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The polarization modulation effect of the gate dielectric on the performance of metal-oxide-
semiconductor field-effect transistors has been investigated for more than a decade. However, there are
no comparable studies in the area of organic field-effect transistors (FETSs) using polymer ferroelectric
dielectrics, where the effect of polarization rotation by 90° is examined on the FET characteristics. We
demonstrate the effect of polarization rotation in a relaxor ferroelectric dielectric, poly(vinylidene fluoride
trifluorethylene) (PVDF-TrFE), on the performance of small-molecule-based organic FETs. The sub-
threshold swing and other transistor parameters in organic FETs can be controlled in a reversible fashion
by switching the polarization direction in the PVDF-TrFE layer. X-ray diffraction and electron microscopy
images from PVDF-TrFE reveal changes in the ferroelectric phase and domain size, respectively, upon
rotating the external electric field by 90°. The structural changes corroborate density-functional-theoretical
studies of an oligomer of the ferroelectric molecule in the presence of an applied electric field. The strate-
gies enumerated here for polarization orientation of the polymer ferroelectric dielectric are applicable for

a wide range of polymeric and organic transistors.
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I. INTRODUCTION

Organic ferroelectrics are playing an increasingly
important role in flexible memory devices, actuators,
transducers, and wearable electronics [1—3]. In addition
to nonvolatile memory devices [4—0], poly(vinylidene
fluoride)- (PVDEF-) based ferroelectric polymer and its
copolymers have been used for pressure sensing [7,8] and
organic photovoltaic devices [9]. The vast range of work
has utilized PVDF and its copolymers as a gate dielectric in
organic field-effect transistors (FETs) [10—13]. Electronic
polarization effects, which may be either short- or long-
range lattice fluctuations, play an inherent role in FET
transport. The dynamic coupling of the charge carriers to
the electronic polarization at the semiconductor-dielectric
interface is manifested as Frohlich polarons when the
gate dielectric is sufficiently polar [14,15]. Interactions at
the interface result in a renormalization of the transfer
integral for the transport process, altering carrier mobili-
ties. Inhomogeneous strain at the semiconductor-dielectric
interface due to mismatch between the coefficient of ther-
mal expansion has been further seen to dictate the hopping

nature versus bandlike transport in organic FETs [16].
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A juxtaposition of ferroelectric polymers and ferroelec-
tric oxides shows metal-oxide-semiconductor field-effect
transistors (MOSFETs) have greatly benefited from the
intrinsic spontaneous electric polarization of ferroelectric
oxides. Polarization modulation in ferroelectric oxides has
enabled fast switching and low-power operation in MOS-
FETs [17,18]. The spontaneous electric polarization of
ferroelectric oxides not only controls the channel conduc-
tance but may be further reoriented by the application of an
external electric field [19,20]. Although the polarization-
distribution effect of the ferroelectric oxide on the channel
current-gate voltage has been considered in MOSFETs
[21,22], there are no such parallel studies on polymer fer-
roelectric FETs, especially where the effect of rotating the
polarization direction by 90° on FET performance has been
examined. As stated earlier, there are several works that
have utilized polymer ferroelectrics in organic FETs for
elucidating basic charge-transport properties or in memory
applications. The list is exhaustive and we only cite a few
representative works here.

The discovery of the piezoelectric effect in PVDF dates
back to the pioneering work by Kawai [23]. Much of
the structural and ferroelectric properties of PVDF and its
copolymers with trifluorethylene (TrFE) were determined
in the early 1980s [24-26]. PVDF is a relaxor ferroelectric
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with dipolar domains embedded in an amorphous matrix.
PVDF exists at least in four different phases: «, 8, v,
and §, of which the o and S phases are the most pre-
dominant [26]. The « belongs to the paraelectric phase
with a conformation of trans-gauche (TG+TG—) and 8
PVDF is the all-trans configuration (TTTT) in which the
bonds on each successive carbon are 180° away from the
previous ones, as shown in Fig. 1(a). The ferroelectric
properties of 8 PVDF arise from the differing electroneg-
ativity of hydrogen and fluorine, giving rise to a dipole
for each molecule oriented perpendicular to the polymer
chain. PVDF films are not ferroelectric upon spincasting;
they require additional measures such as stretching of the
polymer or controlled heating of the film to ensure the
all-trans configuration [27]. The advantage of the copoly-
mer, PVDF-TrFE, is that it is ferroelectric after directly
processing the film. The ferroelectricity in the copolymer
arises from a balance of short-range van der Waals inter-
action due to the alignment of molecular dipoles and the
long-range dipole-dipole interactions between the chains.
Unlike MOSFETs, which operate in the inversion
region, organic FETs typically work in the accumula-
tion mode, where charges are injected by the source and
drain contacts and the channel region is formed at the
interface of the organic semiconductor and the dielectric
layer. Over the last decade, the field of organic FETs has
seen an increasing usage in polymer dielectric materials
and a progressively lower dependence on traditional oxide
dielectrics [28], which has resulted in a quest for gate
dielectrics that are hydrophobic and free from charge-
trapping groups. PVDF-based dielectrics have provided a
tuning knob to monitor transport in FETs as the dielectric
constant k changes with temperature [29,30]. In PVDF-
TrFE, k increases by almost a factor of 5 from 200 K
till its ferroelectric-paraelectric transition temperature at
390 K. Since the electronic polarization directly impacts
FET transport properties, temperature-dependent transport
from PVDF-TrFE-based organic FETs shed light on the
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PVDF-TrFE-Au capacitors at 1
kHz. (c),(d) Schematic of vertical
and lateral poling of PVDF-TrFE,
respectively. Arrows denote the
polarization direction in the crys-
talline phases of the ferroelectric
slab after poling.
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mechanism of polarization fluctuation driven transport in
polymeric and small-molecule-based organic FETs [29—
31]. Time-resolved optical second-harmonic-generation
techniques and modulation spectroscopy such as charge
modulation reflectance from PVDF-based organic FETs
have allowed the visualization of electric fields in the
semiconducting layer [32,33]. There have been some stud-
ies on improving switching speeds and carrier mobilities
in PVDF-TrFE-based polymeric FETs by electric field-
induced modification of the ferroelectric dielectric layer
[34,35].

A recent theoretical work shows the effect of polar-
ization rotation on the performance of MOSFETs using
BaTiO; as the gate insulator [36]. Polarization rotation
changes the surface potential of the silicon substrate,
resulting in a subthreshold swing (SS) lower than 60
mV/decade by a judicious choice of the thickness of
the gate dielectric layer. It is seen that polarization rota-
tion (from out-of-plane to in-plane) offers significant
advantages over polarization inversion in the BaTiO;
layer. Spontaneous polarization during the reorientation
increases the screening charge accumulation in the MOS-
FET channel, resulting in low SS. Although the SS of FETs
based on polycrystalline organic films have now paralleled
those of MOSFETs with values close to 90 mV/decade
[37,38], they usually involve a self-assembled monolayer
on high-quality oxide dielectrics such as AlO;. In single-
crystal rubrene FETs, the disorder is significantly reduced
with interface trap densities similar to that in silicon
transistors, and SS values of 65 mV/decade have been
achieved [39]. A question that arises is whether polariza-
tion reorientation in a polymer ferroelectric dielectric is an
effective mechanism for improving SS and other transistor
parameters in organic FETs? Specifically, we are interested
in changes in SS and other FET parameters by rotating the
polarization direction of the dielectric by 90°. Polarization
rotation is different from polarization inversion, which in
principle may be achieved by sweeping the gate from high
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negative to positive voltages in ferroelectric organic FETs.
Such inversion effects have benefits in changing the on-off
ratio for memory application [40].

