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Mammals and their closest fossil relatives are unique among

tetrapods in expressing a high degree of pectoral girdle and

forelimb functional diversity associated with fully pelagic, curso-

rial, subterranean, volant, and other lifestyles. However, the earliest

members of the mammalian stem lineage, the “pelycosaur”-grade

synapsids, present a far more limited range of morphologies and

inferred functions. The more crownward nonmammaliaform therap-

sids display novel forelimb morphologies that have been linked to

expanded functional diversity, suggesting that the roots of this quin-

tessentially mammalian phenotype can be traced to the pelyco-

saur–therapsid transition in the Permian period. We quantified

morphological disparity of the humerus in pelycosaur-grade

synapsids and therapsids using geometric morphometrics. We

found that disparity begins to increase concurrently with the

emergence of Therapsida, and that it continues to rise until the

Permo-Triassic mass extinction. Further, therapsid exploration of

new regions of morphospace is correlated with the evolution of

novel ecomorphologies, some of which are characterized by changes

to overall limb morphology. This evolutionary pattern confirms that

nonmammaliaform therapsid forelimbs underwent ecomorphological

diversification throughout the Permian, with functional elaboration

initially being more strongly expressed in the proximal end of the

humerus than the distal end. The role of the forelimbs in the func-

tional diversification of therapsids foreshadows the deployment of

forelimb morphofunctional diversity in the evolutionary radiation

of mammals.
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Modern mammals have modified their shoulders and fore-
limbs for an unparalleled variety of functions. In contrast

to the rest of Amniota, mammals have evolved highly distinctive
forelimb shapes and functional specialization associated with
burrowing, climbing, running, brachiating, flying, and swimming
(1, 2). An expansion in ecological diversity is well documented in
the forelimbs of the fossil forerunners of mammals as far back as
164 Mya. This includes the discovery of swimming, gliding, and
digging mammaliaforms in the Jurassic (3–5), demonstrating the
presence of functionally derived ecological diversity outside of
crown Mammalia.
However, Synapsida, the clade that includes all living mam-

mals and their fossil relatives, has a history extending back to over
315 Mya (6). Within the very earliest members of Synapsida, the
Pennsylvanian and early Permian “pelycosaur”-grade synapsids
(hereafter referred to as pelycosaurs), groupwide ecomorpho-
logical diversity across the pectoral girdle and forelimbs qualita-
tively appears to be very low. Despite comprising one of the first
major amniote radiations (7), including the earliest large-bodied
terrestrial forms (8), some of the first instances of tetrapod her-
bivory (6, 9), and a substantial taxonomic diversity, the forelimb
morphological disparity of pelycosaurs is surprisingly limited (10–
12). Pelycosaurs are characterized by robust, widely sprawling
(abducted) forelimbs, and all members of the grade possess a
screw-shaped scapular glenoid and humeral head indicative of a

highly restricted range of motion (11, 13). This can be contrasted
with the phenotype of the nonmammaliaform therapsids (here-
after therapsids), the more crownward synapsids that replaced
pelycosaurs as the dominant tetrapods in the middle Permian
(approximately 275 Mya). Permian therapsids include more
gracile large- and small-bodied predators (14–16), highly spe-
cialized scratch-digging burrowers (17–19), and arboreal herbi-
vores (20). Important shifts in therapsid limb morphology have
been linked to inferred changes in locomotion, posture, and gait
(21–23). Multiple hypotheses on the timing and staging of this
morphological transition during the Permian period have been
posited (6, 24), but questions remain on the magnitude of mor-
phological change and how that may relate to ecological and
phylogenetic diversification patterns within Synapsida.
Considering the importance of forelimb disparity to the evo-

