
Event-Based Communication Strategy for

Collaborative Navigation with Signals of

Opportunity

Joshua Morales and Zaher M. Kassas

Department of Electrical and Computer Engineering

University of California, Riverside

{jmora047@ucr.edu, zkassas@ieee.org}

Abstract—An event-based communication strategy for collabo-
rative navigation with signals of opportunity (SOPs) is developed.
The following problem is considered. Multiple vehicles draw
pseudorange measurements from ambient terrestrial SOPs. The
vehicles transmit to each other a packet containing pseudoranges
to SOPs, in order to collaboratively estimate the vehicles’ and
SOPs’ states. Instead of transmitting this at a fixed communica-
tion rate, an event-based strategy is developed to communicate
this packet, where the communication event is triggered whenever
the maximum position error could violate a desired threshold by
a user-specified probability. Simulation results are presented for
an environment with four unmanned aerial vehicles (UAVs) and
six SOPs, demonstrating an 86.2% reduction in the cumulative
communicated data over a fixed-rate strategy. Experimental
results with 2 UAVs and 3 SOPs are shown to reduce the
cumulative communicated data by 10.3%.

I. INTRODUCTION

Today’s navigation systems mainly rely on a global naviga-

tion satellite system (GNSS) receiver for positioning. However,

GNSS signals often become unusable (e.g., in deep urban

canyons or in the presence of interference or jamming).

Recently, the exploitation of signals of opportunity (SOPs)

have been shown to be an attractive alternative for navigation

when GNSS signals become unusable [1], [2]. SOPs (e.g.,

AM/FM radio [3], cellular [4], digital television [5], and low

Earth orbit (LEO) satellites [6]) are attractive for navigation

because their signals are: received at a high power, transmitted

at high bandwidths, and are geographically abundant and

geometrically diverse.

Collaboration is known to improve the navigation perfor-

mance [7], [8]. Collaborating vehicles can improve estimates

of their individual states (position, velocity, clock bias, and

clock drift) by sharing and fusing mutual measurements made

on SOPs [9], [10]. However, transmitting data between other

collaborating vehicles requires a large communication band-

width and compromises privacy. To address these concerns,

this paper develops an event-based communication strategy

that aims to reduce the amount of data that vehicles commu-

nicate while maintaining a specified estimation uncertainty.

Event-based communication strategies have been studied in
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other contexts and have lead to different event-triggering tests,

such as: level-triggering, which compares the amplitude of a

signal versus a pre-defined threshold [11]; average estimation

error covariance minimization, which checks the average of

the time-history of the trace of the estimation error covariance

[12]; residual-based, which checks the difference between the

measurement and predicted measurement [13]; and innovation

error variance-based tests [14]. In this paper, the vehicles

will only exchange information if the predicted position es-

timation uncertainty would violate a specified threshold if

information exchange does not take place. This strategy is

compared with a fixed-rate communication strategy in which

the vehicles communicate at each measurement epoch. The

proposed event-based strategy is demonstrated to significantly

reduce the transmitted data bits, while maintaining a specified

estimation uncertainty.

The remainder of this paper is organized as follows.

Section II describes the dynamics model of the SOPs and

navigating vehicles as well as the pseudorange measurement

model. Section III describes and demonstrates the event-

based communication strategy. Section IV presents simulation

results with four unmanned aerial vehicles (UAVs) and six

SOPs, showing the developed event-based strategy reducing

the cumulative communicated data by 86.2% from a fixed-

rate strategy. Section V presents experimental results with two

UAVs and three cellular SOPs. Concluding remarks are given

in Section VI.

II. MODEL DESCRIPTION

A. SOP Dynamics Model

Each of the M SOPs will be assumed to emanate from

a spatially-stationary terrestrial transmitter, and its state vec-

tor xsm will consist of its planar position states rsm ,

[xsm , ysm ]T and clock error states xclk,sm , c
h

δtsm , δ̇tsm

iT

,

where c is the speed of light, δtsm and δ̇tsm are the clock bias

and drift of the mth SOP transmitter, respectively.

