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A B S T R A C T

Organizational factors, as literature indicates, are significant contributors to risk in high-consequence industries.
Therefore, building a theoretical framework equipped with reliable modeling techniques and data analytics to
quantify the influence of organizational performance on risk scenarios is important for improving realism in
Probabilistic Risk Assessment (PRA). The Socio-Technical Risk Analysis (SoTeRiA) framework theoretically
connects the structural (e.g., safety practices) and behavioral (e.g., safety culture) aspects of an organization
with PRA. An Integrated PRA (I-PRA) methodological framework is introduced to operationalize SoTeRiA in
order to quantify the incorporation of underlying organizational failure mechanisms into risk scenarios. This
research focuses on the Data-Theoretic module of I-PRA, which has two sub-modules: (i) DT-BASE: developing
detailed causal relationships in SoTeRiA, grounded on theories and equipped with a semi-automated baseline
quantification utilizing information extracted from academic articles, industry procedures, and regulatory
standards, and (ii) DT-SITE: conducting automated data extraction and inference methods to quantify SoTeRiA
causal elements based on site-specific event databases and by Bayesian updating of the DT-BASE baseline
quantification. A case study demonstrates the quantification of a nuclear power plant's organizational “training”
causal model, which is associated with the training/experience in Human Reliability Analysis, along with a
sensitivity analysis to identify critical factors.

1. Introduction and statement of objectives

Organizational factors can either help or hinder safety performance
[1], and they have been identified as significant contributors to in-
cidents [2] and major accidents [3–5]. Probabilistic Risk Assessment
(PRA)/Probabilistic Safety Assessment (PSA) [6], a formal methodology
for estimating risk emerging from the interactions of equipment failure
and human error, utilizes Human Reliability Analysis (HRA) [7,8] for
modeling and quantifying human error in risk scenarios. Despite the

overwhelming evidence from the fields of organizational psychology
and management science that strongly relates organizational factors
such as safety culture, leadership style and priorities, and reward
practices to safety, injuries, and accidents [9–14], organizational per-
formance models are not explicitly incorporated into HRA or PRA
[15,16]. HRA provides an estimation of individual human error based
on the states of internal Performance Shaping Factors (PSFs) (e.g., fa-
tigue, cognitive mode) and external PSFs (e.g., physical work environ-
ment, teamwork, managerial and organizational factors) [7]. The
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external organizational PSFs in HRA techniques are represented at an
abstract level of analysis that does not “explicitly” consider underlying
mechanisms. “Explicit” incorporation/consideration of underlying me-
chanisms refers to the model-based integration of organizational per-
formance and processes with HRA to analyze the effects on human error
due to changes in underlying organizational contributing factors. It has
been argued that “all PSFs should be looked at as organizational factors
since it is an organization that could maintain or modify conditions that
affect all of these factors” [17]. However, due to the complexity of or-
ganizational performance modeling, the integration of organizational
mechanisms with PSFs of HRA has been a challenging topic. This paper
is a product of a line of research to incorporate organizational factors
into HRA and PRA to (1) explicitly assess the risk due to specific or-
ganizational weaknesses, (2) find and rank the critical organizational
root causes of failure, which help efforts to take effective corrective
action, and (3) avoid the possibility of underestimating the risk asso-
ciated with human error. This section provides a literature review of
studies in the field of risk analysis, specifically associated with PRA,
that evaluated the influence of organizational factors on technological
system risk and safety.

In the last two decades, many researchers have studied organiza-
tional factors in the context of risk analysis by evaluating; their role in
historical incidents and accidents [15,18], their classification [9] and
use in regulatory applications [19], their implicit consideration in ex-
isting HRA guidance [17,20,21], their application in frameworks for
equipment reliability [22] considering multi-level phenomenology
[23,24], and their potential use as performance indicators [25,26]. In
Mohaghegh's review of existing theoretical frameworks and quantitative
techniques related to the incorporation of organizational factors into risk
models, she categorizes them in two generations [27–34]. The nature of
first-generation theories and quantitative techniques is characterized in
terms of “deviations from normative performance” [35]. For example,
Reason's Swiss Cheese Model [1,36] is a well-known metaphor for de-
scribing the organizational effects on the occurrence of accidents. Ac-
cording to Reason, the accident sequence starts with failed or missing
defenses in the organization (e.g., managerial decisions), and these
defects create latent conditions that are transmitted along organiza-
tional pathways. Similarly, there have been several static quantitative
frameworks, based on this theoretical concept, that aim at modeling
and quantifying the impact of organizational factors on system risk.
Examples are WPAM [37,38], SAM [39] and similar models [22],
Omega Factor Model [40,41], ASRM [42], ORIM [22], I-Risk [43], and
Causal Modeling of Air Safety [44]. The second-generation approaches
to develop organizational models for risk analysis frameworks focus on
modeling the ‘actual behavior’ of organizations. These approaches have
been evolving and attempt to represent the underlying organizational
mechanisms of accidents. On the theoretical side, Rasmussen [35] cites
the self-organizing nature of High Reliability Organizations [45] and
Learning Organizations [46,47] as concepts useful in analyzing the
managerial and organizational influences on risk. The Normal Accident
Theory [48], which views accidents caused by interactive complexity
and close coupling, can also be considered in the second generation of
theories for organizational safety. Second-generation quantitative
techniques primarily address the dynamic aspects of organizational
influences. For example, Cooke [51], Leveson [52], and Marais [53] use
the System Dynamics approach [49,50] to describe the dynamics of
organizational safety, but these models do not include detailed PRA-
style models of the technical system [50–53]. Yu et al. (2004) also use a
System Dynamics approach to incorporate the effects of organizational
factors into nuclear power plant PRA models [54]. The interconnection
between PRA and System Dynamics, however, is not established.

More recently, concepts from resilience engineering have been
added to the second-generation socio-technical models. While the
concept of resilience is beneficial for describing the adaptive nature of
organizations [55], the benefits of resilience compared to a reliability
approach in risk analysis have not yet been adequately analyzed [56].

