

Running title: Sakaluk et al. • Conflict and chemistry of nuptial food gifts

**The troublesome gift: the spermatophylax as a purveyor of sexual conflict and coercion in
crickets**

S.K. Sakaluk^{*1}, K.R. Duffield^{*}, J. Rapkin[§], B.M. Sadd^{*}, J. Hunt[¶]

^{*}Illinois State University, Normal, IL, United States

[§]University of Exeter, Penryn, Cornwall, UK

[¶]Western Sydney University, Sydney, Australia

¹Corresponding author: E-mail: sksakal@ilstu.edu

1 **ABSTRACT**

2 Nuptial food gifts are an integral feature of the mating systems of a wide variety of insects. A
3 pervasive feature of the majority of these gifts is that they afford the male direct access to the
4 female's physiology. Although in some cases such gifts may represent a form of nutritional
5 investment in females, an alternative hypothesis posits that nuptial food gifts may allow males
6 to manipulate female physiology in favor of male interests. This hypothesis predicts that the
7 chemical composition of nuptial food gifts should be driven by a sexual conflict over offspring
8 paternity.

9 We evaluate this hypothesis by reviewing our accumulated studies on decorated
10 crickets, *Gryllodes sigillatus*, a species that has illuminated key elements of this evolutionary
11 arms race. Here, nuptial food gifts take the form of a spermatophylax, a gelatinous mass
12 forming part of the male's spermatophore and consumed by the female after mating. We first
13 review the evidence for the two principal sexual conflicts arising from the provision of the
14 spermatophylax: i) a sexual conflict over female acceptance of gifts, and ii) a conflict over
15 female remating that appears to be mediated by refractory-inducing substances contained in
16 gifts. We then consider the mechanisms by which these conflicts are mediated, focusing
17 specifically on: i) multivariate selection analyses of the free amino acid composition of the
18 spermatophylax; ii) proteomic studies identifying candidate proteins that alter female behavior;
19 and iii) comparative transcriptomic studies showing how gene expression is altered through
20 nuptial feeding.

21

22 KEY WORDS: cricket, cryptic female choice, gene expression, mating behavior, nuptial food gift,

23 proteomics, sexual conflict, sexual selection, spermatophore, sperm competition

24

25 **1. WHAT ARE NUPTIAL FOOD GIFTS?**

26 Nuptial food gifts comprise materials other than sperm that are offered by males to females at
27 copulation, and are an integral feature of the mating systems of a wide variety of insects and
28 spiders (Vahed, 1998, 2007a; Lewis & South, 2012; Lewis, Vahed, Koene, Engqvist, Bussière,
29 Perry, et al., 2014). Gifts come in an astonishing range of forms. Male hangingflies, *Hylobitticus*
30 *apicalis*, offer up insect prey that they have captured on the wing or stolen from other males,
31 before emitting a pheromone advertising their gifts to receptive females (Thornhill 1976). Male
32 dance flies (Diptera: Empidinae) also proffer insect prey to females, but in some species the
33 prey is encased in a silken balloon (Cumming, 1994). In a kind of evolutionary sleight-of-hand,
34 this silken 'gift-wrapping' has enabled males of other species to deceive females by offering
35 minute or shriveled prey, or no prey at all, within an inedible balloon (Cumming, 1994). During
36 copulation in Madeira cockroaches, *Leucophaea maderae*, females clamber up on the backs of
37 males to feed on the copious secretions produced by specialized tergal glands (Mondet, Abed-
38 Vieillard, Gautier & Farine, 2008). Male ornate moths, *Utetheisa ornatrix*, transfer pyrrolizidine
39 alkaloids, anti-predator defensive compounds sequestered from the plants upon which they
40 feed as larvae, in their spermatophores; these beneficial chemicals augment the female's own
41 supply, affording them increased protection and allowing them the luxury of transferring these
42 protective compounds to their own eggs (Conner, Roach, Benedict, Meinwald & Eisner, 1990;
43 Dussourd, Harvis, Meinwald & Eisner, 1991). Female sagebrush crickets, *Cyphoderris strepitans*,
44 use their mandibles to tear through the integument of the male's fleshy forewings during
45 copulation, consuming both tissue and hemolymph leaking from the wounds they inflict (Eggert
46 & Sakaluk, 1994; Sakaluk, Campbell, Clark, Johnson & Keorpes, 2004). Male redback spiders,

47 *Latrodectus hasselti*, participate in this kind of somatic sacrifice to an even greater degree:
48 during copulation, the much smaller male somersaults backwards so that his abdomen is placed
49 in easy reach of the female's chelicerae, whereupon the female consumes the male in his
50 entirety (Andrade, 1996).

51 Notwithstanding their incredible variety, nuptial food gifts can be neatly and
52 conveniently classified along two dimensions (Lewis & South, 2012; Lewis et al., 2014). The
53 *source* of the gifts describes the manner in which they are obtained: endogenous gifts
54 represent those that are manufactured *de novo* by males (e.g., glandular secretions), whereas
55 exogenous gifts are gift items captured or collected by males (e.g., insect prey). The *mode of*
56 *receipt* describes the manner by which gifts are taken in by females: oral gifts are orally
57 ingested by females, seminal gifts are absorbed through the female's reproductive tract, and
58 transdermal gifts are injected directly through the body wall of the female (Lewis & South,
59 2012; Lewis et al., 2014). It is not our intent to review the diversity of nuptial gifts, their various
60 functions, and their distribution across the major insect taxa. Boggs (1995), Vahed (1998,
61 2007a), and Lewis & South (2012) offer exceptionally lucid and comprehensive reviews of these
62 issues. We focus instead on the role of sexual conflict in the evolutionary origin and adaptive
63 significance of nuptial food gifts, specifically with respect to the divergence in reproductive
64 interests of males and females that arises with respect to the utilization of these gifts.

65 We begin with the recognition that a pervasive feature of the majority of these gifts is
66 that they afford the male direct access to the female's physiology. Although in some cases such
67 gifts may represent a form of nutritional investment in females (Gwynne, 2008; Lewis et al.,
68 2014), an alternative hypothesis focuses on a more sinister purpose: nuptial food "gifts" may

69 represent a vehicle by which males manipulate female physiology in a manner commensurate
70 with males' fitness interests, even at a cost to females (Arnqvist & Nilsson, 2000; Sakaluk, Avery
71 & Weddle, 2006; Vahed, 2007a). This hypothesis predicts that the chemical composition of
72 nuptial food gifts should be driven by a fundamental sexual conflict over the paternity of a
73 female's offspring. In this chapter, we will address the veracity of this hypothesis by reviewing
74 our accumulated studies on decorated crickets, *Gryllodes sigillatus*, a species that has
75 illuminated a number of key elements of this evolutionary arms race.

76

77 **2. THE CRICKET SPERMATOPHYLAX**

78 In decorated crickets, *Gryllodes sigillatus*, nuptial food gifts take the form of a spermatophylax,
79 a gelatinous mass forming part of the male's spermatophore and consumed by the female after
80 mating (Alexander & Otte, 1967). Males attract females for mating by producing a loud,
81 stereotypic calling song, which they produce by stridulation of their forewings (Fig. 1a); the
82 song comprises a series of regularly-spaced, three-pulse chirps produced at a carrier frequency
83 of 6.6 kHz (Sakaluk & Belwood, 1984). Upon coming into antennal contact with a prospective
84 mate, the male switches from calling song to courtship behavior, which entails a combination of
85 acoustic, visual and, possibly, vibratory cues (Subramaniam & Subramoniam, 1990; Ryan &
86 Sakaluk, 2009). In addition, chemical cues, in the form of cuticular hydrocarbons, influence the
87 propensity of the female to mount the male (Ryan & Sakaluk, 2009; Weddle, Steiger, Hamaker,
88 Ower, Mitchell, Sakaluk, et al., 2013; Capodeanu-Nägler, Rapkin, Sakaluk, Hunt & Steiger, 2014).
89 During courtship, the male visibly tremulates via rapid lateral movements of his body, while
90 producing a much softer, distinctive courtship song (Loher & Dambach, 1989; Zuk & Simmons,

91 1997). When courting, the male flattens his body against the substrate and makes repeated
92 attempts to back under the female. If the female is sexually responsive, she dorsally mounts the
93 male (Fig. 1b) at which point the male attempts to secure her subgenital plate with his
94 epiphallus, a necessary prelude to spermatophore transfer (Sakai, Taoda, Mori, Fujino & Ohta,
95 1991). Copulation is completed with the successful transfer of the spermatophore, which, in
96 most gryllid crickets, normally consists of a small, sperm-containing ampulla that remains
97 secured outside the female's body at the base of her ovipositor by a narrow spermatophore
98 tube threaded into her genital opening (Zuk & Simmons, 1997).

99 In *G. sigillatus*, the ampulla is enveloped by a much larger, gelatinous spermatophylax,
100 devoid of sperm (Alexander & Otte, 1967). Immediately upon dismounting the male after
101 spermatophore transfer, the female detaches the spermatophylax from the ampulla with her
102 mandibles and begins to consume it (Fig. 1c), hence its designation as a nuptial food gift. During
103 the time she feeds on the food gift (Fig. 1d), sperm and other ejaculatory material are forcefully
104 expelled into the female's reproductive tract through osmotic pressure built up within the
105 ampulla (Khalifa, 1949). The female requires about 40 minutes on average to fully consume the
106 spermatophylax, and normally within a few minutes of doing so, she removes and eats the
107 sperm ampulla (Fig. 2a). Females consume smaller spermatophylaxes more quickly than larger
108 ones, and consequently, males providing such gifts experience premature ampulla removal and
109 reduced sperm transfer (Sakaluk, 1984, 1985, 1987). The amount of sperm a male transfers is
110 critical to his reproductive success because it is the principal determinant of his fertilization
111 success, particularly when his sperm must compete with sperm of the female's other mating
112 partners (Sakaluk, 1986a; Sakaluk & Eggert, 1996; Calos & Sakaluk, 1998; Eggert, Reinhardt &

113 Sakaluk, 2003). The success of a male in sperm competition depends, in part, on the number of
114 sperm that he transfers to the female (Fig. 3), because the sperm of a female's various mating
115 partners are recruited for fertilizations in direct proportion to their relative abundance in the
116 female's spermatheca (Sakaluk, 1986a; Simmons, 1987; Sakaluk & Eggert, 1996; Bussière, Hunt,
117 Jennions & Brooks, 2006). Thus, the spermatophylax functions to entice females into
118 relinquishing at least some of their control of the insemination process, thereby furthering the
119 male's own reproductive interests.

