncor-
rupted points. In this subsection, we formally state
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what these conditions are. It follows from known con-
centration bounds that these conditions all hold with
high probability given a polynomial number of sam-
ples. Now with these regularity conditions defined
once and for all, we will be able to streamline our
proofs in the sense that each step in the analysis will
only ever use one of these fixed set of conditions and
will not use the randomness in the sampling proce-
dure. We remark that some subroutines in our algo-
rithm only need a subset of these conditions to hold,
so we could improve the sample complexity by chang-
ing the regularity conditions we need at each step.
However, since we will not be concerned with opti-
mizing the sample complexity beyond showing that it
is polynomial, we choose not to complicate our proofs
in this manner.

2.2.1 Regularity Conditions for Unknown

Mean In the unknown mean case, we will require
the following condition:

Definition 3. Let G be a multiset of points in R
d

and η, δ > 0. We say that G is (η, δ)-good with respect
to N (µ, I) if the following hold:

• For all x ∈ G we have ‖x − µ‖2 ≤
O(

√
d log(|G|/δ)).

• For every affine function L : Rd → R we have
|PrG(L(X) ≥ 0) − PrN (µ,I)(L(X) ≥ 0)| ≤
η/(d log(d/ηδ)) .

• We have that ‖EG[X]−EN (µ,I)[X]‖2 ≤ η.

• We have that ‖CovG[X]− I‖2 ≤ η/d.

• For any even degree-2 polynomial p : Rd → R we
have that
∣∣∣∣EG[p(X)]− E

N (µ,I)
[p(X)]

∣∣∣∣ ≤ η E
N (µ,I)

[p2(X)]1/2,

∣∣∣∣EG[p
2(X)]− E

N (µ,I)
[p2(X)]

∣∣∣∣ ≤ η E
N (µ,I)

[p2(X)] ,

Pr
G
[p(X) ≥ 0] ≤ Pr

N (µ,I)
[p(X) ≥ 0] +

η

d log(|G|/δ) .

It is easy to show (see Lemma 4.2) that given enough
samples from N (µ, I), the empirical data set will
satisfy these conditions with high probability.

2.2.2 Regularity Conditions for Unknown

Covariance In the unknown covariance case, we will
require the following condition:

Definition 4. Let G be a set of n points of Rd, and
η, δ > 0. We say that G is (η, δ)-good with respect to
N (0,Σ) if the following hold:

• For all x ∈ G we have that xTΣ−1x =
O(d log(|G|/δ)).

• For any even degree-2 polynomial p : Rd → R we
have
∣∣∣∣EG[p(X)]− E

N (0,Σ)
[p(X)]

∣∣∣∣ ≤ η E
N (0,Σ)

[p2(X)]1/2 ,

∣∣∣∣EG[p
2(X)]− E

N (0,Σ)
[p2(X)]

∣∣∣∣ ≤ η E
N (0,Σ)

[p2(X)] ,

Pr
X∼G

[p(X) ≥ 0] ≤ Pr
N (0,Σ)

[p(X) ≥ 0] +
η2

d log(|G|/δ) .

• For any even degree-4 polynomial p : Rd → R we
have
∣∣∣∣EG[p(X)]− E

N (0,Σ)
[p(X)]

∣∣∣∣ ≤ η Var
N (0,Σ)

[p(X)]1/2 ,

Pr
G
[p(X) ≥ 0] ≤ Pr

N (µ,I)
[p(X) ≥ 0]

+
η2

2 log(1/ε)(d log(|G|/δ))2 .

As before, it is easy to show (see Lemma 6.2) that
given enough samples from N (0,Σ), the empirical
data set will satisfy these conditions with high prob-
ability.

2.3 Bounds on the Total Variation Distance

We will require some simple bounds on the total
variation distance between two Gaussians. These
bounds are well-known. Roughly speaking, they
say that the total variation distance between two
Gaussians with identity covariance is governed by
the `2 norm between their means, and the total
variation distance between two Gaussians with mean
zero is governed by the Frobenius norm between their
covariance matrices, provided that the matrices are
close to the identity.

Lemma 2.1. Let µ1, µ2 ∈ R
d be such that ‖µ1 −

µ2‖2 = ε for ε < 1. Then

dTV (N (µ1, I),N (µ2, I)) =

(
1√
2π

+ o(1)

)
ε .

For clarity of exposition we defer this calculation to
the Appendix.

We also need to bound the total variation dis-
tance between two Gaussians with zero mean and
different covariance matrices. The natural norm to
use is the Mahalanobis distance. But in our setting,
we will be able to use the more convenient Frobenius
norm instead (because we effectively reduce to the
case that the covariance matrices will be close to the
identity):
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Lemma 2.2. (Cor. 2.14 in [DKK+16]) Let Σ, Σ̂

be such that ‖Σ−I‖F ≤ O(ε log 1/ε), and ‖Σ−Σ̂‖F ≤
Cε. Then dTV(N (0,Σ),N (0, Σ̂)) ≤ O(ε).

These lemmata show that parameter estimation
and approximation in total variation distance are
essentially equivalent. Indeed, in this paper, we
achieve both guarantees, but state our results in
terms of total variation estimation.

3 Robustly Learning the Mean in Low

Dimensions

This section is dedicated to the proof of the following
theorem:

Theorem 3.1. Fix µ ∈ R
d, and let ε, γ, δ > 0.

Let S0 = (G0, E0) be such that G0 is a (γε, δ)-
good set with respect to N (µ, I), and |E0|/|S0| ≤ ε.
Let S = (G,E) be another set with ∆(S, S0) < ε.
Let V ⊆ R

d be a subspace. For all 0 < ρ <
1, the algorithm LearnMeanLowD(V, γ, ε, δ, S, ρ)
runs in time poly(d, |S|, (1/ρ)O(dim(V )), log(ρε/(1 −
ρ)), log(1/ρ)) and returns a µ̃ so that

‖ΠV (µ− µ̃)‖2 =
1 + 2ρ

1− ρ
(√

π +O
(γ
d

))
ε .

In particular, as we let ρ, γ → 0, the parameter
estimation error approaches

√
πε (corresponding to

a total variation approximation of ε/
√
2). In the

full version we show that no algorithm can achieve
parameter estimation error better than

√
π
2 ε. Thus,

we achieve a
√
2 approximation to the optimal error.

For simplicity, in the rest of this section, we will
let V = R

d, that is, we assume there is no projection.
It should be clear that this can be done without loss of
generality. Our algorithm proceeds as follows: First,
we show that in one dimension, the median produces
an estimate which is optimal, up to lower order terms,
if the sample set is (γε, δ)-good with respect to the
underlying Gaussian. Then, we show that by using a
net argument, we can produce a convex body in R

d

with diameter at most 2R = 2(
√

π
2 + o(1))ε which

must contain the true mean. Finally, we use an
old result of Jung [Jun01] that such a set can be
circumscribed by a ball of radius

√
2R (see [BW41]

for an English language version of the result). We use
the center of the ball as our estimate µ̃.

3.1 Robustness of the Median First we show
that if we project onto one dimension, then the
median of the corrupted data differs from the true
mean by at most

√
π
2 ε + o(ε). Our proof will

rely only on the notion of a (γε, δ)-good set with
respect to N (µ, I) and thus it works even in the

strong contamination model. By a fairly standard
calculation, we show:

Lemma 3.1. Fix any v ∈ R
d. Fix µ ∈ R

d, and let
δ > 0. Let S0 = (G0, E0) be so that G0 be a (γε, δ)-
good set with respect to N (µ, I), and |E0|/|S0| ≤ ε.
Let S = (G,E) be another set with ∆(S, S0) < ε. Let
b be the median of S when projected onto v. Then,
|b−Πvµ| ≤

(√
π
2 +O

(
γ
d

))
ε.

For conciseness we defer the proof of this to the full
version.s

3.2 Finding a Minimum Radius Circumscrib-

ing Ball For any x ∈ R
d and r > 0, let B(x, r) =

{y ∈ R
d : ‖x− y‖2 ≤ r} denote the closed ball of ra-

dius r centered at x. The following classical result of
Gale gives a bound on the radius of the circumscrib-
ing ball of any convex set in terms of its diameter:

Theorem 3.2. (see [Jun01, BW41]) Fix R > 0.
Let C ⊆ R

d be a convex body so that for all x, y ∈ C,
we have ‖x − y‖2 ≤ 2R. Then C is contained within
a ball of radius R

√
2.