By using two different organic molecules: Dinaphtho
[2,3-b:2/,3’-f]thieno[3,2-b]thiophene (DNTT) and penta-
cene, and a small-molecule solution processable semicon-
ductor, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-
pentacene) along with as-is and poled PVDF-TrFE as the
gate dielectric, in top-contact bottom-gate FET architec-
tures, carrier transport is investigated. Prior to depositing
the organic semiconductor, the ferroelectric film is either
vertically or horizontally poled by applying an external
electric field while heating the polymer just above its
ferroelectric-paraelectric transition temperature at 130°C,
which is known to increase the degree of crystallinity [41].
The presence of additional lateral electrodes with verti-
cally poled FETs facilitates the application of a lateral
electric field, which helps monitor transistor properties
as a function of reorientation of the polarization direc-
tion by 90° in the dielectric medium. Since we investi-
gate p-type transport, the poling direction is appropriately
chosen. The FETs with the vertically poled PVDF-TrFE
film perform the best with the lowest value of SS. As
a lateral electric field is applied to the vertically poled
FETs, the transistor characteristics are seen to degrade.
The phenomenon is reversible; by applying a lateral field
in the opposite direction, the transistor properties recover.
The FETs operate at lower voltages compared to the
coercive voltage of the PVDF-TrFE layer, ensuring that
the changes observed in the FET properties arise from
external poling conditions. The poling field controls the
microstructure of PVDF-TrFE, which is inferred from x-
ray diffraction (XRD) and electron microscopy images.
Density-functional-theory (DFT) studies from a monomer
unit embedded in a dielectric medium under the applica-
tion of both vertical and horizontal electric fields shed light
on the changes in the net dipole moment and structure
(deviation from the all-frans phase) of the molecule. This
study highlights new design principles for organic FETs
in lowering SS and enhancing transport properties by ori-
enting the polarization direction by 90° in the ferroelectric
dielectric layer.

II. EXPERIMENTAL DETAILS
A. Materials

The materials used are as follows: organic semi-
conductors dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene
(DNTT) and 6,13-bis(triisopropylsilylethynyl)pentacene
(TIPS pentacene) are procured from Sigma Aldrich Inc,
and pentacene is procured from Tokyo Chemical Industry.
All semiconductors are used without any purification. The
dielectric copolymer, poly(vinylidene fluoride trifluorethy-
lene (PVDF-TrFE) (75:25) is obtained from Measurement
Specialties Inc. The solvent N,N-dimethylformamide is

procured from Sigma Aldrich. Glass substrates and Si**
wafers are obtained from Fisher Scientific.

B. Poling of PYDF-TrFE films and device fabrication

60 nm aluminum film is deposited on clean glass
substrates via thermal evaporation for the bottom elec-
trode. PVDF-TrFE is dissolved in the solvent N,
N-dimethylformamide (50 mg/ml) (DMF). This dielectric
solution is then spin casted on top of the Al-coated glass at
a spin speed of 1600 rpm for 60 sec and heated at 70°C for
10 minutes to remove the solvent residue. The PVDF-TrFE
films are then annealed at 135°C for half an hour for further
enhancement of the 8 phase of the copolymer. PVDF-TrFE
films are vertically poled by applying an electric field of
~100 MV/m during the crystallization process. A tempo-
rary electrode is prepared by depositing 300 nm of Al on
a glass slide. Electrical contacts are made and the slide is
placed (with the Al strip facing down) on top of the PVDF-
TrFE film, as shown in Fig. 1(c). A 50-g weight is added
on top to ensure a uniform contact of the top electrode with
the ferroelectric surface. The field is applied between the
temporary top electrode and the bottom Al electrode. The
field is on while the film is allowed to slow cool for half an
hour. Two aluminum strips, 2.0 mm apart, are deposited
on a few films by the shadow mask method as lateral
poling electrodes. We note that the lateral electrodes are
deposited on top of the PVDF-TrFE film whereas the gate
electrode is placed under the dielectric layer. Additionally,
there is no overlap between the top lateral electrodes and
the gate electrode (as shown in Fig. 1(d) and Fig. S1 [42]).
During lateral poling, the voltage is only applied to the
lateral electrodes. Hence, the electric field should be uni-
form during lateral poling. About 0.1 MV/m lateral field
is applied to these films for 15 minutes at 135°C. Lateral
poling electrodes are also deposited on vertically poled
films to access lateral poling during the device charac-
terization. For metal-insulator-metal (M-I-M) capacitors,
unpoled, vertically poled, and laterally poled PVDF-TrFE
films on Al-coated glass are followed by 60 nm aluminum
or gold through a shadow mask to complete the MIM
structure.

Unpoled, vertically poled, and laterally poled PVDF-
TrFE films on Al-coated glass are followed by 30 nm
thermally deposited DNTT (0.3 A/s, 105 mbar). Finally,
50 nm source and drain gold electrodes are deposited
through a shadow mask. These masks also allow the
evaporation of Au in small circular regions for metal-
insulator-semiconductor (M-/-S) structures. Similar FETs
are fabricated by evaporation of pentacene. The dielectric
film thicknesses are inferred from capacitance measure-
ments of MIM devices and are further confirmed with a
reflectometer and a profilometer. TIPS pentacene FETs
are also fabricated by drop casting a solution of TIPS
pentacene (in anhydrous toluene) on PVDF-TrFE films

014011-3



A.LAUDARI et al.

PHYS. REV. APPLIED 10, 014011 (2018)

(vertically poled and unpoled), as outlined in Ref. [31],
before depositing the top source and drain Au electrodes.
For XRD and SEM measurements, the PVDF-TrFE films
are prepared in a similar fashion as in MIM and FETs,
except the thickness is higher (~800 nm), and the films
are grown on Si’* substrates for XRD.

C. Characterization

The capacitance measurements from MIM and MIS
structures are carried out with an HP 4284 A precision LCR
meter. During the measurements, a dc voltage is applied to
the capacitor with a small ac-voltage signal superimposed
upon the dc signal. Capacitance is recorded as the dc bias
is swept. The magnitude of the ac signal is 200 mV and
the frequency of the signal is 5 kHz for all measurements.
The dc signal is swept from both positive to negative bias
and vice versa. Variation of capacitance with frequency
in a range of 10 Hz to 1 MHz is also measured; stable
capacitance with minimum leakage is obtained at 5 kHz.
For the vertically poled film, lateral fields (0.025 MV/m
to 0.1 MV/m) are applied for 15 minutes and the capaci-
tance measurements are repeated after each lateral poling.
Polarization measurements from unpoled MIM structures
are performed at 1 kHz using a Sawyer-Tower circuit.