120

121 **3. SEXUAL CONFLICT OVER FEMALE ACCEPTANCE OF THE GIFT**

122 It follows from the sequence of events leading to successful spermatophore transfer that males
123 benefit most when their nuptial food gifts are fully consumed, because it is under these
124 circumstances that sperm transfer is maximized. Females, in contrast, may benefit by
125 prematurely discarding nuptial gifts if, upon mating with certain males, they find such males
126 undesirable. Such behavior would enable some degree of female mate choice even after mating
127 has occurred because females would thus be free to remove the sperm ampulla, thereby
128 terminating sperm transfer. Indeed, it is not widely appreciated that females discard the
129 spermatophylax by simply dropping it prior to its complete consumption in about a quarter of
130 all matings (Sakaluk, 1984, 1987). Figure 2b shows the time after mating at which the female
131 removed the sperm ampulla as a function of the time at which she discarded the
132 spermatophylax. Two interesting patterns emerge from this plot. First, if the female opts to
133 discard the spermatophylax, she typically does so within about 15 min of spermatophore
134 transfer, long before complete sperm transfer is likely to have occurred. Second, as was true of

135 the 'rule of thumb' that leads females to remove the sperm ampulla shortly after consuming
136 the spermatophylax (Fig. 2a), many females removed the sperm ampulla shortly after
137 discarding the spermatophylax (i.e., the data arrayed in a straight line along the right arm of the
138 V-shaped cluster of points in Fig. 2b).

139 But why should females discard males' nuptial food gifts? One possibility is that it is
140 simply a non-adaptive consequence of satiation or some other factor intrinsic to females (i.e.,
141 age, previous mating experience). An alternative possibility, however, is that it is an adaptive
142 mechanism by which females discriminate against certain males after mating (Sakaluk, 1997;
143 Gershman & Sakaluk, 2010). We know, for example, that female decorated crickets derive a
144 variety of genetic benefits by mating with different partners (Sakaluk, Schaus, Eggert, Snedden
145 & Brady, 2002; Ivy & Sakaluk, 2005), including paternal genes that enhance offspring survival
146 and benefits arising from the interaction of maternal and paternal genotypes (Ivy, 2007). It
147 seems likely, therefore, that females could derive similar benefits by differentially discarding
148 gifts based on some assessment of the benefits males have to offer, although this proposition
149 has not been formally tested.

150 Given that females do discard males' gifts and that this behavior can dramatically
151 influence male fertilization success, it would be instructive to know which features females use
152 in discriminating against males in this fashion. Although there a number of traits by which
153 females might assess males, one obvious possibility is that females discard gifts based on their
154 assessment of the gift itself, its taste or its texture. Initially, we chose to focus our attention on
155 the concentration of free amino acids in the spermatophylax. Free amino acids represent
156 essential nutrients for insects and a number of studies have revealed that free amino acids are

157 phagostimulatory (reviewed in Chapman, 2003). As importantly, Stuart Warwick and his
158 colleagues had earlier discovered that a large portion of the solid fraction of the
159 spermatophylax consists of a variety of amino acids, and proposed that the free amino acids in
160 the spermatophylax might influence its gustatory appeal to females (Warwick, 1999; Warwick,
161 Vahed, Raubenheimer & Simpson, 2009). As proof of principle, Warwick et al. (2009)
162 constructed artificial 'spermatophylaxes' composed of gelatin and the four most abundant free
163 amino acids found in the spermatophylax: proline, glycine, arginine, and alanine. Female *G.*
164 *sigillatus* offered these gels fed on them significantly longer than females fed control gels
165 lacking these amino acids. The increased abundance of free amino acids of little nutritional
166 value in the spermatophylax relative to the scarcity of essential amino acids, coupled with the
167 highly phagostimulatory properties of the most abundant free amino acids, speaks to the
168 attempted manipulation by males and is consistent with the hypothesis of sexual conflict
169 (Warwick et al., 2009).

170 If free amino acids in the spermatophylax influence its gustatory appeal to females, we
171 might expect a difference in the amino-acid profile of those gifts discarded by females after
172 mating and those that are fully consumed. Thus, a critical test of this prediction would entail a
173 direct comparison of these two classes of gifts. But this raises an obvious problem: how do you
174 measure the concentration of amino acids in a gift that has already been consumed? To
175 circumvent this problem, we used a screening process that leveraged earlier work documenting
176 the time course over which female discard the spermatophylax (Sakaluk, 1984). As noted
177 earlier, whenever a female decides to discard the spermatophylax, she typically does so within
178 15 min of mating (Fig. 2b). This means that whenever a female feeds on a spermatophylax for

179 at least 15 min, she is likely to fully consume it, and in such cases, the female can be considered
180 to have “accepted” the nuptial food gift. This enabled us to compare the amino acid profiles of
181 two classes of spermatophylaxes, those that were discarded by females less than 15 min after
182 mating (and which we were able to recover), and those that were fed on for at least 15 min (i.e.
183 destined to be fully consumed), but which we forcibly removed from the female with forceps 15
184 min after mating (Gershman, Mitchell, Sakaluk & Hunt, 2012). The free amino acids in the gifts
185 were subsequently quantified using gas chromatography-mass spectrometry, which revealed a
186 veritable alphabet soup of different amino acids (Table 1). We used multivariate selection
187 analysis (Lande & Arnold, 1983) on these data to estimate the strength and form of linear and
188 nonlinear sexual selection acting on the amino acid composition of the male spermatophylax
189 via their effect on the female’s acceptance of the gift (Gershman et al., 2012). This analysis
190 revealed a complex pattern of selection that produced a fitness surface with two local peaks
191 (Fig. 4). Notwithstanding this complexity, it is clear that the free amino acid composition of the
192 spermatophylax in *G. sigillatus* profoundly influences its gustatory appeal, and hence, the
193 probability that the female will discard it before she has completely eaten it. This, in turn, has
194 important fitness consequences for males: the rule-of-thumb that directs a female to remove
195 the male’s sperm ampulla shortly after discarding the spermatophylax greatly reduces the
196 number of sperm he transfers and his share of paternity should the female mate with other
197 males (Sakaluk & Eggert, 1996; Calos & Sakaluk, 1998; Eggert et al., 2003). Thus, the gustatory
198 response of females to the free amino acids in the spermatophylax represents arguably one of
199 the most well-documented mechanisms underlying cryptic female mate choice, a preference

200 exerted after copulation has occurred that influences a male's fertilization success (Thornhill,
201 1983; Eberhard, 1996).

202 The sexual conflict over the female's acceptance of the spermatophylax was further
203 reinforced in subsequent work capitalizing on nine highly inbred lines developed as part of an
204 earlier study designed to measure the genetic benefits of polyandry in decorated crickets (Ivy,
205 2007). One particular model of sexual conflict, the chase-away model, proposes that males
206 evolve increasingly enticing display traits to induce females to mate, whereas females evolve
207 resistance to these inducements by decreasing their responsiveness to these traits (Holland &
208 Rice, 1998). In the context of the evolution of food gifts, this suggests that sexual conflict should
209 favor males that produce increasingly alluring food gifts, and females that resist this
210 manipulation. This model assumes that both the gustatory appeal of food gifts and females'
211 propensity to consume them are significantly heritable. To address these issues, we first
212 analyzed the amino acid composition of spermatophylaxes synthesized by males of the nine
213 inbred lines. We then offered spermatophylaxes to females in a diallel experimental design in
214 which females in each line received food gifts from males in each line in all possible
215 combinations, measuring the time spent feeding on spermatophylax as an objective measure of
216 a female's acceptance of, or conversely, resistance to, the particular amino acid composition
217 represented by a gift (Gershman, Hunt & Sakaluk, 2013). Both the amino acid profile of the
218 spermatophylax and the time females spend feeding on it were significantly heritable,
219 supporting the basic premise that the gustatory appeal of the spermatophylax and females'
220 propensity to consume them can respond to selection. More interestingly, perhaps, was the
221 positive genetic correlation between spermatophylax attractiveness and female feeding

duration that emerged in the study. This suggests that genes expressed in males that synthesize spermatophylaxes with more appealing amino acid compositions (i.e. those that stimulate females to feed for longer periods) are positively linked to genes expressed in females that make them more susceptible to these inducements (Gershman et al., 2013). Although such a positive correlation is consistent with sexual conflict (Gay, Brown, Tregenza, Pincheira-Donoso, Eady, Vasudev, et al., 2011), it is also a key prediction of traditional models of preference evolution (Lande, 1981). However, the fact that females of a non-gift-giving species, *Acheta domesticus*, when offered a *Gryllodes* spermatophylax, fed on it longer than female *Gryllodes* (Gershman et al., 2013), would appear to favor sexual conflict as the more parsimonious hypothesis in this case.

We end this section by noting that the high concentration of amino acids found in the *Gryllodes* spermatophylax is not unique, as amino acids comprise a major component of the spermatophylaxes of bushcrickets in the related family Tettigoniidae (Heller, Faltin, Fleischmann & von Helversen, 1998; Jarrige, Body, Giron, Greenfield & Goubault, 2015). Here too, amino acids have been viewed as functioning to extend the time females spend feeding on the spermatophylax, either through their effect on its texture, taste, or both. If true, this would represent an intriguing example of convergent evolution, as the bushcricket spermatophylax and the spermatophylax in *Gryllodes* almost certainly represent independent evolutionary origins (Gwynne, 1995). However, a major difference between the bushcricket spermatophylax and the *Gryllodes* spermatophylax is that the vast majority of the amino acids in the former are protein bound, and of potentially significant nutritional value to the female through their effect on egg production (Jarrige et al., 2015); indeed, consumption of the bushcricket

244 spermatophylax has been shown to have a positive influence on female longevity and
245 reproduction, in accordance with the paternal investment hypothesis (Gwynne, 2008).

246

247 **4. SEXUAL CONFLICT OVER FEMALE REMATING**

248 Females in an array of crickets exhibit high levels of polyandry (Rost & Honegger, 1987;
249 Souroukis & Murray, 1995; Bretman & Tregenza, 2005), and this is true also in *G. sigillatus*,
250 which continue to seek out new mating partners up until they die (Sakaluk et al., 2002; Ivy &
251 Sakaluk, 2005; Ivy, 2007). Female *G. sigillatus* can store the sperm of multiple mates over
252 extended periods which, coupled with their propensity for polyandrous mating, fosters high
253 levels of sperm competition (Sakaluk, 1986a). This, in turn, generates an intense sexual conflict
254 over female remating because, while polyandry might confer important indirect genetic
255 benefits to females (Sakaluk et al., 2002; Ivy & Sakaluk, 2005; Ivy, 2007), it does so at the
256 expense of the reproductive success of their various partners.

257 These details on the polyandrous mating system of *G. sigillatus* suggest that even a
258 modest delay in female remating would reduce the level of sperm competition experienced by
259 a female's most recent mate, enhancing his overall reproductive success. It also raises the
260 interesting possibility that, when plying females with substances that enhance the gustatory
261 appeal of the spermatophylax, the male might also benefit by including compounds that
262 decrease her receptivity to future mating attempts. The idea that male-derived ejaculatory
263 substances might influence female receptivity is not new. In perhaps the most well-
264 documented example, male *Drosophila* transfer accessory-gland proteins in their ejaculates
265 that reduce female receptivity to mating (Wolfner, 1997, 2002). In fact, the existence of

266 receptivity-inhibiting substances in male ejaculates is fairly ubiquitous in insects (Gillott, 2003).
267 What makes the possibility intriguing in *Gryllodes* is the possibility that these substances are
268 orally ingested as opposed to being absorbed in the genital tract as in female *Drosophila*. We
269 cannot, of course, discount the possibility that seminal fluid proteins contained in the cricket
270 ampulla, the function of which remains largely unknown (Simmons, Beveridge, Li, Tan & Millar,
271 2014), might similarly affect female remating.