The bound is asymptotically achieved for the
standard simplex as we increase its dimension. The
goal of this subsection is to show that the (approxi-
mately) minimum radius circumscribing ball can be
found efficiently. We will assume we are given an ap-
proximate projection oracle for the convex body that
given a point y ∈ R

d, outputs a point which is almost
the closest point in C to x:

Definition 5. A ρ-projection oracle for a convex
body C is a function O : R

d → R
d, which, given

a point y ∈ R
d, outputs a point x ∈ C so that

‖x− y‖2 ≤ infx′∈C ‖x′ − y‖2 + ρ.

Our first step is to use such an oracle to construct
a net for C. First, we need the following well-known
bound on the size of the net.

Claim 1. Fix r > 0. Then, for any β > 0, there is a
β-net F for the sphere of radius r around 0 in R

d of
size (r/β)O(d). Moreover, this net can be constructed
in time poly(d, |F|).

With this, we can show:

Lemma 3.2. Fix R, C as in Theorem 3.2, and let
1 > ρ > 0. Let x ∈ C be arbitrary. Let O be
a (ρR/3)-projection oracle for C. Suppose a call to
O runs in time T . Then, there is an algorithm
CircumscribeNet(R, ρ,O, x) which runs in time
poly((R/ρ)O(d), T ) and outputs a set X ⊆ R

d so
that X is a (ρR)-net for C, and moreover, |X | ≤
(R/ρ)O(d).
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The algorithm is fairly straightforward. First, we
observe that C is contained within B(x, 2R). We
then form a (ρR)/3-net of B(x, 2R) using Claim 1.
We then iterate over every element v of this net,
and use our projection oracle to (approximately) find
the closest point in C to v. If this point is too
far away, we throw it out, otherwise, we add this
projected point into the net. The formal pseudocode
for CircumscribeNet is given in Algorithm 1.

Algorithm 1 Generating a net of C
1: function CircumscribeNet(R, ρ,O, x)
2: Form an ρ/3-net F ′ of the sphere of radius 2

of size (1/ρ)O(d) as in Claim 1.
3: Let F = R · F ′ + x.
4: Let X ← ∅
5: for each v ∈ F do

6: Let uv ← O(v)
7: if ‖v − uv‖2 ≤ 2ρR/3 then

8: Add uv to X
9: end if

10: end for

11: return X
12: end function

Proof. The runtime bound follows from Claim 1. We
now turn our attention to correctness. By Claim
1, and rescaling and shifting, the set F is clearly a
(ρR)/3-net for a ball B of radius 2R containing C.
We now claim that the set X is indeed a (ρR)/3-net
for C. Fix y ∈ C. Since C ⊆ B, this implies there is
some v ∈ F so that ‖y − v‖2 ≤ ρR/3. Thus, in Line
7, when processing v, we must find some uv ∈ C so
that ‖uv−v‖2 ≤ 2ρR/3. The claim then follows from
the triangle inequality.

With this, we obtain:

Corollary 3.1. Fix R, C, ρ,O, x as in Lemma 3.2.
Suppose a call to O runs in time T . Then, there is an
algorithm Circumscribe(R, ρ,O, x) which runs in
time poly((R/ρ)O(d), T ) and returns a point ŷ so that
C is contained within a ball of radius

√
2(1 + 2ρ)R.

The algorithm at this point is very simple. Using
the output of CircumscribeNet, we iterate over all
points in a net over B(x, 2R), find an x in this net so
that the distance to all points in the net is at most√
2(1 + ρ)R, and output any such point. The formal

pseudocode for Circumscribe is given in Algorithm
2.

Proof. The runtime bound is immediate. By The-
orem 3.2, there is some y ∈ B(x, 2R) so that C ⊆

Algorithm 2 Finding a circumscribing ball of small
radius
1: function Circumscribe(R, ρ,O, x)
2: Form an ρ/3-net F ′ of B(0, 2) of size (1/ρ)O(d)

as in Claim 1.
3: Let F = R · F ′ + x.
4: Let X ← CircumscribeNet(R, ρ,O, x).
5: for each v ∈ F do

6: if for all u ∈ X , we have ‖u − v‖2 ≤√
2(1 + ρ)R then

7: return u
8: end if

9: end for

10: end function

B(y,R
√
2). Thus, by the triangle inequality, there

is some y′ ∈ F so that C ⊆ B(y,
√
2(1 + ρ)R).

Thus, the algorithm will output some point y′′ ∈ F .
By an additional application of the triangle inequal-
ity, since X is a ρR-net for C, this implies that
C ⊆ B(y′′,

√
2(1 + 2ρ)R), as claimed.

3.3 The Full Low-Dimensional Algorithm We
now have all the tools to describe the full algorithm in
low-dimensions. Let S be our corrupted dataset as in
Theorem 3.1. Fix ρ > 0. We first produce a ρ-net F
over the unit sphere in R

d. By (a slight modification
of) Claim 1, this net has size (1/ρ)O(d) and can be
constructed in time poly(d, |F|). For each v ∈ F , we
project all points in S onto v, and take the median
of these points to produce bv. We then construct the
following set:

(3.2) C =
⋂

v∈F
{y ∈ R

d : 〈v, y〉 ∈ [bv − β, bv + β]} ,

where β =
√

π
2 ε+O

(
γε
d

)
+ o(ε) is as in Lemma 3.1.

We now show two properties of this set, which in
conjunction with the machinery above, allows us to
prove Theorem 3.1. The first shows that C has small
diameter:

Claim 2. For all x, y ∈ C, we have ‖x − y‖2 ≤
2β/(1− ρ).
Proof. Fix any x, y ∈ C. By definition of C, it follows
that for all v ∈ F , we have |〈x−y, v〉| ≤ 2β. For any u
with ‖u‖2 = 1, there is some v ∈ F with ‖u−v‖2 ≤ ε,
and so we have

|〈x− y, u〉| ≤ |〈x− y, v〉|+ |〈x− y, u− v〉|
≤ 2β + ρ‖x− y‖2 .

Taking the supremum over all unit vectors u and
simplifying yields that ‖x − y‖2 ≤ 2β/(1 − ρ), as
claimed.
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The second property shows that we may find an
α-projection oracle for C efficiently.

Claim 3. Fix ρ′ > 0. There is a ρ′-projection
oracle ProjOracle(y, ρ′, C) for C which runs in
time poly((1/ρ)O(d), log(γε/(1− ρ)), log(1/ρ′)).

Proof. The projection problem may be stated as

min ‖x− y‖2 s.t.〈v, y〉 ∈ [bv − β, bv + β], ∀v ∈ F .

This is a convex minimization problem with linear
constraints. By the classical theory of optimization
[GLS88], finding a ρ-approximate y can be done in
poly(d, log(vol(C)/ρ′)) queries to a separation ora-
cle for C. Since the separation oracle must only
consider the constraints induced by F , this can be
done in time (1/ρ)O(d). Since by Claim 2 we have
vol(C) ≤ (2β/(1 − ρ))O(d), the desired runtime fol-
lows immediately.

We now finally describe LearnMeanLowD. Us-
ing convex optimization, we first find an arbitrary
x ∈ C. By Lemma 3.1 we know µ ∈ C and so
this step succeeds. After constructing C, we run
Circumscribe with appropriate parameters, and re-
turn the outputted point. The formal pseudocode for
LearnMeanLowD is given in Algorithm 3.

Algorithm 3 Learning the mean robustly in low
dimensions
1: function LearnMeanLowD(ε, δ, S, ρ)
2: Form a ρ-net F of B(0, 1) of size (1/ρ)O(d) as

in Claim 1.
3: for each v ∈ F do

4: Let bv be the median of S projected onto
v.

5: end for

6: Form C as in Equation (3.2).
7: Find an x ∈ C using convex optimization.
8: Let β =

√
π
2 ε+O

(
γε
d

)
+ o(ε)

9: Let R = β/(1− ρ)
10: Let O(·) = ProjOracle(·, (ρR)/3, C)
11: return Circumscribe(R, ρ,O, x)
12: end function

Proof. The runtime claim follows from the runtime
claims for Circumscribe and ProjOracle. Thus,
it suffices to prove correctness of this algorithm. By
Lemma 3.1, we know that µ ∈ C. By Claim 2 and
Corollary 3.1, the output y satisfies B(y,

√
2 1+2ρ

1−ρ β).

Thus, we have ‖µ− y‖2 ≤
√
2 1+2ρ

1−ρ β, as claimed.

4 Robustly Learning the Mean in High

Dimensions

In this section, we prove the following theorem, which
is our first main result:

Theorem 4.1. Fix ε, γ, δ > 0, and let X1, . . . , Xn

be an ε-corrupted set of points from N (µ, I), where
‖µ‖2 ≤ O(ε log 1/ε), and where

n = Ω

(
(d log(d/γεδ))6

γ2ε2

)
.