The discretized SOP transmitters’ dynamics are given by

xsm (k + 1) = Fs xsm(k) +wsm(k), k = 1, 2, . . . ,

xsm = rT

sm
, xT

clk,sm

T

,



Fs = diag [I2×2, Fclk] , Fclk =
1 T
0 1

,

where T is the constant sampling interval and wsm is the

process noise, which is modeled as a discrete-time white noise

sequence with covariance Qsm = diag 02×2, c
2Qclk,sm ,

where

Qclk,sm =

"

Sw̃δts,m
T+Sw

δ̇ts,m

T 3

3 Sw̃
δ̇ts,m

T 2

2

Sw̃
δ̇ts,m

T 2

2 Sw̃
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T

#

.

The terms Sw̃δts,m
and Sw̃

δ̇ts,m
are the clock bias and drift

process noise power spectra, respectively, which can be related

to the power-law coefficients, {hα,sm}2
α=−2, which have been

shown through laboratory experiments to characterize the

power spectral density of the fractional frequency deviation of

an oscillator from nominal frequency according to Sw̃δts,m
≈

h0,sm

2 and Sw̃
δ̇ts,m

≈ 2π2h−2,sm [15].

B. Vehicle Dynamics Model

The nth vehicle’s planar position rrn , [xrn , yrn ]
T

and

velocity ṙrn will be assumed to evolve according to an

arbitrary, but known, linear dynamics model (e.g., velocity

random walk or constant turn rate [16]). The vehicle’s state

vector xrn is defined by augmenting the vehicle’s position and

velocity states xpvn
,

h

rTrn , ṙ
T

rn

iT

with the vehicle-mounted

receiver’s clock error states, xclk,rn , c
h

δtrn ,
˙δtrn

iT

, i.e.,

xrn ,

h

xT

pvn
, xT

clk,rn

iT

. Discretizing the vehicle’s dynamics

at a constant sampling period T yields

xrn (k + 1) = Frnxrn(k) +wrn(k),

Frn , diag Fpvn
, Fclk ,

where Fpvn
is the position and velocity state-transition matrix,

and wrn is the process noise vector, which is modeled as a

discrete-time zero-mean white noise sequence with covariance

Qrn = diag Qpvn
, c2Qclk,rn , where Qpvn

is the position

and velocity process noise covariance and Qclk,rn is iden-

tical to Qclk,sm , except that Sw̃δts,m
and Sw̃

δ̇ts,m
are now

replaced with receiver-specific spectra, Sw̃δtr,n
and Sw̃

δ̇tr,n
,

respectively.

C. Pseudorange Measurement Model

The pseudorange measurements made by the nth receiver

on the mth SOP, after discretization and mild approximations

discussed in [17], are modeled as

nzsm(k) = krrn(k)− rsmk2
+ c · [δtrn(k)− δtsm(k)] + nvsm(k), (1)

where nvsm is the measurement noise, which is modeled

as a discrete-time zero-mean white Gaussian sequence with

variance nσ2
sm

.

III. EVENT-BASED COLLABORATIVE OPPORTUNISTIC

NAVIGATION FRAMEWORK

This section develops an extended Kalman filter (EKF)-

based collaborative navigation framework that uses an event-

based communication strategy to transmit data between vehi-

cles.

A. Framework Overview

In this framework, the positions of all SOPs {rsm}Mm=1 are

assumed to be known a priori (e.g., via radio mapping [18]),

while the clock states of the SOPs are continuously estimated

along with the states of the navigating vehicles. This can be

achieved through an EKF with state vector

x , xT

r1
, . . . ,xT

rN
, xT

clk,s1 , . . . ,x
T

clk,sM

T

.

At each measurement epoch, each vehicle transmits a packet

Λn of SOP pseudoranges, namely

Λn(k + 1) , {nzs(k + 1)} , (2)

where
nzs = [nzs1 , . . . ,

nzsM ]T .

Then, each vehicle fuses all received packets with its own

measurements to estimate x. Fig. 1 illustrates a high-level

diagram of the collaborative navigation framework, where τ
is always closed in a traditional fixed-rate communication

strategy. Note that in such case, this framework is identical

to a centralized EKF architecture, since each vehicle is esti-

mating x and all vehicles communicate their data in a fully-

connected graph. Previous work focused on minimizing the

data in the communicated packets {Λn}Nn=1 [19] and studying

the robustness due to packet drops in lossy communication

channels [10]. This paper will devise an event-based commu-

nication strategy to transmit {Λn}Nn=1 (i.e., τ closes only when

needed).