272 Based on a meta-analysis of the fitness benefits accruing to multiple mating in female
273 insects, Arnqvist & Nilsson (2000) were the first to propose that receptivity-inhibiting
274 substances are transferred in the nuptial food gifts of males. A particularly intriguing finding
275 was that although female reproductive success increased markedly with mating rate in gift-
276 giving taxa, female mating rate in these taxa appeared to be far lower than optimal, a pattern
277 consistent with the incorporation of refractory-inducing substances in males' gifts. The first clue
278 that the spermatophylax of *G. sigillatus* might contain such substances came from a study in
279 which Sakaluk (2000) offered spermatophylaxes taken from male *Gryllodes* to mated females of
280 several related, but non-gift-giving species of crickets, as a means of testing the universal
281 gustatory appeal of these gifts. Unexpectedly, females of one non-gift-giving species, *Acheta*
282 *domesticus*, exhibited a significant decrease in sexual receptivity following the consumption of
283 the *Gryllodes* spermatophylax, as evidenced by longer refractory periods compared with mated
284 females who received no such gifts. However, because female *Acheta* receiving food gifts also
285 retained the sperm ampulla for longer periods, and thus received a greater amount of sperm
286 and male ejaculatory substances, the observed decrease in receptivity could be attributed as
287 much to accessory gland proteins or other substances in the male's ejaculate as to substances

288 contained in the ingested spermatophylax. To remedy this deficiency, and to incorporate a
289 parallel manipulation in *G. sigillatus* in which females were experimentally prevented from
290 consuming the spermatophylax, Sakaluk, Avery & Weddle (2006) repeated the experiment
291 holding ampulla attachment duration (and the concomitant transfer of any ejaculatory
292 compounds) constant across treatments. Again, female *A. domesticus* allowed to consume food
293 gifts of male *Gryllodes* took significantly longer to remate than females given no such
294 opportunity (Fig. 5a), but surprisingly, the consumption of food gifts had no comparable effect
295 on the propensity to remate in female *Gryllodes* (Fig. 5b). Based on these results, Sakaluk et al.
296 (2006) proposed that nuptial food gifts transferred by male *G. sigillatus* contains receptivity-
297 inhibiting substances, but that female *G. sigillatus* have evolved reduced responsiveness (i.e.,
298 resistance) to these substances to retain control of their mating rate. They further contended
299 that the reason why females of the non-gift-giving species showed a reduction in sexual
300 receptivity is that, having had no evolutionary experience with the spermatophylax, they have
301 not been under selection to evolve a comparable resistance to refractory-inducing substances
302 contained in the spermatophylax.

303 *Gryllodes* is not the only species in which the incorporation of refractory-inducing
304 substances in nuptial food gifts has been implicated. For example, a comparative analysis of
305 bushcricket spermatophores using independent contrasts revealed that larger
306 spermatophylaxes are associated with longer female refractory periods (Vahed, 2007b);
307 however, such gifts are also associated with larger ejaculates, such that the increase in female
308 refractory periods could be due as much, or more, to receptivity-inhibiting substances
309 contained in seminal fluid. In male scorpionflies, *Panorpa cognate*, males secrete a salivary

310 mass that the female consumes during copulation. Engqvist (2007) demonstrated that the
311 refractory period of females is positively correlated with the amount of saliva consumed by the
312 female during mating. This result suggests that the salivary mass contains receptivity-inhibiting
313 substances, but it could also represent an adaptive female response if direct benefits received
314 from the consumption of the saliva reduces the need for future matings (Engqvist, 2007). The
315 manipulation of female physiology via nuptial gifts is not limited to effects on sexual receptivity,
316 as substances in the gifts may also promote increased sperm storage or transitory increases in
317 the rate of egg laying, effects that benefit males, but which could be detrimental to females
318 (Vahed, 2007a).

319 If male *Gryllodes* do, in fact, incorporate receptivity-inhibiting substances in their nuptial
320 food gifts, what might these compounds be? Given their ubiquity in the ejaculates of other
321 insects, accessory gland proteins would appear to be a likely candidate, especially considering
322 that a major portion of the solid fraction of the spermatophylax comprises proteins (Warwick et
323 al., 2009). Indeed, our recent proteomics analysis of the spermatophylax detected 30 different
324 proteins, of which, 18 were encoded by genes expressed in the male accessory glands (Pauchet,
325 Wielsch, Wilkinson, Sakaluk, Svatoš, ffrench-Constant, et al., 2015); the number of proteins
326 contained in the bushcricket spermatophylax is about an order of magnitude larger, but these
327 remain entirely unidentified (Lehmann, Lehmann, Neumann, Lehmann, Scheler & Jungblut,
328 2018). The majority of the spermatophylax proteins we identified in *Gryllodes* show no
329 similarity to proteins of known biological function. However, we identified two proteins of
330 special interest, SPX4, a serine protease inhibitor that may inhibit *G. sigillatus'* own digestive

331 proteinases, and SPX6, a protein that shows a high degree of similarity to known polypeptide
332 growth factors described in other insects (Fig. 6).

333 Given its high degree of similarity to imaginal disc growth factors in *Drosophila* and the
334 noctuid moth, *Mamestra brassicae* (Kawamura, Shibata, Saget, Peel & Bryant, 1999; Zhang,
335 Iwai, Tsugehara & Takeda, 2006), it seems likely that SPX6 may promote cell growth and
336 development in its target tissue within the female's body or influence female reproduction
337 (Pauchet et al., 2015). The presence of such a protein in the spermatophylax could have
338 important consequences with respect to female reproductive output, depending on the
339 location of its target tissue within the female body. If SPX6 was able to reach the ovaries intact
340 after being ingested, and exert its potential ability to promote cell growth and development in
341 immature eggs, this too could represent another avenue by which males manipulate females.
342 Although consumption of a spermatophylax by female *G. sigillatus* has been found to have no
343 effect on the number of eggs produced (Will & Sakaluk, 1994; Kasuya & Sato, 1998; Ivy &
344 Sakaluk, 2005), it has been found to increase the rate of oviposition (Kasuya & Sato, 1998). Such
345 an effect would be highly advantageous to the male because female *G. sigillatus* are highly
346 polyandrous (Sakaluk et al., 2002), a behavior that promotes a high degree of sperm
347 competition leading to a dilution of male paternity (Sakaluk & Eggert, 1996). Thus, even a
348 transitory increase in oviposition rate could result in a greater number of eggs fertilized by a
349 male before the female remates with another male.

350 Gwynne (2008) suggested that nuptial food gifts that are orally consumed would be
351 unlikely to harbor manipulative compounds, because complex compounds such as proteins
352 would be digested in the gut of the female. However, if SPX4 was able to protect other

353 spermatophylax proteins from proteolysis after the ingestion of the spermatophylax by the
354 female, then other potentially manipulative proteins present in the spermatophylax could reach
355 their intended target(s) in the female body with limited risk of being degraded as they pass
356 through the female's digestive tract. Moreover, manipulative substances contained in the
357 spermatophylax need not pass through the gut to effect a change in female behavior and
358 physiology. They could instead activate gustatory receptors leading to neural pathways that
359 terminate in the brain, thereby modulating female locomotor activity or sexual receptivity
360 directly (Ignell, Anton, & Hansson, 2000; Rogers & Newland, 2003). In support of this possibility,
361 Gordon, Gershman & Sakaluk (2012) probed the receptivity-inhibiting potential of two of the
362 most abundant free amino acids found within the *Gryllodes* spermatophylax, glycine and
363 proline, by injecting them directly into the haemocoel of female house crickets, *Acheta*
364 *domesticus* (the species known to be susceptible to the refractory-inducing effects of
365 spermatophylax consumption), or by feeding females experimental pectin-based 'gels'
366 containing these amino acids and designed to simulate the experience of consuming a
367 spermatophylax. Females fed gels containing glycine took longer to both remount and remate a
368 previous mating partner following consumption of the gel compared with females fed control
369 gels, but surprisingly, glycine injected directly into the haemocoel of females had no effect on
370 their receptivity. The fact that ingestion, but not injection, of glycine induces a refractory period
371 in females led Gordon et al. (2012) to suggest that glycine may be stimulating taste neurons
372 that have downstream neurological effects on female behavior. Although female *Gryllodes* may
373 not always be susceptible to such receptivity-reducing effects of individual components, by
374 using a non-gift giving species, it is possible to investigate potential steps in the sexually

375 antagonistic coevolutionary process in the way that might be achieved in an experimental
376 evolution experiment where evolved males are tested against ancestral females (details on one
377 such experiment are described later in this chapter).

378

379 **5. THE COST OF PRODUCING A SPERMATOPHYLAX**

380 With respect to its nutritional value to females, the spermatophylax appears to be more of a
381 sham than a true “gift”. Will & Sakaluk (1994) experimentally manipulated the number of
382 spermatophylaxes that female *Gryllodes* were permitted to consume each day while
383 simultaneously varying the total amount of food available to experimental subjects. There was
384 no effect of spermatophylax consumption on female survival, egg size, or lifetime reproduction,
385 even when females were completely deprived of food, a result that has since been replicated in
386 subsequent studies (Kasuya & Sato, 1998; Warwick, 1999; Ivy & Sakaluk, 2005). The absence of
387 detectable nutritional benefits to courtship feeding is not unique to *G. sigillatus* but appears to
388 be widespread across a variety of gift-giving taxa (reviews in Vahed, 1998, 2007a). However, in
389 this respect, the spermatophylax of *Gryllodes* is fundamentally different from the
390 spermatophylax of many bushcrickets: whereas the *Gryllodes* spermatophylax is small (2-3% of
391 a male’s body mass; Sakaluk 1985, 1997), composed primarily of water, and nutritionally
392 depauperate, bushcricket spermatophylaxes can constitute up to 40% of a male’s body mass,
393 are often loaded with proteins that represent a significant source of nutrition to females, and
394 whose consumption has been shown to contribute significantly to female fitness in a number of
395 species (reviewed in Gwynne, 2008). Female *Gryllodes* can, however, secure important

396 hydration benefits from spermatophylax consumption during periods of water stress (Ivy,
397 Johnson & Sakaluk, 1999).

