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Abstract

Spatially and temporally adaptive algorithms can substantially improve the computational efficiency of many numerical schemes
in computational mechanics and physics-based animation. Recently, a crucial need for temporal adaptivity in the Material
Point Method (MPM) is emerging due to the potentially substantial variation of material stiffness and velocities in multi-
material scenes. In this work, we propose a novel temporally adaptive symplectic Euler scheme for MPM with regional time
stepping (RTS), where different time steps are used in different regions. We design a time stepping scheduler operating at the
granularity of small blocks to maintain a natural consistency with the hybrid particle/grid nature of MPM. Our method utilizes
the Sparse Paged Grid (SPGrid) data structure and simultaneously offers high efficiency and notable ease of implementation
with a practical multi-threaded particle-grid transfer strategy. We demonstrate the efficacy of our asynchronous MPM method
on various examples including elastic objects, granular media, and fluids.

CCS Concepts
eComputing methodologies — Physical simulation;

1. Introduction

Since its usage in Disney’s Frozen [SSC*13], the Material Point
Method (MPM) [SZS95] has been adopted in animating various
physical materials in graphics ranging from granular soil [KGP* 16,
DBD16] to garment [JGT17], as a generalization of FLIP flu-
ids [ZY10]. MPM inherently benefits from a hybrid particle/grid
representation which enables the automatical coupling of history-
dependent continuum materials in topologically complex scenar-
ios. Consequently, MPM is becoming a promising multi-material
multi-phase scheme in computer graphics [JST*16]. By virtue of
the high regularity of the grid and the unique memory coherence
of exceedingly localized memory footprint in each MPM time step,
there exists a strong potential to push the performance of explicitly
integrated MPM to a high level on emerging architectures.

Adaptive methods have a long history in graphics [MWN*17].
Spatial and temporal adaptivities for MPM follow a clear principle:
computational resources can and should be concentrated in regions
demanding stability, high accuracy, and vibrant details. Recently,
Gao et al. [GTIS17] explored the option of using the SPGrid data
structure [SABS14] for spatially adaptive background grid with
dynamic particle resampling. They demonstrated the performance
gain on various examples involving free surface and thin features.

In this work, we fill in the other crucial component: tempo-
ral adaptivity. Similarly to the idea for SPH by Goswami and
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Batty [GB14], we use regional time stepping (RTS) at differ-
ent locations of the simulated domain. The time step size in
the commonly used symplectic Euler integration is restricted by
CFL [CFL28] conditions considering both the sound speed and ad-
vection. We derive practical time step bounds for the hyperelastic
and fluid materials used in our work (§4). We design a time stepping
scheduler operating at the granularity of small blocks to maintain
a natural consistency with the hybrid particle/grid nature of MPM.
Our algorithm robustly supports practical large deformation sce-
narios when particles move across grid cell blocks. Additionally,
we present a parallelization strategy based on SPGrid that further
speeds up simulation, which is not only efficient but also easy to
implement.

Our contributions can be summarized as follows:

e Theoretical derivations of practical time step bounds that ensures
simulation stability for explict time integration;

e A regional time stepping scheme for MPM enabling temporal
adaptivity;

e A highly efficient parallelization strategy for block-wise trans-
fers in MPM based on the SPGrid.
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Figure 1: Snow slope. Small time step for elastoplastic hardening.

2. Related Work

It has been well demonstrated that both spatial adaptivity (such
as local remeshing and hp-adaptivity) and adaptive time-stepping
contribute substantially to simulation efficiency. Manteaux et
al. [MWN™17] comprehensively reviewed existing work on them.
Here we focus on those that are most related to this work.

Limiting time step size based on maximum material velocity
is used by Foster and Fedkiw [FFO1] as a way of enforcing the
CFL condition for Eulerian liquids, and by Monaghan [Mon92]
and Desbrun et al. [DC99] for SPH fluids. Adaptive selection of
the global time step is used for cloth (and cloth contact) by Baraff
and Witkin [BWO9S8] and Bridson et al. [BFA02]. For simulating
viscoplastic flow with remeshing, Bargteil et al. [BWHTO07] used a
Newmark integrator with adaptive time step as in [BMF03].

