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ABSTRACT

A receiver autonomous integrity monitoring (RAIM) framework for autonomous ground vehicle navigation using
ambient cellular signals of opportunity (SOPs) is developed. The developed framework considers a ground vehicle
navigation exclusively with cellular long-term evolution (LTE) signals and an inertial measurement unit (IMU),
without global navigation satellite system (GNSS) signals. A fault detection test is developed to deal with biased
LTE pseudorange measurements and a horizontal protection level (HPL) calculation is derived. Experiments to
evaluate the developed RAIM framework are presented for a ground vehicle navigating in an urban environment over
a trajectory of 1.35 km. It is demonstrated that the RAIM framework detects and excludes biased pseudoranges,
reducing the root mean-squared error (RMSE) by 49%.

I. INTRODUCTION

Autonomous ground vehicles (AGVs) require an extremely accurate, robust, and tamper-proof navigation system.
Global navigation satellite system (GNSS) receivers are heavily relied upon in current vehicular navigation systems
to provide aiding corrections to inertial sensors and to produce an estimate of the vehicle’s state in global frame.
However, the GNSS navigation solution may become unavailable in deep urban canyons [1] and under unintentional
interference and jamming scenarios [2]. One approach to overcome the limitation of GNSS is to exploit ambient
signals of opportunity (SOPs). SOPs are radio frequency (RF) signals that are not intended for navigation but
can be exploited for navigation purposes, especially in GNSS-challenged environments [3–6]. SOPs include a wide
range of signals such as digital television, cellular, and AM/FM radio signals. SOPs are abundant in urban canyons
and are free to use, making them desirable sources for navigation, either as a complement or an alternative to
GNSS signals. Among the different types of SOPs, cellular signals are particularly attractive due to their favorable
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geometric configuration, high carrier-to-noise ratio of the received signals, and high bandwidth compared to GNSS
signals [7]. In particular, long-term evolution (LTE) signals have a bandwidth up to twenty times higher than that
of GPS L1 C/A, which yields better suppression of multipath effects [8, 9]. The recent literature have reported
experimental navigation results with standalone cellular signals with meter-level accuracy on ground vehicles [9–12]
and centimeter-level accuracy on aerial vehicles [13, 14]. Moreover, it was demonstrated that these signals could
provide lane-level accuracy when coupled with a lidar without GNSS signals [15].

As the number of systems that rely on cellular SOPs for navigation grows, the need for monitoring the integrity of
cellular-based navigation solutions increases. Integrity monitoring refers to the capability of the system to detect
anomalies and warn the user when the system should not be used. A high-integrity navigation system must be able
to reject incorrect measurements and provide an integrity metric of the confidence in these systems’ performance
at any time. Similar to the integrity of a GNSS-based navigation solution, the most pressing concern in integrity
monitoring of a cellular-based navigation solution is the user’s ability to recognize when it is safe to use the system.

Integrity monitoring for GNSS-based navigation for AGVs has been studied in the literature. In [16], a framework
was proposed to provide integrity provision at the lane-level. The framework warns the user whenever it detects
performance anomalies. The method in [16] fuses measurements from a GNSS receiver, an odometer, and a gyroscope
with road information through a multiple hypothesis particle filter. The problem of fault detection and isolation in
navigation system for passenger vehicles was studied in [17], where the GNSS-based navigation solution is compared
with the vehicle’s on-board sensors’ solution. Then, a sequential statistical test is used to detect discrepancies
between the two solutions. The primary differences between the concept of user-level integrity monitoring applied
to air transport navigation systems and land vehicle navigation systems was studied in [18]. In [19], a framework
to monitor the positioning performance of real-time relative positioning (RRP) systems was proposed, with focus
on cooperative intelligent transport systems. The framework considered the state data of the surrounding vehicles
obtained from GNSS and dedicated short-range communications (DSRC) units. The monitoring framework provided
instantaneous reliability assessment of the RRP systems, which yielded timely alerts to users when the navigation
solution cannot be trusted. In [20], an extended Kalman filter (EKF)-based integrity monitoring framework was
proposed, which fused data from GNSS and inertial sensors. An interactive multiple model (IMM) method was
combined with the EKF-based integrity monitoring framework, to provide position estimates at a meaningful trust-
level.