The theoretical relationships between resilience and organizational
safety in high-consequence industries remain underdeveloped and re-
quire further research; however, it should be acknowledged that var-
ious factors (e.g., capabilities of organizations [57]) from resilience
engineering can be useful to enhance organizational safety methods
[58,59]. Recent studies in safety and risk analysis continue to empha-
size the need for organizational modeling techniques, with a systematic
perspective, that can include a broader set of influencing factors [4] and
is capable of capturing an organization's adaptive performance, emer-
gent phenomena, and success paths [60].

Integrating concepts from multiple disciplines, Mohaghegh in-
troduced a set of thirteen principles (Table 1) for the field of organi-
zational risk analysis or Socio-Technical Risk Analysis [27,29]. These
principles are distributed in the following four categories; Categories I,
II, and III relate to theory building, and Category IV relates to devel-
oping methodological techniques. In summary, these principles address
two requirements for incorporating emergent organizational safety
behavior into PRA: (i) the integration of a theoretical model of how
organizations perform, considering causal factors with their corre-
sponding level of analysis and relational links; (ii) the adaptation of
appropriate techniques (i.e., “modeling” and “measurement” ), capable
of capturing complex interactions of causal factors within their possible
ranges of variability and across different levels of analysis, to quantify
the theoretical framework.

With respect to the first requirement, a theoretical framework,
called Socio-Technical Risk Analysis (SoTeRiA) (Fig. 1) [27,29], was
developed based on the theory-building principles (Categories I, II, and
III in Table 1) and based on a multi-level organizational performance
model developed by Ostroff et al., [61,62]. SoTeRiA is a theoretical
causal framework for explicitly integrating both the social aspects (e.g.,
safety culture; Node 8 in Fig. 1) and the structural features (e.g., safety
practices; Node 7 in Fig. 1) of one organization with technical system
PRA (i.e., Node 1 in Fig. 1). The SoTeRiA framework is further ex-
plained in Section 2.1, but for more details on the development of So-
TeRiA, readers are directed to Refs. [27,29].

Operationalization and quantification of SoTeRiA required the de-
velopment of appropriate techniques (Principles IV in Table 1) in-
cluding “modeling” and “measurement” techniques. With respect to
modeling techniques (Principle IV-M), Mohaghegh and Mosleh devel-
oped a hybrid approach [30,33] by combining a probabilistic method,
i.e., Bayesian Belief Network (BBN), and a deterministic/dynamic si-
mulation technique, i.e., System Dynamics, with classical PRA methods,
i.e., Event Tree (ET) and Fault Tree (FT), to quantify SoTeRiA. This
paper introduces the Integrated PRA (I-PRA) methodological frame-
work (explained in Section 2.1 and instantiated in Fig. 2) that is an
advancement of the original work by Mohaghegh et al. [30] and is
based on an adaptation of the I-PRA approach which has been already
applied for incorporating physical failure mechanisms into PRA for GSI-

Table 1
Socio-technical risk analysis principles [27,29].

Categories Principles

I. Designation & Definition of
Objectives

(A) Unknown-of-Interest
(B) Multidimensional Performance
Objectives

II. Modeling Perspective (C) Safety Performance and Deviation
(D) Multilevel Framing
(E) Depth of Causality and Level of Detail
(F) Model Generality

III. Building Blocks (G) Basic Unit of Analysis
(H) Factor Level and Nature
(I) Factor Selection
(J) Link Level, Nature, and Structure
(K) Dynamic Characteristics

IV. Techniques (L) Measurement Techniques
(M) Modeling Techniques
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191 [63] and fire PRA [64,65].
Measurement techniques (Principle IV-L in Table 1) relate to data

analytics (i.e., data extraction and interpretation) for the factors and the
links in the SoTeRiA framework. Mohaghegh and Mosleh [28,31]
highlighted the importance of integrating subjective and objective
measurement techniques for SoTeRiA. In the application of SoTeRiA,
one of the challenges was the unstructured nature of data for organi-
zational risk analysis. This research develops a Data-Theoretic ap-
proach, which is the focus of this paper and builds the data input
module of the I-PRA framework. The Data-Theoretic is an approach
where “data analytics” are guided by “theory.” Theory enhances the
accuracy and completeness of “causality” being analyzed from data and
helps avoid potentially misleading results from solely data-oriented
approaches.

Section 2.2 covers the foundation, methodology, and computational
platform for the Data-Theoretic approach. The Data-Theoretic approach
not only contributes to the development of new measurement techni-
ques for the SoTeRiA framework but also makes theoretical contribu-
tions to SoTeRiA. The SoTeRiA framework (Fig. 1) covers high-level
paths of causality while still requiring further theory building to gen-
erate more detailed causal factors, sub-factors, and their interactions.
The computational platform of the Data-Theoretic approach eases the
execution of theory-building principles to expand theoretical details in
SoTeRiA. As an example, the Data-Theoretic approach is applied for the
organizational training processes of a Nuclear Power Plant (NPP)
(Section 3), and a theoretical causal model is built and quantified for
“training,” which is one of the factors related to Node 7 in SoTeRiA
(Fig. 1). The training quality would influence the state of Experience/
Training PSF in HRA, and consequently, would affect the risk estimated
from the I-PRA framework. The scope of this paper is on one organi-
zation, and future work by the authors will address multiple organi-
zations and inter-organizational factors.

2. Integrated probabilistic risk assessment methodology for socio-
technical risk analysis

The central risk assessment technique used in this research is
Probabilistic Risk Assessment (PRA). This systematic risk methodology
was originally developed for the nuclear power industry [6] and has
grown into a technical discipline with a wide range of applications. In
classical PRA, a static PRA logic, consisting of ET and FT (see the site-
specific PRA module in Fig. 2), represents the causal relationships
among the Initiating Events (IEs), system failures (e.g., SYSA, SYSB),
component failures (e.g., basic event “b”), and human failure events
(e.g., basic event “a” ) that can result in undesirable system end states

(e.g., core damage in NPPs) [66]. These static PRA techniques have
limitations in their capabilities to account for the dynamic evolution of
risk scenarios [67].