Our method focuses on adaptive regional time stepping. This
core idea has been investigated for SPH by Desbrun et al. [DC99].
Our method is mostly related to the work on SPH by Goswami and
Batty [GB14] where local time steps are chosen in a block-wise
fashion. More recently, Reinhardt et al. [RHEW17] presented a
fully asynchronous integration method for SPH where per-particle
time step is independent throughout the whole simulation. For
mesh-based Lagrangian simulation, Debunne et al. [DDCBO00] used
the stable timestep restriction to choose adaptive local time steps on
a finite element mesh for elasticity. Thomaszewski et al. [TPSO08]
used the asynchronous variational integrator (AVI) for cloth, allow-
ing per-element time step chosen according to the stability crite-
rion of linear elasticity. Asynchronous time integration was also
applied to coupled implicit/semi-implicit [SKZF11] and fully im-
plicit backward Euler [ZLB16] simulations for nonlinear elasticity
with a focus on controlling numerical damping.

Explicitly integrated MPM has been mostly applied to prob-
lems that easily need scaling up to tens of millions of grid de-
grees of freedom and hundreds of millions of Lagrangian parti-
cles. Due to its ease of performance optimization, explicit MPM
in fact often requires less CPU time than implicit MPM (with an
exception on simulating extremely stiff materials such as concrete)
and provides higher accuracy since it causes less numerical damp-

ing. Advances in computational platform hardware have also re-
vealed opportunities for transformative improvements in scale and
performance of MPM. Zhang et al. [ZZ1.10] used an alternated
grid updating algorithm to avoid data racing in particle-to-grid.
Their domain is partitioned along a fixed direction and only scales
well when the simulated material occupies a large bulk of the vol-
ume. Ruggirello et al. [RS14] compared two parallelization ap-
proaches for MPM with and without using ghost particles. Chiang
et al. [CDH*09] proposed a GPU acceleration scheme for the Gen-
eralized Interpolation Material Point Method (GIMP) [BK04] with
careful management of memory bandwidth. In computer graphics,
Gao et al. [GTJS17] achieved low-level performance gain using a
vectorized interpolation weight computation scheme for GIMP. Ex-
plicit MPM can also be combined with semi-implicit fluid solvers
to couple particles with imcompressible fluids [GTH*18]. In this
work, we describe an efficient scheme to store asynchronous MPM
states and a new multi-threading parallelization approach for opti-
mized particle-grid transfers that works for both traditional syn-
chronous MPM (SyncMPM) and proposed asynchronous MPM
(AsyncMPM).

3. MPM Background

Here we briefly review synchronous MPM. The material domain
at t" is discretized with particles at xj;. Each particle has volume
Vg , mass mp, velocity VZ, and an affine velocity matrix CZ (initial-
ized to zero, see [JSS™15]). It also holds other physical quantities
such as deformation gradient FY, pressure p, Lamé parameters
Up,Ap, yield stress etc. In each time step, a new grid for compu-
tation is created. Quantities on the grid nodes are denoted with
subscript #, such as position x;, velocity v; and force f;. Particles
and grid nodes are related through B-spline interpolation functions
N;(x), with wl’-’p = N;(x};). We use MLS-MPM [HFG*18] in this
work, which is both simpler and faster than traditional MPM. (Syn-
chronous) MLS-MPM advances to " as

1. Particle-to-grid transfer. Particles transfer mass m, and mo-
mentum (mv)} to the grid using APIC [JSS*15]. Grid momen-
tum (mv)f is divided by grid mass m/ to get grid velocity v;.

2. Grid momentum update. Internal forces are applied to the

grid nodes with 0;‘“ = v} + Af;/m]". For symplectic Euler,

fi=—Y, Vyopw, (X —X}), where 6, is the Cauchy stress eval-
uated using F);. See [GSS™15] and [HFG™18] for implicit inte-

gration.
n+1

3. Grid-to-particle transfer. The updated vj," "~ and CZH are up-

dated on particles using APIC [JSS*15].

4. Particle constitutive model update. Particle F is evolved us-

ing P! = (I n Atc;',“) F", and gets modified for plasticity if
necessary [KGP*16].