Among several methods developed to monitor a system’s integrity, the receiver autonomous integrity monitoring
(RAIM) method inherently possesses desirable characteristics, particularly for ground-based receivers in urban
canyons, due to its design flexibility and adaptability to the urban environment [21, 22]. In contrast to external
integrity monitoring methods, RAIM alleviates the need for costly, bulky, and computationally intensive algorithms
in the sense that RAIM detects GNSS pseudorange measurement faults by only exploiting the redundancy of GNSS
signals to check the measurements’ consistency. RAIM can optionally be coupled with the output of other navigation
sensors to improve the integrity monitoring performance [23].

RAIM for the GNSS-based navigation solution is a well-studied topic. However, to the author’s knowledge, no
research on RAIM for cellular-based navigation has been performed. Research developed over decades for GNSS-
based RAIM could serve as a starting point for integrity monitoring of a cellular-based navigation solution. However,
GNSS methods do not directly apply to cellular-based navigation integrity monitoring due to fundamental differences
between cellular and GNSS signals. First, due to the low elevation angles at which cellular signals are received, cellular
signals experience more multipath and signal line-of-sight (LOS) blockage compared to GNSS signals, particularly
for ground-based receivers in urban canyons. Second, unlike GNSS-based navigation where the clock error states of
GNSS satellites are transmitted in the navigation message, cellular towers do not transmit their clock biases. As
such, the clock error states of cellular transmitters must be estimated [24].

This paper proposes a RAIM framework for cellular-based AGV navigation. The framework considers an AGV
equipped with a receiver capable of producing pseudorange measurements to nearby cellular towers and an inertial
measurement unit (IMU). The tower’s locations are assumed to be known (e.g., via signal mapping [24–26]). A
detection test is formulated to detect and exclude faulty (i.e., biased) pseudorange measurements and horizontal
protection level (HPL) is derived. Experimental results are presented for a ground vehicle navigation in an urban
environment (downtown Riverside, California). It is demonstrated that the developed RAIM framework successfully
detects and excludes faulty pseudorange measurements, reducing the two-dimensional (2D) position root mean-square



error (RMSE) by 49%.

The paper is organized as follows. Section II describes the AGV’s and cellular transmitters’ state, the cellular
pseudorange measurement model, and the EKF that fuses cellular pseudorange measurements with the AGV’s
IMU. Section III introduces basic integrity monitoring requirements for AGVs and proposes a RAIM framework to
monitor the integrity of the cellular-derived navigation solution. Section IV presents experimental results evaluating
the proposed framework in an urban environment with cellular LTE signals. Concluding remarks are provided in
Section V.

II. NAVIGATION FRAMEWORK

This section describes the ground vehicle navigation framework. The environment is assumed to comprise Ns

terrestrial cellular transmitters, denoted {Sn}
Ns

n=1
. It is assumed that the vehicle knows the location of the cellular

transmitters (e.g., from a local or a cloud-hosted database). This database could be generated a priori via several
approaches, such as radio mapping (e.g., [24,26]) or satellite images. It is also assumed that the vehicle has an initial
period of access to GNSS signals. During this period, the vehicle estimates its state and the cellular transmitters’
clock biases. After this period, it is assumed that GNSS signals become unusable, and the vehicle begins to navigate
exclusively with cellular signals. The remainder of this section describes the vehicle-mounted receiver clock error
dynamics, vehicle’s state, and the EKF-based navigation framework.

A. Receiver Clock Error State

The receiver clock error state is given by

xclk,r ,

[

cδtr, cδ̇tr

]T

,

where c is the speed of light, δtr is the receiver’s clock bias, and δ̇tr is the receiver’s clock drift. The vehicle-
mounted receiver clock error state is assumed to evolve according to a double integrator driven by process noise

w̃clk,r ,

[

w̃δt,r, w̃δ̇t,r

]T

, whose elements are modeled as zero-mean, mutually independent white noise processes and

the power spectral density of w̃clk,r is given by Q̃clk,r = diag
[

Sw̃δt,r
, Sw̃δ̇t,r

]

[27]. The discrete-time equivalent of the

clock error dynamics can be expressed as

xclk,r(k + 1) = Fclkxclk,r(k) +wclk,r, Fclk ,

[

1 T

0 1

]

, (1)

where T is the sampling period and wclk,r is the discrete-time equivalent process noise with covariance Qclk,r given
by

Qclk,r = c2

[

Sw̃δt,r
T+Sw̃δ̇t,r

T 3

3
Sw̃δ̇t,r

T 2

2

Sw̃δ̇t,r

T 2

2
Sw̃δ̇t,r

T

]

.

