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Abstract—An event-based communication strategy for collabo-
rative navigation with signals of opportunity (SOPs) is developed.
The following problem is considered. Multiple vehicles draw
pseudorange measurements from ambient terrestrial SOPs. The
vehicles transmit to each other a packet containing pseudoranges
to SOPs, in order to collaboratively estimate the vehicles’ and
SOPs’ states. Instead of transmitting this at a fixed communica-
tion rate, an event-based strategy is developed to communicate
this packet, where the communication event is triggered whenever
the maximum position error could violate a desired threshold by
a user-specified probability. Simulation results are presented for
an environment with four unmanned aerial vehicles (UAVs) and
six SOPs, demonstrating an 86.2% reduction in the cumulative
communicated data over a fixed-rate strategy. Experimental
results with 2 UAVs and 3 SOPs are shown to reduce the
cumulative communicated data by 10.3%.

I. INTRODUCTION

Today’s navigation systems mainly rely on a global naviga-
tion satellite system (GNSS) receiver for positioning. However,
GNSS signals often become unusable (e.g., in deep urban
canyons or in the presence of interference or jamming).
Recently, the exploitation of signals of opportunity (SOPs)
have been shown to be an attractive alternative for navigation
when GNSS signals become unusable [1], [2]. SOPs (e.g.,
AM/FM radio [3], cellular [4], digital television [5], and low
Earth orbit (LEO) satellites [6]) are attractive for navigation
because their signals are: received at a high power, transmitted
at high bandwidths, and are geographically abundant and
geometrically diverse.

Collaboration is known to improve the navigation perfor-
mance [7], [8]. Collaborating vehicles can improve estimates
of their individual states (position, velocity, clock bias, and
clock drift) by sharing and fusing mutual measurements made
on SOPs [9], [10]. However, transmitting data between other
collaborating vehicles requires a large communication band-
width and compromises privacy. To address these concerns,
this paper develops an event-based communication strategy
that aims to reduce the amount of data that vehicles commu-
nicate while maintaining a specified estimation uncertainty.
Event-based communication strategies have been studied in
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other contexts and have lead to different event-triggering tests,
such as: level-triggering, which compares the amplitude of a
signal versus a pre-defined threshold [11]; average estimation
error covariance minimization, which checks the average of
the time-history of the trace of the estimation error covariance
[12]; residual-based, which checks the difference between the
measurement and predicted measurement [13]; and innovation
error variance-based tests [14]. In this paper, the vehicles
will only exchange information if the predicted position es-
timation uncertainty would violate a specified threshold if
information exchange does not take place. This strategy is
compared with a fixed-rate communication strategy in which
the vehicles communicate at each measurement epoch. The
proposed event-based strategy is demonstrated to significantly
reduce the transmitted data bits, while maintaining a specified
estimation uncertainty.

The remainder of this paper is organized as follows.
Section II describes the dynamics model of the SOPs and
navigating vehicles as well as the pseudorange measurement
model. Section III describes and demonstrates the event-
based communication strategy. Section IV presents simulation
results with four unmanned aerial vehicles (UAVs) and six
SOPs, showing the developed event-based strategy reducing
the cumulative communicated data by 86.2% from a fixed-
rate strategy. Section V presents experimental results with two
UAVs and three cellular SOPs. Concluding remarks are given
in Section VI.

II. MODEL DESCRIPTION

A. SOP Dynamics Model

Each of the M SOPs will be assumed to emanate from
a spatially-stationary terrestrial transmitter, and its state vec-
tor x, will consist of its planar position states 7, =

) T
[xs,, ysm]T and clock error states T s,, = ¢ {&Sm, 6tsm} ,

where c is the speed of light, dt,  and Stsm are the clock bias
and drift of the m'™ SOP transmitter, respectively.
The discretized SOP transmitters’ dynamics are given by
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where T' is the constant sampling interval and w,,, is the
process noise, which is modeled as a discrete-time white noise
sequence with covariance Q,,, = diag [02x2, ®Qck,s,. ]
where
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The terms Sg;, ~and Sy, are the clock bias and drift
process noise power spectra, respectively, which can be related
to the power-law coefficients, {hq,s,, }2272, which have been
shown through laboratory experiments to characterize the
power spectral density of the fractional frequency deviation of
an oscillator from nominal frequency according to Sy stam

hosw and Sy, = 2m%h_s,, [15].