lutionary radiation of Mammalia, the juxtaposition between the
extant representatives of Synapsida (mammals) and the very
earliest synapsids is striking. However, little work has been done
to pinpoint the temporal and phylogenetic first appearance of
increased forelimb disparity in a quantitative framework, or to
explore this characteristic’s role in synapsid macroevolution.
Here, we quantified the morphological disparity of synapsid
humeri in the two earliest evolutionary radiations of Synapsida,
starting in the Pennsylvanian with pelycosaurs and continuing
through the Permian and into the Triassic with therapsids. Be-
cause pelycosaurs and therapsids are temporally successive ma-
jor synapsid radiations, they are well suited for comparisons of
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ecomorphological disparity through time. Studies of other as-
pects of morphological disparity have been conducted on
Permian synapsid groups (25–27), but little work has addressed
the magnitude of morphological changes between pelycosaurs
and therapsids in the context of the important functional and
ecological transitions observed across this interval. Our analyses
characterize the origin of a canonical aspect of the derived
synapsid bauplan: evolutionarily labile forelimbs that can be
deployed in a wide range of functional and ecological roles.

Results

Principal Components Analysis. Shape data were acquired through
2D landmark-based geometric morphometrics. Landmark place-
ments are visualized in Fig. 1B, and detailed in Methods and SI
Appendix. Landmarks and semilandmarks were collected separately
for the distal and proximal ends of the humerus. Mean proximal
and distal humeral shapes were calculated for each sampled genus
and used in subsequent analyses. For singletons or genera that did
not have multiple sampled representatives, the single sampled in-
dividual was used as the representative for the genus. The full
sample list is presented in Dataset S1. A principal components
analysis was conducted to compare pelycosaur and therapsid hu-
meral shape spaces (Fig. 1B). For both the distal and proximal
humerus, therapsids occupy a larger volume of morphospace than
pelycosaurs; this is particularly pronounced for the proximal hu-
merus. However, there is considerable overlap in the regions of
morphospace occupied by pelycosaurs and therapsids. This implies
that the evolution of therapsids was not accompanied by a whole-
sale change in humerus shape. Instead, some therapsids began to
explore new areas on the periphery of synapsid morphospace that
likely correspond to novel ecologies and locomotor modes.

Disparity. Procrustes variance across the entire humerus is low
during the early stages of the pelycosaur-dominated Permian.
Variance levels of the distal and proximal ends only vary slightly
between 305 and 275 Mya, with proximal humerus disparity
being notably low from 300 to 295 Mya (Fig. 2A). Pelycosaur

variance is highest during the later stages of their evolutionary
history, specifically within the 275 Mya time bin for the proximal
end (0.0065) and at 270 Mya for the distal end (0.0085). Although
sampling does not correlate with the variance results through time
(Fig. 2 B and C and SI Appendix), the presence of unusual pely-
cosaur taxa played a role in the heightened variance values during
the latest stages of pelycosaur sampling. Specifically, the taxo-
nomic and morphological diversification of Caseidae, a derived
and enigmatic clade of large-bodied herbivorous pelycosaurs,
drives the pelycosaur disparity increase starting at 285 Mya.
Therapsids emerge in the sample during the 270- and 265-Mya

time bins for the proximal and distal humerus, respectively. It is
at this point in the time series that total disparity for both parts of
the humerus begins to increase to variance levels that are higher
than the range seen through the majority of the early synapsid
sample. It is also during these time bins that the distal and proximal
ends begin to express increasingly different values of disparity,
though the overall pattern of increase continues to hold. Specifi-
cally, with the exception of the time bin representing the Permo-
Triassic mass extinction, proximal disparity contains a dispropor-
tionate amount of the total humeral variance, and proximal values
remain higher throughout the remainder of the sample.
Overall, therapsids have greater Procrustes variance than

pelycosaurs in both the distal and proximal ends of the humerus,
across the majority of sampled time bins. Within therapsids, the
proximal end of the humerus displays more variance than the
distal end across all sampled time bins, and the magnitude of the
difference between the proximal and distal variance values
fluctuates only slightly through time. Therapsid proximal hu-
merus variance was highest in the time bin just after the Permo-
Triassic mass extinction (placed at 252 Mya instead of 250 Mya,
following the 252.24-Mya age of the Permo-Triassic boundary)
(28) (proximal = 0.014). Excluding the time bins that have
noteworthy departures from the overall pattern (300–295, and
252 Mya) pelycosaur proximal humeri account for 50.49% of
humeral variance on average, whereas in therapsids the proximal
humerus accounts for 61.55% of humeral variance on average.