Then, for every α, β > 0, there is an algorithm
RecoverMean(X1, . . . , Xn, ε, δ, γ, α, β) which runs
in time poly(d, 1/γ, 1/εβ , 1/α, log 1/δ) and outputs a
µ̂ so that with probability 1− δ, we have ‖µ̂− µ‖2 ≤(√

π+O(γ)
1−α + 1√

β

)
ε.

In particular, observe that Theorem 4.1, in conjunc-
tion with Lemma 2.1, gives us Theorem 1.1, if we
set γ = o(1). With this, we may state our primary
algorithmic contribution:

Theorem 4.2. Fix ε, γ, α, δ, β > 0, and let S0 =
(G0, E0) be an ε-corrupted set of samples of size n
from N (µ, I), where ‖µ‖2 ≤ O(ε log 1/ε), and where
n = poly(d, 1/(γε), log 1/δ). Suppose that G0 is
(γε, δ)-good with respect to N (µ, I). Let S ⊆ S0 be
a set so that ∆(S,G0) ≤ ε. Then, there exists an
algorithm FilterMeanOpt that given S, ε, γ, α, β
outputs one of two possible outcomes:

(i) A µ̂, so that ‖µ̂− µ‖2 ≤
(√

π+O(γ)
1−α + 1√

β

)
ε.

(ii) A set S′ ⊂ S so that ∆(S′, G0) < ∆(S,G0).

Moreover, FilterMeanOpt runs in time
poly(d, 1/γ, 1/εβ , 1/α, log 1/δ).

By first running the algorithm of [DKK+16]
to obtain an estimate of the mean to error
O(ε

√
log 1/ε), then running FilterMeanOpt at

most polynomially many times, we clearly recover the
guarantee in Theorem 4.1. Thus, the rest of the sec-
tion is dedicated to the proof of Theorem 4.2.

At a high level, the structure of the argument
is as follows: We first show that if there is a sub-
space of eigenvectors of dimension at least O(log 1/ε)
of the empirical covariance matrix with large associ-
ated eigenvalues, then we can produce a filter using
a degree-2 polynomial (Section 4.1). Otherwise, we
know that there are at most O(log 1/ε) eigenvectors
of the empirical covariance with a large eigenvalue.
We can learn the mean in this small dimensional sub-
space using our learning algorithm from the previous
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section, and then we can argue that the empirical
mean on the remaining subspace is close to the true
mean (Section 4.2).

This outline largely follows the structure of the
filter arguments given in [DKK+16], however, the fil-
tering algorithm we use here requires a couple of cru-
cial new ideas. First, to produce the filter, instead
of using a generic degree-2 polynomial over this sub-
space, we construct an explicit, structured, degree-
2 polynomial which produces such a filter. Cru-
cially, we can exploit the structure of this polyno-
mial to obtain very tight tail bounds, e.g., via the
Hanson-Wright inequality. This is critical to avoid a
quasi-polynomial runtime. If instead we used arbi-
trary degree-2 polynomials in this subspace, it would
need to be of dimension O(log2 1/ε) and the low-
dimensional algorithm in the second step would take
quasi-polynomial time.

Second, we must be careful to throw out far fewer
good points than corrupted points. In particular,
by our definition of ∆ (which gives an additional
logarithmic penalty to discarding good points) and
our guarantee that ∆ decreases, our filter can only
afford to throw out an ε/ log(1/ε) fraction of good
points in total, since ∆ is initially ε. This is critical,
as if we threw away an ε-fraction of good points, then
proving that the problem remains efficiently solvable
becomes problematic. In particular, if these points
were thrown away arbitrarily, then this becomes
the full additive and subtractive model, for which
a statistical query lower bound prevents us from
getting an O(ε)-approximate answer in polynomial
time [DKS17]. To avoid discarding too many good
points, we exploit tight exponential tail bounds of
Gaussians, and observe that by slightly increasing the
threshold at which we filter away points, we decrease
the fraction of good points thrown away dramatically.

4.1 Making Progress with Many Large

Eigenvalues We now give an algorithm for the case
when there are many eigenvalues which are somewhat
large. Formally, we show:

Theorem 4.3. Fix ε, γ, δ, α, β > 0, and let S0 =
(G0, E0) be an ε-corrupted set of samples of size n
from N (µ, I), where ‖µ‖2 ≤ O(ε log 1/ε), and where
n = poly(d, 1/(γε), log 1/δ). Suppose that G0 is
(γε, δ)-good with respect to N (µ, I). Let S ⊆ S0 be a

set so that ∆(S,G0) ≤ ε. Let Σ̂ be the sample covari-
ance of S, let µ̂ be the sample mean of S, and let V
be the subspace of all eigenvectors of Σ̂−I with eigen-
value more than 1

β ε. Then, there exists an algorithm
FilterMeanManyEig that given S, ε, γ, δ, α, β out-
puts one of two possible outcomes:

1. If dim(V ) ≥ C1β log(1/ε), then it outputs an S′

so that ∆(S′, G0) < ∆(S,G0).

2. Otherwise, the algorithm outputs “OK”, and
outputs an orthonormal basis for V .

Our algorithm works as follows: It finds all large
eigenvalues of Σ̂ − I, and if there are too many,
produces an explicit degree-2 polynomial which, as
we will argue, produces a valid filter. The formal
pseudocode for our algorithm is in Algorithm 4.

Algorithm 4 Filter if there are many large eigenval-
ues of the covariance
1: function FilterMeanManyEig(S, ε, γ, δ, α, β)
2: Let C1, C2, C3 > 0 be sufficiently large con-

stants.
3: Let µ̂ and Σ̂ be the empirical mean and

covariance of S, respectively.
4: Let V be the subspace of R

d spanned by

eigenvectors of Σ̂ − I with eigenvalue more
than 1

β ε.

5: if dim(V ) ≥ C1β log(1/ε) then
6: Let V ′ be a subspace of V of dimension
C1β log(1/ε).

7: Let µ̃ be an approximation to ΠV ′(µ)

with `2-error
√
π+O(γ)
1−α ε, computed using

LearnMeanLowD(V, γ, ε, δ, S, γ).
8: Let p(x) be the quadratic polynomial
p(x) = ‖ΠV ′(x)− µ̃‖22 − dim(V ′).

9: Find a value T > 0 so that either:

(a) T > C2d log(|S|/δ) and p(x) > T for at least
one x ∈ S, or

(b) T > 2C3 log(1/ε)/c0 and PrS(p(x) > T ) >
exp(−c0T/(2C3)) + γε/(d log(|S|/δ)).

10: return S′ = {x ∈ S : p(x) ≤ T}
11: else

12: return an orthonormal basis for V .
13: end if

14: end function

For clarity of exposition, we defer the proof of
Theorem 4.3 to the full version.

4.2 Returning an Estimate When There are

Few Large Eigenvalues At this point, we have run
the filter of Algorithm 4 until there are few large
eigenvalues. In the subspace with large eigenvalues,
we again run the low dimensional algorithm to obtain
an estimate for the mean in this subspace. Recall that
Lemma 3.1 guarantees the accuracy of this estimator
within this subspace. In the complement of this
subspace, where the empirical covariance is very close
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to the identity, Lemma 4.1 (stated below) shows that
the empirical mean is close to the true mean. This
leads to a simple algorithm which outputs an estimate
for the mean, described in Algorithm 5.

Algorithm 5 Return a mean if there are few large
eigenvalues of the covariance

1: function FilterMean-
FewEig(S, ε, γ, δ, α, β, V )

2: Let µ̃V be an approximation to ΠV (µ)

with `2-error
√
π+O(γ)
1−α ε, computed using

LearnMeanLowD(V, γ, ε, δ, S, γ).

3: Let µ̃V ⊥ be the empirical mean on V ⊥, ΠV ⊥ µ̂.
4: return µ̃V + µ̃V ⊥ .
5: end function

Lemma 4.1. Let µ, η,G0, S be as in Theorem 4.3.
Let µ̂ be the sample mean of S, and let v be a
unit vector. Suppose that 〈v, µ − µ̂〉 > ε

β1/2 . Then

VarS [〈v,X〉] > 1 + ε
β .

For clarity of exposition, we defer the proof of Lemma
4.1 to the full version.

4.3 The Full High-Dimensional Algorithm

We now have almost all the pieces needed to prove the
full result. The last ingredient is the fact that, given
enough samples, the good set condition is satisfied by
the samples from the true distribution. Formally,

Lemma 4.2. Fix η, δ > 0. Let X1, . . . , Xn be
independent samples from N (µ, I), where n =
Ω((d log(d/ηδ))6/η2). Then, S = {X1, . . . , Xn} is
(η, δ)-good with respect to N (µ, I) with probability at
least 1− δ.