To overcome the limitations of classical PRA, dynamic PRA (also
referred to as simulation-based PRA) methodologies have been devel-
oped [67–69]. Although a fully-dynamic PRA may generate more rea-
lism in risk modeling, it would not be economically efficient or practical
for NPPs in the short term because (i) classical PRA is widely utilized by
both the nuclear industry and the regulatory agency and would require
a significant amount of time and resources to transition to fully-dy-
namic PRA, and (ii) the need for reaching the degree of realism that a
fully-dynamic PRA could generate has not yet been scientifically justi-
fied for either the industry or the regulatory agency. Therefore, as a
more feasible short-term alternative, the authors developed the In-
tegrated PRA (I-PRA) methodological framework (Fig. 2). I-PRA gen-
erates a “unified” computational framework to integrate simulation
modules of underlying failure mechanisms associated with areas of
concern (e.g., fire, seismic) with classical PRA (i.e., logic-based ET, FT).
I-PRA is equipped with an interfacing methodology, including un-
certainty analysis, Bayesian updating and dependency treatment, to
more comprehensively capture information on the relationships be-
tween PRA scenarios and the underlying failure mechanisms. For in-
stance, the influences of underlying contributing factors (e.g., material
properties, room configuration) on the plant risk metrics (e.g., core
damage frequency) are explicitly captured through I-PRA unified plat-
form; hence, the importance measure analysis for the input parameters
at the failure mechanism level, more directly related to the design
parameters than the PRA basic events, can be performed. Development
of a unified computational framework, which seamlessly integrates the
plant PRA model with the underlying failure mechanisms, can also
improve the treatment of dependent failures in PRA (as discussed in
another publication by the authors [70]). Another advancement of I-
PRA is the “explicit” incorporation of interactions between physical
failure mechanisms and human performance [71,72]. For example, a
fire-induced scenario at NPPs is a socio-technical process involving two-
directional interactions between fire progression and human actions for
manual fire detection and suppression: (i) influences of fire progression
(e.g., dense smoke, high temperature) on the human performance, and
(ii) influences of manual action (e.g., spray of suppressant, activation of
smoke purge) on fire progression. In the existing Fire PRAs, those
physics-human interactions are “implicitly” treated by a simplified and
conservative approach based on the competition between two timings,
time-to-cable-damage and time-to-suppression [73]. In contrast, I-PRA
creates an “explicit” interface between a Computational Fluid Dynamics
(CFD)-based fire model (Fire Dynamics Simulator; FDS) and the human

Fig. 1. Socio-technical risk analysis (SoTeRiA) theoretical framework [27].

J. Pence et al. Reliability Engineering and System Safety 185 (2019) 240–260

242



performance model through modifications to the Heat Release Rate
(HRR) curve. The methodological development of I-PRA, mainly for the
incorporation of physical failure mechanisms and their interface with
human performance, is covered in the authors’ previous publications
for several applications, such as (1) risk-informed resolution of Generic
Safety Issue 191 (GSI-191) [74–76], (2) Fire PRA [64,71,77], and (3)
Seismic PRA [78].

This paper adapts I-PRA for the quantification and

operationalization of SoTeRiA (Fig. 1) to quantify the incorporation of
organizational failure mechanisms into classical PRA. The I-PRA fra-
mework (Fig. 2) quantifies the incorporation of underlying organiza-
tional failure mechanisms (i.e., simulation module in Fig. 2) into risk
scenarios in classical PRA (i.e., the site-specific PRA module in Fig. 2).
Section 2.1 explains key modules of I-PRA, in relationship with dif-
ferent nodes in the SoTeRiA framework, to clarify how I-PRA is de-
signed to operationalize SoTeRiA. The focus of this paper is on the Data-

Fig. 2. Integrated probabilistic risk assessment (I-PRA) methodological framework for socio-technical risk analysis. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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Theoretic module of I-PRA that is explained in detail in Section 2.2. The
implementation of the Data-Theoretic approach for NPPs is included in
Section 3.

2.1. Integrated PRA modules to quantify the SoTeRiA framework

The SoTeRiA framework (Fig. 1) theorizes multiple levels of ‘in-
ternal’ mechanisms, including individual, unit, group, and organization
(Nodes 2 to 9 of Fig. 1), and their interactions with the ‘external’ en-
vironment, including physical, regulatory, business, and sociopolitical
climates (Nodes 10 to 16 in Fig. 1), along with their causal influences
on technical system risk (PRA; Node 1). Because different organizations
can have unique organizational designs at multiple levels of perfor-
mance (e.g., management, supervisor, team), it is the analyst's choice to
determine the boundary among levels (e.g., between unit and group).

Based on SoTeRiA, the first step in developing a socio-technical risk
model is to build the scenarios for the technical “system risk” (Node 1 in
Fig. 1). The system risk is modeled in the site-specific PRA module in I-
PRA (Fig. 2). The second step is to identify the safety critical tasks
(Node 2 in Fig. 1) that affect the elements of risk scenarios. For ex-
ample, maintenance performance is a safety critical task since it affects
hardware failure. The next step is to model the work processes (e.g.,
maintenance work processes) that lead to safety critical performance.
This helps create the “unit process model” (Node 3 in Fig. 1). Next,
human performance models for individuals involved in the work pro-
cesses of the unit process model need to be developed. This research is
not implying the development of a separate model for each human;
instead it considers modeling each team (who conducts similar tasks in
its work processes) in the aggregate. For example, regarding a group of
maintenance technicians performing similar categories of tasks in the
maintenance unit, team performance would be modeled in the ag-
gregate level. Lastly, the organizational aspects such as safety culture
(Node 8 in Fig. 1) and safety climate (Nodes 5 and 6 in Fig. 1), and
structural features such as safety practices (Node 7 in Fig. 1) of the
supporting organization are linked to human performance models.