398 The absence of nutritional benefits to spermatophylax consumption might lead one to
399 erroneously conclude that it is relatively cheap to produce. Indeed, Warwick et al. (2009)
400 likened the spermatophylax to “candy”, a low-quality food gift that is “sweetened” with readily
401 available, free amino acids. However, the fact that male refractory periods in *G. sigillatus* are an
402 order of magnitude or longer compared to non-gift-giving gryllid species (Sakaluk, 1985)
403 suggests that the spermatophylax incurs significant costs with respect to its synthesis. An
404 emerging body of evidence further suggests that males face serious constraints with respect to
405 the size and composition of the spermatophylax, and that these constraints arise, in part,
406 because of important life-history trade-offs with respect to other components of reproductive
407 effort and, in some cases, male survival. For example, Kerr, Gershman & Sakaluk (2010)
408 examined the potential life-history trade-off between male spermatophore investment and
409 male immunity by inducing an immune response in some males by injecting them with
410 lipopolysaccharides, thereby simulating an infection without the attendant costs of a real
411 disease, and, in a reciprocal experiment, forced males to synthesize additional food gifts to
412 determine if this results in decreased immunity. Immune-challenged males produced smaller
413 food gifts than control males, and males that synthesized more food gifts exhibited lower
414 immunity, revealing a fundamental trade-off between immunity and reproduction. A
415 companion study similarly revealed a trade-off between the lytic activity of male hemolymph
416 and spermatophylax mass in outbred, but not inbred crickets (Gershman, Barnett, Pettinger,
417 Weddle, Hunt & Sakaluk, 2010).

418 More recent work has shown that life-history trade-offs can also inform the chemical
419 composition and gustatory appeal of the spermatophylax offered by males to females. Duffield,
420 Hunt, Rapkin, Sadd & Sakaluk (2015) injected male *G. sigillatus* with heat-killed bacteria in a
421 repeated-measures design in which they assessed the amino acid profile of the spermatophylax
422 produced by a male both before and after the immune challenge. By mapping amino acid
423 profiles onto the fitness surface describing the likelihood that a spermatophylax would be
424 consumed and thus lead to maximal insemination of the female (Gershman et al., 2012),
425 Duffield et al. (2015) showed that immune-challenged males actually synthesize gifts of greater
426 gustatory appeal than control males. They concluded that immune-challenged male *Gryllodes*
427 terminally invest with respect to the composition of the spermatophylax, increasing their
428 investment in the quality of the food gift at a cost to their future reproduction or survival.

429 The costs of producing a spermatophylax has, perhaps, been most convincingly
430 demonstrated by assessing how males regulate their dietary intake of protein and carbohydrate
431 in optimizing the size and gustatory appeal of the spermatophylax. Rapkin, Jensen, Lane, House
432 Sakaluk & Hunt (2016) conducted experiments in which they varied the ratio of protein (P) and
433 carbohydrate (C) among a series of artificial diets to determine how the availability of these
434 nutrients influence the mass and gustatory appeal of the gift, and to ascertain how males
435 regulate their intake when permitted to choose among diets of varying P:C ratios that
436 differentially influence the size and quality of the gift. They showed that the mass and gustatory
437 appeal of the gift increased with overall nutrient intake, attesting to the cost of producing a
438 spermatophylax, but, as importantly, that the mass and amino acid composition of the
439 spermatophylax was optimized at a P:C ratio of 1:1.3. It may seem surprising, then, that when

440 given a choice, males exhibited a higher intake of carbohydrate relative to protein than is
441 optimal. This seemingly suboptimal intake of nutrients may be reflective of trade-offs with
442 other fitness-related traits whose optimization demands different P:C ratios, among them, the
443 cuticular hydrocarbon profile of the male (Rapkin, Jensen, House, Sakaluk, Sakaluk & Hunt,
444 2017), which can greatly influence a female's decision to mate (Weddle et al., 2013;
445 Capodeanu-Nägler et al., 2014), and the production of calling song, a major component of male
446 reproductive effort (Rapkin, Jensen, Archer, House, Sakaluk, del Castillo, et al., 2018).

447

448 **6. ORIGIN OF NUPTIAL FOOD GIFTS**

449 The lively discussion surrounding the function and selective factors contributing to the
450 maintenance of nuptial food gifts (Vahed, 1998, 2007a; Gwynne, 2008; Lewis & South, 2012;
451 Lewis et al., 2014) has overshadowed an equally important, but somewhat overlooked aspect of
452 their evolution: how do nuptial food gifts arise in the first place? The answer to this question
453 needs to accommodate several pervasive features of nuptial food gifts: 1) they invariably occur
454 in taxa in which females largely are in control of the extent to which they are inseminated, 2)
455 they almost always promote increased insemination of the female, and 3) their remarkable
456 diversity in form and distribution across the insects means that they must have independently
457 arisen on multiple occasions in different taxa (Vahed, 1998, 2007a). How did this happen with
458 such frequency? Sakaluk (2000) proposed that nuptial gifts arise as a form of sensory trap
459 (Christy, 1995), specifically, that such gifts emulate properties of food items that females
460 normally find appealing, and that by engaging the innate gustatory response of the female
461 during copulation, the male overrides any impulse she might have to interfere with sperm

462 transfer or to prematurely terminate the mating. However, this proposition rests on two key
463 assumptions, that: (1) the absence of nuptial feeding is the ancestral condition in groups in
464 which nuptial gifts have arisen, and (2) the gustatory response elicited by the food gift was
465 present before the food gift actually evolved (see Basolo, 1995). Orthopteran nuptial food gifts
466 meet the first criterion quite well, as a phylogenetic analysis of the suborder Ensifera has
467 revealed that a simple, externally attached sperm ampulla and female consumption of the
468 ampulla were the most likely ancestral character states, whereas the provision of a
469 spermatophylax and other forms of nuptial food gifts likely arose only after female
470 consumption of the ampulla had evolved (Gwynne, 1995). To address the second of these
471 criteria, Sakaluk (2000) offered food gifts taken from male *Gryllodes* and offered them to mated
472 females of three related cricket species that manifest the ancestral condition of a simple naked
473 ampulla that females consume after mating. Not only did females of these non-gift-giving
474 species eagerly accept and consume the proffered spermatophylax, the consumption of this
475 'foreign' food gift afforded the same degree of protection to the male's ampulla as it normally
476 does in *Gryllodes*: females consuming a spermatophylax retained their mate's ampulla longer
477 and experienced greater insemination than females that were offered no such inducement.
478 Thus, this study provided an important proof-of-principle, at least, that nuptial food gifts could
479 indeed arise by exploiting a preexisting gustatory bias in females.

480 This initial study was followed by subsequent investigations invoking the same kind of
481 sensory exploitation to account for the origin of other kinds of nuptial food gifts, including a
482 silk-wrapped gift in a spider, *Pisaura mirabilis*, that appears to mimic the female's egg sac
483 (Stålhandske, 2002), and tergal secretions of male Madeira cockroaches, *Leucophaea maderae*,

484 that are consumed by females at mating (Mondet et al., 2008). But, in what must be considered
485 the most remarkable example of evolutionary convergence, Albo, Macías-Hernández, Bilde &
486 Toft (2017) staged matings between males of a spider, *P. mirabilis*, that offers insect prey
487 wrapped in silk as a nuptial food gift (Prokop & Maxwell, 2012), and females of a related
488 species, *Cladycnis insignis*, in which males offer no such inducement. Not only did female *C.*
489 *insignis* readily accept a gift from an interspecific mating partner, but the receipt of this gift
490 resulted in significantly longer matings compared with normal intraspecific pairings. Because *C.*
491 *insignis* is more basally derived in the clade containing the two species, Albo et al. (2017)
492 concluded that, as in *Gryllodes*, these results are consistent with the hypothesis that gift-giving
493 in *P. mirabilis* arose as a form of sensory exploitation of a female's motivation to feed.

494 One final example should suffice to underscore the potential of the sensory-trap
495 hypothesis to account for the evolution of nuptial food gifts, and it involves the reverse of the
496 experimental approach employed by Sakaluk (2000) and Albo et al. (2017). Instead of offering
497 novel food gifts to females of non-gift-giving species, LeBas & Hockham (2005) substituted the
498 normally valuable gifts offered to females of a gift-giving species with worthless gifts. In the
499 dance fly, *Rhamphomyia sulcate*, males capture insect prey that they offer as nutritionally
500 valuable, nuptial food gifts to females at mating. In a field experiment, LeBas & Hockham (2005)
501 replaced the gift that a male was about to confer on the female in naturally mating pairs with
502 either another insect prey, or a worthless gift, a small ball of cotton. The use of cotton as a
503 worthless gift was meant to simulate the wind-blown seed tufts offered as inedible token gifts
504 in other dance fly species. Although females receiving a large insect prey copulated for the
505 longest durations, females receiving a token cotton gift copulated as long as those females

506 receiving a small, but nutritious, insect prey. LeBas & Hockham (2005) concluded that worthless
507 nuptial gifts can evolve via the invasion of cheating males that employ token gifts to exploit the
508 sensory biases of females selected to respond to authentic gifts.

509

510 **7. RESOLVING THE CONFLICT OVER SEXUAL CONFLICT**

511 The idea that sexual conflict might have influenced the evolution of nuptial food gifts is not
512 new. Nearly thirty years ago, Parker & Simmons (1989) developed theoretical models exploring
513 how sexual conflict could influence the allocation of male-derived resources contained in food
514 gifts and the temporal patterns of egg production and oviposition in females. They determined
515 that when gifts are infrequently offered, males benefit most from a more immediate use of
516 resources in egg production, whereas females often benefit from a delay; earlier reports of
517 ejaculatory substances that affect vitellogenesis and oviposition led them to further suggest that
518 this conflict might be resolved more in the direction of male interests. In a companion paper,
519 Simmons & Parker (1989) also addressed a long-standing and occasionally acrimonious debate
520 over the function of nuptial gifts (Gwynne, 1984; Wickler, 1985; Quinn & Sakaluk, 1986;
521 Sakaluk, 1986b): do nuptial food gifts serve primarily to maximize the fertilization success of the
522 male (*mating effort* hypothesis) or do they instead advance the fitness interests of the male
523 through the nutritional benefits derived from the offspring they sire (*paternal investment*
524 hypothesis)? Theoretical considerations led Simmons & Parker (1989) to propose that oral
525 endogenous gifts most likely originated via their effects on the mating or fertilization success of
526 the male, because, initially at least, the magnitude of any nutritional effects would have been

527 relatively trivial; however, they did not discount the possibility that paternal investment might
528 later contribute to the maintenance of such gifts.

529 Simmons & Parker's (1989) suggestion proved to be prescient. In a subsequent and
530 wide-ranging review of the adaptive significance of nuptial food gifts in insects, Vahed (1998)
531 showed that, in the majority of species, oral food gifts actually do promote increased mating
532 success or lead to increased sperm transfer, observations consistent with the hypothesis that
533 nuptial food gifts function as male mating effort. In an update to this review, Vahed (2007a)
534 considered how gift composition might subsequently be tailored to enhance the gustatory
535 appeal of nuptial gifts to females or to maximize their handling time, but also their potential to
536 induce female sexual refractory periods. He concluded that nuptial food gifts likely impose costs
537 on females in many cases, through their effects on female lifespan, rate of oviposition, and
538 female sexual receptivity, effects best understood within the context of sexual conflict.