Room-temperature dc current-voltage (/-7) measure-
ments from FETs are performed using two source meters,
Keithley 2400 and Keithley 236, using a customized Lab-
VIEW program. The effect of lateral fields on vertically
poled films is explored by applying lateral fields (0.025
MV/mto 0.1 MV/m) for 15 minutes and repeating the FET
characterization after each lateral poling.

XRD data are collected using a Rigaku R-Axis IV image
plate (IP) area detector and a Rigaku RU-300 x-ray gener-
ator with Cu K radiation (0.15417 8 nm) from a focusing
multilayer mirror optic. The IP is fixed at a sample-detector
distance of ~75 mm with the plane of the IP oriented per-
pendicular to the direct beam. Unpoled, vertically poled,
laterally poled, and blank silicon samples are all measured
at an incident angle of 4.5° with respect to the plane of the
substrate. Two-dimensional powder diffraction rings mea-
sured on the IP are integrated azimuthally in order to obtain
a one-dimensional intensity profile. Samples are exposed
to x rays for 8 minutes using the same generator power (35
kV, 80 mA).

Low-voltage secondary-electron micrographs of the film
surface morphology are collected with a Zeiss Auriga
field-emission gun-scanning electron microscope (FEG
SEM) at an accelerating voltage of 1 keV. The thin films
remained uncoated, with the surfaces cleaned in the micro-
scope chamber using a nonreactive nitrogen plasma (XEI
Scientific Evactron decontaminator) for 10 minutes. This
ensured effective removal of hydrocarbon contamination
on the thin-film surface and minimal radiation damage
during analysis.

D. Theory

DFT calculations are performed using GAUSSIAN09 [43].
We employ the Becke’s three-parameter hybrid (B3LYP)
functional combined with the 6-311++g (2d,p) basis set for
geometry optimization and obtaining the dipole moment.
One unit of the PVDF-TrFE (3:1) molecule is optimized
in the presence of DMF solvent (with no external field).
The optimized molecule is further optimized with varying
applied electric fields in the solvent environment. First, an
electric field is applied perpendicular to the chain axis of
the molecule, which is increased in certain increments; the
molecule is optimized at each field, using the configura-
tion of the prior step. After applying the maximum vertical
electric field (without destroying the molecule), a lateral
field along the axis of the molecule is applied. This field is
again varied and the molecule is optimized at each step. A
few cases of reversing the direction of the lateral field are
also studied.

III. RESULTS AND DISCUSSIONS

A. Polarization of PVDF-TrFE

The 75:25 PVDF-TrFE used in this work ensures >50%
crystallinity. Unlike ferroelectric oxides such as BaTiOs,
which have a relatively large spontaneous polarization
(~0.26 C/m?), the spontaneous polarization in PVDF and
its copolymers are ~0.05 C/m? for 50% crystalline sam-
ples [44]. Additionally, high fields (> 10° V/cm) are
needed to reverse the polarization at room temperature;
only a partial reversal may occur at lower electric fields
[45]. Figure 1(b) shows typical polarization versus voltage
loops from a metal-PVDF-TrFE—metal capacitor. These
measurements are from a 120-nm thick dielectric layer,
similar to the thickness used in FETs. Such PVDF-TrFE
film thicknesses in organic FETSs result in operating volt-
ages of 2 V. The low operating voltage in FET architectures
implies that a reversal or rotation of polarization in the
dielectric medium does not occur during the normal oper-
ation of the FET. Hence, external poling provides an
independent tool to orient and reorient the polarization
direction in the dielectric medium by 90°, and allows the
subsequent FET properties to be tracked.

Figures 1(c) and 1(d) show the strategies for orienting
the polarization direction. Vertical poling is achieved as
explained in Sec. II B. For lateral poling, two sets of Al
electrodes, which are 2.0 mm apart, are evaporated. In such
structures, the electric field during poling is three orders
of magnitude smaller than in vertical poling. For some
samples that are vertically poled, the lateral electrodes are
evaporated for applying a lateral field in the FET architec-
ture itself. Fig. S1 of the Supplemental Material [42] shows
a schematic and an image of the FETs used in this work.
Poling is achieved such that the net polarization [indicated
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by the blue arrow in Figs. 1(c) and 1(d)] within the dielec-
tric layer is parallel to the gate field and the source-drain
field for vertical-(V) and lateral-(L) poled PVDF-TrFE
films, respectively. Since p-type transport is probed, the
gate field in the FET is directed vertically downwards.

B. Small-molecule FETs with poled and unpoled
PVDF-TrFE

DNTT, a small-molecule organic semiconductor, is a
highly m-extended heteroarene with six fused aromatic
rings [chemical structure is shown in Fig. 2(a)]. It has good
air stability and demonstrates high FET charge-carrier
mobility ~2 ¢cm?/V s when AlO, with a self-assembled
monolayer is used as the dielectric layer [46]. DNTT FETs
are prepared on three different substrates with unpoled,
V-poled, and L-poled PVDF-TrFE films. The film thick-
ness of the dielectric and the semiconducting layer are
identical for all three substrates. The output characteristics
of the DNTT FETs with V-poled, unpoled, and L-poled
PVDF-TrFE are shown in Fig. S2 [42]. The transfer char-
acteristics of the three samples are shown in Fig. 2(b).
These are all swept in the saturation region where the
drain-source voltage (Vps) is maintained at —2 V, and
the gate voltage (Vgs) is varied. Device parameters such
as carrier mobility, 1, on-off current ratio, and threshold
(Vi) are estimated using the standard saturation regime
current-voltage characteristics: Ips = (WWCp/2L)(Vgs —
Via)?, Ips being the drain-source current, Cy is the dielec-
tric capacitance per unit area, and W and L correspond to

20 15 10 -05 00

Vs (V)

the channel width and length, respectively. By a linear fit to
the saturation region of the square root of Ipg versus Vs,
u is deduced. L varied between 50 and 125 um for the
FETs. The double linear plots of the transfer characteristics
(saturation and linear region) for V-poled DNTT FET are
shown in Fig. S4 with details on how u is extracted. More
than the changes in u, the subthreshold swing and other
FET parameters, as discussed below, vary with the poling
condition; hence, we quote only the saturation mobilities.
A recent work by Choi et al. [47] defines the reliability fac-
tor 7 for extracting carrier mobilities both in the saturation
and linear regions of the transfer characteristics. The » fac-
tor is defined based on the ideal Shockley FET equations
with Vy, = 0. Based on this definition, the r factor for 1ty
(V-poled FET) is found to be ~47%. We point out that for
ferroelectric dielectrics the value of Vy, can greatly vary,
from being positive to negative, as discussed later. Hence,
one cannot expect an ideal 7 factor of ~100%.

The SS, which is expressed as {[d log(Ips)]/dVss) ™!,
varies for the three FETs. Using the subthreshold region
(Vi < Vs < Von), SS is obtained. A representative linear
fit (black line) for the V-poled device is shown in Fig. 2(b).
We note that this fit just represents the subthreshold region
used for obtaining SS; the carrier mobilities are obtained
as outlined above. It may be more appropriate to compare
the normalized equivalent of SS by taking into account the
capacitance of the insulator (SS; = SS x Cp), as defined
for single-crystal FETs [48]. The FET parameters includ-
ing SS; are tabulated in Table I. Several devices are tested.
The FET with the V-poled PVDF-TrFE films shows the
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TABLE 1.