B. Vehicle Dynamics Model

The n™ vehicle’s planar position 7., £ [z, , y.]" and
velocity 7, will be assumed to evolve according to an
arbitrary, but known, linear dynamics model (e.g., velocity
random walk or constant turn rate [16]). The vehicle’s state
vector ¢, is defined by augmenting the vehicle’s position and
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receiver’s clock error states, Xqik,r, B {(%M, étm} , 1.e.,
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T, = {mpvn, Xy ., | - Discretizing the vehicle’s dynamics

at a constant sampling period 7" yields
wrn (k + 1) = Frn wrn (k) + an (k)7
Frn = dlag [van’ Fclk} )

where Fy,, is the position and velocity state-transition matrix,
and w,, is the process noise vector, which is modeled as a
discrete-time zero-mean white noise sequence with covariance
Q,, = diag [Qpv, , *Qeik,r,, |, Where Qpy, is the position
and velocity process noise covariance and Qc,r, is iden-
tical to Qqik,s,,, €xcept that Svgéts’m and Sﬁ,st&’m are now
replaced with receiver-specific spectra, S@Mm and Sm&tr,n’
respectively.

C. Pseudorange Measurement Model

The pseudorange measurements made by the n'" receiver

on the m'™ SOP, after discretization and mild approximations
discussed in [17], are modeled as

"2sp (k) = |70, (k) — 75, |2
+c -6t (k) = bts,, (k)] + "vs,, (k), (1)

where "wv,, is the measurement noise, which is modeled
as a discrete-time zero-mean white Gaussian sequence with

variance "o2 .
m

ITII. EVENT-BASED COLLABORATIVE OPPORTUNISTIC
NAVIGATION FRAMEWORK

This section develops an extended Kalman filter (EKF)-
based collaborative navigation framework that uses an event-
based communication strategy to transmit data between vehi-
cles.

A. Framework Overview

In this framework, the positions of all SOPs {r, }*_, are
assumed to be known a priori (e.g., via radio mapping [18]),
while the clock states of the SOPs are continuously estimated
along with the states of the navigating vehicles. This can be
achieved through an EKF with state vector

A 7,.T T T T T
= [mrla e amrNa wclk,sla e awclk,sM]

At each measurement epoch, each vehicle transmits a packet
A, of SOP pseudoranges, namely

An(k+1) = {"z(k+ 1)}, @)
where
]T
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Then, each vehicle fuses all received packets with its own
measurements to estimate x. Fig. 1 illustrates a high-level
diagram of the collaborative navigation framework, where 7
is always closed in a traditional fixed-rate communication
strategy. Note that in such case, this framework is identical
to a centralized EKF architecture, since each vehicle is esti-
mating x and all vehicles communicate their data in a fully-
connected graph. Previous work focused on minimizing the
data in the communicated packets {A,, }2_; [19] and studying
the robustness due to packet drops in lossy communication
channels [10]. This paper will devise an event-based commu-
nication strategy to transmit {A,,}2_; (i.e., 7 closes only when
needed).
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Fig. 1. Collaborative navigation with SOPs. If 7 is always closed, the packets
{An}fy:l are transmitted at every measurement epoch (i.e., at a fixed rate).
The event-based strategy will devise a mechanism to close 7 only when
needed.

The EKF time update step, the event-based communication
strategy, and the EKF measurement update are discussed next.



B. EKF Time Update
The EKF time update produces & (k+1|k) £ Ela(k+1)| Z"],

where E[-|-] is the conditional expectation operator, Z" =
{z(i)}iy. and
-
a [T N T
22 2. N0 ] 3)

is a vector of SOP pseudoranges. The estimate z(k + 1|k)
and corresponding prediction error covariance P(k 4 1|k) are
given by

&(k + 1|k) = Fa(k|k) (4)
P(k + 1|k) = FP(k|k)FT 4+ Q, (5)

where F and Q are the state dynamics matrix and process
noise covariance, respectively. Note that since both the vehi-
cles’ and SOPs’ dynamics are linear, each vehicle may store
F and Q in memory and compute the time update (4) and (5).
Next, the event-based communication strategy and an online
test to determine if the packets {A,,} N_; should be transmitted
are discussed.

C. Event-Based Communication Strategy

This subsection develops an event-based communication
strategy, which aims to minimize the transmission rate, while
maintaining a desired uncertainty about the vehicle’s position.
In contrast to all vehicles transmitting {A,})_, at a fixed
rate, which is the rate at which measurements are made; in
the event-based strategy, {A,, })_, are only transmitted when
a particular event of interest is triggered. In what follows,
the event of interest will be defined as the magnitude of any
vehicle’s position estimation error in any coordinate direction,
denoted |Z,, | and |y, |, violating a specified maximum esti-
mation error &, With probability 1 — p, if transmission of
{A,}_, does not occur. An online test is formulated using
the vehicles’ position estimation error covariance.