539 In highlighting potential costs to females of nuptial feeding, Vahed (2007a) suggested
540 that, by way of contrast, the fecundity-enhancing benefits of nuptial food gifts had been
541 exaggerated in the literature. This conclusion was subsequently challenged by Gwynne (2008),
542 who reviewed a number of studies showing that females often experience direct nutritional
543 benefits from consuming gifts, and called into question both the empirical and comparative
544 evidence that oral gifts contain substances that manipulate female sexual receptivity. Although
545 not directly stated, Gwynne's (2008) assessment seems to imply that the existence of a
546 nutritional benefit to the consumption of nuptial food gifts necessarily precludes a role for
547 sexual conflict in shaping these gifts as a vehicle by which males manipulate female physiology
548 or behavior. This inference is probably misguided on at least two counts. Nuptial gifts that

549 function to promote male reproductive interests through their manipulation of females may
550 confer a nutritional benefit merely as an incidental and unavoidable consequence of an inability
551 to produce gifts entirely free of compounds useful to females (e.g., proteins); Quinn & Sakaluk
552 (1986) elaborate on the importance of disentangling incidental effects from the evolved
553 function of male prezygotic investments. Moreover, potential nutritional benefits of gifts and
554 the occurrence of manipulative compounds are not mutually exclusive, as a recent proteomic
555 analysis of butterfly ejaculates would attest. Meslin, Cherwin, Plakke, Hill, Small, Goetz, et al.,
556 (2017) explored the molecular basis and structural complexity of the spermatophore of the
557 cabbage white butterfly, *Pieris rapae*, which, following its transfer at copulation, is slowly
558 digested within the bursa copulatrix, a chamber forming part of the female reproductive tract.
559 Their analysis revealed that the hard outer envelope of the spermatophore and the more
560 soluble softer inner matrix are characterized by vastly different suites of proteins. Meslin et al.
561 (2017) speculated that whereas the inner matrix might serve as a source of female nutrition,
562 the indigestible outer envelope might hinder digestion thereby allowing males to delay female
563 remating. More surprisingly still, they discovered that females contribute a large portion of
564 protein in spermatophores in the form of proteases that could contribute to the more rapid
565 digestion of the spermatophores. Collectively, these observations are suggestive of a history of
566 sexually antagonistic coevolution with respect to the biochemistry of butterfly spermatophores.

567 We conclude by encouraging investigators to recognize that sexual conflict does not
568 represent an alternative hypothesis to the mating effort and paternal investment hypotheses,
569 but rather, a selective milieu shaping the chemical composition of nuptial gifts regardless of
570 whether they function to increase male fertilization success or as a form of parental

571 investment, or both. Indeed, we suggest that sexual conflict is likely a pervasive force acting on
572 the majority of gift-giving taxa because in most, if not all of these species, females mate
573 polyandrously, leading to inevitable sexual conflicts over the use of sperm, female remating
574 behavior, and the allocation of male-derived resources.

575 A major empirical obstacle to unraveling the evolutionary history of nuptial food gifts is
576 that we might expect coevolutionary interactions surrounding gift-giving to be dynamic: gifts
577 that initially are nutritionally beneficial to females might evolve to become more harmful, and
578 vice versa (Lewis & South, 2012; Lewis et al., 2014). Comparative phylogenetic analysis might
579 profitably be used to assess competing evolutionary scenarios for the evolution of nuptial gifts
580 (for an especially instructive example concerning the evolution of nuptial food gifts in
581 harvestmen, see Kahn, Cao, Burns & Boyer, 2018). However, such an approach requires not
582 only well-supported phylogenies, but detailed information on the mating system, life history,
583 and reproductive behavior of the species included in any such analysis (Lewis et al., 2014). An
584 experimental evolution approach offers a powerful alternative means of probing the influence
585 of sexual conflict on the evolution of nuptial gifts because the intensity of sexual selection and
586 conflict is easily altered through manipulation of the operational sex ratio; no study has, to our
587 knowledge, successfully applied this methodology to examine the coevolutionary dynamics
588 surrounding the evolution of male nuptial gifts and female responses to them.

589 We have, accordingly, recently embarked on just such a study to explore the role of
590 sexual conflict in driving the evolution of the chemical composition of males' nuptial gifts and
591 females' responses to them in *G. sigillatus*. In addition to monitoring evolutionary modifications
592 in the free amino acid profile of the spermatophylax, and targeted gene expression to quantify

593 changes in key constituent proteins, we are employing a comparative transcriptomics approach
594 to characterize differential gene expression in brain and gut tissue of females in lines subject to
595 intensified sexual conflict (i.e., male-biased) and those from which conflict have been largely
596 eliminated (i.e., female-biased). Preliminary data (Hunt, J., Sharma, M.D., Rapkin, J., ffrench-
597 Constant, R.H. & Sakaluk, S.K., unpublished) suggest that female gene expression patterns are
598 altered following nuptial gift consumption. It seems likely that included among the differentially
599 expressed genes are ones that underlie changes to female behavior and physiology that are
600 beneficial to male fitness interests. Interestingly, gift consumption by females altered gene
601 expression in the gut, where it might be expected, but also in the head (Fig. 7). Linking gene
602 expression to the behavior and physiology of females following nuptial gift feeding will enable
603 specific pathways to be uncovered, and is a promising avenue of research to increase our
604 understanding of the proximate mechanisms underlying male-female interactions mediated by
605 nuptial gifts. By coupling a powerful experimental evolution approach with the tools of modern
606 genomics (Wilkinson, Breden, Mank, Ritchie, Higginson, Radwan, et al., 2015), we aim to
607 provide one of the most comprehensive examinations of how sexual selection and conflict
608 contribute to the evolution of a widespread behavioral trait that mediates sexual interactions
609 across a diverse array of insect taxa.

610

611 **ACKNOWLEDGMENTS**

612 We thank Leigh Simmons and Darryl Gwynne for helpful comments on the manuscript. This
613 research was supported by grants from the National Science Foundation, including DEB-
614 9107363, IBN-9601042, IBN-0126820, and IOS-1118160 (SKS), IBN-0407690 (SKS, T.M. Ivy), IOB-

615 0543254 and IOS-0718140 (SKS, C.G. Hamaker), and IOS-1654028 (SKS, BMS, JH), and the
616 Australian Research Council (DP180101708 to JH). We thank the numerous students and
617 colleagues who contributed to this research over many years.

618

619 **REFERENCES**

620 Albo, M.J., Macías-Hernández, N., Bilde, T. & Toft, S. (2017). Mutual benefit from exploitation of
621 female foraging motivation may account for the early evolution of gifts in spiders.
622 *Animal Behaviour*, 129, 9-14.

623 Alexander, R. D. & Otte, D. (1967). The evolution of genitalia and mating behavior in crickets
624 (Gryllidae) and other Orthoptera. *University of Michigan Museum of Zoology
625 Miscellaneous Publications*, 133, 1-62.

626 Andrade, M.C.B. (1996). Sexual selection for male sacrifice in the Australian redback spider.
627 *Science*, 271, 70-72.

628 Arnqvist, G. & Nilsson, T. (2000). The evolution of polyandry: multiple mating and female fitness
629 in insects. *Animal Behaviour*, 60, 145-164.

630 Basolo, A.L. (1995). Phylogenetic evidence for the role of a pre-existing bias in sexual selection.
631 *Proceedings of the Royal Society of London B*, 259, 307-311.

632 Boggs, C.L. (1995). Male nuptial gifts: phenotypic consequences and evolutionary implications.
633 In S.R. Leather & J. Hardie (Eds.), *Insect reproduction* (pp. 251-242). Boca Raton: CRC
634 Press.

635 Bretman, A. & Tregenza, T. (2005). Measuring polyandry in wild populations: a case study using
636 promiscuous crickets. *Molecular Ecology*, 14, 2169-2179.

637 Bussière, L. F., Hunt, J., Jennions, M. D. & Brooks, R. (2006). Sexual conflict and cryptic female
638 choice in the black field cricket, *Teleogryllus commodus*. *Evolution*, 60, 792-800.

639 Calos, J.B. & Sakaluk, S.K. (1998). Paternity of offspring in multiply-mated female crickets: the
640 effect of nuptial food gifts and the advantage of mating first. *Proceedings of the Royal
641 Society of London B*, 265, 2191-2195.

642 Capodeanu-Nägler, A., Rapkin, J., Sakaluk, S.K., Hunt, J. & Steiger, S. (2014). Experimental
643 alteration of cuticular hydrocarbons reveals self-recognition in crickets via on-line
644 processing. *Current Biology*, 24, R1117-R1118.

645 Chapman, R.F. (2003). Contact chemoreception in feeding by phytophagous insects. *Annual
646 Review of Entomology*, 48, 455–84.

647 Christy, J.H. (1995). Mimicry, mate choice, and the sensory trap hypothesis. *American
648 Naturalist*, 146, 171-181.

649 Conner, W.E., Roach, B., Benedict, E., Meinwald, J. & Eisner, T. (1990). Courtship pheromone
650 production and body size as correlates of larval diet in males of the arctiid moth,
651 *Utetheisa ornatrix*. *Journal of Chemical Ecology*, 16, 543–552.

652 Cumming, J.M. (1994). Sexual selection and the evolution of dance fly mating systems (Diptera:
653 Empididae; Empidinae). *Canadian Entomologist*, 126, 907-920.

654 Duffield, K.R., Hunt, J., Rapkin, J., Sadd, B.M. & Sakaluk, S.K. 2015. Terminal investment in the
655 gustatory appeal of nuptial food gifts in crickets. *Journal of Evolutionary Biology*, 28,
656 1872-1881.

657 Dussourd, D.E., Harvis, C.A., Meinwald, J. & Eisner, T. (1991). Pheromonal advertisement of a
658 nuptial gift by a male moth (*Utetheisa ornatrix*). *Proceedings of the National Academy of
659 Sciences USA*, 88, 9224–9227.

660 Eberhard, W. G. (1996). *Female control: sexual selection by cryptic female choice*. Princeton, NJ:
661 Princeton University Press.

662 Eggert, A.-K., Reinhardt, K. & Sakaluk, S.K. (2003). Linear models for assessing mechanisms of
663 sperm competition: the trouble with transformations. *Evolution*, 57, 173-176.

664 Eggert, A.-K. & Sakaluk, S.K. (1994). Sexual cannibalism and its relation to male mating success
665 in sagebrush crickets, *Cyphoderris strepitans* (Haglidae: Orthoptera). *Animal Behaviour*,
666 47, 1171-1177.

667 Engqvist, L. (2007). Nuptial gift consumption influences female remating in a scorpionfly: male
668 or female control of mating rate. *Evolutionary Ecology*, 21, 49-61.

669 Gay, L., Brown, E., Tregenza, T., Pincheira-Donoso, D., Eady, P.E., Vasudev, R., et al. (2011). The
670 genetic architecture of sexual conflict: male harm and female resistance in
671 *Callosobruchus maculatus*. *Journal of Evolutionary Biology*, 24, 449–456.

672 Gershman, S.N., Barnett, C.A., Pettinger, A.M., Weddle, C.B., Hunt, J. & Sakaluk, S.K. (2010).
673 Give ‘til it hurts: tradeoffs between immunity and male reproductive effort in inbred and
674 outbred decorated crickets, *Gryllodes sigillatus*. *Journal of Evolutionary Biology*, 23,
675 829–839.