Proof. This follows from Lemmas 8.3 and 8.16 of
[DKK+16].

At this point, we conclude with the proof of
Theorem 4.1. Within the subspace V , Lemma 3.1
guarantees that the mean is accurate up to `2-error√

π+O(γ)
1−α ε. Within the subspace V ⊥, the contrapos-

itive of the statement of Lemma 4.1 guarantees the
mean is accurate up to `2-error

ε
β1/2 . The desired

result follows from the Pythagorean theorem.

4.4 An Extension, with Small Spectral Noise

For learning of arbitrary Gaussians, we will need a
simple extension that allows us to learn the mean
even in the presence of some spectral norm error
in the covariance matrix. Since the algorithms and
proofs are almost identical to the techniques above,
we omit them for conciseness. Formally, we require:

Theorem 4.4. Fix χ, ε, δ > 0, and let X1, . . . , Xn

be an ε-corrupted set of points from N (µ,Σ),
where ‖Σ − I‖2 ≤ O(χ), ‖µ‖2 ≤ O(ε log 1/ε),
and where n = poly(d, 1/χ, 1/ε, log 1/δ).
For any γ > 0, there is an algorithm
RecoverMeanNoisy(X1, . . . , Xn, ε, δ, γ, χ) which
runs in time poly(d, 1/χ, 1/ε, log 1/δ) and out-
puts a µ̂ so that with probability 1 − δ, we have
‖µ̂− µ‖2 ≤ (C + γ)ε+O(χ).

This extension follows from two elementary observa-
tions:

1. For the learning in low dimensions, observe
that the median is naturally robust to error
in the covariance, and in general, by the same
calculation we did, the error of the median
becomes O(ε+ α).

2. For the filter, observe that we only need concen-
tration of squares of linear functions, and what-
ever error we have in this concentration goes di-
rectly into our error guarantee. Thus, by the
same calculations that we had above, if we fil-
tered for eigenvalues above 1+O(ε+α), we would
immediately get the desired bound.

5 Robustly Estimating the Mean of Degree

Two Polynomials

In this section, we give robust estimates of E[p2(X)]
for degree-2 polynomials p in subspaces of small di-
mension, which is an important prerequisite to learn-
ing the covariance in high-dimensions. A crucial in-
gredient in our algorithm is the following improve-
ment theorem (stated and proved in the next section)
which shows how to take any weak high-dimensional
estimate for the covariance and use it to get an even
better robust estimate for E[p2(X)].

5.1 Additional Preliminaries Here we give
some additional preliminaries we require for the low-
dimensional learning algorithm we present here. We
will need the following well-known tail bound for
degree-2 polynomials:

Lemma 5.1. (Hanson-Wright [LM00, Ver10])
Let X ∼ N (0, I) ∈ R

d and A be a d × d matrix.
Then for some absolute constant c0, for every t ≥ 0,

Pr
(∣∣XTAX −E[XTAX]

∣∣ > t
)

≤ 2 exp

(
−c0 ·min

(
t2

‖A‖2F
,

t

‖A‖2

))
.

We will also require the following lemmata:

Lemma 5.2. (Hölder’s for Schatten norms)
Let A,B be matrices. Then, for all p, q so that
1
p + 1

q = 1, we have ‖AB‖S1 ≤ ‖A‖Sp‖B‖Sq .
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This implies the following corollary, whose proof we
defer to the full version:

Corollary 5.1. Let Σ, Σ̂,M be so that ‖Σ− Σ̂‖F ≤
O(δ), and so that ‖M‖F = 1. Then, we have

‖Σ1/2MΣ1/2 − Σ̂1/2M Σ̂1/2‖S1 ≤ 5δ.

5.2 An Improvement Theorem Here we state
and prove one of the main technical ingredients in
our algorithm for robustly learning the covariance.

Theorem 5.1. Fix ε, δ, τ > 0. Let Σ be so that
‖Σ − I‖F ≤ O(ε log 1/ε), and fix a p ∈ P2, where
P2 denotes the set of even degree-2 polynomials in
d variables. Let G0 be an (ε, δ)-good set of samples
from N (0,Σ), and let S = {X1, . . . , Xn} be so
that ∆(S,G0) ≤ ε. Then, for any C > 0 there
is an algorithm LearnMeanChiSquared which,
given p,X1, . . . , Xn, and ε, outputs a µ̂ so that with
probability 1−τ over the randomness of the algorithm,
∣∣∣∣µ̂− E

X∼N (0,Σ)
[p(X)]

∣∣∣∣ ≤ ‖Σ− I‖F /C +O(log(C)ε) .

Moreover, the algorithm runs in time O(|S| +
log(1/τ)/ε2).

The way to think about how this result fits into
the overall strategy is that robustly estimating the
covariance is equivalent to robustly estimating the
mean of every (normalized) degree-two polynomial
p. The above theorem shows how a weak estimate
in high-dimensions can be used to obtain stronger
estimates in one dimension, which ultimately we will
use to improve the high-dimensional estimate as well.
The above theorem is the workhorse in our proof.

Our algorithm itself is simple, however, its cor-
rectness is quite non-trivial. We define some thresh-
old T . Given our corrupted set of samples from
N (0,Σ), we use our corrupted data set to estimate
the mean of p(X) conditioned on the event that
|p(X)| ≤ T . Then, to estimate the contribution of
the mean from points X so that |p(X)| > T , we es-
timate this by EX∼N (0,I)[p(X)1|p(X)|>T ]. In other
words, we are replacing the contribution of the true
tail by an estimate of the contribution of p(X) when
X ∼ N (0, I) on this tail. The formal pseudocode is
given in Algorithm 6.

Intuitively, this algorithm works because of two
reasons. First, it is not hard to show that the
influence of points p(X) within the threshold T on
the estimator are bounded by at most T . Hence,
the adversary cannot add corrupted points within
this threshold and cause our estimator to deviate too
much. Secondly, because we know that ‖Σ − I‖F is
small, by carefully utilizing smoothness properties of

sums of chi-squared random variables, we are able
to show that our estimate for the contribution of
the tail is not too large. At a high level, this is
because “most” of the distance between two chi-
squared random variables must remain close to the
means, so the difference in the tails is much smaller.
Proving that this holds in a formal sense is the
majority of the technical work of this section.

Proof. We know the distribution of p(X ′) for X ′ ∼
N(0, I) explicitly and wish to use this to get a better
estimate for the mean of p(X) for X ∼ N(0,Σ) than
might be given by the mean of the ε-corrupted set of
samples.

Algorithm 6 Approximating E[p(X)] for X ∼
N(0,Σ) with corrupted samples.

1: function LearnMean-
ChiSquared(X1, . . . , Xn, p(x), ε, τ)

2: Let T = O(logC).

3: Let f(x) =





x− T, for x ≥ T
0, for |x| ≤ T

x+ T, for x ≤ −T
.

4: Compute α =
∑n

i=1(p(Xi)− f(p(Xi)))/n.
5: Simulate m = O((ln τ)/ε2) samples
X ′

1, . . . , X
′
m from X ′ ∼ N(0, I).

6: Return µ̂ = α+
∑m

i=1 f(p(X
′
i))/n.

7: end function

In the full version, we show that (ε, δ)-goodness
implies that |E[Z − f(Z)]− α| ≤ 2Tε.

Since p ∈ P2, we have E[p(X ′)] = 1 for
X ′ ∼ N(0, I). Thus, we have Var[f(p(X ′))] ≤
E[f(p(X ′))2] ≤ E[p(X ′)2] = 1. It follows by
standard concentration results that the empirical
after taking m = O(ln(1 − τ)/ε2) samples has
|∑m

i=1 f(p(Xi)
′)/n − E[p(X ′)]| ≤ ε with probability

1− τ . When this holds, we have

∣∣∣∣µ̂− E
X∼N (0,Σ)

[p(X)]

∣∣∣∣ ≤ (2T + 1)ε

+

∣∣∣∣ E
X∼N (0,I)

[f(p(X))]− E
X∼N (0,Σ)

[f(p(X))]

∣∣∣∣ .

To prove the correctness of the algorithm it remains
to show that:

Lemma 5.3. For any constant C > 0, for T =
O(logC), we obtain

∣∣∣∣ E
X∼N (0,I)

[f(p(X))]− E
X′∼N (0,Σ)

[f(p(X ′))]

∣∣∣∣

≤ ‖Σ− I‖F
C

.
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The proof of this is quite involved and we defer it
to the full version. At a high level, we observe that
p(X) and p(X ′) can be viewed as two nonuniform
chi-squared random variables, with weights nearly
the same. By carefully bounding the change in the
PDF value between p(X) and p(X ′) by changing the
weights, we show that almost all the probability mass
due to the difference must occur near the mean of the
distribution. This in turn allows us to show that the
means cannot differ too much.