B. AGV State

The AGV is assumed to be equipped with:

• an IMU and
• a receiver capable of producing pseudorange measurements to cellular transmitters (e.g., [7, 10, 28, 29]).

If the vehicle is equipped with other navigation sensors (e.g., lidar, camera, etc.), the proposed framework could
seamlessly integrate the outputs of these sensors to improve the vehicle’s navigation solution. The vehicle’s state
vector xv is defined as

xv ,

[

I
Gq̄

T , Gr
T

r , Gṙ
T

r , bTg , bTa

]T

,



where I
Gq̄ is the unit quaternion representing the vehicle’s orientation (i.e., rotation from the global frame G to

the IMU’s inertial frame I); Grr , [xr, yr, zr]
T and Gṙr are the three-dimensional (3-D) position and velocity of

the vehicle, respectively expressed in G; and bg and ba are the gyroscope and accelerometer biases, respectively.
Standard IMU state time update model can be used to propagate the states of the IMU [30–33].

C. EKF Prediction Error Covariance Time Update

This subsection discusses calculation of the prediction error covariance time update. The EKF estimates the state

vector x consisting of the vehicle’s and the receiver’s clock error states simultaneously, i.e., x ,

[

xT

v ,x
T

clk,r

]T

. Denote

x̂(k|j) ,
[

Ik|j

G
ˆ̄q
T

,G r̂T

r (k|j),
G ˆ̇r

T

r (k|j), b̂Tg (k|j), b̂
T

a (k|j), x̂
T

clk,r(k|j)
]

T,

as the state estimate produced by the EKF at time-step k, which is obtained using all measurements (IMU and cellular
pseudorange) from time-step 1 to j ≤ k. Note that the quaternion representation is an over-determined representation
of the orientation of the vehicle. Hence, the estimation error covariance associated with the quaternion estimate will
always be singular. To avoid singularity, the 3-axis angle error vector θ̃ ∈ R

3 is used to form the orientation error
state vector. Denote ˆ̄q as the estimate of q̄ and the error quaternion as δq̄, then, the orientation error model follows
the quaternion multiplication model given by,

q̄ = δq̄ ⊗ ˆ̄q, δq̄ ≃

[

1

2
θ̃T ,

√

1−
1

4
θ̃Tθ̃

]T

, (2)

where ⊗ is the quaternion multiplication operator. The vehicle’s and receiver’s clock error states are defined using
the standard additive error model (i.e., ṽ , v− v̂). Therefore, the prediction error vector at time-step k in the EKF
is expressed as

x̃(k|j) ,
[

θ̃T(k|j) , Gr̃T

r (k|j) ,
G ˜̇r

T

r (k|j), b̃Tg (k|j) , b̃Ta (k|j) , x̃T

clk,r(k|j)
]

T,

with the associated prediction error covariance P(k|j). Details of this prediction error model can be found in [33–36].

D. EKF Measurement Model

After discretization and mild approximations, the pseudorange made by the vehicle-mounted receiver on the n-th
cellular transmitter at the k-th time-step can be shown to be

zsn(k) =
∥

∥

Grr(k)− rsn
∥

∥

2

+ c [δtr(k)− δtsn(k)] + vsn(k), (3)

where rsn , [xsn , ysn , zsn ]
T
is the location of the n-th cellular transmitter, δtsn is the clock bias of the n-th cellular

transmitter, and vsn is the measurement noise, which is modeled as a DT zero-mean white Gaussian sequence with
variance σ2

sn
[37]. The clock biases {δtsn}

Ns

n=1
are modeled as a first-order polynomials [38, 39], i.e., δtsn(k) =

δ̇tsn kT + δtsn,0, where δ̇tsn is the constant clock drift of the n-th cellular transmitter and δtsn,0 is the corresponding

initial bias. The coefficients
{

δ̇tsn , δtsn,0

}Ns

n=1

are calculated during the period when GNSS signals are available.