5. Particle advection. Each particle moves as Xl”,'H =Xp+ Atv}’,+l .

4. Time Step Restriction
4.1. Stability from Elastic Wave Propagation

In the explicit FEM formulation of homogeneous 3D solids, the
stable time step size is restricted by a critical time step that is deter-
mined by the speed of sound and the element characteristic length.
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The underlying principle is that the time step in an explicit simu-
lation must be small enough to accurately capture the transmission
of a dilational pressure wave across a character distance of the el-
ements. In the case of MPM, the characteristic distance is conve-
niently defined to be grid cell spacing Ax. This is, in fact, more
convenient than the traditional unstructured FEM meshes where
the characteristic length varies across elements and critically de-
pends on element quality. The dilational pressure wave speed is
also known as the adiabatic sound speed [KFCS99]. In isotropic ho-
mogeneous solids, the pressure wave (also often called P-wave) is
always longitudinal. Assuming an elastic media, the P-wave veloc-

ity is given by [BH92] ¢ = 4/ ‘3% + %, where u is the shear modu-
lus which relates Young’s modulus E and Poisson’s ratio v through
u= ﬁ p is current density, K; is the adiabatic bulk modulus (or
adiabatic incompressibility). Moreover, given an equation of state
for a non-linear elastic material, K can be estimated with

dp

EY ()]

where p is pressure. Thus we can use

_ A o
=1/35" 3 &)

to evaluate the sound speed, leading to the critical time step

Ks=p

Aty = 2% 3)
C

Then the time step limit can be chosen as At < oAz [ZCL16],
where o € [0.5,0.9] is an additional scale for stabilization.

St. Venant-Kirchhoff Hyperelasticity. The St. Venant-
Kirchhoff hyperelasticity model combined with the logarithm

<D

Asynchronous Synchronous

Figure 3: Storks. They have spatially varying Young’s modulus val-
ues at different body parts.
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Figure 2: Versatile regional time stepping for coupled simulation of rubber, snow, sand, water, and goo.

Hencky strain measure has been mostly used for granular me-
dia [KGP*16, TGK*17] and elastoplastic flow [GTJS17] in
graphics. Note that plasticity does not contribute to the pressure
wave. The principal Cauchy stress is given by [KGP*16]

L2 A

6=+~ logX + —tr(log2)I, 4
J J

where y and A are Lamé parameters, J = det(F), £ comes from

the polar SVD [MST*11] F = UzV’. The pressure is the negative

of hydrostatic stress p = —%6,(;{ =—-K IO%J, where K = %" +Ais

the bulk Modulus. Correspondingly, by utilizing J = % (thus g—g =

— %) for some initial density pg, we have

dp dpadJ K

— =——=—(1—-logJ). 5
Note that in the context of MPM particles, po for each parti-
cle can be computed using its mass m, and initial volume V19 as

po=mp/ V19 . Substituting Eq. 5 back into Eq. 2 reveals

c= f—l—E(l—logJ). (6)
Po

For linear elasticity, the } factor does not appear in the stress

expression (Eq. 4). The pressure derivative simplifies to g—g = %
Correspondingly we get the sound speed expression
oo E(1—v) @

(I4+v)(1=2v)p

that is more commonly seen in linear elasticity analysis. We refer
to [ZCL16] for more details on MPM with linear elasticity.

Nearly Incompressible Fluid. Nearly incompressible and
weakly compressible equation-of-state (EOS) fluids have been
widely used in SPH [BTO07]. In MPM, it is also used for simulating
liquid in porous media [TGK*17] . The pressure is

(@)

where 7y is usually chosen to be 7 for nearly incompressible flu-
ids, and 1 for weakly compressible fluids. k is the bulk modulus.
Differentiating p with respect to p can be done quite easily in this

v—1
case: g—g =ky (p%) . Also note that the shear modulus y = 0 for
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Figure 4: Asynchronous integration of compressing elastic balls. (a) The regional time step sizes and its (b) clip view. (c) Stiffness variation of
the balls. (d) The same scene with synchronous integration. (e) Particle update status in the asynchronous scheduler at different (but nearby)
time steps. Blue: updated particles; Red: un-updated particles; Green: buffer region.

inviscid water, thus

r—1
A @TE e

For weakly compressible fluids (y = 1), the sound speed becomes
a constant and does not depend on how compressed the fluid is.