Electrical parameters for DNTT and pentacene-based PVDF-TrFE FETs for different poling conditions of the

dielectric. SS is the subthreshold swing and the normalized SS is defined in the text.

Semiconductor  Dielectric poling condition SS (mV/dec) Normalized SS (nF V/dec cm?) Mobility (1073 cm?/Vs)

DNTT V-poled 403+5 37 11.34£0.2
Unpoled 1000 £ 8 62 6.0£0.1
L-poled 1700+ 11 105 5.0+£0.1

Pentacene V-poled 600 +4 55 2.94+0.1
Unpoled 1100 £7 68 1.6£0.2
L-poled 1140+9 71 1.5£0.1

lowest value of SS (and SS;), and the highest value of .
The L-poled FET performs worse than the unpoled device,
which is an indication that there is some orientation of
the dipoles in the vertical direction in unpoled PVDF-
TrFE films. The contact resistance is obtained using the
transmission-line method [49-51], and is similar for the
three sets of FETs (see [42] for details).

Pentacene FETs with V-poled, unpoled, and L-poled
PVDF-TrFE are also fabricated. The transfer curves (in
the saturation region) are shown in Fig. S6 [42], and
their SS, SS;, and u values are tabulated in Table 1. The
device performance trends are identical to DNTT FETs;
the V-poled pentacene FET performs the best with the low-
est value of SS and the highest value of . TIPS-pentacene
FETs are also fabricated with V-poled and unpoled PVDF-
TrFE; one of the lowest values of SS (<200 mV/dec) is
observed for V-poled PVDF-TrFE TIPS-pentacene FET
(Fig. S7) [42].

The general trend is that V-poled PVDF-TrFE FETs
show the lowest off current with improved SS. An
improvement in carrier mobility is also observed for
all V-poled devices. Since the direction of polarization
(P) in V-poled PVDF-TrFE film is in the same direc-
tion as the gate electric field, it enhances the screen-
ing charge accumulation in the channel region improving
transport, resulting in a lower value of SS. Concomitantly,
the accumulation capacitance in a MIS diode is seen to
increase for the V-poled film. Capacitance-voltage (C-V)
sweeps from DNTT and pentacene MIS structures (with

TABLE II.

unpoled and V-poled PVDF-TrFE films) are shown in
Figs. S3 and S6 [42]. In both cases, the capacitance in
the accumulation region is higher when the PVDF-TrFE
film is V-poled compared to the unpoled case. The change
in capacitance is also seen in MIM structures with dif-
ferent poling conditions of the insulator, as discussed
later.

A question that arises is whether the FET properties
are tunable by changing the polarization direction of the
dielectric medium. The V-poled FETs are incorporated
with lateral electrodes (at a separation of ~2 mm). The
lateral electric field is applied for 15 minutes and its mag-
nitude is in the range of 10°~10° V/m. Figure 2(c) shows
the transfer curves measured after the application of a lat-
eral electric field (with varying magnitude) to the V-poled
sample. The direction of P (with the lateral field) is in
the same direction of the source-drain electric field (Epg).
As the vertical polarization is reoriented in the horizontal
direction, it results in degradation of the FET properties,
which is seen in the transfer curves. The tabulated values
of SS and p are shown in Table II. The normalized SS also
show the same trend; hence, we do not explicitly quote the
values here. We note that the DNTT V-poled FETs in Table
I are a different batch compared to the V-poled DNTT FET
shown in Table II. The initial L-poled FET has a larger
SS compared to L-poling a V-poled FET device. Since the
original V-poled film is already crystallized, applying only
a lateral field may not have the same effect as applying a
lateral field during crystallization.

FET parameters for a vertically poled PVDF-TrFE film using DNTT as the organic semiconductor.

Lateral electric field is applied in the direction of Epg, and then the polarity is reversed.

Dielectric poling condition

Subthreshold swing (mV/dec) Threshold voltage (V)

Mobility (1073 cm?/V's)

Vertical 530+2
Lateral (—50 V) 580+3
Lateral (—100 V) 650+3
Lateral (—150 V) 66015
Lateral (—200 V) 700+ 7
Polarity reversed

Lateral (100 V) 650+4
Lateral (200 V) 580+3

—0.78 11.00
—0.47 10.00
—0.40 9.40
—0.27 9.20
-0.22 9.00
—0.30 8.30
-0.33 9.40
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Dipole orientation IOg (I[)s)

in PVDF-TrFE ———
[-- > ﬂ

L-poled

Unpoled L-poled
[' ' ' ' ] Unpoled

V-poled V-poled

- Vi, +Vy Vs
FIG. 3. Schematic transfer curves of PVDF-TrFE-based FETs

for different poling conditions. Vi, may be positive or negative.
A slightly positive Vy, for the L-poled FET results in a higher
current at zero gate bias condition (depicted by the circle). The
dipole orientation in PVDF-TrFE with poling conditions are also
shown.

After the FET is L-poled to ~10° V/m (=200 V), the
direction of L-poling is reversed [Fig. 2(d)]. The FET
properties are seen to recover (also shown in Table II).
The L-poling of a V-poled sample, thus, serves as a tun-
ing knob to reorient the polarization by 90°. In order
to gain insight into the interface potential for different
poling conditions, Griinewald’s method [52], which has
been extensively used for estimating the trap density of
states, [53,54] is used. By determining the dependence of
Ips on the electric field due to Vg, the gate-dependent
dielectric-semiconductor interface potential Vo = Vo (Uy)
is determined from:

e G[d Ug ~ ~
= ——|Uy,o(U,) — U,)dU, 1
e luown - [Cowaat).

where e, k, and T are the elementary charge, the Boltzmann
constant, and the absolute temperature, respectively;
U, = |Vgs — Vigl and Vg is the flat-band voltage;
o (Ug) = (L/W)Ups/Vps) is the field-dependent conduc-
tivity, and oy is the conductivity at U, = 0; ¢; and ¢
are the dielectric constants of the insulator and the semi-
conductor. For each gate voltage, Eq. (1) is numerically
evaluated using the measured field-effect conductivity. Vgg
is assumed to be the onset gate voltage of the device. The
interface potential as a function of U, is plotted in Fig. S8
[42] for the V-poled sample and after L-poling it at —50
and —200 V. There is a slight increase in this potential
upon L-poling the device, which agrees with an increase
in SS. By rewriting SS as [0Vgs/dVo][0Ve/0 log(Ips)],
the changes in SS may be attributed to an increase in the

first term. Further, the total hole density, p (V}), is depen-
dent on the interface potential [p (Vy) o (dV)y /dUg)‘l]. In
the example shown in Fig. S8 [42], it is seen that upon
L-poling the V-poled film, the hole density decreases.
This decrease suggests more trapping upon L-poling and
a reduction in the carrier mobility.