Fig. 1. Contrasting forelimb disparity in the rise of Therapsida. Simplified cladogram of Synapsida showing humeral diversity and morphospace distribution

of major studied clades. (A) Pelycosaurs (orange semicircle) comprise the first major radiation following the split from Sauropsida. Sample humeri from four

pelycosaur clades display morphological conservatism: (1) Cotylorhynchus hancocki, (2) Ophiacodon retroversus, (3) Edaphosaurus sp, and (4) Dimetrodon

limbatus. Pelycosaurs were replaced by therapsids (blue square) in the middle Permian. Five sample humeri display the morphological disparity of therapsids:

(5) Jonkeria sp, (6) Cistecephalus microrhinus, (7) Ischigualastia jenseni, (8) Gorgonopsia, and (9) Massetognathus pascuali. See SI Appendix, Table S1 for

specimen numbers. (B) Principal component plots of the humeral datasets, with percent variance captured by each axis and warp grids displaying mor-

phological change along these axes. Landmark and semilandmark placement is shown above the associated morphospaces.
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Proximal variance remains high through the 240-Mya bin, but
decreases following this maximum and returns to preextinction
values in the Middle Triassic (235 Mya). Counter to the proximal
trend, distal humeral disparity increases across the extinction
interval. Analyses revealed that this disparity increase is caused
by the removal of intermediate morphologies during the ex-
tinction; see SI Appendix for further discussion.

Discussion

Our results show that the rapid increase in humeral disparity
beginning in the mid-Permian is coincident with the emergence
of therapsids (Fig. 2A). Although the earliest therapsids are
known from before 265 Mya (arguably as early as 275 Mya) (29–
31), many of the oldest and phylogenetically most basal therap-
sids either have no known forelimb material or could not be
sampled for this project due to rarity. As therapsids diversify

taxonomically through the Permian, disparity of both ends of the
humerus continues to increase to levels much higher than those
ever achieved by pelycosaurs. This result supports the distinc-
tiveness of therapsid humeral morphology and variance relative
to those of pelycosaurs.
Therapsida is hypothesized to have split from its pelycosaur

sister group (Sphenacodontidae) in the Pennsylvanian (6). In the
earliest time bins including therapsids (275–265 Mya), phyloge-
netically basal clades (primarily Dinocephalia) dominate the
therapsid sample. The similar levels of disparity between pely-
cosaurs and therapsids in these bins, and the position of the
dinocephalians in morphospace, reinforce the perspective of dino-
cephalians as morphologically “primitive” branches of Therapsida
that had not diverged from the ancestral morphotype to the degree
seen in later taxa. The low early therapsid variance levels in our
sample could indicate a gradual accumulation of morphological

Fig. 2. Disparity of pelycosaurs and therapsids through time with associated therapsid morphospace distributions. (A) Total Procrustes variance through time

split by synapsid radiation. The lines linked by circles represent pelycosaurs; therapsids are represented by squares. (B and C) The total-group disparity pattern

through time including error bars for each sampled time bin. The histograms below show total genera sampled across each end of the humerus per time bin

for the proximal end (B) and distal end (C). (D) Three dimensional morphospace (PC1vPC2vPC3) for the proximal end and the distal end. When viewed in three

dimensions, therapsid exploration of previously unoccupied morphospace is evident. Colored squares represent therapsids; gray circles represent pelycosaurs.