676 Gershman, S.N., Hunt, J. & Sakaluk, S.K. (2013). Food fight: sexual conflict over free amino acids
677 in the nuptial gifts of male decorated crickets. *Journal of Evolutionary Biology*, 26, 693-
678 704.

679 Gershman, S.N., Mitchell C., Sakaluk, S.K. & Hunt, J. (2012). Biting off more than you can chew:
680 sexual selection on the free amino acid composition of the spermatophylax in decorated
681 crickets. *Proceedings of the Royal Society B*, 279, 2531-2538.

682 Gershman, S.N. & Sakaluk, S.K. (2010). Mate quality and novelty influence post-copulatory
683 female choice in decorated crickets, *Gryllodes sigillatus*. *Ethology*, 116, 1113-1117.

684 Gillott, C. (2003). Male accessory gland secretions: modulators of female reproductive
685 physiology and behavior. *Annual Review of Entomology*, 48, 163-814.

686 Gordon, D.G., Gershman, S.N. & Sakaluk, S.K. (2012). Glycine in nuptial food gifts of decorated
687 crickets decreases female sexual receptivity when ingested, but not when injected.
688 *Animal Behaviour*, 83, 369-375.

689 Gwynne, D.T. (1984). Male mating effort, confidence of paternity and insect sperm
690 competition. In R.L. Smith (Ed.), *Sperm competition and the evolution of animal mating*
691 *systems* (pp. 117-149). New York: Academic Press.

692 Gwynne, D.T. (1995). Phylogeny of the Ensifera (Orthoptera): a hypothesis supporting multiple
693 origins of acoustical signalling, complex spermatophores and maternal care in crickets,
694 katydids, and weta. *Journal of Orthoptera Research*, 4, 203-218.

695 Gwynne, D.T. (2008). Sexual conflict over nuptial gifts in insects. *Annual Review of Entomology*,
696 53, 83-101.

697 Heller, K.-G., Faltin, S., Fleischmann, P. & von Helversen, O. (1998). The chemical composition of
698 the spermatophore in some species of phaneropterid bushcrickets (Orthoptera:
699 Tettigonioidea). *Journal of Insect Physiology*, 44, 1001-1008.

700 Holland, B., & Rice, W.R. (1998). Perspective: chase-away sexual selection: antagonistic
701 seduction versus resistance. *Evolution*, 52, 1-7.

702 Ignell, R., Anton, S. & Hansson, B. (2000). The maxillary palp sensory pathway of the
703 Orthoptera. *Arthropod Structure & Development*, 29, 295e305.

704 Ivy, T.M. (2007). Good genes, genetic compatibility, and the evolution of polyandry: use of the
705 diallel cross to address competing hypotheses. *Journal of Evolutionary Biology*, 20, 479–
706 487.

707 Ivy, T.M., Johnson, J.C. & Sakaluk, S.K. (1999). Hydration benefits to courtship feeding in
708 crickets. *Proceedings of the Royal Society of London B*, 266, 1523-1528.

709 Ivy, T.M. & Sakaluk, S.K. (2005). Polyandry promotes enhanced offspring survival in decorated
710 crickets. *Evolution*, 59, 152-159.

711 Jarrige, A., Body, M., Giron, D., Greenfield, M.S. & Goubault, M. (2015). Amino acid composition
712 of the bushcricket spermatophore and the function of courtship feeding: variable
713 composition suggests a dynamic role of the nuptial gift. *Physiology & Behavior*, 151,
714 463–468.

715 Kahn, P.C., Cao, D.D., Burns, M. & Boyer, S.L. (2018). Nuptial gift chemistry reveals convergent
716 evolution correlated with antagonism in mating systems of harvestmen (Arachnida,
717 Opiliones). *Ecology and Evolution*, 8, 7103–7110

718 Kasuya, E. & Sato, N. (1998). Effects of the consumption of male spermatophylax on the
719 oviposition schedule of females in the decorated cricket, *Gryllodes sigillatus*. *Zoological
720 Science*, 15, 127-130.

721 Kawamura, K., Shibata, T., Saget, O., Peel, D. & Bryant, P.J. (1999). A new family of growth
722 factors produced by the fat body and active on *Drosophila* imaginal disc cells.
723 *Development*, 126, 211–219.

724 Kerr, A.M., Gershman, S.N. & Sakaluk, S.K. (2010). Experimentally-induced spermatophore
725 production and immune responses reveal a trade-off in crickets. *Behavioral Ecology*, 21,
726 647-654.

727 Khalifa, A. (1949). The mechanism of insemination and the mode of action of the
728 spermatophore in *Gryllus domesticus*. *Quarterly Journal of Microscopical Science*, 90,
729 281-292.

730 Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. *Proceedings of*
731 *the National Academy of Sciences USA*, 78, 3721-3725.

732 Lande, R. & Arnold, S. J. (1983). The measurement of selection on correlated characters.
733 *Evolution*, 37, 1210-1226.

734 LeBas, N.R. & Hockham, L.R. (2005). An invasion of cheats: the evolution of worthless nuptial
735 gifts. *Current Biology*, 15, 64–67.

736 Lehmann, G.U.C., Lehmann, K., Neumann, B., Lehmann, A.W., Scheler, C. & Jungblut, P.R.
737 (2018). Protein analysis of the spermatophore reveals diverse compositions in both the
738 ampulla and the spermatophylax in a bushcricket. *Physiological Entomology*, 43, 1–9.

739 Lewis, S.M. & South, A. (2012). The evolution of animal nuptial gifts. *Advances in the Study of*
740 *Behavior*, 44, 53–97.

741 Lewis, S.M., Vahed, K., Koene, J.M., Engqvist, L., Bussière, L.F., Perry, J.C., et al. (2014).
742 Emerging issues in the evolution of animal nuptial gifts. *Biology Letters*, 10, 20140336.

743 Loher, W. & Dambach, M. (1989). Reproductive behavior. In F. Huber, T.E. Moore & W. Loher,
744 (Eds.), *Cricket behavior and neurobiology* (pp. 43-82). Ithaca, NY: Cornell University
745 Press.

746 Meslin, C., Cherwin, T.S., Plakke, M.S., Hill, J., Small, B.S., Goetz, B.J., et al. (2017). Structural
747 complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex
748 history of selection. *Proceedings of the National Academy of Science USA*, 114, E5406-
749 E5413.

750 Mondet, C., Abed-Vieillard, D., Gautier, P. & Farine, J.-P. (2008). Could male tergal secretions be
751 considered as a nuptial gift in the Madeira cockroach? *Animal Behaviour*, 75, 451-460.

752 Quinn, J.S. & Sakaluk, S.K. (1986). Prezygotic male reproductive effort in insects: why do males
753 provide more than sperm? *Florida Entomologist*, 69, 84-94.

754 Parker, G.A. & Simmons, L.W. 1989. Nuptial feeding in insects: theoretical models of male and
755 female interests. *Ethology*, 82, 3-26.

756 Pauchet, Y., Wielsch, N., Wilkinson, P.A., Sakaluk, S.K., Svatoš, A., ffrench-Constant, R.H., et al.
757 (2015). What's in the gift? Towards a molecular dissection of nuptial feeding in a cricket.
758 *PLoS ONE*, 10, e0140191.

759 Prokop, P. & Maxwell, M.R. (2012). Gift carrying in the spider *Pisaura mirabilis*: nuptial gift
760 contents in nature and effects on male running speed and fighting success. *Animal
761 Behaviour*, 83, 1395-1399.

762

763 Rapkin, J., Jensen, K., Archer, R., House, C.M., Sakaluk, S.K., del Castillo, E., et al. 2018. The
764 geometry of nutrient-space based life-history trade-offs: sex-specific effects of
765 macronutrient intake on the trade-off between encapsulation ability and reproductive
766 effort in decorated crickets. *American Naturalist*, 191, 452–474.

767 Rapkin, J., Jensen, K., House, C.M., Sakaluk, S.K., Sakaluk, J.K. & Hunt, J. 2017. The complex
768 interplay between macronutrient intake, cuticular hydrocarbon expression and mating
769 success in male decorated crickets. *Journal of Evolutionary Biology*, 30, 711-727.

770 Rapkin, J., Jensen, K., Lane, S.M., House, C.M., Sakaluk, S.K. & Hunt, J. 2016. Macronutrient
771 intake regulates sexual conflict in decorated crickets. *Journal of Evolutionary Biology*, 29,
772 395-406.

773 Rogers, S. M. & Newland, P. L. (2003). The neurobiology of taste in insects. *Advances in Insect
774 Physiology*, 31, 141e204.

775 Rost, R. & Honegger, H.W. (1987). The timing of premating and mating behavior in a field
776 population of the cricket *Gryllus campestris* L. *Behavioral Ecology and Sociobiology*, 21,
777 79-289.

778 Ryan, K.M. & Sakaluk, S.K. (2009). Dulling the senses: the role of the antennae in mate
779 recognition, copulation, and mate guarding in decorated crickets. *Animal Behaviour*, 77,
780 1345-1350.

781 Sakai, M., Taoda, Y., Mori, K., Fujino, M. & Ohta, C. (1991). Copulation sequence and mating
782 termination in the male cricket *Gryllus bimaculatus* DeGeer. *Journal of Insect Physiology*,
783 37, 599-615.

784 Sakaluk, S.K. (1984). Male crickets feed females to ensure complete sperm transfer. *Science*,
785 223, 609-610.

786 Sakaluk, S.K. (1985). Spermatophore size and its role in the reproductive behaviour of the
787 cricket, *Gryllodes supplicans* (Orthoptera: Gryllidae). *Canadian Journal of Zoology*, 63,
788 1652-1656.

789 Sakaluk, S.K. (1986a). Sperm competition and the evolution of nuptial feeding behavior in the
790 cricket, *Gryllodes supplicans* (Walker). *Evolution*, 40, 584-593.

791 Sakaluk, S.K. (1986b). Is courtship feeding by male insects parental investment? *Ethology*, 73,
792 161-166.

793 Sakaluk, S.K. (1987). Reproductive behaviour of the decorated cricket, *Gryllodes supplicans*
794 (Orthoptera: Gryllidae): calling schedules, spatial distribution, and mating. *Behaviour*,
795 100, 202-225.

796 Sakaluk, S.K. (1997). Cryptic female choice predicated on wing dimorphism in decorated
797 crickets. *Behavioral Ecology*, 8, 326-331.

798 Sakaluk, S.K. (2000). Sensory exploitation as an evolutionary origin to nuptial food gifts in
799 insects. *Proceedings of the Royal Society of London B*, 267, 339-343.

800 Sakaluk, S.K., Avery, R.L. & Weddle, C.B. (2006). Cryptic sexual conflict in gift-giving insects:
801 chasing the chase-away. *American Naturalist*, 167, 94-104.

802 Sakaluk, S.K. & Belwood, J.J. (1984). Gecko phonotaxis to cricket calling song: a case of satellite
803 predation. *Animal Behaviour*, 32, 659-662.

804 Sakaluk, S.K., Campbell, M.T.H., Clark, A.P., Johnson, J.C. & Keorpes, P.A. (2004). Hemolymph
805 loss during nuptial feeding constrains male mating success in sagebrush crickets.
806 *Behavioral Ecology*, 15, 845-849.