5.3 Working in a Low-Dimensional Space

of Degree-Two Polynomials We now show that
via similar techniques as before, we can patch our
estimates together to find a matrix which agrees with
the ground truth on all degree-two polynomials in a
fixed subspace of low dimension. Formally, we show:

Theorem 5.2. Fix ε, τ > 0. Let Σ be so that
‖Σ− I‖F ≤ O(ε log 1/ε). Let G0 be an (ε, δ)-good set
of samples from N (0,Σ), and let S = {X1, . . . , Xn}
be so that ∆(S,G0) ≤ ε. Let W1 be a subspace of
degree-2 polynomials, and let W2 be an orthogonal
subspace of degree-2 polynomials, so that we have a

Σ̂ so that
∣∣∣EX∼N (0,Σ)[p(X)]−EX∼N (0,Σ̂)[p(X)]

∣∣∣ ≤ ξ
for all p ∈ W2. Then there is an algorithm Learn-
MeanPolyLowD which given ε, S,W1,W2, Σ̂ runs
in time poly(d, |S|, 2O(dim(W1)), log 1/τ), and returns
a Σ′ so that

∣∣∣∣ E
N (0,Σ)

[p(X)]− E
N (0,Σ′)

[p(X)]

∣∣∣∣
≤ 4 (‖Σ− I‖F /C +O(log(C)ε) + ξ ,

for all p ∈ span(W1∪W2)∩P2, with probability 1−τ .
In particular, this implies:

Corollary 5.2. Fix ε, τ > 0. Let Σ be so that
‖Σ − I‖F ≤ O(ε log 1/ε). Let G0 be an (ε, δ)-good
set of samples from N (0,Σ). Let S = {X1, . . . , Xn}
be so that ∆(S,G0) ≤ ε. Let V be a sub-
space of R

d. Then there is an algorithm Learn-
CovLowDim which given S, ε, ξ, τ, V runs in time
poly(|S|, 2O(dim(V )2), log 1/τ) and returns a Σ′ so that

‖ΠV (Σ− Σ′)ΠV ‖2 ≤ 4 (‖Σ− I‖F /C +O(log(C)ε) ,

with probability 1− τ .

Proof. Observe that the dimension of the space of
degree-2 polynomialsW in V isO(dim(V )2). Run the
algorithm in Theorem 5.2 with the same parameters
as before, withW1 =W andW2 = ∅ (so that we may
take ξ = 0), and then the guarantee of that algorithm,
along with Lemma 6.1, gives our desired guarantee.

We now describe the algorithm for Theorem 5.2.
Essentially, we do the same thing as we did for low-
dimensional learning in the unknown mean case: we
take a constant net over V ∩ P2, l earn the mean
over every polynomial in the net, and then find a Σ′

which is close in each direction to the learned mean.
Since we will not attempt to optimize the constant
factor here, will will use a naive LP-based approach
to find a point which is close to optimal. The formal
pseudocode is given in Algorithm 7.

Algorithm 7 Filter if there are many large eigenval-
ues of the covariance
1: function LowDimCovLearn-

ing(S, ε, ξ, τ,W1,W2)
2: Generate a 1/2-cover C for W1 ∩ P2.
3: Let τ ′ = 2−|C|τ
4: for p ∈ C do

5: Compute mp =
LearnMeanChiSquared(S, p, ε, τ ′).

6: Generate a linear constraint cp(Σ
′):∣∣EN (0,Σ′)[p(X)]−mp

∣∣ ≤ ‖Σ − I‖F /C +
O(log(C))ε.

7: end for

8: Generate the convex constraint that∣∣EN (0,Σ′)[p(X)]−EN (0,Σ′)[p(X)]
∣∣ ≤ ξ for

all p ∈W2.
9: Using a convex program, return any matrix

Σ′ which obeys cp(Σ
′) for all p ∈ C.

10: end function

Observe that every constraint for each polyno-
mial in W1 is indeed linear in Σ′, by Lemma 6.1.
Moreover, the constraint for W2 has an explicit sep-
aration oracle, since it induces a norm, and for any
p ∈W2, we may explicitly compute EN (0,Σ′)[p(X)]−
EN (0,Σ′)[p(X)]. Thus, we may use separating hyper-
plane techniques to solve this convex program in the
claimed running time.

Proof. [Proof of Theorem 5.2] Let us condition on
the event that LearnMeanChSquared succeeds
for each p ∈ C. By a union bound, this occurs with
probability at least 1 − τ . Thus, in each p ∈ C, we
have that |mp − EX∼N (0,Σ)[p(X)]| ≤ β, where β =
‖Σ− I‖F /C + O(log(C))ε. Let Σ′ be the matrix we
find. By the triangle inequality, we then have that for
every p ∈ C, that |EN (0,Σ′)[p(X)]−EN (0,Σ)[p(X)]| ≤
2β. Hence, by the usual net arguments, we know that
for every p ∈ V ∩ P2,

| E
N (0,Σ′)

[p(X)]− E
N (0,Σ)

[p(X)]| ≤ 4β .

Moreover, by triangle inequality, for every p ∈W2, we
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have
∣∣EN (0,Σ′)[p(X)]−EN (0,Σ′)[p(X)]

∣∣ ≤ 2ξ. The
result then follows from the Pythagorean theorem.

6 Robustly Learning the Covariance in

High-Dimensions

In this section, we show how to robustly estimate
the covariance of a mean-zero Gaussian in high-
dimensions up to error O(ε). We use our low-
dimensional learning algorithm from the previous
section as a crucial subroutine in what follows.

Our main algorithmic contribution is as follows:

Theorem 6.1. Fix ε, δ > 0, and let S0 = (G0, E0) be
an ε-corrupted set of samples of size n from N (0,Σ),
where ‖Σ − I‖F ≤ ξ where ξ = O(ε log 1/ε), and
where n = poly(d, 1/ε, log 1/δ). Suppose that G0

is (ε, δ)-good with respect to N (0,Σ). Let S ⊆ S0

be a set so that ∆(S,G0) ≤ ε. Then, there exists
an algorithm ImproveCov that given S, ξ, ε, fails
with probability at most poly(ε, 1/d, δ), and otherwise
outputs one of two possible outcomes:

(i) A matrix Σ̂, so that ‖Σ̂− Σ‖F ≤ ‖Σ− I‖F /2.

(ii) A set S′ ⊂ S so that ∆(S′, G0) < ∆(S,G0).

Moreover, ImproveCov runs in time
poly(d, (1/ε)O(log4 1/ε), log 1/δ).

By first applying the algorithm in [DKK+16] to
produce an initial estimate for Σ, and then iterating
the above algorithm polynomially many times, this
immediately yields:

Corollary 6.1. Fix ε, δ > 0, and let G0 be a
set of i.i.d. samples from N (0,Σ), where n =
poly(d, 1/ε, log 1/δ). Let S be so that ∆(S,G0) ≤ ε.
There is an universal constant C and an algorithm
which outputs a Σ̂ so that with probability 1 − δ, we
have ‖Σ̂−1/2ΣΣ̂−1/2 − I‖F ≤ Cε. In particular, this

implies that dTV

(
N (0,Σ),N (0, Σ̂)

)
≤ 2Cε.

6.1 Technical Overview Our strategy for ob-
taining a high-dimensional estimate for the covari-
ance based on solving low-dimensional subproblems
will be substantially more challenging than it was
for the unknown mean case. The natural approach
is to take the poly log(1/ε)-dimensional subspace of
degree-2 polynomials of largest empirical variance
and construct a filter. However, this fails because,
unlike in the mean case, we do not know the variance
of these degree-2 polynomials to small error. For the
unknown mean case, because we assumed that we
knew the covariance was the identity (or spectrally
close to the identity), this was not an issue. Now,

the variance of our polynomials depends on the (un-
known) covariance of the true Gaussian, which may
be more than O(ε)-far from our current estimate. In-
deed, it is not difficult to come up with counterex-
amples where there are many large eigenvalues of the
empirical covariance matrix, but no filter can make
progress.

We overcome this hurdle in several steps. First,
in Section 6.3, we show how to find a filter if there
are many medium-sized eigenvalues of the empirical
covariance matrix. This will proceed roughly in the
same way that the filter for the unknown mean does.
If no filter is created, then we know there are at most
logarithmically large eigenvalues of the empirical
covariance. In the subspace V ⊆ R

d spanned by their
eigenvectors, we can then learn the covariance to high
accuracy using our low-dimensional estimator.