Each plot is rotated 90° counterclockwise from the one immediately Left. Areas of morphospace that are unoccupied by pelycosaur specimens are instead

occupied by groups representing novel therapsid ecomorphologies, such as cynodonts (yellow) and anomodonts (blue).
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disparity during their earlier history, which is unsampled in the
known fossil record. Alternatively, the therapsid bauplan, including
heightened forelimb disparity, might have evolved rapidly in the
middle Permian, as suggested by a more literal reading of our data,
with dinocephalians simply preserving an early stage in this process.
Variance increases continuously from the middle Permian onwards,
corroborating the hypothesis that therapsids underwent morpholog-
ical diversification throughout the remainder of the Permian. The
finding that variance decreased in the 252-Mya time bin represents
the effect of the Permo-Triassic mass extinction, the largest extinc-
tion in Earth history (32), although the details of this decline differed
between the proximal and distal ends of the humerus.
The therapsid disparity-through-time pattern corresponds with

their notably greater total morphospace occupation than pelyco-
saurs (Figs. 1B and 2D). Critically, some of this novel humeral
morphospace is associated with the first experiments by therapsid
clades with ecologies that have no counterparts among pelyco-
saurs. Fig. 2D shows that when considered in three dimensions the
peripheral areas of morphospace uniquely occupied by therapsids
correspond to taxa that have been hypothesized to represent the
first occurrences of various ecotypes among nonmammalian syn-
apsids. Examples include fossorial cistecephalid dicynodonts
(represented by the color blue), small-bodied faunivores such as
therocephalians and cynodonts (red and yellow, respectively), and
the gracile, midsized predatory gorgonopsians (green).
Pelycosaur total group disparity varies less across the two ends

of the humerus than in Therapsida. This association in values
presumably reflects the functionally restrictive morphology of
the humeral joint surfaces of pelycosaurs (13, 22), and the role
the humerus played in stabilizing the pelycosaur body (10, 22).
The complex and mechanically costly gait of pelycosaurs likely
limited the morphofunctional diversification of the upper limb.
In contrast, therapsid disparity is characterized by a separation of
shape variance in the distal and the proximal ends of the hu-
merus, with proximal humeral disparity disproportionately
heightened in comparison with the distal humerus. Importantly,
the pattern of increasing morphological disparity is most strongly
expressed in the vicinity of the proximal articulation (gleno-
humeral joint). Pelycosaurs and therapsids possess distinctly
different pectoral girdle morphotypes. Pelycosaur glenohumeral
articulations are screw shaped, anteroposteriorly long but dor-
soventrally narrow with a spiraling joint surface, and are char-
acterized by a precise fit between the humeral and pectoral joint
surfaces that limits range of motion (10, 12). In contrast, the
therapsid glenohumeral joint is characterized by smooth, convex
surfaces that present few bony limits on joint mobility (33–35).
Therefore, the therapsid rise in ecomorphological disparity is

not accompanied by an increasingly complex humeral form but by
simplification, in particular of the humeral head. Coupled with the
simplification of the glenoid and scapulocoracoid complex in
therapsids, the changes in humeral morphology facilitated in-
novation in forelimb function by increasing locomotor capabilities.
Specifically, these findings support the hypothesis that the re-
organization of the pectoral girdle and forelimb played a key role
in the diversification of therapsids by increasing forelimb range of
motion (17, 20, 21, 23, 36). Freeing the forelimb from the con-
straints of limited mobility was a critical first step that allowed
therapsids to explore new ecologies, foreshadowing further sim-
plification of the pectoral girdle and ecological diversification of
the forelimb later in mammaliaform evolution. Mammalian evo-
lution is characterized by the heightened functional diversity of
the forelimb, and the earliest roots of this macroevolutionary
pattern lie in the Middle Permian emergence of therapsids.

Methods

Temporal and Taxonomic Sampling. All specimens were categorized to the

genus level. Pelycosaur and therapsid taxa were grouped for analysis using

the current consensus view of pelycosaur and therapsid phylogeny (37–39).

The distal humerus sample comprised 284 specimens representing every

major clade from the temporal range of this study except Biarmosuchia.

Mean shapes were calculated for 73 genera (18 pelycosaurs, 55 therapsids).