Another safety critical task includes operator performance that can
be associated with a unit (e.g., an operator action in a main control
room) or that can refer to an individual action in risk scenarios. In the I-
PRA framework (Fig. 2), an operator action, basic event “a,” stands for
an example of a safety critical task, although I-PRA can cover other
safety critical tasks (e.g., maintenance performance) related to the site-
specific PRA. Node 4 in Fig. 1, “individual Performance Shaping Fac-
tors” (PSFs) refers to the PSFs in the HRA of I-PRA (Fig. 2), and the
remaining organizational nodes in the SoTeRiA framework (Fig. 1) help
model organizational failure mechanisms (#1.5, #2.5 and #3) in I-PRA.

As Fig. 2 shows, I-PRA is a multi-level risk assessment framework
that begins with the Data-Theoretic module extracting and formalizing
the organizational data required for the simulation of underlying or-
ganizational mechanisms (#3) that affect the states of PSFs (e.g., a1, a2,
and a3) and that, therefore, influence the probability of human errors
(e.g., event “a” in the FT) in the site-specific PRA module. Through the
interface module, the “spatio-temporal simulation of organizational
failure mechanisms” (#3) is connected to the associated PSFs in the
site-specific PRA module. In the interface module, the uncertainties
associated with input data are characterized and propagated by the
uncertainty analyzer (#4 in Fig. 2) to make the simulation module
probabilistic and ready to be connected to the site-specific PRA model.

The Data-Theoretic module uses the high-level causal relationship of
SoTeRiA (Fig. 1) as a preliminary causal structural shell in Element 1.5
to guide the analyst when adding more detailed causal constructs.
Elements 1.1 to 1.4 of DT-BASE are the steps for adding more detailed
causal constructs and quantifying the targeted causal model in Element
1.5. The scope of the targeted causal model in Element 1.5 can include
adding details to one node of Fig. 1, or adding details to multiple nodes
of Fig. 1 while preserving the high-level interconnections among those
nodes (based on the causal connection of SoTeRiA in Fig. 1). In this

paper, the scope of the targeted causal model is Training, which is re-
lated to Node 7 in Fig. 1. The targeted causal model that is gradually
built and quantified through Elements 1.1 to 1.4 of DT-BASE forms the
organizational causal input model in Element 1.5 as the input to DT-
SITE. The quantification of the organizational causal input model is
updated through DT-SITE Elements 2.1 to 2.4 to generate an updated
version of the same causal model in Element 2.5, ready to provide input
for the simulation module. In other words, the organizational causal
input model in Element 2.5, a targeted-scope model of SoTeRiA (Fig. 1)
with more detailed levels of causality, gives the input information (i.e.,
the causal structures and their associated measures) for the spatio-
temporal simulation module (#3), where the analyst can add temporal
and/or spatial dimensions. For example, the hybrid modeling approach
by Mohaghegh and Mosleh [30] added the temporal dimension to the
quantification of SoTeRiA by combining the System Dynamics tech-
nique with BBN. Ongoing research by the authors is focusing on the
incorporation of spatial aspects, in addition to temporal, to socio-
technical risk analysis [72,79–81].

The modeler has the choice of connecting the quantified organiza-
tional causal input model (#2.5 in Fig. 2) directly to the PSFs through
the interface module or of making it temporal or spatio-temporal in the
simulation module and then letting the simulation outputs pass to the
interface module. This choice depends on criteria such as the level of
available resources (e.g., computational resource, data availability) and
the desired level of accuracy and resolution in the system risk estima-
tion. The authors recommend that the first-phase of risk estimation be
done without adding spatio-temporal dimensions, followed by ad-
vanced risk Importance Measure analysis [82] to determine the risk
significance of each failure mechanism. In the next phase, the spatio-
temporal dimensions can be added to the risk-significant failure me-
chanisms identified by the risk Importance Measure analysis.

The key performance measures (e.g., Ka1, Ka2, Ka3 in Fig. 2) refer to
the measured performance outputs of the organizational model that
help define the states of PSFs. For example, the quality of organizational
training affects the state of training/experience PSF in HRA. Thus, the
estimated quality of training from the organizational model is a key
performance measure associated with the training/experience PSF in I-
PRA. In the interface module, by having the probability distributions of
the key performance measures resulting from the uncertainty analysis,
the probability of each state of PSFs (e.g., low, nominal, high) is gen-
erated (#5 in Fig. 2) by estimating the probability that the associated
key performance measure exceeds threshold values (See discussion in
Section 3.3). This paper focuses on the development of the Data-Theo-
reticmodule, explained in Section 2.2, and its application (Section 3) for
modeling the quality of NPP training. A more detailed explanation and
advancement of other modules of the I-PRA framework are the focus of
ongoing publications by the authors.

2.2. Methodological and computational developments for the Data-
Theoretic module of Integrated PRA

The role of the Data-Theoretic module in the I-PRA framework is the
execution of measurement techniques (Principle IV-L in Table 1) to
extract and interpret organizational data associated with the structure
and state (or value) of factors, sub-factors, and links in the SoTeRiA
framework. Based on the evaluation of measurement techniques for
organizational safety/risk frameworks [31], two common categories of
methods including “subjective” and “objective” are listed. In the sub-
jective measurement, the state of a factor is based on employees’ per-
ception. The subjective measurement is often taken by surveys or in-
terviews conducted with the entire organization, a random sample, or
specific members (e.g., supervisors and managers). In contrast, the
objective measurement refers to the case where a person (or a group)
measures the factor using checklists and/or by inspections and auditing
(compliance-based). Auditors only get a snapshot of the organization,
and often a limited number of subjects are audited. Perception surveys

J. Pence et al. Reliability Engineering and System Safety 185 (2019) 240–260

244



(subjective measurements) can capture some aspects of the reality that
are overlooked by objective auditing. However, subjective measures
also have their own limitations and biases. For example, employees’
perceptions can be influenced by supervisors’ interpretations [31]. In-
dividual-level subjective measurements through surveys are usually
limited to a set of factors; otherwise, they can be time consuming and
expensive. Correlation between individual-level and organizational-
level aggregation [83] relies on in-group agreement [84]; however,
when factors are ‘elusive’ and unknown to individuals at the time of
subjective measurement, it is not possible to gather meaningful data for
highly granular organizational factors. Previous studies have in-
troduced empirical data analysis for associating organizational factors
with performance indicators [25] and cause codes [85] from industry
data, however, these methods do not use theory to guide their analysis,
and are not designed to be integrated with HRA or PRA methods.
Readers are referred to Ref. [31] for a more detailed review of methods
for measuring organizational factors at different levels of analysis.
Neither a subjective or objective measurement approach alone has been
proven to be a reliable approach for measuring the systematic multi-
level relationships of organizational factors, and therefore, hybrid in-
tegration of these methods is required [31]. In order to address this
challenge, this research proposes a new measurement method called the
Data-Theoretic approach, having its preliminary development pub-
lished in Ref. [86].