4.2. Advection CFL

To avoid material inversion or particles penetrating into each other,
MPM additionally requires a CFL restriction on particle advection
which is not required in mesh-based FEM simulations. Considering
the worst case scenario where two particles are moving toward each
other without any resisting force, the restriction can be written as

Ax
At <B—, (10)

Vol
where [ is usually chosen to be around 0.5. In first order advection
schemes we have x}’,“ =xXp+ v}’,HAt. In practice we must decide

At before computing v;’,H, therefore v}, is used instead. This error

and additional randomness on particle relative locations may result
in some additional slight tweaking of [ for each scene.

Figure 5: Dragon massage. Soft elastic balls hit a cohesionless
granular dragon. Time step size is jointly determined by material
stiffness and particle velocity.

5. Temporally Adaptive Asynchronous Time Integration

With two factors of time step restriction analyzed, we can now
advance the simulation with the largest possible time step. How-
ever, in traditional synchronous approaches, the actual time step
is limited by the element with the most restrictive time step, i.e.,
the whole simulation has to slow down due to small regions with
extreme time step limits. The versatile nature of MPM makes this
issue even more pronounced, since various materials may have con-
siderably different stability behavior. Such limitation highlights the
importance of temporal adaptivity: can we use different A¢ in dif-
ferent regions? Scheduling, i.e., which parts are updated in what
frequency and order, turns out to be the central problem of such
adaptive asynchronous time integration, as discussed in this sec-
tion.

5.1. Spatial and Temporal Granularity

Purely Lagrangian/Eulerian methods such as SPH and FEM typ-
ically use individual elements as scheduling units [RHEW17,
ZLB16, TPS08]. For example, in [TPS08] where an explicit mesh
is used, each element is treated as an independent scheduling unit.
MPM, in contrast to the approaches mentioned above, is a hybrid
method whose states are stored on particles while force compu-
tation happens on a background grid. Such a hybrid representation
facilitates additional efficiency and correctness challenges for asyn-
chronous time integration. Updating a single particle can be highly
inefficient since all its neighboring particles have to be rasterized to
a background grid before it can resample the updated local velocity
field. In comparison to synchronous MPM where particles rasterize
and resample only once per time step, updating a single particle at a
time will lead to O(N) operations per particle per global time step,
where N is the average number of neighboring particles. Moreover,
if neighboring particles are not at the same time as the updated
particle, a synchronization scheme is typically necessary. In SPH
or FEM, such synchronization via interpolation is usually easy be-
cause element states constitute of only position and velocity, while
in MPM interpolating the deformation gradients is neither easy nor
efficient.

Therefore, a reasonable choice is to bundle particles in small
blocks as a whole. Blocks are small cubes of cells, e.g. 4Ax X
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8Ax x 8Ax. Performance-wise, because MPM is bounded by trans-
fers, such a block-based transfer implementation is the most effi-
cient approach to the best of our knowledge. Besides, scheduling
at this granularity leads to a nice balance between scheduling qual-
ity and efficiency. A similar design decision was made in [GB14]
where the time integration strategy was an asynchronous predictor-
corrector scheme [SDTS03]. Since their approach is focused on lig-
uids, the time step is only determined by particle velocity. In MPM,
however, directly adopting such scheme may lead to a complicated
correction step because correcting the rich state information stored
on particles, especially deformation gradients, can be very chal-
lenging. Such difference in MPM and SPH results in our unique
scheduling algorithm tailored for MPM that avoids correction.

Since particles carry all the state information of MPM, the state
of a block is entirely represented by the states of particles inside.
We denote the blocks as B = {B},Bs, ...}, and each particle p € P
belongs to exactly one block containing it. Particles contained in
block B; are denoted as P;.