We note that the operating voltages of the FETs are well
below the coercive fields; thus no spontaneous polariza-
tion inversion is expected. The differences in the V-poled,
unpoled, and L-poled FETs may be further understood
in terms of Vy,, as shown schematically in Fig. 3. The
L-poled FET has a slightly positive Vy, [Fig. 2(b)]. Hence,
at zero gate voltage there is some current flowing between
the source and drain electrodes, reducing both the on-off
ratio and SS compared to the V-poled or unpoled devices.
Although the effect of L-poling the V-poled device is not as
dramatic as the initial L-poled sample, the trends are sim-
ilar; Vi, becomes less negative with L-poling (Table II).
It is worth pointing out that charge modulation reflectance
measurements from pentacene ferroelectric FETs suggest
a minority carrier injection near the source and drain
electrodes, when the polarization direction is inverted
(positively polarized at the interface) [33].

In addition to the changes in the interface potential
with different poling conditions, one may ask the follow-
ing questions in order to understand the dependence of
the polarization rotation on the FET properties: does the
microstructure of the PVDF-TrFE film change when it is
V- or L-poled? Does the thickness of the dielectric medium
play arole in the polarization reorientation process? Before
looking at the structural changes in PVDF-TrFE upon pol-
ing, we comment on the C-V measurements from MIM
structures. These measurements serve as an independent
tool to understand how the charge accumulation at the
interface may be enhanced by orienting the polarization.

C. Capacitance-voltage characteristics of PVDF-TrFE
MIM capacitors

Figure 4(a) shows the C-V characteristics from
Al-PVDF-TrFE—-Au MIM structures for unpoled, V-poled,
and L-poled films, measured at 5 kHz. All films had simi-
lar dielectric layer thicknesses ~120 nm. As expected from
ferroelectric capacitors, PVDF-TrFE-based MIM capaci-
tors exhibit a hysteresis with butterfly loops due to polar-
ization reversal [55,56]. The C-V hysteresis indicates that
the capacitance changes from an accumulation state to
an inversion state. Clear differences are observed between
the V-poled, and the unpoled and L-poled films. The V-
poled film has the highest value of capacitance; the L-poled
film shows the highest asymmetry in the loop. The polar-
ization switching occurs at the coercive voltage (V,); for
the unpoled film V. ~7 V, similar to what is seen in the
polarization versus voltage loop (Fig. 1). The dissipation
factor, tand, is reasonably low (~0.03) between £15 V
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(a) (c) FIG. 4. Capacitance-voltage

100 —— ool characteristics of PVDF-TrFE
g 90 PvorTIFE € MIM capacitors. (a) Capacitance
é 80t / ._T; sol versus voltage curves for V-poled,
< 70t o L-poled, and unpoled PVDF-TrFE
ceol 5%;70— films. Arrows show the direction
’§50, o 001) = vooe | g _ (120 0m pyoE-TrE of the a}pplied voltage. (b) Cor-
840t o + Looled Seol? ATt responding tand values from the
30L _® Unpoled ] o Uneoled | ‘ ‘ ‘ | * 200V Lpoling ‘ three films. (c) Capacitance versus
-20 '1\90“6]9% W) 1020 -20 '130|ta:e (V)m 20 20 10\,0“688 W) 20 voltage curves after L-poling of a

[Fig. 4(b)]. The C-V measurements are further carried out
from the V-poled MIM capacitor by applying a lateral volt-
age, shown in Fig. 4(c). With an increase in the L-poling
voltage, the overall accumulation capacitance decreases.
These observations corroborate the FET characteristics;
the SS value decreases with an increase in L-poling of the
V-poled device [Fig. 2(b)].

Polarization-rotation studies are further conducted on
thinner PVDF-TrFE (30 nm) DNTT FETs, details of which
are provided in Ref. [42]. Results from the thinner PVDF-
TrFE films confirm two aspects. First, the operating volt-
ages can be further reduced, well below —2 V, improving
the overall transport properties in DNTT FETs. Second,
it confirms that ~120 nm thickness is within the critical
regime where polarization rotation is achievable, similar
to the 30 nm devices.

Irrespective of the organic semiconductor layer, our
results show that the polarization orientation in the poly-
mer ferroelectric layer directly impacts FET performance.
In particular, SS of the FET transfer characteristics may be
lowered by orienting P in a direction parallel to the applied
gate electric field. This agrees well with some of the high-
est switching times that have been observed for polymer
ferroelectric FETs when the interface layer is prebiased
in the perpendicular direction [34]. In order to understand
how the microstructure affects the overall polarization in
the ferroelectric layer, we obtain SEM images and conduct
XRD studies from poled and unpoled PVDF-TrFE films.
To obtain a better signal-to-noise ratio, the sample thick-
ness for the XRD measurements is higher than what is used
in FETs. The PVDF-TrFE films are deposited on Sit+ with
thickness ~800 nm.

D. Structure and morphology of PVDF-TrFE

Figures 5(a)-5(c) show the SEM images from unpoled,
V-poled, and L-poled PVDF-TrFE films. The L-poled
sample is the same one as the V-poled film; a lateral field
of ~10° V/m is applied after obtaining the electron micro-
graphs from the V-poled film. We note that the images are
obtained with a low accelerating voltage of the electron
beam and in situ nitrogen plasma cleaning of the thin-
film surface in order to avoid any radiation damage or

V-poled film.

surface contamination due to residual hydrocarbons. Upon
V-poling, the microstructure is seen to change compared
to the unpoled sample; clear domains >1 um are seen to
form. Upon L-poling the same (V-poled) sample, the large
domains are seen to diminish and the sample morphol-
ogy becomes similar to the unpoled sample. These results
indicate that a much smaller electric field in the lateral
direction compared to the electric field in the vertical direc-
tion affects the microstructure, which most likely changes
the ferroelectric domains.

Figure 5(d) shows the XRD data from unpoled, V-poled,
and L-poled PVDF-TrFE films. In each case, the Si back-
ground is subtracted. The absolute intensities in Fig. 5(d)
for the three samples are comparable as the thicknesses
are similar. The poling condition for the L-poled film is
similar to that used in Fig. 2(b), where the film is heated
along with the application of a lateral field of ~10° V/m.
The V-poled film is further L-poled using the same con-
dition as in FETs. The XRD data from the same film for
these two poling conditions are shown in the inset. The
peak at 260 of ~20° is due to the 200 or 110 reflections,
revealing the B phase structure [57]. The (hkl) indexing
of (001) and (400/220) of the XRD Bragg peaks in Fig.
5(d) is based on the pseudohexagonal nature of the ferro-
electric (FE) phase [58]. The V-poled sample shows the
strongest intensity for the 200 or 110 reflection, suggesting
an enhancement of the overall 8 phase. The L-poled and
unpoled samples are almost identical except for a shoulder
peak at ~19°, which is more pronounced for the L-poled
sample. This shoulder is most likely a signature of the
a and y phases of the paraelectric (PE) phase [59]; the
deconvolution of the spectrum as two Gaussian peaks is
shown in the inset.