807 Sakaluk, S.K. & Eggert, A.-K. (1996). Female control of sperm transfer and intraspecific variation
808 in sperm precedence: antecedents to the evolution of a courtship food gift. *Evolution*,
809 50, 694-703.

810 Sakaluk, S.K. & O'Day, D.H. 1984. Hoechst staining and quantification of sperm in the
811 spermatophore and spermatheca of the decorated cricket, *Gryllodes supplicans*
812 (Orthoptera: Gryllidae). *Canadian Entomologist*, 116, 1585-1589.

813 Sakaluk, S.K., Schaus, J.M., Eggert, A.-K., Snedden, W.A. & Brady, P.L. (2002). Polyandry and
814 fitness of offspring reared under varying nutritional stress in decorated crickets.
815 *Evolution*, 56, 1999-2007.

816 Simmons, L.W. (1987). Sperm competition as a mechanism of female choice in the field cricket,
817 *Gryllus bimaculatus*. *Behavioral Ecology and Sociobiology*, 21, 197-202.

818 Simmons, L.W., Beveridge, M., Li, L., Tan, Y.-F. & Millar, A.H. (2014). Ontogenetic changes in
819 seminal fluid gene expression and the protein composition of cricket seminal fluid.
820 *Evolution & Development*, 16, 101–109.

821 Simmons, L.W. & Parker, G.A. (1989). Nuptial feeding in insects: mating effort versus paternal
822 investment. *Ethology*, 81, 332-343.

823 Souroukis, K. & Murray, A.-M. (1995). Female mating behavior in the field cricket, *Gryllus*
824 *pennsylvanicus* (Orthoptera: Gryllidae) at different operational sex ratios. *Journal of*
825 *Insect Behavior*, 8, 269-279.

826 Stålhandske, P. (2002). Nuptial gifts of male spiders function as sensory traps. *Proceedings of*
827 *the Royal Society of London B*, 269, 905-908.

828 Subramaniam, M. & Subramoniam, T. (1990). Mating behavior and spermatophore transfer in
829 *Gryllodes sigillatus* (Walker) (Orthoptera: Gryllidae). *Mitteilungen aus dem Zoologischen*
830 *Museum in Berlin*, 66, 65-71.

831 Thornhill, R. (1976). Sexual selection and nuptial feeding behavior in *Bittacus apicalis* (Insecta:
832 Mecoptera). *American Naturalist*, 110, 529-548.

833 Thornhill, R. (1983). Cryptic female choice and its implications in the scorpionfly *Harpobittacus*
834 *nigriceps*. *American Naturalist*, 122, 765-788.

835 Vahed, K. (1998). The function of nuptial feeding in insects: a review of empirical studies.
836 *Biological Reviews*, 73, 43-78.

837 Vahed, K. (2007a). All that glisters is not gold: sensory bias, sexual conflict and nuptial feeding in
838 insects and spiders. *Ethology*, 113, 105–127.

839 Vahed, K. (2007b). Comparative evidence for a cost to males of manipulating females in
840 bushcrickets. *Behavioral Ecology*, 18, 499–506.

841 Warwick, S. (1999). Nutritional regulation and spermatophylax donation in the mating system
842 of *Gryllodes sigillatus* (Orthoptera: Gryllidae). Doctor of Philosophy thesis, University of
843 Oxford, U.K.

844 Warwick, S., Vahed, K., Raubenheimer, D. & Simpson, S.J. (2009). Free amino acids as
845 phagostimulants in cricket nuptial gifts: support for the 'Candymaker' hypothesis.
846 *Biology Letters*, 5, 194-196.

847 Weddle, C.B., Steiger, S., Hamaker, C.G., Mitchell, C., Sakaluk, S.K. & Hunt, J. (2013). Cuticular
848 hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially
849 universal mechanism facilitating polyandry in insects. *Ecology Letters*, 16, 346-353.

850 Wickler, W. (1985). Stepfathers in insects and their pseudo-parental investment. *Zeitschrift für
851 Tierpsychologie*, 69, 72-78.

852 Wilkinson, G.S., Breden, F., Mank, J.E., Ritchie, M.G., Higginson, A.D., Radwan, J., et al. (2015).
853 The locus of sexual selection: moving sexual selection studies into the post-genomics
854 era. *Journal of Evolutionary Biology*, 28, 739-755.

855 Will, M.W. & Sakaluk, S.K. (1994). Courtship feeding in decorated crickets: is the
856 spermatophylax a sham? *Animal Behaviour*, 48, 1309-1315.

857 Wolfner, M.F. (1997). Tokens of love: functions and regulation of *Drosophila* male accessory
858 gland products. *Insect Biochemistry and Molecular Biology*, 27, 179-192.

859 Wolfner, M.F. (2002). The gifts that keep on giving: physiological functions and evolutionary
860 dynamics of male seminal proteins in *Drosophila*. *Heredity*, 88, 85–93.

861 Zhang, J., Iwai, S., Tsugehara, T. & Takeda, M. (2006). MbIDGF, a novel member of the imaginal
862 disc growth factor family in *Mamestra brassicae*, stimulates cell proliferation in two
863 lepidopteran cell lines without insulin. *Insect Biochemistry and Molecular Biology*, 36,
864 536–46.

865 Zuk, M. & Simmons, L.W. (1997). Reproductive strategies of the crickets. (Orthoptera:
866 Gryllidae). In J.C. Choe & B.J. Crespi (Eds.), *The evolution of mating systems in insects
867 and arachnids* (pp. 89-109). Cambridge: Cambridge University Press.

868

Table 1. Identification of 22 free amino acids contained in the spermatophylax of *Gryllodes sigillatus* and their relative contribution, expressed as the mean percentage (\pm SE) of the total abundance of all compounds. *Excerpted from Gershman, S.N., Mitchell C., Sakaluk, S.K. & Hunt, J. (2012). Biting off more than you can chew: sexual selection on the free amino acid composition of the spermatophylax in decorated crickets. Proceedings of the Royal Society B, 279, 2531-2538.*

Amino acid	Abbrev	Mean % (\pm SE)
Alanine	ALA	15.00 \pm 0.20
Asparagine	ASN	0.45 \pm 0.01
Aspartic acid	ASP	1.27 \pm 0.02
Glutamic acid	GLU	7.71 \pm 0.14
Glutamine	GLN	4.49 \pm 0.12
Glycine	GLY	33.98 \pm 0.28
Glycyl-proline	GPR	0.02 \pm 0.00
Histidine	HIS	1.43 \pm 0.05
4-Hydroxyproline	HYP	0.10 \pm 0.01
Isoleucine	ILE	0.43 \pm 0.01
Leucine	LEU	0.41 \pm 0.01
Lysine	LYS	0.96 \pm 0.02
Methionine	MET	0.10 \pm 0.00
Ornithine	ORN	0.12 \pm 0.02
Phenylalanine	PHE	0.14 \pm 0.00
Proline	PRO	26.88 \pm 0.28
Serine	SER	4.17 \pm 0.07
Threonine	THR	0.83 \pm 0.02
Tryptophan	TRP	0.02 \pm 0.00
Tyrosine	TYR	0.09 \pm 0.00
Valine	VAL	1.34 \pm 0.17
α -aminobutyric acid	AAA	0.07 \pm 0.01

FIGURE LEGENDS

Figure 1 Mating sequence in decorated crickets, *Gryllodes sigillatus*. (A) Male stridulating to attract sexually receptive females. (B) Copulation. The female is mounted dorsally on the male, and the spermatophore that he transfers to her can be seen extruding from his spermatophoric pouch. (C) Immediately upon dismounting the male, the female reaches back to detach the spermatophylax (the translucent portion of the spermatophore) from the sperm-containing ampulla. (D) Female feeding on the spermatophylax (nuptial food gift) while sperm are evacuated from the sperm ampulla (the small white ball attached at to her genital opening). All photos by David Funk.

Figure 2 (A) The time after mating at which the female removes the sperm ampulla as a function of the time it takes her to fully consume the spermatophylax. *Redrawn from Sakaluk, S.K. (1984). Male crickets feed females to ensure complete sperm transfer. Science, 223, 609-610.* (B) The time after mating at which the female removes the sperm ampulla as a function of the time at which she discards the spermatophylax. The red line in each panel denotes the amount of time required for the ampulla to be completely emptied of sperm based on sperm trajectory studies. Points below the red line in each panel represent males that did not transfer their full complement of sperm because their ampulla was prematurely removed. The inset shows a sample of *G. sigillatus* sperm stained with Hoechst 33528, a DNA-specific stain, and visualized using fluorescence microscopy (Sakaluk & O'Day, 1984).

Figure 3 The effect of the number of sperm transferred by competing males on the paternity of offspring produced by doubly mated female *G. sigillatus*. As the proportion of sperm transferred by the second male increases, so too does the proportion of offspring sired by the second male. *Redrawn from Sakaluk, S.K. & Eggert, A.-K. (1996). Female control of sperm transfer and intraspecific variation in sperm precedence: antecedents to the evolution of a courtship food gift. Evolution, 50, 694-703.*

Figure 4 Contour-map visualization of the two major axes of nonlinear selection (m1 and m3) operating on the amino acid composition of the spermatophylax produced by *Gryllodes sigillatus*. Scale on the right shows fitness values associated with regions of different color; regions of more intense red represent spermatophylaxes more likely to be consumed, whereas blue regions represent spermatophylaxes more likely to be discarded. The amino acid profile of the actual spermatophylaxes of individual males are mapped onto the selection surface (open circles). *Redrawn from Gershman, S.N., Mitchell C., Sakaluk, S.K. & Hunt, J. (2012). Biting off more than you can chew: sexual selection on the free amino acid composition of the spermatophylax in decorated crickets. Proceedings of the Royal Society B, 279, 2531-2538.*

Figure 5 Proportion of females remaining unmated as a function of whether they consumed a spermatophylax. Females *Acheta domesticus* that consumed a spermatophylax of a male *G. sigillatus* after an initial mating took significantly longer to remate compared to control females ($P = 0.029$), whereas spermatophylax consumption had no influence on the latency to remating in female *G. sigillatus* ($P = 0.83$). *Redrawn from Sakaluk, S.K., Avery, R.L. & Weddle, C.B. (2006).*

Cryptic sexual conflict in gift-giving insects: chasing the chase-away. American Naturalist, 167, 94-104.