These values can be calculated with knowledge of the vehicle’s position and its receiver’s clock bias (cf. (3)) by solving
a least-square (LS) estimation problem. The vector of pseudorange measurements to all Ns cellular transmitters is
given by

z =
[

zs1 , . . . , zsNs

]T

, (4)

and it is assumed that the measurement noise {vsn}
Ns

n=1
are independent.

E. EKF State and Covariance Measurement Update

The state measurement update x̂(k+1|k+1) and associated estimation error covarianceP(k + 1|k + 1) are computed
using standard EKF update equations [31], except for the orientation state which is updated according to the



quaternion error model [35]. The corresponding measurement Jacobian H is given by

H = [Hv, Hclk ] ,

where,

Hv ,







01×3 1T

s1
01×9

...
...

...
01×3 1T

sNs
01×9






, 1sn ,

Gr̂r(k + 1|j)− rsn

‖Gr̂r(k + 1|j)− rsn‖2
, Hclk , [hclk . . . hclk]

T
, hclk , [1 0]

T
.

The measurement noise covariance takes the form

R = diag
[

σ2

s1
, . . . , σ2

sNs

]

.

III. RAIM FOR CELLULAR-BASED NAVIGATION

RAIM is an integrity monitoring technique based on consistency check of redundancy of range measurements. It
consists of two main stages:

Stage 1: Performs a fault detection test to detect performance anomalies and to distinguish between fault-free and
faulty operations.
Stage 2: Provides a horizontal protection level (HPL), which is the statistical error bound that guarantees that the
probability of the absolute position error exceeding a pre-defined threshold is smaller than or equal to the target
integrity risk [40].

The target integrity risk refers to the maximum probability with which a receiver is allowed to provide position
failures not detected by the integrity monitoring system [41]. This section, outlines the fault detection steps and
describes the steps to compute the HPL for cellular-based navigation.

A. Fault Detection Test

A faulty operation occurs when a bias with magnitude bn is injected into the pseudorange measurement drawn from
the n-th cellular transmitter. This could be due to a cellular transmitter failure, signal LOS blockage, or high signal
attenuation. In this section, a maximum of only one fault at each time-step is considered. In order to distinguish
between fault-free and faulty operations, a measurable scalar parameter is defined that provides information about
pseudorange measurement errors. This parameter, called a test statistic ϕ, is a random variable with a known
distribution.

The test statistic is generated using the normalized innovation squared (NIS) [42] according to

ϕ(k + 1) = νT(k + 1)S−1(k + 1)ν(k + 1),

where the innovation vector ν and its corresponding covariance matrix S are computed from

ν(k + 1) = z(k + 1)− ẑ(k + 1|j)

S(k + 1) = H(k + 1)P(k + 1|j)HT(k + 1) +R(k).

NIS-based test statistics follow a chi-square distribution in a fault-free operation and a non-central chi-square distri-
bution in faulty operations [42]. The degrees of freedom d of the distributions in both fault-free and faulty operations
is d = Ns − 4, and the non-centrality parameter in a faulty operation is given by

λ(k + 1) = un
T(k + 1)S−1(k + 1)un(k + 1),

where the vector un(k + 1) , [0, . . . , 0, bn(k + 1), 0, . . . , 0]
T
indicates the faulty cellular transmitter along with the

magnitude of the bias in the pseudorange measurement drawn from the faulty cellular transmitter. The fault detection
is achieved by comparing the test statistic against the detection threshold Th, i.e.,

ϕ(k + 1) ≤ Th : no fault detected,

ϕ(k + 1) > Th : fault detected.



The value of Th is obtained using a given probability of false alarm, PFA, under a fault-free operation according to

PFA =

∫

∞

Th

fχ2

d
(τ)dτ, (5)

where fχ2

d
is the probability density function (pdf) of the chi-square distribution with d degrees of freedom. The

value of Th can be obtained from a chi-square cumulative density function (cdf) table using PFA and d.

B. Horizontal Protection Level

For each estimated position, RAIM provides HPL, a circular area centered at the user’s real position, which is assured
to contain the estimated position with a probability equal or higher than 1 − PMD, where PMD is the probability
of missed detection [43]. The decision of alert is done by comparing the HPL and a specified horizontal alert limit
(HAL), which is the largest position error allowable for a safe operation, i.e.,

HPL > HAL : the alarm triggers,

HPL ≤ HAL : the alarm does not trigger.