The Data-Theoretic module of I-PRA executes the Data-Theoretic
approach, covering two main parts: (1) DT-BASE (#1 in Fig. 2; the
white boxes on the left in the Data-Theoretic module) that focuses on
the development of detailed causal relationships in SoTeRiA, based on a
theory-building process (explained in Section 2.2.1.1) and equipped
with a semi-automated baseline quantification utilizing analyst inter-
pretation of generic information extracted from articles and standards;
(2) DT-SITE (#2 in Fig. 2; the light blue boxes on the right in the Data-
Theoretic module) that relates to conducting automated data extraction
and inference methods (text mining) to quantify SoTeRiA causal ele-
ments based on site-specific event databases and by Bayesian updating
of the baseline quantification established by DT-BASE. The Data-The-
oretic approach is advancing measurement techniques for organiza-
tional factors in the following ways:

1 It guides “data analytics” with “theory.” The problem with solely
data-oriented approaches is that, due to the lack of guidance from an
underlying theory, analysts can be misled by data, creating what
Lazer (2014) calls “big data hubris,” mistaking correlation for cau-
sation and “algorithm dynamics issues,” when an algorithm is not
capable of capturing the theoretical construct of interest [87]. In the
Data-Theoretic approach, the theoretical causal structure of the
SoTeRiA framework (Fig. 1) and the contextual keywords of each
node in SoTeRiA guide data analytics; therefore, the underlying
theory supports the completeness of causal factors, the accuracy of
their causal relationships, and helps avoid the potentially mis-
leading results of a solely data-oriented approach. Bar-Yam (2013)
emphasized that (a) big data is critical for addressing complex sys-
tems, (b) theoretical modeling is essential to the scientific process
for understanding complex systems, and (c) theory makes data more
useful [88].

2 It combines different sources and types of information, for example
(i) information pieces from academic literature, practical industry
procedures, and regulatory standards are integrated through DT-
BASE elements, (ii) analysts’ “subjective” interpretation of in-
formation in DT-BASE is combined with “objective” event data ex-
tracted in DT-SITE, and (iii) “generic” information obtained in DT-
BASE is integrated with “site-specific” information extracted in DT-
SITE.

3 It uses text mining (in DT-SITE), in addition to expert opinion (in
DT-BASE), as a measurement technique. Although lack of data has
been mentioned as one of the key reasons for making slow progress

in the incorporation of organizational factors into PRA [15,20], this
research provides a new perspective by highlighting that data is
available for organizational factors; however, the data has a nature
that is different from tabular equipment reliability data. Archival
data, documents, and texts serve as primary organization-level data.
The Communicative Constitution of Organization (CCO) is a widely-
accepted multidisciplinary perspective of organizational commu-
nication theory, which asserts that “organizations are constituted (and
maintained) through human communication” [89]. For example, or-
ganizational documents in circulation at NPPs are tangible data
structures that move forward through space and time, and these
documents are what constitute the organization [90–92]. The ex-
traction, interpretation, and analysis of communicative symbols
present a new opportunity for analyzing organizational safety per-
formance and risk contribution. Through the communication pro-
cess, organizations produce, synthesize, and store a large volume of
textual information used for regular business activities and com-
pliance purposes. This large and complex volume of information
(big data) needs a new measurement technique to analyze its con-
tents. Data of organizational communications are a compilation of
operational experience documents such as Corrective Action Pro-
gram (CAP) entries, Licensee Event Reports (LERs), Root Cause
Analysis (RCA) documents, and maintenance logs. Because these
documents are unstructured and heterogeneous, it is necessary to
incorporate data analytics techniques such as text mining for socio-
technical risk analysis [81,93]. Text mining is widely used for big
data due to its ability to extract information from unstructured
textual information [94–96].

Sections 2.2.1 and 2.2.2 explain the status of methodological and
computational developments for DT-BASE and DT-SITE, respectively.

2.2.1. DT-BASE elements of the data-theoretic module
The following sub-sections explain the five methodological elements

of DT-BASE, including:

• Manual Extraction of Evidence and Building Causal Constructs (#
1.1 in Fig. 2).

• Analyst's Qualitative-Quantitative Interpretation of Each Piece of
Evidence (#1.2 in Fig. 2).

• Developing Aggregated Conditional Probabilities based on Multiple
Evidence Entries (#1.3 in Fig. 2).

• Developing Conditional Probabilities for Extended Causality (#1.4
in Fig. 2).

• Integration in a Bayesian Belief Network Computational Platform
(#1.5 in Fig. 2).

The above methodological elements are computationally im-
plemented following the flowchart in Fig. 3, which has three phases: (i)
Data Entry, (ii) Aggregation, and (iii) Bayesian Belief Network Plat-
form. Fig. 3 maps DT-BASE elements (the box at the top of Fig. 3) to the
computational flowchart sequence (below the box in Fig. 3) and uses
color-coding to show the relationships between DT-BASE elements and
flowchart phases. Elements #1.1. and #1.2 of DT-BASE are executed in
phase (i) of the flowchart (Fig. 3). Elements #1.3 and #1.4 of DT-BASE
are conducted in phase (ii) of the computational flowchart. Phase (iii)
of the flowchart (Fig. 3) executes element #1.5 of DT-BASE.