We use a hierarchy of time steps at different blocks, At; = T; X fe,
where T; is powers-of-two integer multipliers and z¢ is the time step
granularity. At; takes the largest possible 7; constrained by the two
factors as mentioned earlier. Sticking the time step multiplier to
power-of-two’s may cause a slightly higher update frequency, but
it avoids potentially troublesome synchronization between blocks.

5.2. Block Updating Order and Dependency

Central to an asynchronous simulator is the scheduler, which deter-
mines in what order blocks are updated. We denote the whole state
of one MPM simulation at time ¢ as M’. Since MPM states are
stored on particles, which are further grouped in blocks, M’ can be
entirely described by blocks at time ¢, denoted as B’ = {B,B5,...}.
For simplicity, in this subsection, we assume the time step of blocks
are fixed throughout the simulation, and we can store all history
states (B’ for all possible #’s) of a simulation without running out
of memory.

In synchronous MPM, the time integration happens globally in
the whole simulation state. This can be formulated as

Mt+Ar _ fAl(./\/lt), (11)

where F2' is the function that takes one simulation state and returns
the state advanced by Az. In AsyncMPM, however, we advance the
simulation at block granularity. For a block B;, we have

B{™ = Foloe (i, B), (12)

where Y  is a function that advances the state of a single block.
FA and }'ﬁ’oek are global or regional versions of the algorithm de-
scribed in section 3. The “locality” of function ]-'ﬁ’ock plays an im-
portant role here: the state of block B§+At can be computed using
only B! and its neighbors at time ¢. In 1D, this can be formulated as

A .
Bi™ = Floac(i. {Bi_1. Bl Bl 1 }). (13)
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Figure 6: An 1D MPM simulation example. Simulation states are
completely described by blocks. A block in the next time step de-
pends on only those of its neighboring blocks (itself included) in
the current time step.

and similarly in 2D,
1 +At At PR ! ! !
B;i" = Folock (i, J,{Bi—1,j—1, Bi—1,js Bi—1,j+1
s s !
Bij-1, B j, B; j+1,
! ! !
Biy1,j—1, Biyij, Biyijy1 ). (14

In 3D there will be 3 x 3 x 3 = 27 blocks needed to advance the
center block. For illustration purpose, we show the “dependency
graph” of a 1D case in Figure 6.

5.3. Scheduling Algorithm

Conceptually, we still have a global time r monotonously increas-
ing, while whenever it advances, only a small fraction of blocks are
updated on average.

We decompose the simulation domain into regions of blocks
with the same Ar. Within each region, the algorithm behaves the
same as SyncMPM. The only extra treatment is at the boundary
of regions where time step changes. In order to correctly couple
one region with a larger Ar and another neighboring region with a
smaller At, at the boundary of the region with larger Ar we intro-
duce some fictitious “buffer” blocks with the smaller Ar (Figure 7,
left). These buffer blocks never participate in computation of the
region with the larger Az, while they are necessary for the regions
with the smaller At, as illustrated in Figure 7 (right). A 1D schedul-
ing example is illustrated in Figure 8.

5.4. Moving particles and changing time step limits

The previous discussion is based on the assumption that particles
are fixed in space and block At’s stay the same. However, in an
actual simulation, particles are constantly moving and deforming,
leading to varying particle-block relationship and changing block
At.

When advancing a block with time step Af, we maintain a parti-
cle pool (P, in Alg. 1). Particles in nearby blocks with smaller,
equal or greater Ar blocks are added to this pool in order, so that
particles advanced with smaller Az are given higher priority when
duplication happens. Such duplication is caused by slightly differ-
ent trajectories of a single particle when advanced with different
time steps, i.e. a particle may end up with different blocks. In this
case, we keep only the one with the smallest Ar because it is the
most accurate.

Before advancing the blocks, we always recompute the current
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Algorithm 1 AsyncMPM. i and d are block indices. Buf; is the set
of particles in the buffer block of B;, T; is the power-of-two block
time step multiplier, P; is the set of particles in block B;. ]-'ﬁngION
takes a set of particles that reside in a region, and returns these
particles temporally stepped by Az using MPM.