The non-centrality parameter of the chi-square distribution under a faulty operation that results in a missed detection
rate PMD is denoted λmin. Given a desired PMD as a design parameter and Th obtained from (5), λmin is computed
according to

PMD =

∫ Th

0

fχ2

d
,λmin

(τ)dτ, (6)

where fχ2

d
,λmin

represents the pdf of the non-central chi-square distribution with d degrees of freedom and non-
centrality parameter λmin. The value of λmin can be obtained from a chi-square cdf table.

Next, a parameter called slopen is introduced to project the bias in the faulty measurement onto the horizontal
position error domain. A recursive derivation for slopen is calculated using the EKF update equation according to

∆xerr,n(k + 1) ≈ Ξ(k + 1)un(k + 1),

where ∆xerr,n is the additive bias in the error states and

Ξ(k + 1) = M(k + 1)Ξ(k) +K(k + 1)

Ξ(1) = K(1),

where K is the Kalman gain and
M(k + 1) , [I−K(k + 1)H(k + 1)]F.

Since the fault in the measurement is being projected onto the horizontal plane, only the fourth and fifth rows of
Ξ(k+1) (i.e., x- and y- directions in the global frame) are used to construct slopen. Subsequently, slopen is expressed
as

slopen(k + 1) =
∆rerr,n(k + 1)

√

(S−1(k + 1))n,n
,

where (S−1)n,n indicates the n-th diagonal element of matrix S−1 and

∆rerr,n(k + 1) =
√

[(Ξ(k + 1))4,n]2 + [(Ξ(k + 1))5,n]2.

The HPL is calculated as the projection onto the horizontal position domain of the pseudorange measurement bias
that generates a non-centrality parameter equal to λmin in the cellular transmitter with the maximum slope [41], i.e.,

HPL(k + 1) = slopemax(k + 1)
√

λmin,



where
slopemax(k + 1) = max

n
{slopen(k + 1)} , n = 1, . . . , Ns.

Similar to GNSS-based RAIM [40], fault exclusion in cellular-based RAIM is performed by constructing Ns subsets
of Ns−1 pseudorange measurements. Assuming that only one of the cellular transmitters is faulty, applying the fault
detection procedure described above to each subset will result in a fault in all subsets except the one from which the
faulty cellular transmitter’s pseudorange measurement is excluded. Fig. 1 demonstrates a step-by-step summary of
the proposed cellular-based RAIM technique.
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Fig. 1. Step-by-step summary of the proposed cellular-based RAIM technique. The proposed method consists of four parts: EKF
calculations, availability check, fault detection, and fault exclusion.

IV. EXPERIMENTAL RESULTS

A field test was conducted to validate the proposed framework on a ground vehicle navigation in an urban environ-
ment (downtown Riverside, California). This section presents the hardware used in this experiment along with the
experimental results.

A. Experimental Hardware Setup and Scenario Description

A vehicle was equipped with an integrated AsteRx-i V GPS-IMU sensor [44] whose x-axis points toward the front
of the vehicle, z-axis points upward, and y-axis points to the right side of the ground vehicle. The IMU returns six
measurements (accelerations and rotational rates along the three orthogonal axes of the body frame) at a rate of 100
Hz. Over the course of the experiment, the ground-truth trajectory of the vehicle was obtained from its integrated
GPS-IMU navigation system, while the IMU accelerations and rotational rates outputs were used to propagate the
states. Septentrio’s post-processing software development kit (PP-SDK) was used to process carrier phase observables
collected by the AsteRx-i V and by a nearby differential GPS base station to obtain a carrier phase-based navigation
solution. This integrated GNSS-IMU real-time kinematic (RTK) system was used to produce the ground-truth
results with which the proposed navigation framework was compared. The ground vehicle was also equipped with
two cellular antennas to acquire and track signals from nearby cellular LTE towers. The LTE antennas used for the
experiment were consumer-grade 800/1900 MHz cellular antennas. The signals were simultaneously down-mixed and
synchronously sampled via a National Instruments (NI) dual-channel universal software radio peripheral (USRP)–
2954R, driven by a GPS-disciplined oscillator (GSPDO). The clock bias and drift process noise power spectral
densities of the receiver were set to be 1.3× 10−22 s and 7.89× 10−25 1/s respectively, since the 2954R USRPs are
equipped with oven-controlled crystal oscillators (OCXOs). The receiver was tuned to carrier frequencies of 1955
MHz and 739 MHz, which are channels allocated for U.S. cellular provider AT&T. Samples of the received signals
were stored for off-line post-processing. The Multichannel Adaptive TRansceiver Information eXtractor (MATRIX)
software-defined receiver (SDR) developed in [45] was used to produce LTE pseudoranges.