The enhanced intensity of the B phase diffraction in
PVDE-TrFE upon V-poling may be understood from pre-
vious XRD measurements in PVDEF. The increase in polar-
ization of a PVDF film (upon poling) originates from
reorientation of the dipoles in the crystalline phase by
an electric field rather than orientation of the dipoles of
the amorphous (PE) phase [60—62]. It is pointed out that
although the B phase unit cell is orthorhombic, it is very
close to being hexagonal [24]. A small distortion of the
primitive hexagonal unit cell is required to yield the g
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FIG. 5. Structure and morphol-
ogy of PVDF-TrFE as a function
of poling. (a)(c) Scanning elec-
tron micrographs from unpoled,
V-poled, and laterally L-poled
films. (d) Grazing-incidence XRD
from unpoled, V-poled, and L-
poled PVDF-TrFE films on Si

substrate. The (hkl) indexing is

CONTINUUM MODEL

based on the ferroelectric phase
as discussed in the text. The inset

shows the XRD from the V-poled
film and after L-poling the same
V-poled film. Deconvolution of
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phase unit cell. A slight change in the peak position of
the 200 or 110 reflection (of the 8 phase) upon V-poling
compared to the unpoled sample in Fig. 5(d) may reflect a
unit cell closer to the 8 phase unit cell. Due to the over-
lapping reflections, it is difficult to predict the exact lattice
constants from our experiments.

Since the sample thickness of PVDF-TrFE for XRD
measurements is about eight times more than those used
in FETs, the polarization changes for the L-poled sam-
ple may even be higher in the FET devices compared
to what is observed in Fig. 5(d). A small change in the
XRD intensity after L-poling the V-poled film (in the
inset) reflects a reorientation of the dipole moment of the
unit cell that affects the g phase. However, this change
is much smaller compared to the L-poled film, which is
poled during recrystallization. Similar to the XRD results,
the FET results show a larger difference in SS for the
PVDF-TrFE film, which is L-poled during recrystalliza-
tion compared to L-poling a V-poled FET (Tables I and
10).

A simple molecular model is used to understand the role
of the electric field on the dipole moment of a PVDF-
TrFE molecule. Although in the crystalline environment,
the mechanism of polarization rotation may be quite differ-
ent, application of external fields to the molecule reveals
changes in the all-frans configuration. As shown in Fig.
5(e), a single unit of the molecule is first optimized in a
solvent bath. Since fluorine is more electronegative than

two peaks at 20 (deg) (B phase)
and at 18° for the paraelectric
phase (PE) are shown for the
laterally poled film. (e) Density-
functional-theoretical calculations
of the structural changes on a
PVDEF-TrFE oligomer enclosed in
a dielectric medium upon the
application of an external elec-
tric field. The color coding of the
atoms is the same as in Fig. 1. Blue
arrows indicate the direction of the
dipole moment.

hydrogen and carbon, the dipole moment points away
from fluorine towards the hydrogen atoms (blue arrow).
Electric fields of different magnitudes are applied in a
perpendicular direction. Since the molecule is embedded in
a solvent, the magnitude of the field in the DFT simulations
is a few orders of magnitude higher compared to exper-
iment. The dipole moment increases from 10 D (at zero
external field) to almost 13 D after applying a maximum
field of 3 x 10° V/m (Table S1 [42]). Applying a lateral
field reorients the dipole moment in the horizontal direc-
tion and results in an overall buckling of the molecule [Fig.
5(e)] with a deviation from the all-trans phase. To mimic
the reversal of the field in FET measurements, we reverse
the direction of the applied lateral field. The molecule
becomes linear but it does not recover to its initial all-trans
phase (for the magnitude of the field shown).

These model calculations serve as a guide to correlate
the changes in FET properties upon V- and L-poling for
different magnitudes of applied fields. Application of a
lateral electric field to the PVDF-TrFE film reorients the
polarization in the horizontal direction such that it dimin-
ishes the screening charge accumulation, increasing SS
and degrading FET properties. The simulations show that
electric fields smaller by an order of magnitude in the
lateral direction compared to the vertical direction can dra-
matically change the dipole moment (Fig. S12 [42]). This
result is similar to our experimental observation where a
lateral field, which is two or three orders of magnitude
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smaller compared to the vertical field, can change SS by
almost 40%.

IV. CONCLUSIONS

This work is a proof-of-concept that FET properties
may be modulated by polarization rotation of the fer-
roelectric dielectric layer. Such an external tuning knob
not only benefits an understanding of charge-transport
mechanisms in a wide range of polymeric and molecular
semiconductor-based devices but also provides new design
architectures for improving FET performance. By employ-
ing low-operating voltage FETs, we independently exploit
the impact of polarization rotation on the FET character-
istics. A caveat for high-operating voltage FETs is that
L-poled FETs may behave like V-poled devices due to
polarization inversion in the dielectric layer by the gate
voltage during normal FET operation.

A strong effect of polarization modulation may be envi-
sioned if the transistor architecture is scaled down by
reducing channel lengths, decreasing the distance between
the lateral electrodes, and by using thin ferroelectric dielec-
tric films. Channel lengths in the tens to hundreds of nm
range and a thin dielectric layer (tens of nm) lowers the
operating voltage of FETs. Such dimensions may allow
poling of the dielectric layer during the normal operation of
the FET, resulting in SS values close to that of MOSFETs.
A small channel length, which may be achieved by nano-
lithography, allows the placement of the lateral electrodes
closer than the mm distances used in this work. The energy
needed for polarization rotation will thus be reduced, and
one may expect larger differences in SS and other FET
transport properties between V-poled and L-poled devices.

In summary, polarization rotation in a relaxor ferro-
electric dielectric, PVDF-TrFE, has a profound effect on
the transport properties of organic FETs. The subthresh-
old swing decreases and the overall FET properties are
enhanced when the ferroelectric layer is vertically poled.
The direction of polarization for the V-poled PVDF-TrFE
film is chosen such that it is in the same direction as the
gate electric field, enhancing charge accumulation in the
channel region. Irrespective of the organic semiconduc-
tor, our results show that polarization orientation in the
polymer ferroelectric layer directly controls SS and other
FET parameters. Orienting and reorienting the polarization
direction serves as a tuning parameter for manipulating SS
and carrier mobilities in organic FETs. L-poling of a V-
poled PVDF-TrFE film shows changes in carrier transport
in FETs as well as reduces the overall capacitance in MIM
structures. SEM images and XRD from poled and unpoled
PVDF-TrFE reveal subtle changes in the microstructure
and overall polarization of the PVDF-TrFE film. DFT cal-
culations of the dipole moment from a molecular unit
embedded in a solvent bath show anisotropy in the pol-
ing direction; a smaller electric field in the lateral direction

(along the backbone of the molecule) compared to the
perpendicular direction results in a large change in the
dipole moment. This study highlights new design prin-
ciples for organic FETs in lowering SS and enhancing
transport properties by orienting the polarization direction
in the ferroelectric dielectric layer.

ACKNOWLEDGMENTS

We acknowledge the support of this work through the
National Science Foundation under Grant No. ECCS-
1707588. P.F.M. and A.R.M. also acknowledge support
from the NSF under Grant No. DGE-1069091. S.G. thanks
the University of Missouri South African Education Pro-
gram for travel funds to the U. Western Cape.

[1] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, Fingertip
skin-inspired microstructured ferroelectric skins discrimi-
nate static/dynamic pressure and temperature stimuli, Sci.
Adv. 1, e1500661 (2015).

[2] Prateek, V. K. Thakur, and R. K. Gupta, Recent progress
on ferroelectric polymer-based nanocomposites for high
energy density capacitors: Synthesis, dielectric properties,
and future aspects, Chem. Rev. 116, 4260 (2016).