To formulate this test, first consider the normalized estima-
tion error squared (NEES) ¢,, of the position states for vehicle
n, given by

en(k) =
[rrn (k) - ,'zrn (k|k)]TP':Tln (k|k) [,r"‘n (k) - If""n (klk)L (6)
where P, (k|k) is the position estimation error covariance
for vehicle n. Time dependency will be dropped in the sequel

to simplify the notation. The covariance matrix P, has an

eigendecomposition given by
Prrn = UnDUI, D= diag [/\71717 /\7172] , 1)

where A, ; is the ith eigenvalue of P, and U, is an
orthogonal matrix whose i*" column is the i'" eigenvector
of Pmn- Substituting (7) into (6) yields

e =ED7IE,, )
£, 22U (r,, — 7). )

The vector &, = [§n71,§n)2]T is the estimation error 7,
expressed in frame {G}, rotated by the orthogonal (rotation)

matrix UT into a coordinate frame {F'}, whose axes coincide
with the principal axes of an ellipse. This ellipse is known as
the probability concentration ellipse C, which represents the
probability p of the error £,, lying on or within this ellipse,
where

p="Pr(en < ). (10)

Given p and the distribution of €,, the value 7, can be
determined [20]. Therefore, it suffices to check if the largest
radii of this ellipse is greater than the specified &p,ax.

The principal axes of the confidence ellipse C are found by
expanding (8) and substituting €, into €, < 7, from (10),
which gives

&na & o2
— 4+ —— <1, (11)
nn/\n,l nn/\n,Q
which is the equation of an ellipse with radii /7, A, ;, for

1 = 1,2. These relationships are illustrated in Fig. 2.

Fig. 2. Probability concentration ellipse C with origin 7, and radii
VenAn, 1 =1,2.

The online test may now be expressed as checking if
nn)\max[P'r,\n] S gmaxu (12)

where Apax[X] denotes the maximum eigenvalue of X. Noting

that A\ax[Pr,, | = ||Py,, |[2 for covariance matrices and by
solving (12) in terms of the specified constraint yields
2

[P, [l < ==
U

n

13)

To use test (13) to determine if the specified constraint &,ax
will be violated with probability 1—p if the transmission of A,
does not take place, each vehicle first computes their prediction
error covariance, which is given by

P"'n (k + 1|k) = F"‘nPTn (k|k)F;’rn + QT71' (14)

The block P, of (14) is then checked to satisfy (13), i.e.,

2
[Py, (k+ 1K)z < %

n

n=1...,N. (15)
If this test fails for any vehicle, the vehicle whose test fails
requests all vehicles to transmit their A,,. Subsequently, each
vehicle performs an EKF measurement update using its own
pseudorange measurements and the communicated packets
from other vehicles. If the test does not fail, the measurements

are discarded and the measurement update step is skipped. An



event-trigger threshold on the EKF-produced 2¢ error standard
deviations of the vehicles’ position states, over which the
transmission of {A,,}N_, is requested, can be found by taking
the square root of (15), which yields

2J§2@.

16
N (16)

D. EKF Measurement Update

This subsection outlines the EKF measurement update
for fusing SOP pseudoranges and packets received from
all vehicles, for both fixed-rate and event-based strategies.
Upon receiving the packets {A,}Y_;, each vehicle assem-
bles the measurement set (3) and uses its locally-generated
state prediction (4) to compute the measurement prediction
2(k+1|k) £ E[z(k + 1)|Z"]. Then, each vehicle computes
the estimation correction and corresponding correction error
covariance, which are the same for the fixed-rate and event-
based strategies when an event triggers the transmission of
{A,})_,, which are given by

&(k+1lk+1) = (k+1]k)+K(k+1)[z(k+1) — 2(k+1]k)]
P(k+1lk+1) = P(k+1]k) — K(k+1DH(k+1)P(k+1k),

K(k+1) 2 P(k+1/k)H (k+1)S7 1 (k+1)
S(k+ 1) 2 H(k+1)P(k+1/k)H" (k+1) + R,

where H is the measurement Jacobian evaluated at the state
prediction &(k + 1|k), and R is the measurement noise
covariance of (3). In the event-based strategy, if an event is
not triggered, none of the vehicles perform an EKF measure-
ment update and instead continue performing time updates to
produce &(k + L|k) and P(k + L|k), where L = 2,3, .. ..