2.2.1.1. Manual extraction of evidence and building causal constructs
(Element #1.1 in Fig. 2). For element #1.1 of DT-BASE (Fig. 2), the
SoTeRiA framework (Fig. 1) provides the initial causal structure, and
the analyst utilizes a theory-building process, along with their
interpretation of “evidence” extracted from references, to expand
causal constructs associated with the nodes in SoTeRiA. In this paper,
“evidence” means a textual statement in a reference that supports the
causal construct between two factors (e.g., cause “Bi” (i= 1, 2, …n) or
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the parent node, effect “C” or the child node, and the edge (causal link)
between Bi and C in Fig. 4).

Theory building (e.g., [97–99]) does not have a purely rule-based
prescriptive process, and therefore, this element of DT-BASE (#1.1)
cannot be fully automated. The theory-building process in this research

not only utilizes the socio-technical risk analysis principles (Principles I,
II, II, and IV-M in Table 1) [27], but also is consistent with Sterman's
[50] conceptualization of an iterative learning process [50] and reflects
Weick's (1989) perspective on the intuitive nature of theory-building
[100]. Element #1.1 of DT-BASE has the following five-step manual

Fig. 3. DT-BASE module on the top of the figure surrounded by a solid black line and the associated computational flowchart below each phase: (i) data entry
(Associated with 1.1 and 1.2 in Fig. 2); (ii) Aggregation (Associated with 1.3 and 1.4 in Fig. 2), and (iii) BBN (Associated with 1.5 in Fig. 2).
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theory-building process as well as computational features that help in
structuring the causal model:

• Step 1: Identifying the unknown of interest, i.e., the selected target
node/organizational factor (e.g., training). This step refers to
Principle I.A. in Table 1.

• Step 2: Identifying the literature (i.e., regulatory and industry
standards as well as academic articles) associated with the selected
organizational factor.

• Step 3: Locating the selected organizational factor within the
SoTeRiA framework (Fig. 1). For example, “training” is an organi-
zational factor associated with Node 7 in SoTeRiA.

• Step 4: Identifying logical abstract-level phases (e.g., plan, do,
check, act) evolving and leading to the performance quality of the
selected organizational factor. This helps develop causal levels at
the abstract level of analysis.

• Step 5: Developing theoretical causal constructs for the organiza-
tional mechanisms leading to the performance quality of the se-
lected organizational factor by satisfying theory-building principles
(Principles II and III in Table 1) and by utilizing semi-formal process
modeling techniques (e.g., business process modeling [101], flow-
charts [102], etc.). Although semi-formal modeling techniques are
related to Principle IV-M (Table 1) that is focused on modeling
techniques (rather than theory building), they can be considered as
the bridging techniques that help turn a theory into a causal model
equipped with a formal modeling technique (e.g., BBN). Semi-
formal process modeling techniques help expand the causalities
from the abstract level of analysis (developed in Step 4) to more
detailed functional and task levels. We refer the readers to Moha-
ghegh et al. [30] for the details on the application of semi-formal
process modeling techniques for the development of multi-level
causalities. In this research, the Structured Analysis and Design
Technique (SADT) [103, 104] (Fig. 5) is used as the selected process
modeling technique due to its (1) ease of conversion from a ‘semi-
formal’ to ‘formal’ (e.g., BBN) technique, (2) ease of communicating
the model and results, and (3) the generality of the technique for
different organizational factors [27]. In SADT, the activity transmits
the inputs (I) to the outputs (O), given the resources (R) and the
control/criteria (C) [30]. The inputs can include, but are not limited
to, information, hardware, raw materials, and people. Outputs are

the products of the process. Resources are the things needed to
perform the activity, such as tools, equipment, and people. Con-
trols/criteria include requirements such as job control mechanisms,
constraints, procedures, applicable rules and regulations, and stan-
dards that are used to direct, control, and judge the conduct of an
activity. The SADT input-output structure can be converted to a BBN
causal structure, as demonstrated by Mohaghegh et al. [30], and is
implemented in Section 3 of this paper to build and quantify the
training causal model.

The computational feature of element #1.1 of DT-BASE is a part of
the data entry phase (i.a., i.b., i.c., and i.d.) in Fig. 3 and helps the
analyst add the causal constructs, in the right location and at the right
level of analysis, to gradually build the final structure of the organi-
zational causal input model (delivered to element #1.5 in Fig. 2). As
Fig. 3 shows, the analyst picks a reference (e.g., from academic litera-
ture, practical industry procedures, or regulatory standards), and based
on their interpretation of each piece of evidence and following the
theory-building steps (Step 3 to Step 5 listed above), they add the causal
construct to the model.

Section 3.1. further explains element # 1.1 by applying it in the case
study to build the causal model for training in NPPs.

2.2.1.2. Analyst's qualitative-quantitative interpretation of each piece of
evidence (Element #1.2 in Fig. 2). Once element #1.1 of DT-BASE
(Fig. 2) has been executed for a causal construct (i.e., a minimum of
two nodes and an edge in Fig. 4), the analyst is prompted through
element #1.2 to enter a set of information based on their interpretation
of the evidence supporting the causal construct. The computational
execution of element #1.2 is included in the data entry phase (i.e., i.h.,
i.i.) of Fig. 3. Because SoTeRiA is explicitly modeling “performance
quality” for each node, the analyst first defines the “states” of each node
based on their potential quality states (or the existence of a specific
quality); for example, “good/high” (or true or existent) (State 1) and
“bad/poor/low” (or false or absent) (State 2). For each causal construct,
the analyst is then prompted to enter the following information:

• Reference information: The analyst imports reference information
(.ris file) or enters the title, year, authors’ names, type of publica-
tion, publisher, etc. into data fields. In DT-BASE, evidence de-
pendencies are managed through a bibliometric analysis which
cross-compares reference information to find potential overlaps and
avoids double counting of evidence. Current dependencies con-
sidered are: same author or authors, same institution, and con-
current publications (i.e., which may indicate similar subject po-
pulations or case studies). This information is presented to the
analyst to guide them to remove potential information dependencies
based on the entered references. In other words, the current scope of
dependency treatment is “binary”, meaning that, if a potential
overlap is identified between two references, they are counted only
once; otherwise, both of them are included in the DT-BASE.