Dynamic
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measurement update
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zs1(k+1)
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time update
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Pr1(k+1jk+1)

x̂r1(k+1jk) Pr1(k+1jk) τ

Fig. 1. Collaborative navigation with SOPs. If τ is always closed, the packets
{Λn}Nn=1

are transmitted at every measurement epoch (i.e., at a fixed rate).
The event-based strategy will devise a mechanism to close τ only when
needed.

The EKF time update step, the event-based communication

strategy, and the EKF measurement update are discussed next.



B. EKF Time Update

The EKF time update produces x̂(k+1|k) , E[x(k+1)|Zk],
where E[ · | · ] is the conditional expectation operator, Zk

,

{z(i)}ki=1, and

z ,

h

1z
T

s , . . . ,
Nz

T

s

iT

, (3)

is a vector of SOP pseudoranges. The estimate x̂(k + 1|k)
and corresponding prediction error covariance P(k+1|k) are

given by

x̂(k + 1|k) = Fx̂(k|k) (4)

P(k + 1|k) = FP(k|k)FT +Q, (5)

where F and Q are the state dynamics matrix and process

noise covariance, respectively. Note that since both the vehi-

cles’ and SOPs’ dynamics are linear, each vehicle may store

F and Q in memory and compute the time update (4) and (5).

Next, the event-based communication strategy and an online

test to determine if the packets {Λn}Nn=1 should be transmitted

are discussed.

C. Event-Based Communication Strategy

This subsection develops an event-based communication

strategy, which aims to minimize the transmission rate, while

maintaining a desired uncertainty about the vehicle’s position.

In contrast to all vehicles transmitting {Λn}Nn=1 at a fixed

rate, which is the rate at which measurements are made; in

the event-based strategy, {Λn}Nn=1 are only transmitted when

a particular event of interest is triggered. In what follows,

the event of interest will be defined as the magnitude of any

vehicle’s position estimation error in any coordinate direction,

denoted |x̃rn | and |ỹrn |, violating a specified maximum esti-

mation error ξmax with probability 1 − p, if transmission of

{Λn}Nn=1 does not occur. An online test is formulated using

the vehicles’ position estimation error covariance.

To formulate this test, first consider the normalized estima-

tion error squared (NEES) ǫn of the position states for vehicle

n, given by

ǫn(k) =

[rrn(k)− r̂rn(k|k)]TP−1
rrn

(k|k)[rrn(k)− r̂rn(k|k)], (6)

where Prrn
(k|k) is the position estimation error covariance

for vehicle n. Time dependency will be dropped in the sequel

to simplify the notation. The covariance matrix Prrn
has an

eigendecomposition given by

Prrn
= UnDUT

n, D = diag [λn,1, λn,2] , (7)

where λn,i is the ith eigenvalue of Prrn
and Un is an

orthogonal matrix whose ith column is the ith eigenvector

of Prrn
. Substituting (7) into (6) yields

ǫn = ξTnD
−1ξn, (8)

ξn , UT(rrn − r̂rn). (9)

The vector ξn = [ξn,1, ξn,2]
T

is the estimation error r̃rn
expressed in frame {G}, rotated by the orthogonal (rotation)

matrix UT into a coordinate frame {F}, whose axes coincide

with the principal axes of an ellipse. This ellipse is known as

the probability concentration ellipse C, which represents the

probability p of the error ξn lying on or within this ellipse,

where

p = Pr (ǫn ≤ ηn) . (10)

Given p and the distribution of ǫn, the value ηn can be

determined [20]. Therefore, it suffices to check if the largest

radii of this ellipse is greater than the specified ξmax.

The principal axes of the confidence ellipse C are found by

expanding (8) and substituting ǫn into ǫn ≤ ηn from (10),

which gives
ξ2n,1

ηnλn,1
+

ξ2n,2
ηnλn,2

≤ 1, (11)

which is the equation of an ellipse with radii
p

ηnλn,i, for

i = 1, 2. These relationships are illustrated in Fig. 2.

r̂rn

ξn

rrn

fGg

p

ǫnλn;1
p

ǫnλn;2

ξn;1

ξn;2

xrn

yrn

fFg
C

ξmax

Fig. 2. Probability concentration ellipse C with origin r̂rn and radii
p

ǫnλn,i, i = 1, 2.