Figure 6 Separation of proteins from the spermatophylax of male *G. sigillatus*. Proteins were separated by anion exchange chromatography. Positively identified proteins are labelled SPX1 to SPX15. *From Pauchet, Y., Wielsch, N., Wilkinson, P.A., Sakaluk, S.K., Svatoš, A., ffrench-Constant, R.H., et al. (2015). What's in the gift? Towards a molecular dissection of nuptial feeding in a cricket. PLoS ONE, 10, e0140191.*

Figure 7 Smear plots showing differential gene expression in the (A) head and (B) gut of female *G. sigillatus* that were fed a spermatophylax or not. logCPM is the log2 value of read counts per million, and logFC is the log fold-change, the log difference between groups. Gray points represent non-significant transcripts, whereas red points are transcripts that are significantly differentially expressed between fed and unfed females (adjusted P value <0.1). Red points at the top of each panel show much higher expression in females consuming a spermatophylax than females that did not, and vice versa for points at the bottom of each panel. *Data from unpublished study by Hunt, J., Sharma, M.D., Rapkin, J., ffrench-Constant, R.H. & Sakaluk, S.K.*

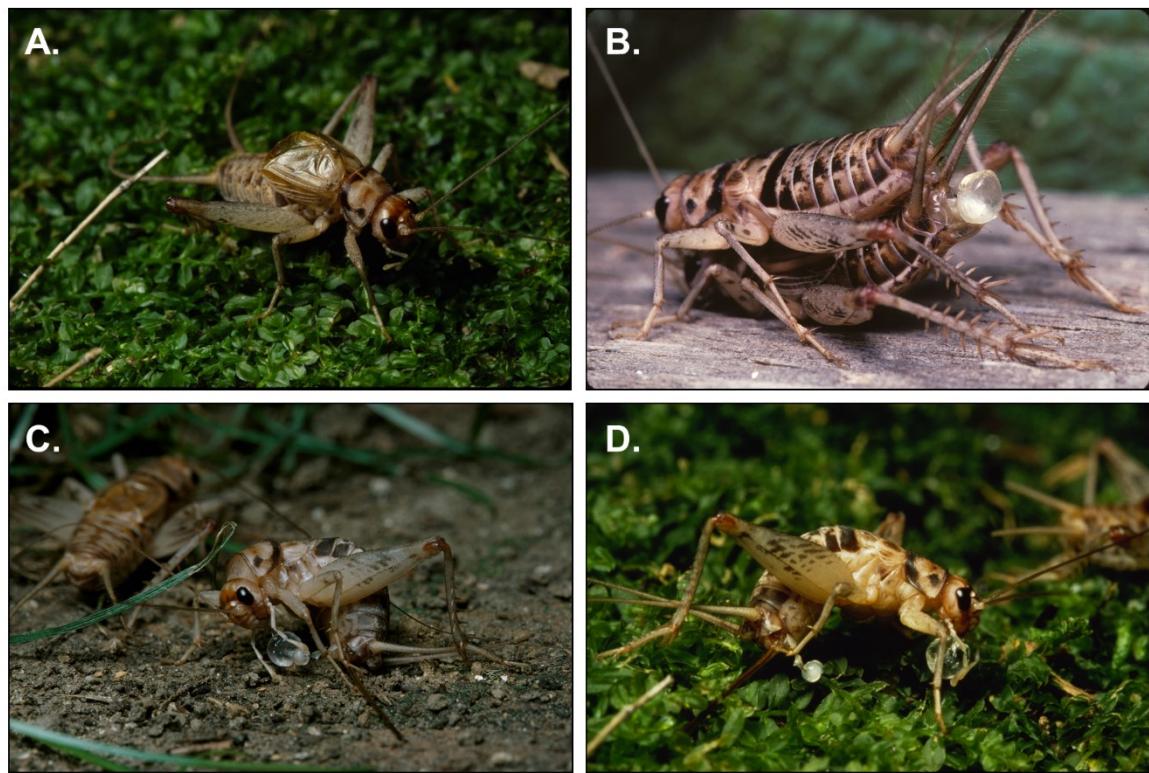


Figure 1. Sakaluk et al.

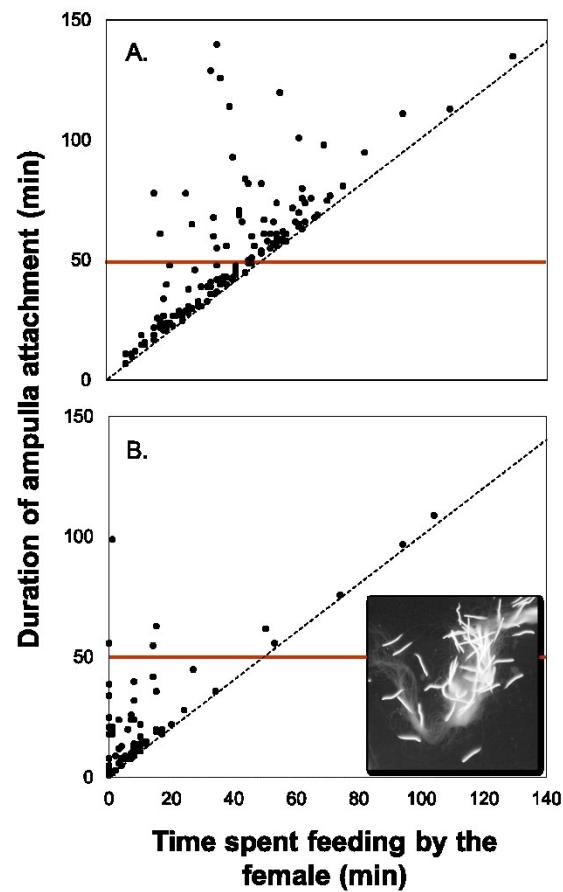


Figure 2. Sakaluk et al.

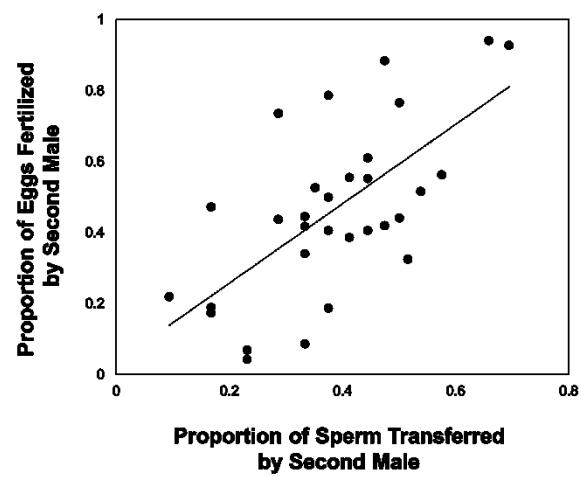


Figure 3. Sakaluk et al.

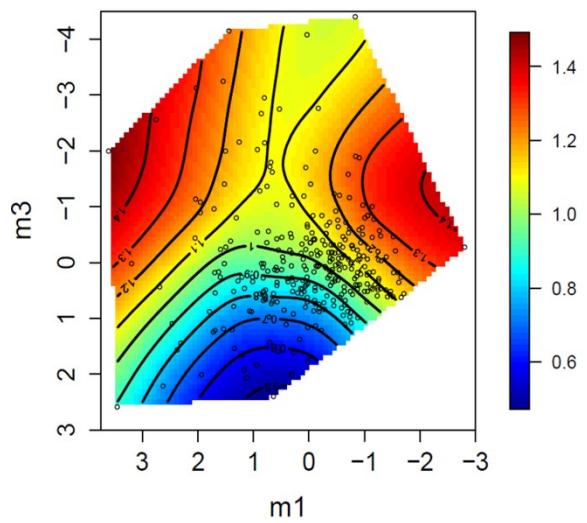


Figure 4. Sakaluk et al.

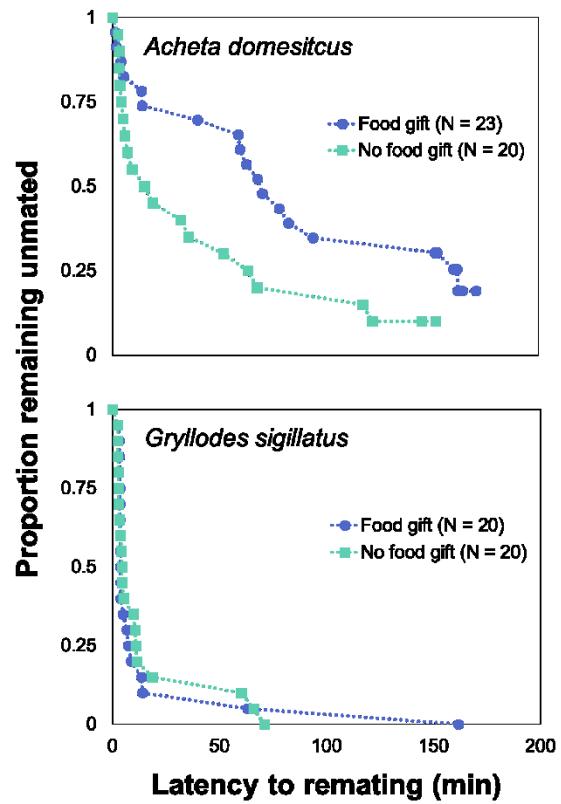


Figure 5. Sakaluk et al.

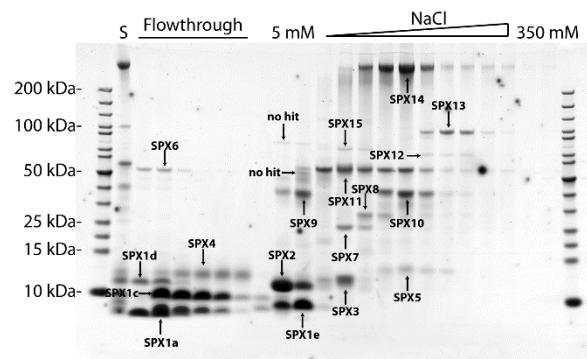


Figure 6. Sakaluk et al.

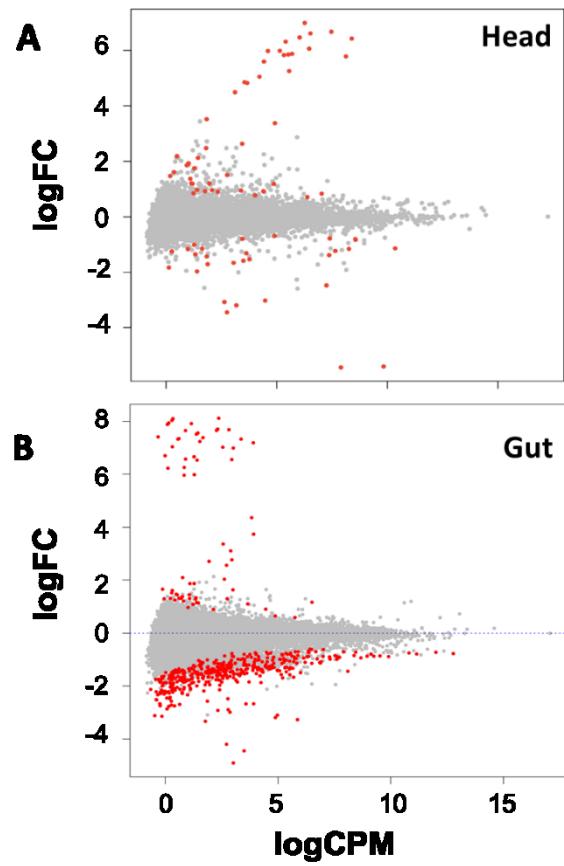


Figure 7. Sakaluk et al.