IV. SIMULATION RESULTS

This subsection presents simulation results demonstrating
the event-based communication strategy and compares its re-
sulting estimation performance and communication rate with a
fixed-rate communication strategy. To this end, an environment
consisting of N = 4 vehicle-mounted receivers and M = 6
SOP transmitters was simulated. The vehicles’ positions were
set to evolve according to a constant turn rate model [16], with

1 0 s(wT) _1-c(wT)
0 1 1—c(wT) s
F,, = w w ,
" 0 0 cwl) —s(wT)
0 0 s(wT) c(wT)
van =
2wT—;3(wT) 0 1—(;(;1T) wT—wSZ(wT)
0 2was(wT) _ wT—s(wT) 1—c(wT)
Sw| 1) T () 7“12 %2 )
UJ2 - 2
wao;(wT) kfu(ng) 0 T

where S(-) and c(-) denote sin(-) and cos(-), respectively, w
is a known constant turn rate, Sy, is the process noise power
spectral density, and n = 1,...,6. The coordinates of the

SOP transmitters’ positions {75, }fnzl and the trajectories that
the vehicles traversed are illustrated in Fig. 3. The simulation
settings are tabulated in Table I.

400

SOP m position 7,

— Receiver trajectories

200
SOP 6
300 1 L 1
600 -400 -200 0 200 400
y (m)

Fig. 3. True trajectories the vehicles traversed (black) and SOP transmitters’
positions (orange).

TABLE I

SIMULATION SETTINGS
Parameter Value
7, (0) [—220, —34]T
75 (0) [41, —120]7
T (0) [—260, 14]7
774 (0) [10, —25]"
{mclk,rn (0)};];:1 [107 I]T
{wClk,Sm (0)}§n:1 [107 1]T

Pei,s,, (0]0) (10%) - diag [30, 3]

Pk, (0]0) diag [Paik,s; - - - Polk,s6)
P(0]0) diag [024x 24, Pk, s
2(0/0) ~ N [z(0), P(0]0)]

{hO,r'n vh—ar, }ﬁ:1

6
{h0,5m7 h*2a5m}7n:1

{9.4 x 10729, 0}
{8.0x 10729, 0}

w 0.1 rad/s

T 0.1s

Sw 0.01 m?.rad?/s3
{"o2 1 _n=1,...,4 2m?

The thresholds specified on the vehicles’ position estimates
were set to be &nax = 10 m with a confidence probability
p = 0.999. The probability density function (pdf) of e,
was found by running 5000 Monte Carlo runs using the
environment illustrated in Fig. 3, with random process noise,
measurement noise, and initial estimates. The value of 7,
in (10) was found using the inverse cumulative distribution
function (cdf) of ¢, and p = 0.999, which evaluated to be
N ~ 13.8. Fig. 4 illustrates the Monte Carlo runs histogram
of ¢, for vehicle 1, from which it was deduced that the pdf
follows a gamma distribution with shape and scale parameters
s1 = 3/2 and 0; = 2, respectively. Plugging 7,, and &pax
into (15) yields [Py, (k + 1|k)[2 < 1.81. The pdf of ¢, and



corresponding shape and scale parameters were noted to be
the same for the other vehicles.

[ True histogram

Gamma (s1,01)

pdf

Fig. 4. Histogram of €1 and gamma distribution with parameters s1 = 3/2
and 61 = 2.

The cumulative transmitted data was recorded for each
strategy by summing the number of transmitted bits each time
a packet transmission occurred. The size of the packet in bits
was found by summing the number of values in (2) and setting
each value to be a 32-bit float data type, as described in [19].
Fig. 5 shows the resulting estimation errors and corresponding
420 bounds of vehicle 1 along with the =20 bound event-
trigger thresholds (16). The resulting cumulative transmitted
data for each strategy is illustrated in Fig. 6. Similar plots
were noted for the other three vehicles.

Fixed-rate: Estimation error +20 —--- |
Event-based: _Estimation error 420 - - |
7 T T
41 P 2 Emax/ /M
— of " b ]
£
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Fig. 5. Resulting estimation errors and corresponding 420 bounds for vehicle
1 for the event-based and fixed-rate communication strategies.
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Fig. 6. Cumulative transmitted data for transmitting the packet A at a fixed-
rate and using the event-based communication strategy.