1: function ADVANCE(Ar)

2: T < At/te
3: Pequal = U P
T,=T
4: Plarger = U Bufd
T;=T,T;>T,d nears i
5: Psmatter = U Py
Ti=T,T;<T,d nears i
6: Piotal = Psmalter U Pequal U Plarger
7: for each block i do
8: if T, = T then
9: Buf; < P;
10: leoml = ]:RAlt-:GION(PmtalvAt)
11: for each block i do
12: if T; = T then
13: P={p|pe Pt/atal and p resides in B; }
14: else
15: if 7; > T and exist d,d nears i and T; = T then
16: Bi={plpe P[,oml and p resides in B; }

17: function UPDATETIMESTEP()
18: for each non-empty block i do

19: Compute s with stiffness conditions

20: Compute ¢ with CFL conditions

21: [ < min(s,c)/fe

22: while / < T; do

23: T+ T;/2

24: while / > T; and 7 mod (7; X 2t) =0 do
25: T+ Tix2

26: [ <— min; 7; for all non-empty i

27: for each empty block i do

28: while / < T; do

29: T+ T;/2

30: while / > 7; and r mod (7; x 2t¢) =0 do
31: T, < T; x2

32: function RUN()
33: for each block non-empty i do

34: T+ 1

35: P; < {p|p resides in block B;}
36: while t < tg,, do

37: UPDATETIMESTEP()

38: for Ar = max; T; — min; T; do
39: if  mod At = 0 then

40: ADVANCE(AY)

41: t<—t+te XxminT;

particle-block relationship and update the time step of each block.
If a block needs a smaller time step, we repeatedly halve the time
step until the limit is satisfied. If a block needs a larger time step,
we double its time step only when the current time is a multiple
of the doubled time step. The constraint here is to make sure every
block with a time step At will only be updated when the global 7 is a
multiple of Az, saving the troubles for block state synchronization.

After updating a region of blocks, its particles are reorganized

yA
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X
X
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I

X
X

X
XX

X
X

X

BRI
BIREI
BRI
PEPERE

X X

Figure 7: “Buffer blocks" in gray. The green blocks have 4x larger
At than orange blocks. Left: In this 2D example, buffer blocks (gray
contour) are generated near the boundary of At change, on the side
with larger At. Right: In this 1D example, buffer blocks are updated
together with orange blocks Note that they depend on only other
buffer blocks and orange blocks, and they are never used to update
green blocks.

to their residing blocks. At the interface of changing At, a particle
may move into a block with a different time step. On one hand, our
scheduler naturally handles the case when a particle moves into a
block with a smaller A¢. On the other hand, for each particle, it may
be advanced together with a nearby block with a relatively larger
At. When it happens to move across the block boundary into the
larger Ar block, this single time integration may break its time step
bound. It may seem dangerous to update a stiff particle with a rel-
atively large Ar, but the updated stiff particle will be recorded only
if it happens to move across the block boundary. Emperically, we
have not encountered any stability problem. The whole AsyncMPM
cycle is detailed in Algorithm 1.

6. Implementation

In this section, we describe our efficient implementation of
SyncMPM and AsyncMPM in detail. We developed our system
based on Taichi [Hul8]. The source code will be made publicly
available.

6.1. Particle and Grid Storage

The majority of MPM data are particles. In contrast to SyncMPM
where particles are simply stored in a monolithic array, in
AsyncMPM we store them in small arrays for all blocks to maintain
the particle-block relationship. In the previous discussions about
asynchronous MPM, we assumed we could store the full history of
simulation, which is practically impossible. It turns out that we only
need to store two copies of each block: the one with the most recent
computed state, and the other one the most recent buffer. Intuitively
in Figure 8, this means we only need to store the newest blue and
gray blocks for each column. Since MPM is hardly bounded by
memory space, such 2x increase in space consumption is accept-
able.