Then, in Section 6.3, we show that if we restrict
to the orthogonal subspace, i.e., the subspace where
the empirical covariance matrix does not have large
eigenvalues, we can indeed either produce a filter or
improve our estimate of the covariance restricted to
this subspace using our low-dimensional estimator.
While the blueprint is similar to the filter for the un-
known mean, the techniques are much more involved
and subtle.

Supposing we have not yet created a filter,
we have now estimated the covariance on a poly-
logarithmic dimensional subspace V , and on V ⊥.
This does not in general imply that we have learned
the covariance in Frobenius norm. In block form, if
we write

Σ =

[
ΣV AT

A ΣV ⊥

]
,

where here R
d is written as V ⊕ V ⊥, this implies we

have learned ΣV and ΣV ⊥ to high accuracy. Thus, it
remains to estimate the cross term A.

In Section 6.4, we show, given a polylogarithmi-
cally sized subspace V , and a good estimate of the
covariance matrix on V and V ⊥, how to fill in the
entire covariance matrix. Roughly, we do this by
randomly fixing directions in V , and performing re-
jection sampling based on the correlation in the di-
rection in V , and showing that the problem reduces
to one of robustly learning the mean of a Gaussian,
which (conveniently) we have already solved. These
steps together yield our overall algorithm Improve-
Cov. Finally, in Section 6.6 we explain why there
is a natural barrier that makes reducing the running
time from quasi-polynomial to polynomial (in 1/ε)
difficult.

6.2 Additional Preliminaries Here we give
some additional preliminaries we will require in this
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Section.

6.2.1 The Agnostic Tournament We also re-
quire the following classical result, which allows us
to do agnostic hypothesis selection with corrupted
samples (see e.g., [DL01, DDS12, DK14, DDS15]).

Theorem 6.2. Fix ε, δ > 0. Let D1, . . . , Dk, D be
a set of distributions where mini dTV(Di, D) = γ.

Set n = Ω
(

log k+log 1/δ
ε2

)
. There is an algorithm

Tournament which given oracles for evaluating
the pdfs of D1, . . . , Dk along with n independent
samples X1, . . . Xn from D, outputs a Di so that
dTV(Di, D) ≤ 3γ+ε with probability 1−δ. Moreover,
the running time and number of oracle calls needed is
at most O(n2/ε2).

Remark 1. As a simple corollary of the agnostic
tournament, observe that this allows us to do agnos-
tic learning without knowing the precise error rate
ε. Throughout the paper, we assume the algorithm
knows ε. However, if the algorithm is not given this
information, and instead given an η and asked to re-
turn something with error at most O(ε+ η), we may
simply grid over {η, (1+γ)η, (1+γ)2η, . . . , 1} (here γ
is some arbitrary constant that governs a tradeoff be-
tween runtime and accuracy), run our algorithm with
ε set to each element in this set, and perform hy-
pothesis selection via Tournament. Then it is not
hard to see that we are guaranteed to output some-
thing which has error at most O(ε+ (1 + γ)η).

6.2.2 The Fourth Moment Tensor of a Gaus-

sian As in [DKK+16], it will be crucial for us to un-
derstand the behavior of the fourth moment tensor of
a Gaussian. Let ⊗ denote the Kronecker product on
matrices. We will make crucial use of the following
definition:

Definition 6. For any matrix M ∈ R
d×d, let M [ ∈

R
d2

denote its canonical flattening into a vector in
R

d2

, and for any vector v ∈ R
d2

, let v] denote the
unique matrix M ∈ R

d×d so that M [ = v.

We will also require the following definition:

Definition 7. Ssym = {M [ ∈ R
d2

:M symmetric}.

The following result was proven in [DKK+16]:

Theorem 6.3. (Theorem 4.15 in [DKK+16])
Let X ∼ N (0,Σ). Let M be the d2 × d2 matrix given
by M = E[(X ⊗X)(X ⊗X)T ]. Then, as an operator

on Ssym, we have M = 2Σ⊗2 +
(
Σ[

) (
Σ[

)T
.

6.2.3 Polynomials in Gaussian Space Here we
review some basic facts about polynomials under
Gaussian measure, which will be crucial for our al-
gorithm for learning Gaussians with unknown co-
variance. We equip the set of polynomials over R

d

with the Gaussian inner product, defined by 〈f, g〉 =
EX∼N (0,I)[f(X)g(X)], and we let ‖f‖22 = 〈f, f〉.

For any symmetricM with ‖M‖F = 1, define the
degree-2 polynomial p(x) = 1√

2
(xTMx− tr(M)). We

call p the polynomial associated to M . Observe that
p is even (i.e., has no degree-1 terms). We will use
the following properties of such polynomials:

Lemma 6.1. Let M be symmetric, so that ‖M‖F =
1. Let p be its associated polynomial. Then, we have:

(i) EX∼N (0,I)[p(X)] = 0.

(ii) More generally, for any positive definite matrix
Σ, we have EX∼N (0,Σ)[p(X)] = 〈M,Σ− I〉.

(iii) VarX∼N (0,I)[p(X)] = EX∼N (0,I)[p
2(X)] =

〈p, p〉 = 1.

(iv) More generally, for any positive definite matrix

Σ, we have EX∼N (0,Σ)[p
2(X)] =M [TΣ⊗2M [+

1
2

(
〈Σ− I,M [〉

)2
.

The proof of this is standard and we defer it to the
appendix. Observe that Lemma 6.1(iv) implies that
if we take the top eigenvector of the d2 × d2 matrix

Σ⊗2 +
1

2

(
M [

)(
M [

)>

on the linear subspace Ssym, then the associated poly-
nomial maximizes EX∼N (0,Σ)[p

2(X)], and so we can
find these polynomials efficiently. More generally, if
we take any linear subspace of degree two polyno-
mials with associated matrix subspace V ′, so that
V ′ ⊆ Ssym, then the top eigenvector of the same ma-
trix restricted to V ′ allows us to find the polynomial
in this subspace which maximizes EX∼N (0,Σ)[p

2(X)]
efficiently.

We have the following tail bound for degree-2
polynomials in Gaussian space: We will use ΠV (x)
and ΠV (S) to denote projection to a subspace V , of
a point x and a set of points S, respectively. We will
also need the following hypercontractivity theorem
for low-degree polynomials in Gaussian space, see
i.e., [O’D14]:

Theorem 6.4. Let p : R
d → R be a degree

m polynomial, and let q ≥ 2 be even. Then
EX∼N (0,I)[p(X)q]1/q ≤ (

√
q − 1)m‖p‖2.

We need the following definition:
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Definition 8. Let Pk denote the set of even
degree-k polynomials over d variables satisfying
VarX∼N (0,1)[p(X)] = 1. Moreover, for any subspace

W ⊆ R
d, let Pk(W ) denote the set of even polynomi-

als over d variables which only depend on the coordi-
nates in W .

Then by the arguments above, we have
that for any two matrices Σ, Σ̂, ‖Σ − Σ̂‖F =

supp∈P2

(
EX∼N (0,Σ)[p(X)]−EX∼N (0,Σ̂)[p(X)]

)
. In

particular, by Lemma 2.2, this implies that when
‖Σ− I‖2 is small, then learning a Gaussian with un-
known covariance in total variation distance is equiv-
alent to learning the expectation of every even degree-
2 polynomial.

Theorem 6.4 implies the following concentration
for degree-4 (more generally, low-degree) polynomials
of Gaussians:

Corollary 6.2. Let p be a degree-4 polynomial.
Then there is some A,C ≥ 0 so that for all t ≥ C,
we have PrN (0,I)[|p(X) − EN (0,I)[p(X)]| ≥ t‖p‖2] ≤
exp

(
−At1/2

)
.

Proof. Hypercontractivity in particular implies the
following moment bound: for all q ≥ 2 even,
we have EN (0,I)[(p(X) − EN (0,I)[p(X)])q] ≤ (q −
1)qm/2‖p(X)−EN (0,I)[p(X)]‖q2. By a typical moment
argument, and optimizing the choice of q, this gives
the desired bound.

Hermite polynomials Hermite polynomials
are what arise by Gram-Schmidt orthogonalization
applied with respect to this inner product. For a
vector of non-negative integers a = (a1, . . . , ad), we
let Ha(x) : Rd → R be the Hermite polynomial as-
sociated with multi-index a. It is well-known that
the degree of Ha is |a| = ∑d

i=1 ai, and moreover,
〈Ha, Hb〉 = δa,b. In particular, for any r ≥ 1, the
Hermite polynomials of degree at most r form an or-
thonormal basis with respect to the Gaussian inner
product for all polynomials with degree at most r.