Fig. 2 illustrates the experimental hardware setup and traversed trajectory. The cellular transmitters’ clock biases
{δtsn}

Ns

n=1
were calculated according to the first-order polynomials model discussed in Subsection II-D. The initial



clock bias and constant clock drift
{

δtsn,0, δ̇tsn

}Ns

n=1

were calculated during an initial period of GNSS availability.

Moreover, during the period of GNSS availability, the vehicle’s orientation I
Gq̄, position

Grr, velocity
Gṙr, and its

clock error states xclk,r were estimated along with their corresponding covariance, which were used to initialize the
EKF. The gyroscope’s and accelerometer’s biases were initialized by taking the mean of 5 seconds of IMU data, when
the receiver was stationary. The measurement noise variances were determined empirically.

GPS antennas
Cellular antennas

USRP RIOStorageIntegrated
GPS-IMU

Cellular LTE
Tower 1

Cellular LTE
Tower 2

Cellular LTE
Tower 3

Cellular LTE
Tower 5

Cellular LTE
Tower 4

Start point

Ground truth

Fig. 2. Experimental hardware setup and the traversed trajectory along with the position of cellular LTE towers. A ground vehicle was
equipped with an integrated AsteRx-i V GPS-IMU sensor, cellular antennas, and USRPs. The ground vehicle traveled 1.35 km in an
urban area (downtown Riverside, California) collecting GPS, IMU measurements, and cellular LTE signals from five cellular towers.

B. Experimental Results

The fault detection test and HPL calculations were performed throughout the experimental test. The results are
shown in Fig. 3. Fig. 3 (a) shows the fault detection test, which compares the test statistic ϕ against the detection
threshold Th. It can be seen that at t = 25 s, the threshold is exceeded; therefore, the test is not declared successful
(see the red circle in Fig. 3 (a)). This implies that at least one of the measurements was faulty and its contribution
to the test statistic was significant enough for the test to fail. The fault exclusion technique indicated that the faulty
measurement was the pseudorange drawn from the first cellular LTE tower. The 2D position RMSE of the navigation
solution without measurement exclusion was 6.8 m, while the 2D position RMSE with the developed RAIM framework
was 3.5 m. Hence, incorporating the developed RAIM framework in this paper reduced the position RMSE by 49%.
Fig. 3(b)–(c) show the position estimation error with and without fault exclusion.

Fig. 4 illustrates the HPL and HAL. In contrast to weighted least-square (WLS)-based RAIM [43] where the HPL
does not depend on the current measurements and can be predicted according to the expected satellite/user geometry,
the HPL in the proposed RAIM method depends on both the current states and measurements. Therefore, it must
be calculated at each time-step. As can be seen, over the course of the experiment, HPL does not exceed HAL.
Subsequently, RAIM was available throughout the experiment, which means that RAIM was able to detect the
presence of the faults within the required PMD.
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Fig. 3. The resulting (a) test statistic and (b)–(c) position estimation error with and without measurement exclusion in the x- and
y-directions.
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Fig. 4. The HPL and HAL over the course of the experiment

V. CONCLUSION

In this paper, a framework for AGV integrity monitoring in GNSS-challenged environment was developed. To this
end, an EKF-based RAIM technique was proposed, which used an IMU and pseudoranges extracted from ambient
cellular LTE towers. The proposed RAIM framework detects and excludes faulty measurements and calculates
the HPL. Experimental results over a total traversed trajectory of 1.35 km validated the efficacy of the proposed
framework and showed that the proposed RAIM-based measurement exclusion technique reduced the 2D position
RMSE by 49%.
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