The following may be concluded from these plots. First,
note from Fig. 5 that the estimation uncertainties associated
with the event-based communication strategy are consistently

larger than the ones produced by the fixed-rate strategy. This is
due to skipped measurement updates when the test (15) is sat-
isfied. The degradation in estimation performance by skipping
these measurements is captured by the distance between the
corresponding +20 bounds. Second, as desired, the estimation
uncertainties in Fig. 5 in the event-based strategy were below
the event-trigger threshold specified in (16). Third, from Fig.
6, the event-based transmission strategy was found to reduce
the required total transmitted bits by 86.2% compared to a
fixed-rate strategy.

V. EXPERIMENTAL RESULTS

A field experiment was conducted using two UAVs equipped
with consumer-grade inertial measurement units (IMUs) and
software-defined radios (SDRs) to demonstrate the event-based
communication strategy discussed in Section III. To this end,
two antennas were mounted on each UAV to acquire and
track GPS signals and multiple cellular transmitters, whose
signals were modulated through code division multiple access
(CDMA). The GPS signals were coupled with the IMU data
to produce a navigation solution that served as the ground
truth. The cellular signals were downmixed and sampled via
Ettus® E312 universal software radio peripherals (USRPs).
These front-ends fed their data to the Multichannel Adaptive
TRansceiver Information eXtractor (MATRIX) SDR, which
produced pseudorange measurements to three cellular trans-
mitters [21]. Fig. 7 depicts the hardware and software setup
and Fig. 8 illustrates the experimental environment.

CDMA Pseudoranges| [~

Signa s’l .

“La based
MATRIX SDR
IMU data

-

S

MATLAB-based|
EKEF filter

Universal software
radio peripheral

*]
Trajectories

True
Fixed-rate
Event-based

Fig. 8. Experimental environment and navigation results with three cellular
SOP transmitters and two UAVs for fixed-rate and event-based transmission
strategies.

Two transmission strategies were studied: (i) fixed-rate at
T = 0.1 and (ii) event-based with &5« = 20 m and p = 0.95,
as described in Section III. The UAVs traversed the white
trajectories plotted in Fig. 8. To estimate these trajectories,
only the cellular SOP pseudoranges were used. The initial state



estimates of the UAVs {&,.(0]0)}2_, were set to the solutions
provided by the UAVs’ onboard GPS-INS at the beginning of
their trajectories, and were assumed to be perfectly known,
i.e., {P,, (0[0)}2_; = 0gx6. The SOPs’ initial clock biases
and drifts

. T
Tatks,, (0) = ¢ [3ts,, (0), 8., (0)  m=1,...

were solved for by using the initial set of cellular transmitter
pseudoranges (1) and the known UAVs’ states. The position
and velocity states of the UAVs were assumed to evolve
according to velocity random walk dynamics with

[ I2><2

Fov, = 02x2

n

TTox2
Iz

T3

Qu = | ZOe
PV, = T2S
5 Opv

TSpv
where S;,, = diag[0.1,0.1] is the process noise power spec-
tral density matrix, whose value was found empirically. The
pseudorange measurement noise was assumed to be indepen-
dent and identically-distributed with covariance R = 10-Igxg,
whose value was found empirically.

The north-east root mean squared error (RMSE) for the
fixed-rate transmission strategy for UAV 1 and UAV 2 was
6.0 and 5.2, respectively, and transmitted 7.8 Mbits of data.
The north-east root mean squared error (RMSE) for the event-
based transmission strategy for UAV 1 and UAV 2 was 10.8
and 6.4, respectively, and transmitted 7.0 Mbits of data. It was
noted that that the event-based transmission strategy reduced
the transmitted data by 10.3% compared to the the fixed-rate
strategy, while maintaining the specified &;,,x and p. Note that
in this experiment only three cellular SOPs were exploited
to estimate the trajectories of the UAV’s. A more significant
reduction percentage of transmitted data is expected had (1)
additional SOPs been included and (2) the IMU was used
in the EKF time update step instead of the simple dynamics
model assumed for the UAVs, which inevitably suffers from
mismatch with the UAV’s true dynamics model.

VI. CONCLUSION

This paper presented an event-based transmission strategy
to share and fuse SOP pseudorange measurements when a
specified maximum error in any coordinate direction would
be violated with a specified probability. An online event
test was developed using each vehicles’ position estimation
error covariance and was shown in simulation to reduce the
transmitted data by 86.2% compared to a fixed-rate strat-
egy. Moreover, experimental results demonstrated two UAVs
navigating with the event-based transmission strategy, which
reduced the transmitted data by 10.3% compared to a fixed-
rate strategy, while maintaining the specified maximum error
and probability.
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