Therefore, given any polynomial p : R
d → R

with degree r, we may write it uniquely as p(x) =∑
|a|≤r ca(p)Ha(x), where ca(p) = 〈p,Ha〉. We define

the kth harmonic component of p to be p[k](x) =∑
|a|=k ca(p)Ha(x) , and we say p is harmonic of

degree k if it equals its kth part.

6.3 Working with Many Large Eigenvalues

of the Second and Fourth Moment As in the
unknown mean case, we will need a filter to detect if
there are many directions of the empirical covariance
which have too large an eigenvalue. Formally, we
need:

Theorem 6.5. Fix ε, δ > 0. Assume ‖Σ− I‖F ≤ ξ,
where ξ = O(ε log 1/ε). Suppose that G0 is (ε, δ)-
good with respect to N (0,Σ). Let S be a set so

that ∆(S,G0) ≤ ε. Let Σ̂ = ES [XX
T ]. Then

there is an algorithm FilterCovManyDeg2Eig
and a universal constant C such that the following
guarantee holds:

1. If Σ̂ − I has more than O(log 1/ε) eigenvalues
larger than Cξ, then the algorithm outputs a S′

so that ∆(S′, G0) < ∆(S,G0).

2. Otherwise, the algorithm outputs “OK”, and
outputs an orthonormal basis v1, . . . , vk for the
subspace V of vectors spanned by all eigenvectors
of Σ̂− I with eigenvalue larger than Cξ.

The filter developed here is almost identical to the one
developed for unknown mean. Thus, for conciseness
we describe and prove the theorem in the full version.

We will also need a subroutine to enforce the con-
dition that not only does the fourth moment tensor
have spectral norm which is at most O(ε log2 1/ε) (re-
stricted to a certain subspace of polynomials), but
there can only be at most O(poly log 1/ε) directions
in which the eigenvalue is large. However, the tech-
niques here are a bit more complicated, for a num-
ber of reasons. Intuitively, the main complication
comes from the fact that we do not know what the
fourth moment tensor looks like, whereas in the un-
known mean case, we knew that the covariance was
the identity by assumption. Our main result in this
subsection is the following subroutine:

Theorem 6.6. Fix ε, δ > 0. Assume ‖Σ− I‖F ≤ ξ,
where ξ = O(ε log 1/ε). Let C be the universal
constant in FilterCovManyDeg2Eig. Let W ⊆
R

d be a subspace, so that for all v ∈W with ‖v‖2 = 1,
we have vT ES [XX

T ]v ≤ 1 + Cξ. Suppose that G0

is (ε, δ)-good with respect to N (0,Σ). Let S be a set
so that ∆(S,G0) ≤ ε. Let k = O(log4 1/ε). Then
there is an algorithm FilterCovManyDeg4Eig
and universal constants C1, C2 such that the following
guarantee holds:

1. If there exist p1, . . . , pk ∈ P2(W ) so that
〈pj , p`〉 = δj` for all j, `, and so that ES [p

2
j (Y )]−

1 ≥ C1ε for all j, then the algorithm outputs an
S′ so that ∆(S′, G0) < ∆(S,G0).

2. Otherwise, the algorithm outputs “OK”, and
outputs an orthonormal basis p1, . . . , pk′ for a
subspace V of degree-2 polynomials in P2(W )
with k′ ≤ k so that for all p ∈ V ⊥ ∩ P2, we
have ES [p

2(X)]− 1 ≤ C2ε.

Moreover, FilterCovManyEig runs in time
poly(d, 1/ε, log 1/δ).
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Roughly, we will show that if there are many
polynomials with large empirical variance, this im-
plies that there is a degree-four polynomial whose
value is much larger than it could be if w were the
set of uniform weights over the uncorrupted points.
Moreover, we can explicitly construct this polyno-
mial, and it has a certain low-rank structure which
allows us to use the concentration bounds we have
previously derived.

Algorithm 8 Filter if there are many large eigenval-
ues of the fourth moment tensor
1: function FilterCovManyEig(S, ε, ξ, δ,W )

2: Let Σ̂ = ES [XX
T ]

3: Let C1, C2, C3 be some universal constants
sufficiently large

4: Let A be the constant in Corollary 6.2
5: Let B be the constant in Claim 20 of the full

version
6: Let m = 0
7: Let k = O(log4 1/ε)
8: while there exists p ∈ P2(W ) so that p ∈ V ⊥

and ES [p
2(X)]− 1 > C1ξ do

9: Let Vm+1 = span(Vm ∪ p)
10: Let m← m+ 1
11: end while

12: Let p1, . . . , pm be an orthonormal basis for Vm
13: if m ≥ k then

14: Let qi = (p2i )
[4]

be the 4th harmonic
component of p2i

15: Let ri = p2i−qi be the degree-2 component
of p2i

16: Let Q(x) =
∑k

i=1 qi
17: Find a T so that either:

• T > C3d
2
√
k log(|S|) and p(X) > T for at

least one x ∈ S′, OR

• T > 4A2C2B
√
k log2(1/ε)

and PrX∈uS [Q(X) > T ] >
exp(−A(T/4B

√
k)1/2) + ε2/(d log(|S|/δ))2.

18: return the set S′ = {X ∈ S : Q(X) ≤ T}
19: else

20: return “OK”, and output p1, . . . , pm
21: end if

22: end function

6.4 Stitching Together Two Subspaces This
section is dedicated to giving an algorithm which
allows us to fully reconstruct the covariance matrix
given that we know it up to small error on a low-
dimensional subspace V and on W = V ⊥.

Theorem 6.7. Let 1 > ξ > η > ε > 0, and let

τ > 0. Let Σ so that ‖Σ− I‖F ≤ ξ. Suppose that Rd

is written as V ⊕W for orthogonal subspaces V and
W with dim(V ) = O(log(1/ε)). Suppose furthermore
that

Σ =

[
ΣV AT

A ΣW

]
,

with ‖ΣV − IV ‖F , ‖ΣW − IW ‖F = O(η). Let
S0 = (G0, E0) be an ε-corrupted set of samples from
N (0,Σ), and let S ⊆ S0 with ∆(S,G) ≤ O(ε) of size
poly(d, 1/η, log 1/δ).

Then, there exists a universal constant C5 and
an algorithm Stitching that given V,W, ξ, η, ε, τ and
S runs in polynomial time and with probability at
least 1 − τ returns a matrix Σ0 with ‖Σ0 − Σ‖F =
C5η +O(ξ2).

In the latter, we will show the algorithm works when
τ = 2/3. As usual the probability of success can be
boosted by repeating it independently.5 The basic
idea of the proof is as follows. Since we already know
good approximations to ΣV and ΣW , it suffices to
find an approximation to A. In order to do this, we
note that if we take a sample x from G conditioned
on its projection to V being some vector v, we find
that the distribution over W is a Gaussian with
mean approximately Av. Running our algorithm for
approximating the mean of a noisy-Gaussian, we can
then compute the mapping v → Av, which will allow
us to compute A.

There are three main technical obstacles to this
approach. The first is that we cannot condition on
xV taking a particular value, as we will likely see
no samples from X with exactly that projection.
Instead, what we will do is given samples from X
we will reject them with probabilities depending on
their projections to V in such a way to approximate
the conditioning we require. The second obstacle is
that the errors in X may well be concentrated around
some particular projection to V . Therefore, some
of these conditional distributions may have a much
larger percentage of errors than ε. To circumvent
this, we will show that by carefully choosing how
we do our conditioning and by carefully picking the
correct distribution over vectors v, that on average
these errors are only O(ε). Finally, we need to
be able to reconstruct A from a collection of noisy
approximations to Av. We show that this can be done
by computing these approximations at a suitably
large random set of v’s, and finding the matrix A

5Observe the only randomness at this point is in the random

choices made by the algorithm. Thus, one can just run this

algorithm O(log 1/δ) times to obtain Σ
(1)
0 , . . . ,Σ

(`)
0 and find

any Σ
(j)
0 which is O(η + ξ2) close to at least a 2/3 + o(1)

fraction of the other outputs.
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that minimizes the average `2 error between Av and
its approximation.

Our algorithm is given in Algorithm 9, and the
proof of Theorem 6.7 is deferred to the full version.

Algorithm 9 Stitching the two subspaces together

1: function Stitching(V,W, δ, ε, τ, S)
2: Given a vector x, let xV and xW be the

projections onto V and W , respectively.
3: Let C be a sufficiently large constant (where

C may depend on the constants in the big-
O terms in the guarantee that dim(V ) =
O(log(1/ε))).