The online test may now be expressed as checking if
q

ηnλmax[Prrn
] ≤ ξmax, (12)

where λmax[X] denotes the maximum eigenvalue of X. Noting

that λmax[Prrn
] = kPrrn

k2 for covariance matrices and by

solving (12) in terms of the specified constraint yields

kPrrn
k2 ≤

ξ2max

ηn
. (13)

To use test (13) to determine if the specified constraint ξmax

will be violated with probability 1−p if the transmission of Λn

does not take place, each vehicle first computes their prediction

error covariance, which is given by

Prn
(k + 1|k) = FrnPrn(k|k)FT

rn
+Qrn . (14)

The block Prrn
of (14) is then checked to satisfy (13), i.e.,

kPrrn
(k + 1|k)k2 ≤ ξ2max

ηn
, n = 1, . . . , N. (15)

If this test fails for any vehicle, the vehicle whose test fails

requests all vehicles to transmit their Λn. Subsequently, each

vehicle performs an EKF measurement update using its own

pseudorange measurements and the communicated packets

from other vehicles. If the test does not fail, the measurements

are discarded and the measurement update step is skipped. An



event-trigger threshold on the EKF-produced 2σ error standard

deviations of the vehicles’ position states, over which the

transmission of {Λn}Nn=1 is requested, can be found by taking

the square root of (15), which yields

2σ ≤ 2
ξmax√
ηn

. (16)

D. EKF Measurement Update

This subsection outlines the EKF measurement update

for fusing SOP pseudoranges and packets received from

all vehicles, for both fixed-rate and event-based strategies.

Upon receiving the packets {Λn}Nn=1, each vehicle assem-

bles the measurement set (3) and uses its locally-generated

state prediction (4) to compute the measurement prediction

ẑ(k+1|k) , E[z(k + 1)|Zk]. Then, each vehicle computes

the estimation correction and corresponding correction error

covariance, which are the same for the fixed-rate and event-

based strategies when an event triggers the transmission of

{Λn}Nn=1, which are given by

x̂(k+1|k+1) = x̂(k+1|k)+K(k+1)[z(k+1)− ẑ(k+1|k)]
P(k+1|k+1) = P(k+1|k)−K(k+1)H(k+1)P(k+1|k),

K(k+1) , P(k+1|k)HT(k+1)S−1(k+1)

S(k+ 1) , H(k+1)P(k+1|k)HT(k+1) +R,

where H is the measurement Jacobian evaluated at the state

prediction x̂(k + 1|k), and R is the measurement noise

covariance of (3). In the event-based strategy, if an event is

not triggered, none of the vehicles perform an EKF measure-

ment update and instead continue performing time updates to

produce x̂(k + L|k) and P(k + L|k), where L = 2, 3, . . ..

IV. SIMULATION RESULTS

This subsection presents simulation results demonstrating

the event-based communication strategy and compares its re-

sulting estimation performance and communication rate with a

fixed-rate communication strategy. To this end, an environment

consisting of N = 4 vehicle-mounted receivers and M = 6
SOP transmitters was simulated. The vehicles’ positions were

set to evolve according to a constant turn rate model [16], with

Fpvn
≡









1 0 s(ωT )
ω

− 1−c(ωT )
ω

0 1 1−c(ωT )
ω

s(ωT )
ω

0 0 c(ωT ) −s(ωT )
0 0 s(ωT ) c(ωT )









,

Qpvn
≡

Sw











2ωT−s(ωT )
ω3 0 1−c(ωT )

ω2

ωT−s(ωT )
ω2

0 2ωT−s(ωT )
ω3 −ωT−s(ωT )

ω2

1−c(ωT )
ω2

1−c(ωT )
ω2 −ωT−s(ωT )

ω2 T 0
ωT−s(ωT )

ω2

1−c(ωT )
ω2 0 T











,

where s(·) and c(·) denote sin(·) and cos(·), respectively, ω
is a known constant turn rate, Sw is the process noise power

spectral density, and n = 1, . . . , 6. The coordinates of the

SOP transmitters’ positions {rsm}6m=1 and the trajectories that

the vehicles traversed are illustrated in Fig. 3. The simulation

settings are tabulated in Table I.

x
(m

)

y (m)

SOP m position rsm

SOP 1

SOP 2

SOP 3

SOP 4

SOP 6

Receiver trajectories

SOP 5

Fig. 3. True trajectories the vehicles traversed (black) and SOP transmitters’
positions (orange).