• Keywords associated with the parent node and child node (see Fig. 4):
The relevant keywords for each node are created as tags in the entry.
Multiple keywords can be added to represent the context of a factor.
Synonyms and alternative industry-specific phrasing should be in-
cluded to account for the textual context in other data sources.

• A verbatim copy of the textual statement explaining the causal re-
lationship: The exact statement, which supports the relationship
between the two nodes, is copied as supporting evidence.

Next, the analyst is prompted to provide the following subjective
quantitative values associated with the piece of evidence:

• [M1, EV] Credibility of the reference source (e.g., Journal Impact
Factor): The weight or impact factor of the publication, based on a
“low estimate point” and a “high estimate point” from zero to one,

Fig. 4. Causes (Parent Nodes) and Effect (Child Node) in a simple theoretical
causal construct.

Fig. 5. Structured analysis and design technique [104].
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where the current value used is the median.

• [M2, EV] Weight between node Bi and node C indicated in the evidence:
The analyst's interpretation of the author's statement about the
strength of causal influence of Bi on C. M2, EV is represented by a
numerical scale from zero to one. For the example of Bi (State 1)
affecting C (State 1) (see Fig. 4), M2, EV refers to the conditional
probability of C, given Bi, as in, Pr(C | Bi). Language may include
that “it is very likely Bi causes C.” It is also possible that the re-
ference has a numerical analysis and that the results show the strong
or weak influence of Bi on C.

• [M3, EV] Analyst confidence level in the subject matter material: The
analyst's familiarity with the two nodes and their causal relation-
ship. M3, EV ranges from zero to one.

In order to support consistency among different analysts with re-
spect to their judgments for M1, M2, and M3, this research utilizes a set
of natural language expressions that are associated with probabilities,
initially developed by Wallsten [105] and adapted by the International
Panel on Climate Change (IPCC) [106,107]. The IPCC probability lan-
guage has seven categories of probability values to describe a degree of
belief in a proposition; “virtually certain, very likely, likely, medium
likelihood, unlikely, very unlikely, extremely unlikely” [106,108]. The
categories and ranges are shown in Table 2. Because these categories
were developed for the context of climate change and have not been
calibrated or measured to specifically address NPP contexts, future re-
search is needed to conduct sensitivity analysis to determine whether
changing categorical bin thresholds make a significant difference to
PRA results, and if so, additional effort is needed to calibrate these bins
for nuclear power industry applications. For example, future work will
consider specific questions to assist individuals in assessing their con-
fidence likelihood for M3.

As step (i.i.) of the data entry phase of Fig. 3 shows, to introduce a
measure of incompleteness uncertainty into the causal model, a Leak
Variable (LV) is introduced at each ‘layer’ of causality. The LV stands
for nodes that are not included in the model. The analyst can enter a
value for LV edge probability. The meaning of LV edge probability is
explained in Section 2.2.1.4, where it is used in the extended causality
equation. The analyst can create as many evidence entries as literature
supports. The next step of the DT-BASE approach performs aggregation
as each piece of evidence is added.

2.2.1.3. Developing aggregated conditional probabilities based on multiple
evidence entries (Element #1.3 in Fig. 2). Element #1.3 of DT-BASE,
which relates to the second phase (ii.b.) of the computational flowchart
(Fig. 3), focuses on the estimation of aggregated conditional
probabilities when the analyst's interpretations of multiple evidence
entries are elicited for the same conditional probability. In Element
#1.2, based on each piece of information EVi, j, the analyst provides
M EV2, i j, that indicates the strength of the causal relationship between the
factors Bi and C and can be treated as an estimate of the conditional
probability Pr(C|Bi), if there is only one piece of information available.
In Element #1.3, the aggregated estimate of Pr(C|Bi) is estimated by
combining M EV2, i j, derived from multiple pieces of information

∈ …EV j K; {1, , }i j, .

To compute the aggregated conditional probabilities, this research
uses two axiomatic approaches for aggregating multiple experts’ prob-
ability estimates that have been commonly used in PRA: arithmetic
mean (Eq. (1)) and geometric mean (Eq. (2)) [109,110], formulated as
follows:
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where wEVi j, is the normalized weight, representing the relative quality
of different pieces of information [109]. Considering that quality of
M EV2, i j, estimate is influenced by both (i) quality of the original evidence
(e.g., literature), measured by M EV1, i j, , and (ii) quality of the analyst
who interpreted the original evidence, measured by M EV3, i j, ; wEVi j, is
formulated as a function of M EV1, i j, and M EV3, i j, :
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The selection between the arithmetic mean (Eq. (1)) and geometric
mean (Eq. (2)) could depend on the applications. For instance, as sug-
gested by Morton et al. [111], the arithmetic mean may generate a
misleading output when there is a large dispersion between the experts’
assessment as the extreme estimates dominate the result; under such a
situation, the geometric mean can generate a more stable and reason-
able output that captures the ‘center’ of the group's opinion. More de-
tailed guidelines for when to use which aggregation method need to be
developed in future research.

In these aggregation equations, index ‘i’ (i= 1, 2,…, I) is used to
denote one instance (parent node) that has a shared effect on C, per-
taining to one causal relationship (i.e., Pr(C|Bi) in Fig. 4). Index ‘j’
(j=1, 2,…, K) denotes one evidence entry that is related to the causal
relationship between Bi and C. K stands for a total number of evidence
entries. The analyst decides between the two aggregation methods. In
Eq. (3), the normalization factor Z is developed to normalize the weight
for each piece of evidence based on the combination of M1,EV and M3,EV

so that the resultant value obeys probability axioms.

2.2.1.4. Developing conditional probabilities for extended causality
(Element #1.4 in Fig. 2). Element #1.4 of DT-BASE focuses on the
estimation of the conditional probability of the child node given
multiple parent nodes (i.e., ⋯Pr(C|B , B , ,B )1 2 n in Fig. 4) based on the
aggregation of estimated values from element #1.3 (i.e., Pr(C|B1), Pr
(C|B2), …, Pr(C|Bn)). The estimated conditional probabilities build the
Conditional Probability Table (CPT), which is an input to the next step
of the methodology, i.e., the Bayesian Belief Network (BBN) platform
(element #1.5 explained in Section 2.2.1.5). Element #1.4 of DT-BASE
is made computational in the second phase (ii.d.) of the flowchart
shown in Fig. 3.