[3] S. Horiuchi and Y. Tokura, Organic ferroelectrics, Nat.
Mater. 7, 357 (2008).

[4] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H.
Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and
D. M. De Leeuw, High-performance solution-processed
polymer ferroelectric field-effect transistors, Nat. Mater. 4,
243 (2005).

[5] J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C.
H. Ahn, and T. P. Ma, Ferroelectric field effect transistors
for memory applications, Adv. Mater. 22, 2957 (2010).

[6] S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H-C. Kim, S.
Bauer, E. L. Thomas, and C. Park, Printable ferroelectric
pvdf/pmma blend films with ultralow roughness for low
voltage non-volatile polymer memory, Adv. Funct. Mater.
19, 2812 (2009).

[7] J.-H. Lee, H.-J. Yoon, T. Y. Kim, M. K. Gupta, J. H. Lee,
W. Seung, H. Ryu, and S.-W. Kim, Micropatterned p(vdf-
trfe) film-based piezoelectric nanogenerators for highly
sensitive self-powered pressure sensors, Adv. Funct. Mater.
25,3203 (2015).

[8] M. Zirkl, A. Sawatdee, U. Helbig, M. Krause, G. Scheipl,
E. Kraker, P. A. Ersman, D. Nilsson, D. Platt, P. Bodo,
S. Bauer, G. Domann, and B. Stadlober, An all-printed fer-
roelectric active matrix sensor network based on only five
functional materials forming a touchless control interface,
Adv. Mater. 23, 2069 (2011).

[9] Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme,
A. Gruverman, Y. Yang, and J. Huang, Efficiency enhance-
ment in organic solar cells with ferroelectric polymers, Nat.
Mater. 10, 296 (2011).

[10] R. C. G. Naber, M. Mulder, B. De Boer, P. W. M. Blom,
and D. M. De Leeuw, High charge density and mobility in

014011-10



POLARIZATION MODULATION IN FERROELECTRIC...

PHYS. REV. APPLIED 10, 014011 (2018)

poly(3-hexylthiophene) using a polarizable gate dielectric,
Org. Electron. 7, 132 (2006).

[11] J. J. Brondijk, K. Asadi, P. W. M. Blom, and D. M.
De Leeuw, Physics of organic ferroelectric field-effect
transistors, J. Polym. Sci. Part B Polym. Phys. 50, 47
(2012).

[12] G. Knotts, A. Bhaumik, K. Ghosh, and S. Guha, Enhanced
performance of ferroelectric-based all organic capacitors
and transistors through choice of solvent, Appl. Phys. Lett.
104, 233301 (2014).

[13] C. A. Nguyen, S. G. Mhaisalkar, J. Ma, and P. S.
Lee, Enhanced organic ferroelectric field effect transis-
tor characteristics with strained poly(vinylidene fluoride-
trifluoroethylene) dielectric, Org. Electron. 9, 1087
(2008).

[14] 1. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Ios-
sad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Tunable
Frohlich polarons in organic single-crystal transistors, Nat.
Mater. 5, 982 (2006).

[15] S. J. Konezny, M. N. Bussac, and L. Zuppiroli, Hopping
and trapping mechanisms in organic field-effect transistors,
Phys. Rev. B 81, 045313 (2010).

[16] Y. Mei, P. J. Diemer, M. R. Niazi, R. K. Hallani, K.
Jarolimek, C. S. Day, C. Risko, J. E. Anthony, A. Amassian,
and O. D. Jurchescu, Crossover from band-like to ther-
mally activated charge transport in organic transistors due
to strain-induced traps, Proc. Natl. Acad. Sci. 114, E6739
(2017).

[17] H. Kimura, T. Hanyu, M. Kameyama, Y. Fujimori, T.
Nakamura, and H. Takasu, Complementary ferroelectric-
capacitor logic for low-power logic-in-memory VLSI,
IEEE J. Solid-State Circuits 39, 919 (2004).

[18] S. Sakaiand M. Takahashi, Recent advances in ferroelectric-
gate field-effect-transistor technology, Integr. Ferroelectr.
124, 140 (2011).

[19] S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto,
Ferroelectric field effect transistor based on epitaxial per-
ovskite heterostructures, Science 276, 238 (1997).

[20] H. Fu and R. E. Cohen, Polarization rotation mechanism
for ultrahigh electromechanical response in single-crystal
piezoelectrics, Nature 403, 281 (2000).

[21] V. Nagarajan, A. Roytburd, A. Stanishevsky, S.
Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O.
Auciello, and R. Ramesh, Dynamics of ferroelastic domains
in ferroelectric thin films, Nat. Mater. 2, 43 (2003).

[22] J. Hlinka and P. Marton, Phenomenological model of a 900
domain wall in BaTiOs-type ferroelectrics, Phys. Rev. B
74, 104104 (2000).

[23] H. Kawai, The piezoelectricity of poly (vinylidene fluo-
ride), Jpn. J. Appl. Phys. 8, 975 (1969).

[24] R. G. Kepler and R. A. Anderson, Ferroelectricity
in polyvinylidene fluoride, J. Appl. Phys. 49, 1232
(1978).

[25] A.J. Lovinger, Ferroelectric polymers, Science 220, 1115
(1983).

[26] A.J.Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani,
On the Curie temperature of poly(vinylidene fluoride),
Macromolecules 19, 1491 (1986).

[27] T. Furukawa, Piezoelectricity and pyroelectricity in poly-
mers, [EEE Trans. Electr. Insul. 24, 375 (1989a).

[28] J. Zaumseil and H. Sirringhaus, Electron and ambipolar
transport in organic field-effect transistors, Chem. Rev. 107,
1296 (2007).

[29] S. P. Senanayak, S. Guha, and K. S. Narayan, Polariza-
tion fluctuation dominated electrical transport processes of
polymer-based ferroelectric field effect transistors, Phys.
Rev. B 85, 115311 (2012).

[30] A. Laudari and S. Guha, Polarization-induced transport in
ferroelectric organic field-effect transistors, J. Appl. Phys.
117, 105501 (2015).

[31] A.Laudari and S. Guha, Bandlike Transport in Ferroelectric-
Based Organic Field-Effect Transistors, Phys. Rev. Appl. 6,
044007 (2016).

[32] J. Li, D. Taguchi, W. OuYang, T. Manaka, and M.
Iwamoto, Interaction of interfacial charge and ferroelec-
tric polarization in a pentacene/poly(vinylidene fluoride-
trifluoroethylene) double-layer device, Appl. Phys. Lett. 99,
063302 (2011).

[33] T. Otsuka, D. Taguchi, T. Manaka, and M. Iwamoto,
Direct visualization of polarization reversal of organic fer-
roelectric memory transistor by using charge modulated
reflectance imaging, J. Appl. Phys. 122, 185501 (2017).

[34] S. P. Senanayak and K. S. Narayan, Strategies for fast-
switching in all-polymer field effect transistors, Adv. Funct.
Mater. 24, 3324 (2014).

[35] A. Z. Ashar and K. S. Narayan, Electric field induced
ferroelectric-surface modification for high mobility organic
field effect transistors, Org. Electron. 42, 8 (2017).