The proximal humerus sample comprised 309 specimens, with the same

taxonomic sampling as the distal end analysis. Mean proximal shapes were

calculated for 73 genera (19 pelycosaurs, 54 therapsids). The total time range

of this study spanned from 305 Mya (Pennsylvanian) to 235 Mya (Middle

Triassic), representing three separate geological periods and nearly all of

pelycosaur and noneucynodontian therapsid history (6, 26, 32).

Genus stratigraphic ranges were compiled from the Paleobiology Database

(PBDB) (www.paleobiodb.org) and literature sources (time ranges can be

viewed in Dataset S1), and occurrences were binned as presence/absence data

across 5-My time intervals. We conducted a generalized distancing analysis in R

(40) to check whether taxonomic sampling was correlated with measured

trends in disparity and found no correlation between taxonomic sampling and

disparity values across all of the analyzed time bins (SI Appendix). A detailed

description of the sample, including specimen numbers and stratigraphic

ranges, is presented in Dataset S1.

Geometric Morphometrics and Disparity Analysis. Shape outline data were

acquired through 2D landmark-based geometric morphometrics, using

photographs taken by the authors and a small number of high-quality il-

lustrations from the published literature (SI Appendix, Table S5). The geo-

metric morphometric analysis of the humerus was split into distal and

proximal end shapes. Because the proximal and distal ends of the humerus

are offset in most pelycosaurs and many therapsids, and the degree of offset

frequently is affected by taphonomic distortion, splitting the analysis into

distal and proximal portions allows for the full 2D shape of both functional

surfaces to be measured accurately. All analyses were conducted on left

humeri; in cases where the only available element was a right humerus, the

element was mirrored across its proximal–distal axis for analysis.

The landmarks and semilandmarks were digitized and scale recorded using

tpsDIG2ws (41). Landmark and curve positions are shown in Fig. 1B, and

descriptions of landmark placements are presented in SI Appendix, Table S3.

The landmarks represent consistently recognizable extrema on the outlines

of the humerus because there are no usable internal landmarks on either

end of the humerus across this evolutionary interval. The proximal humerus

was analyzed in posteroventral view, emphasizing the perspective that

maximized the total width of the proximal end. This view permits the pos-

terior side of the humeral head to be viewed, as well as the entire delto-

pectoral crest in a way that captures the curvature of the deltopectoral crest

along the long axis of the humerus. The distal humerus was analyzed in

dorsal view, although all analyzed morphology is visble in either dorsal or

ventral view.

The resulting data were processed in R, and all analyses were conducted

with the Geomorph package (42). Data underwent a general Procrustes

superimposition to reorient and scale all specimens (42–46) (SI Appendix).

Sliding semilandmark position was based on minimizing Procrustes dis-

tances. The multivariate disparity analysis was conducted directly on the

superimposed geometric morphometric data. Disparity was analyzed within

a given time bin using the genera present during that time bin. Centroid size

was treated as a covariate in the disparity analyses to remove the influence

of shape on the disparity pattern. Therapsids and pelycosaurs overlapped in

only two time bins, so those were the only bins for which the within-group

designation was strictly necessary. Full disparity values can be viewed in SI

Appendix, Table S2. Variance of Procrustes values was the disparity metric

used and was measured on the geometric morphometric data. Disparity was

calculated from the within-group mean of genera present during a given

time bin, grouped on the taxonomic level of pelycosaur or therapsid. Error

bars for the disparity data are reported as the SDs of a dataset randomly

resampled (with replacement) to the size of the sample in the given time

bin, with 1,000 overall permutations. A phylogenetic least squared (PGLS)

analysis was run to check for phylogenetic signal in the shape data, based on

a composite phylogeny built off of published literature on sampled groups

(full details in SI Appendix). Pagel’s lambda (λ) was calculated from the co-

variance matrix produced by the PGLS. The results were not significant

(proximal: λ = 0.1753, P = 0.6305; distal: λ = 0.1761, P = 0.5095) (see SI Ap-

pendix for details).
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