TABLE I
SIMULATION SETTINGS

Parameter Value

rr1(0) [−220, −34]T

rr2(0) [41, −120]T

rr3(0) [−260, 14]T

rr4(0) [10, −25]T

{xclk,rn (0)}
4
n=1

[10, 1]T

{xclk,sm (0)}6m=1
[10, 1]T

Pclk,sm(0|0) (102) · diag [30, 3]

Pclk,s(0|0) diag Pclk,s1
, . . .Pclk,s6

P(0|0) diag 024×24,Pclk,s

x̂(0|0) ∼ N [x(0),P(0|0)]

{h0,rn , h−2,rn}
4
n=1

9.4× 10−20, 0

{h0,sm , h−2,sm}6
m=1

8.0× 10−20, 0

ω 0.1 rad/s

T 0.1 s

Sw 0.01 m2.rad2/s3

nσ2
sm

5

m=1
, n = 1, . . . , 4 2 m2

The thresholds specified on the vehicles’ position estimates

were set to be ξmax ≡ 10 m with a confidence probability

p ≡ 0.999. The probability density function (pdf) of ǫn
was found by running 5000 Monte Carlo runs using the

environment illustrated in Fig. 3, with random process noise,

measurement noise, and initial estimates. The value of ηn
in (10) was found using the inverse cumulative distribution

function (cdf) of ǫn and p = 0.999, which evaluated to be

ηn ≈ 13.8. Fig. 4 illustrates the Monte Carlo runs histogram

of ǫn for vehicle 1, from which it was deduced that the pdf

follows a gamma distribution with shape and scale parameters

s1 = 3/2 and θ1 = 2, respectively. Plugging ηn and ξmax

into (15) yields kPrr1
(k + 1|k)k2 ≤ 1.81. The pdf of ǫn and



corresponding shape and scale parameters were noted to be

the same for the other vehicles.

0 2 4 6 8 10 12

p
d
f

0

0.1

0.2

0.3

0.4

0.5

True histogram

Gamma           (s1, θ1)

Fig. 4. Histogram of ǫ1 and gamma distribution with parameters s1 = 3/2
and θ1 = 2.

The cumulative transmitted data was recorded for each

strategy by summing the number of transmitted bits each time

a packet transmission occurred. The size of the packet in bits

was found by summing the number of values in (2) and setting

each value to be a 32-bit float data type, as described in [19].

Fig. 5 shows the resulting estimation errors and corresponding

±2σ bounds of vehicle 1 along with the ±2σ bound event-

trigger thresholds (16). The resulting cumulative transmitted

data for each strategy is illustrated in Fig. 6. Similar plots

were noted for the other three vehicles.

Time (s)

~x
r
1
(m

)
~y r

1
(m

)

2 · ξmax=
p
η

 2 · ξ max=
p
η

Fixed-rate: ±2σEstimation error
Event-based: ±2σEstimation error

Fig. 5. Resulting estimation errors and corresponding ±2σ bounds for vehicle
1 for the event-based and fixed-rate communication strategies.
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Fig. 6. Cumulative transmitted data for transmitting the packet Λ1 at a fixed-
rate and using the event-based communication strategy.

The following may be concluded from these plots. First,

note from Fig. 5 that the estimation uncertainties associated

with the event-based communication strategy are consistently

larger than the ones produced by the fixed-rate strategy. This is

due to skipped measurement updates when the test (15) is sat-

isfied. The degradation in estimation performance by skipping

these measurements is captured by the distance between the

corresponding ±2σ bounds. Second, as desired, the estimation

uncertainties in Fig. 5 in the event-based strategy were below

the event-trigger threshold specified in (16). Third, from Fig.

6, the event-based transmission strategy was found to reduce

the required total transmitted bits by 86.2% compared to a

fixed-rate strategy.