[36] Y. Qi and A. M. Rappe, Designing Ferroelectric Field-
Effect Transistors Based on the Polarization-Rotation Effect
for Low Operating Voltage and Fast Switching, Phys. Rev.
Appl. 4, 044014 (2015).

[37] U. Zschieschang, V. P. Bader, and H. Klauk, Below-one-
volt organic thin-film transistors with large on/off current
ratios, Org. Electron. 49, 179 (2017).

[38] U. Zschieschang and H. Klauk, Low-voltage organic
transistors with steep subthreshold slope fabricated on
commercially available paper, Org. Electron. 25, 340
(2015).

[39] B. Bliille, R. Hausermann, and B. Batlogg, Approaching
the Trap-Free Limit in Organic Single-Crystal Field-Effect
Transistors, Phys. Rev. Appl. 1, 034006 (2014).

[40] I. Katsouras, D. Zhao, M.-J. Spijkman, M. Li, P. W. M.
Blom, D. M. de Leeuw, and K. Asadi, Controlling the
on/off current ratio of ferroelectric field-effect transistors,
Sci. Rep. 5, 12094 (2015).

[41] C. Bourgaux-Leonard, J. F. Legrand, A. Renault, and P.
Delzenne, Annealing effects in ferroelectric poly(vinylidene
fluoride-trifluoroethylene) copolymers: real-time studies
using synchrotron radiation, Polymer 32, 597 (1991).

[42] See Supplemental Material at https://link.aps.org/suppl
mental/10.1103/PhysRevApplied.10.014011 for a sche-
matic and image of FET devices; FET output and MIS
characteristics of DNTT-based devices; Transfer charac-
teristics of DNTT FETs in double linear plots; Contact
resistance; Electrical characteristics of pentacene and TIPS-
pentacene FETs; Interfacial potential of DNTT FETs; Typ-
ical FET characteristics of DNTT-based devices with a 30
nm PVDEF-TrFE layer; Capacitance characteristics from 30
nm PVDF-TrFE MIM capacitors; DFT optimization of a

014011-11



A.LAUDARI et al.

PHYS. REV. APPLIED 10, 014011 (2018)

PVDF-TrFE molecule in a solvent atmosphere; Theoreti-
cal structural changes of a PVDF-TrFE molecule after the
application of a lateral electric field; Dipole moment of
a PVDF-TrFE (in a solvent bath) upon application of an
external electric field in the perpendicular direction.

[43] Gaussian09, “Gaussian 09, revision b.01, gaussian, inc.,
wallingford, ct,” Revision B.01, Gaussian, Inc., Walling-
ford, CT (2009).

[44] T. Furukawa, Ferroelectric properties of vinylidene fluoride
copolymers, Phase Transitions 18, 143 (1989b).

[45] T. Putzeys and M. Wubbenhorst, Asymmetric polariza-
tion and hysteresis behaviour in ferroelectric P(VDF-TrFE)
(76 : 24) copolymer thin films spatially resolved via limm,
Phys. Chem. Chem. Phys. 17, 7767 (2015).

[46] U. Zschieschang, F. Ante, D. Kilblein, T. Yamamoto,
K. Takimiya, H. Kuwabara, M. lkeda, T. Sekitani, T.
Someya, J. B. Nimoth, and H. Klauk, Dinaphtho[2,3-
b:2/,3'-f]thieno[3,2-b]thiophene (dntt) thin-film transistors
with improved performance and stability, Org. Electron. 12,
1370 (2011).

[47] H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, and V.
Podzorov, Critical assessment of charge mobility extraction
in FETs, Nat. Mater. 17, 2 (2018).

[48] V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov,
and M. E. Gershenson, Single-crystal organic field effect
transistors with the hole mobility 8 cm?/V's, Appl. Phys.
Lett. 83, 3504 (2003).

[49] D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P.
V. Necliudov, and M. S. Shur, An experimental study of
contact effects in organic thin film transistors, J. Appl. Phys.
100, 024509 (20006).

[50] F. Ante, D. Kilblein, T. Zaki, U. Zschieschang, K.
Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N.
Burghartz, K. Kern, and H. Klauk, Contact resistance and
megahertz operation of aggressively scaled organic transis-
tors, Small 8, 73 (2012).

[51] E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu,
and D. J. Gundlach, Mobility overestimation due to gated
contacts in organic field-effect transistors, Nat. Commun.
7, 10908 (2016).

[52] M. Griinewald, P. Thomas, and D. Wiirtz, A simple scheme
for evaluating field effect data, Physica Status Solidi (b)
100, K139 (1980).

[53] L. Kalb Wolfgang and Batlogg Bertram, Calculating the
trap density of states in organic field-effect transistors from
experiment: A comparison of different methods, Phys. Rev.
B 81, 035327 (2010).

[54] P.J. Diemer, Z. A. Lamport, Y. Me, J. W. Ward, K. P. Goetz,
W. Li, M. M. Payne, M. Guthold, J. E. Anthony, and O. D.
Jurchescu, Quantitative analysis of the density of trap states
at the semiconductor-dielectric interface in organic field-
effect transistors, Appl. Phys. Lett. 107, 103303 (2015).

[55] S.-W. Jung, K.-J. Baeg, S.-M. Yoon, 1.-K. You, J.-K.
Lee, Y.-S. Kim, and Y.-Y. Noh, Low-voltage-operated top-
gate polymer thin-film transistors with high capacitance
poly(vinylidene  fluoride-trifluoroethylene)/poly(methyl
methacrylate) dielectrics, J. Appl. Phys. 108, 102810
(2010).

[56] H. Sun, Q. Wang, Y. Li, Y.-F. Lin, Y. Wang, Y. Yin, Y. Xu,
C. Liu, K. Tsukagoshi, L. Pan, X. Wang, Z. Hu, and Y. Shi,
Boost up carrier mobility for ferroelectric organic transistor
memory via buffering interfacial polarization fluctuation,
Sci. Rep. 4, 7227 (2014).

[57]1 D. Guo, and N. Setter, Impact of confinement-induced
cooperative molecular orientation change on the fer-
roelectric size effect in ultrathin P(VDF-TrFE) films,
Macromolecules 46, 1883 (2013).

[58] M.-C. Garcia-Gutierrez, A. Linares, I. Martin-Fabiani, J.
J. Hernandez, M. Soccio, D. R. Rueda, T. A. Ezquerra,
and M. Reynolds, Understanding crystallization features
of P(VDF-TrFE) copolymers under confinement to opti-
mize ferroelectricity in nanostructures, Nanoscale 5, 6006
(2013).

[59] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Elec-
troactive phases of poly(vinylidene fluoride): Determina-
tion, processing and applications, Prog. Polym. Sci. 39, 683
(2014).

[60] G. A. Samara, “Ferroelectricity revisited-advances in mate-
rials and physics,” Solid State Physics, Vol. 56, edited by
Henry Ehrenreich and Frans Spaepen (Academic Press,
2001) pp. 239-458.

[61] R. G. Kepler and R. A. Anderson, Ferroelectric polymers,
Adv. Phys. 41, 1 (1992).

[62] H. Dvey-Aharon, T. J. Sluckin, P. L. Taylor, and A. J.
Hopfinger, Kink propagation as a model for poling in
poly(vinylidene fluoride), Phys. Rev. B 21, 3700 (1980).

014011-12