4: Generate a set V = {v1, . . . , vm} of (n/ε)C

independent random samples from N (0, 2IV ).
5: for v ∈ V do

6: For each sample x ∈ S, add xW to a new
set T independently with probability

exp(−‖xV − v‖2/2) .

7: Treat T as a collection of independent
samples from a noisy Gaussian with co-
variance matrix IW +O(η).

8: Set av equal to 0 if T did not contain
enough samples for our algorithm or if
‖µ̃‖2 > C log(1/ε).

9: for ε ∈ {1, 1/2, 1/4, 1/8, . . . , η} do
10: Let µ̃ be the output of

RecoverMeanNoisy(T, ε, (ε/n)2C , o(1), O(η)).
11: end for

12: Run Tournament with the output hy-
potheses.

13: Set av = µ̃, where µ̃ is the winning
hypothesis.

14: end for

15: Use linear programming to find the dim(W )×
dim(V )-matrix B that minimizes the convex
function Ev∈uS [|av −Bv|].

16: return

Σ0 =

[
IV 2BT

2B IW

]
.

17: end function

6.5 The Full High-Dimensional Algorithm

We now show how to prove Theorem 6.1, given the
pieces we have. We first show that given enough sam-
ples fromN (0,Σ), the empirical data set without cor-
ruptions satisfies the regularity conditions in Section
2.2.2 with high probability. For clarity of exposition,
the proof of this lemma is deferred to the full version.

Lemma 6.2. Fix η, δ > 0. Let X1, . . . , Xn be
independent samples from N (µ, I), where n =
poly(d, 1/η, log 1/δ). Then, S = {X1, . . . , Xn} is
(η, δ)-good with respect to N (µ, I) with probability at
least 1− δ.

Finally, we require the following guarantee, which
states that if there is a degree-2 polynomial whose
expectation under S and the truth differs by a lot
(equivalently, if the empirical covariance differs from
the true covariance in Frobenius norm substantially),
then it must also have very large variance under S.

Lemma 6.3. Fix ε, δ > 0. Assume ‖Σ − I‖F ≤ ξ,
where ξ = O(ε log 1/ε). Suppose that G0 is (ε, δ)-
good with respect to N (0,Σ), and let S ⊆ S0 be a
set so that ∆(S,G0) ≤ ε. There is some absolute
constant C5 so that if p ∈ P2 is a polynomial
so that

∣∣ES [p(X)]−EN (0,Σ)[p(X)]
∣∣ > C5

√
ξε, then

ES [p
2(X)]− 1 > C1ξ.

We defer the proof of this lemma to the Appendix.
We are now ready to present the full algorithm

as Algorithm 10.

Proof. [Proof of Theorem 6.1] Condition on the
events that neither LearnCovLowDim nor Stitch-
ing fail. This happens with probability at least
poly(ε, 1/d, δ). Observe that if we pass the “if” state-
ment in Line 5, then by the guarantee of Filter-
CovManyDeg2Eig this is indeed an S′ satisfying
the desired properties. Otherwise, by the guaran-
tees of FilterCovManyDeg2Eig, we have that W
satisfies the conditions needed by FilterCovMany-
Deg4Eig. Hence, if we pass the “if” statement in
Line 11, then the guarantee of FilterCovMany-
Deg4Eig this is indeed a S′ satisfying the desired
properties. Otherwise, by Lemma 6.3, we know that
for all polynomials p ∈ P2 over W orthogonal to U1,
we have |EN (0,Σ)−ES [XX

T ]| ≤ C5

√
ξε. Thus, ΣW

satisfies the conditions needed by Stitching.
By Corollary 5.2, we know that ΣV satisfies the

conditions for Stitching, and so the correctness of
the algorithm follows from Theorem 6.7.

6.6 The Barrier at Quasi-Polynomial Here we
explain why improving the running time from quasi-
polynomial to polynomial in 1/ε will likely be rather
difficult. Recall that our strategy is to project the
problem onto lower dimensional subproblems and
stitch together the answer. We need the dimension
of the subspace to be large enough that we can find
a polynomial Q that is itself the sum of squares of
k orthogonal degree two polynomials pi so that the
value of Q on the corrupted points is considerably
larger than the value on the uncorrupted points.
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Algorithm 10 Filter if there are many large eigen-
values of the covariance
1: function ImproveCov(S, ξ, ε, δ)
2: Let C be the universal constant in Filter-

CovManyDeg2Eig
3: Let τ = poly(ε, 1/d, δ).
4: Run FilterCovManyDeg2Eig(S, ε, ξ)
5: if FilterCovManyDeg2Eig outputs S′

then

6: return S′

7: else

8: Let V be the subspace returned by Fil-
terCovManyDeg2Eig

9: Let W = V ⊥.
10: Run FilterCovManyDeg4Eig(S, ε, ξ, δ,W )
11: if FilterCovManyDeg4Eig outputs S′

then

12: return S′

13: else

14: Let U1 be the subspace of degree 2
polynomials over W it returns

15: Let U2 be the perpendicular subspace
of degree 2 polynomials over W

16: Let Σ̂ = ES [XX
T ]

17: Let ΣV =
LearnCovLowDim(S, ε, ξ, τ, V )

18: Let ΣW =
LearnMeanPolyLowD(S, ε, ξ, τ, U1, U2, Σ̂)

19: Take poly(n, 1/ε) fresh ε-corrupted
samples S′

20: return Stitching(V,W,ΣV ,ΣW , ξ, ε, S′).
21: end if

22: end if

23: end function

More precisely, if we let S = (G,E) denote our
corrupted set of samples then we want EE [Q(X)] to
be larger than Q(X) for all but a poly(ε) fraction
of X ∈ G. We then remove all points X ∈ S
with large Q(X) and by the properties of Q we
are guaranteed that we throw out mostly corrupted
points. It turns out that the most aggressive we could
be is removing points where Q(X) is more than

√
k

standard deviations away from its expectation under
the true Gaussian. But since Q is a degree-four
polynomial and we want Q(X) to be smaller than our
cutoff for all but a poly(ε) fraction of X ∈ G, we are
forced to choose

√
k = Ω(log 1/ε), which means that

we need to reduce to k = Ω(log2 1/ε) dimensional
subproblems. Thus, if we solve low-dimensional
subproblems in time exponential in the dimension, we
naturally arrive at a quasi-polynomial running time.
It seems that any approach for reducing the running

time to polynomial would require fundamentally new
ideas.

7 The General Algorithm

We now have all the tools to robustly learn the
mean and covariance of an arbitrary high-dimensional
Gaussian. We first show how to reduce the prob-
lem of robustly learning the covariance of N (µ,Σ)
to learning the covariance of N (0,Σ), by at most
doubling error, a trick previously used in [DKK+16]
and [LRV16]. Given an ε-corrupted set of samples
X1, . . . , X2n of size 2n from N (µ,Σ), we may let
Yi = (Xi − Xn+i)/

√
2. Then we see that if Xi and

Xn+i are uncorrupted, then Yi ∼ N (0,Σ). More-
over, at most 2εn of the Yi can be corrupted, since
there are at most 2εn corrupted Xi. Therefore, by
doubling the error rate, we may assume that µ = 0.
We may then apply the algorithm in Corollary 6.1
to obtain a Σ̂ so that with high probability, we have
‖Σ̂−1/2ΣΣ̂−1/2−I‖F ≤ O(ε) with polynomially many

samples, and in poly(d, (1/ε)O(log4 1/ε)) time.
We may then take an additional set of ε-

corrupted samples {X ′
i, . . . , X

′
n}, and let Y ′

i =

Σ̂−1/2X ′
i. Then, by our guarantee on Σ̂, we have

that if X ′
i is uncorrupted, then Y ′

i ∼ N (0, Σ̃)

where ‖Σ̃ − I‖F ≤ O(ε). We then run Re-
coverMeanNoisy with the Y ′

i to obtain a µ̂ so

that ‖µ̂ − Σ̂−1/2µ‖2 ≤ O(ε). This guarantees

that dTV(N (µ̂, Σ̃),N (Σ̂−1/2µ, Σ̂)) ≤ O(ε), which in

turn implies that dTV(N (µ̂, Σ̂),N (µ,Σ)) ≤ O(ε), as
claimed.

Therefore, we have shown:

Theorem 7.1. Fix ε, δ > 0. Given an ε-corrupted
set of samples S from N (µ,Σ), where n =
poly(d, 1/ε, log 1/δ), there is an algorithm Recover-
Gaussian which takes as input S, ε, δ, and outputs a
µ̂, Σ̂ so that

dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ O(ε) .

Moreover, the algorithm runs in time
poly(d, (1/ε)O(log4 1/ε), log 1/δ).
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