V. EXPERIMENTAL RESULTS

A field experiment was conducted using two UAVs equipped

with consumer-grade inertial measurement units (IMUs) and

software-defined radios (SDRs) to demonstrate the event-based

communication strategy discussed in Section III. To this end,

two antennas were mounted on each UAV to acquire and

track GPS signals and multiple cellular transmitters, whose

signals were modulated through code division multiple access

(CDMA). The GPS signals were coupled with the IMU data

to produce a navigation solution that served as the ground

truth. The cellular signals were downmixed and sampled via

Ettus R E312 universal software radio peripherals (USRPs).

These front-ends fed their data to the Multichannel Adaptive

TRansceiver Information eXtractor (MATRIX) SDR, which

produced pseudorange measurements to three cellular trans-

mitters [21]. Fig. 7 depicts the hardware and software setup

and Fig. 8 illustrates the experimental environment.

MATLAB-based
EKF filter

MATRIX SDR
LabVIEW-based

Cellular and GPS antennas

Universal software

IMU data

PseudorangesCDMA

radio peripheral
(USRP)

Signals

Fig. 7. Experimental hardware setup.

TrueTrueTrueTrue

Trajectories

True
Fixed-rate

Event-based

SOP 1
SOP 2

SOP 3

UAV 1

UAV 2

Fig. 8. Experimental environment and navigation results with three cellular
SOP transmitters and two UAVs for fixed-rate and event-based transmission
strategies.

Two transmission strategies were studied: (i) fixed-rate at

T = 0.1 and (ii) event-based with ξmax ≡ 20 m and p ≡ 0.95,

as described in Section III. The UAVs traversed the white

trajectories plotted in Fig. 8. To estimate these trajectories,

only the cellular SOP pseudoranges were used. The initial state



estimates of the UAVs {x̂r(0|0)}2n=1 were set to the solutions

provided by the UAVs’ onboard GPS-INS at the beginning of

their trajectories, and were assumed to be perfectly known,

i.e., {Prn(0|0)}2n=1 ≡ 06×6. The SOPs’ initial clock biases

and drifts

xclk,sm(0) = c
h

δtsm(0), δ̇tsm(0)
iT

m = 1, . . . , 3,

were solved for by using the initial set of cellular transmitter

pseudoranges (1) and the known UAVs’ states. The position

and velocity states of the UAVs were assumed to evolve

according to velocity random walk dynamics with

Fpvn
≡ I2×2 T I2×2

02×2 I2×2
,

Qpvn
≡

"

T 3

3 Spv
T 2

2 Spv
T 2

2 Spv TSpv

#

, n = 1, 2,

where Spvn
= diag [0.1, 0.1] is the process noise power spec-

tral density matrix, whose value was found empirically. The

pseudorange measurement noise was assumed to be indepen-

dent and identically-distributed with covariance R = 10 ·I6×6,

whose value was found empirically.

The north-east root mean squared error (RMSE) for the

fixed-rate transmission strategy for UAV 1 and UAV 2 was

6.0 and 5.2, respectively, and transmitted 7.8 Mbits of data.

The north-east root mean squared error (RMSE) for the event-

based transmission strategy for UAV 1 and UAV 2 was 10.8

and 6.4, respectively, and transmitted 7.0 Mbits of data. It was

noted that that the event-based transmission strategy reduced

the transmitted data by 10.3% compared to the the fixed-rate

strategy, while maintaining the specified ξmax and p. Note that

in this experiment only three cellular SOPs were exploited

to estimate the trajectories of the UAV’s. A more significant

reduction percentage of transmitted data is expected had (1)

additional SOPs been included and (2) the IMU was used

in the EKF time update step instead of the simple dynamics

model assumed for the UAVs, which inevitably suffers from

mismatch with the UAV’s true dynamics model.

VI. CONCLUSION

This paper presented an event-based transmission strategy

to share and fuse SOP pseudorange measurements when a

specified maximum error in any coordinate direction would

be violated with a specified probability. An online event

test was developed using each vehicles’ position estimation

error covariance and was shown in simulation to reduce the

transmitted data by 86.2% compared to a fixed-rate strat-

egy. Moreover, experimental results demonstrated two UAVs

navigating with the event-based transmission strategy, which

reduced the transmitted data by 10.3% compared to a fixed-

rate strategy, while maintaining the specified maximum error

and probability.
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