The background grid is stored using SPGrid [SABS14]. SPGrid
is a sparsely paged grid data structure using modern virtual mem-
ory system and Morton coding to speed up addressing and improve

(© 2018 The Author(s)
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Figure 8: An 1D scheduling example (a-h), with the smallest block At = 1/8. Blocks as represented as thick segments. Black blocks are
uncomputed, blue blocks computed and gray blocks are buffer blocks. Step a-e demonstrate the time integration when t = 0. When there are
multiple future blocks ready to compute, we compute them in a decreasing-time-step order. Step f hast = 1/8 and step g and h have t = 1/4.

locality. In our implementation, we use blocks of size 4 X 4 x 8,
each occupying exactly a 4KB virtual memory page when eight 32-
bit float-point numbers are stored at each node. During 3D MPM
particle-grid transfer with a quadratic B-Spline kernel, each parti-
cle will touch 27 neighboring nodes. Avoiding cache misses can
significantly increase the efficiency of such operation. Fortunately,

—l
iR
Sl | -

Figure 9: Left: Local arena. In this 2D example, we use 4Ax X
4Ax as the block size. Each particle will interact with grid nodes
within a 3Ax X 3Ax region. This means for all the particles inside
the deep gray region, only the green nodes will be touched. This is
result in a 6Ax X 6Ax local arena for transfer operations. Right:
parallel particle-to-grid transfer. When using parallelized particle
rasterization on a 24Ax x 24Ax grid (6 x 6 blocks as depicted),
we color blocks into 4 colors so that the each expanded arena on
blocks with the same color will not overlap. Such strategy avoids
data race when using multithreading.
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all particles inside a block will touch at most 6 X 6 x 10 nodes,
which we use as a local arena grid to temporally store. Such stor-
age scheme ensures the local grid fits into L1 data cache. The local
arena is shown in Figure 9 (left).

6.2. Lock-free Multithreading

The grid-to-particle transfer is embarrassingly parallelizable since
there is no data race. After particle-to-grid transfer, however, we
need to accumulate mass and momentum in the local arena to the
global SPGrid. There is a data race here since arenas of neighboring
blocks overlap. Expensive per-cell locking would be necessary to
ensure correct results when multiple threads are processing neigh-
boring blocks.

To make this process lock-free, we partite the blocks into 2P
sets where D is the simulation dimensionality, so that in each
set any two blocks do not share overlapping global node. Specif-
ically in 3D, for a SPGrid block with the smallest coordinate
(i, j,k), its group index is defined to be g = 41 + 2J + K, where
I=|i/4] mod2,J=|j/4] mod2, K= |k/8| mod 2 are the parity
bits of block coordinates. For each pass, we only transfer blocks in
a single set with multiple threads, and no two block arenas write
to the same node. 2° passes cover all the blocks. Figure 9 (right)
illustrate a 2D example.

7. Results

In our test cases, AsyncMPM delivers both higher efficiency and
less numerical damping.
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Fgure 10: Dragon bath. The regional time step size is majorly
dominated by material sound speed.

7.1. Efficiency

1.4 —9.8x speed-up over SyncMPM is observed, as listed in Ta-
ble 1. For stability, the time step of SyncMPM is set to the largest
allowed value we found during the entire AsyncMPM simulation
process based on our time step restriction criteria.

Stiffness can sometimes dominate the time steps. Figure 4
demonstrates such case with elastic balls of different stiffness.
Harder balls are updated more frequently for stability. The snow
slope example (Figure 1) showcases material stiffness changes
due to hardening. The large stiffness after compression makes
AsyncMPM especially advantageous. It is worth noting that an im-
plicit solver is more suitable for this simulation, though our high-
performance explicit solver is easier to implement and runs as fast
as the implicit one in [SSC*13].

The actual time step limit in MPM is more frequently determined
by the advection CFL condition. For instance, the fast moving balls
(Figure 5) and water jet (Figure 10) trigger very restrictive time
steps due to their high velocity. In traditional SyncMPM such re-
gional high velocity unnecessarily slows down the whole simula-
tion.

Lastly, MPM provides automatic coupling between various ma-
terials. AsyncMPM is especially useful in this case because dif-
ferent time steps can be used for different materials, as shown in
Figure 2 and Figure 3.

User Study (Figure 1) Time Breakdown (Figure 4)

Advance

Scheduler (buffer)

Advance
(active)

Sync Async Similar

Figure 11: Left: User study results (SyncMPM v.s. AsyncMPM) on
the snow slope example (Figure 1). Right: Time breakdown of one
time step on the elastic ball example (Figure 4).

7.2. Quality

The efficiency of AsyncMPM comes with no sacrifice of quality. In
fact, it conveys visually identical or sometimes even better results
compared with SyncMPM.

For example, we found AsyncMPM leads to better preservation
of motion. Since larger time steps are allowed in soft and slow-
moving regions, there will be fewer particle-grid transfers, which
are more or fewer dissipative. Figure 12 display the energy evo-
lution of AsyncMPM and SyncMPM in the stork couple exam-
ple, with Ax = 0.0125 and Ax = 0.004 respectively. It can be seen
that at low resolution, the kinetic and potential energy fluctuations
last longer in AsyncMPM due to less damping. At high resolution,
though the damping difference is less significant, the total energy
is preserved much better.

Qualitatively, we have conducted a user study on the “snow
slope” example (Figure 1). 20 volunteers were shown video A
(SyncMPM) and B (AsyncMPM) and asked to answer which one
looks better (or “they are similar”). The results are shown in Fig-
ure 11 (left). Most of these volunteers think AsyncMPM is better,
because “the slightly more powdery look in video B makes it more
vivid than video A” or “the shape of snow in video B is more irregu-
lar and realistic”. We hypothesis such difference is due to less dissi-
pative transfers in AsyncMPM, as discussed in section 7.2. Though
such user study is not sufficient to prove that AysncMPM is visually
superior to SyncMPM, it however does give us more confidence
on the conclusion that AsyncMPM improves performance without
scarificing quality.

8. Discussion and Future Work

Even though our method provides a significant speedup on many
practical examples, it is not always the preferred choice especially
for cases where stiff materials occupy the main portion of a scene.
In those cases, the overhead from the scheduler may exceed the
performance saving from having larger time steps at some regions.
A breakdown of run time is shown in Figure 11 (right). In this mea-
surement, our asynchronous scheduler reduces the total number of
block updates by 7.7x compared with SyncMPM. Compared with
our highly-optimized “Advance” part written in CPU-intrinsics, the
scheduler is less optimized. Though the scheduler takes half of run

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.
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Example Ax minAz maxAr  Particle # Density Young’s Modulus ~ Bulk Modulus ~ Yield Stress ~ Friction Angle  sync sec/frame  async sec/frame
(Fig. 3) Storks 40x1073 8.0x107° 6.4x107° 2.4M 10 4e3/2e4 ] 4e5 - - - 80.0 32.9(2.4x)
(Fig. 4) Elastic Balls 40x107% 64x107°  1.024x1073 3.2M 400  1e3/4e4/8e3/2e5 - - - 120.3 24.5(4.9x)
(Fig. 1) Snow Slop 25%x107% 80x107% 512x107* 25M 100/ 400 23/ 1.4¢5/ 6¢5 - - - 859.6 87.8(9.8x)
(Fig. 10) Dragon Bath 25%x107% 1.6x107°  2.56x107% 1.4M 400 5¢3 le4 - - 240.4 138.9(1.7x)
(Fig.5) Dragon Massage 2.5 X 1073 32x107° 256 % 1074 1.3M 400 2e5 - - 10 101.5 39.7(2.6x)
(Fig. 2) Dragon Combo 33x107% 1.6x107° 2,56 x 1074 1.5M 400 5e3/5e5 le4 1 10 310.2 216.3(1.4x)

Table 1: Settings and time per frame of our test scenes. All experiments were done on a six-core Intel i7-8700K (3.7GHz) CPU and 64 GB

main memory.
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Figure 12: Energy evolution of the stork example (Figure 3). Note
the better kinetic and potential energy vibration preservation at
low resolution (top, Ax = 0.0125) and the better mechanical en-
ergy preservation at high resolution (bottom, Ax = 0.004).

time, it still leads to 4.9 x speed-up. We believe more low-level op-
timization can make the performance benefit from our scheduler
even larger.

We look forward to exploring mixed implicit-explicit integration
schemes (IMEX) [FSH11] with regional time stepping to handle
these cases better. We would also like to combine our temporal
adaptivity with spatial adaptivity [GTJS17] for further improved
efficiency. Additional future work includes extending our method
to the GPU based on inspirations from [WTYH18].
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