In element #1.2 (Section 2.2.1.2), the analyst is asked to elicit in-
formation for each piece of evidence of the causal relationship between
one parent (Bi) and the child node (C), implicitly assuming that a single

Table 2
Mapping between probability words and probability values (Adapted from [106]).

Lower Bound Upper Bound M1 M2 M3

0.99 1 Virtually Certainly Credible Virtually Certain Virtual Certainty in Confidence
0.9 0.99 Very Likely Credible Very Likely Very Likely Confident
0.66 0.9 Likely Credible Likely Likely Confident
0.33 0.66 Medium Likelihood of Credibility Medium Likelihood Medium Likelihood of Confidence
0.1 0.33 Unlikely Credible Unlikely Unlikely Confident
0.01 0.1 Very Unlikely Credible Very Unlikely Very Unlikely Confident
0 0.01 Extremely Unlikely to be Credible Extremely Unlikely Extremely Unlikely to be Confident
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parent can lead to the child (C). This assumption is related to the
concept of Independence of Causal Influence (ICI) [112,113]. There-
fore, a common aggregation model that is used in element #1.4 of DT-
BASE is the Noisy-OR [41, 112-115] that governs the following re-
lationship:

∏⋯ = − −
∈

zPr(C|B , B , ,B ) 1 (1 ),n
i I

i1 2
(4)

where, “i” shows all configurations of parent nodes that are present, and
zi is the probability of C given that only cause Bi is present (i.e., Pr
(C|Bi)), utilizing the probabilities being aggregated in Section 2.2.1.3.

For multi-state variables, the Noisy-OR representation of causal
influence can be extended to the Noisy-MAX representation with the
same ICI assumption. Diez's definition of Noisy-MAX [116] is as follows:

∏≤ = ≤ = =−c b c bPr(C | ) Pr(C B , B 0),
i

i i i
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where; b is a configuration of parent nodes and B–i represents all factors
other than Bi. It should be noted that ≤ = =−c bPr(C |B , B 0)i i i also
considers conditional influence towards C given that only cause Bi is
present. The CPT can then be computed by applying the following
equation to each configuration of the parent nodes:

⋯ = ⎧
⎨⎩

= =
≤ − ≤ − >

b c
c b c b c

Pr(C|B , B , ,B )
Pr(C 0| ), 0
Pr(C | ) Pr(C 1| ), 0

.n1 2
(6)

Using Eqs. (4) and 6, the CPT can be calculated for binary-state
nodes using Noisy-OR and for multi-state nodes using Noisy-MAX, re-
spectively.

The effects of LV and the associated incompleteness uncertainty can
be considered by defining an edge probability that refers to the con-
ditional probability of C, given that not any of Bi exists and only LV
exists [113], as it is shown in Eq. 7. In that case, the aggregated con-
ditional probability is estimated from Eq. (8).

=z LVPr(C|notanyB existsexcept ),L i (7)

∏⋯ = − − −
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i I

i1 2
(8)

It should be noted that the Noisy-OR method and the concept of ICI
generate limitations for capturing factor interactions [115]. Future re-
search will evaluate the possibility of using more advanced methods to
address these limitations.

2.2.1.5. Integration in a Bayesian belief network computational platform
(Element #1.5 in Fig. 2). In element #1.5 of DT-BASE (Fig. 2), the
results of quantitative interpretations and measurements that are
generated in elements # 1.2, #1.3, and #1.4 of DT-BASE, are
combined with the causal model structure constructed in element
#1.1 to develop organizational causal input model (built in the BBN
environment) that provides input for the spatio-temporal simulation
module of the I-PRA framework. As mentioned in Section 2.2.1.1., a
semi-formal modeling technique (i.e., SADT) is used in element #1.1 of
DT-BASE to transition theoretical constructs to a formal modeling
technique structure (i.e., BBN's probabilistic modeling environment).
Other aspects of modeling techniques (associated with Principle IV-M)
such as space and time will be executed in the simulation module (#3)
of I-PRA.

Element #1.5 is executed in the third phase of the computational
flowchart (Fig. 3), where information is integrated into a BBN platform
to calculate the probability of the final target node (i.e., the child node
in the last layer of the causal model) based on the CPT developed in
phase (ii) of Fig. 3. BBN, widely used in HRA research, provides gra-
phical formalism and structure, a probabilistic representation of un-
certainty, structuration of interrelationships, accommodation of diverse
data sources, and representation of belief for factor influences [115,
117] in the organizational causal input model (#1.5 in Fig. 2). Readers

are referred to Ref. [118] for more background on BBN.
The computational platform of DT-BASE is an open-source web

application powered by the MEAN full-stack framework (MongoDB,
ExpressJS, AngularJS, NodeJS) [119]. DT-BASE is developed as a web
application to enable a scientific network for collaborative model
building where analysts can build and share modular theoretical
models. Using a client-server architecture, multiple analysts can colla-
borate on a single causal model.

2.2.2. DT-SITE elements of the data-theoretic module
As the I-PRA framework (Fig. 2) shows, the output of element #1.5

of DT-BASE, the organizational causal input model, provides the causal
factors, their related keywords, and causal relationships as inputs for
the elements of DT-SITE. At this stage of the research, the causal model
structure that is developed at the end of DT-BASE (element #1.5) does
not change based on the data analysis in DT-SITE, but its quantification
is updated using the DT-SITE analysis. Depending on the scope and
availability of site-specific data, it is possible that some nodes in the
updated organizational causal input model (element #2.5) are only
quantified by DT-BASE, while others are quantified by Bayesian in-
tegration of DT-BASE and DT-SITE analyses. Future research will
evaluate the value of adding an element in DT-SITE to consider up-
dating the causal model (i.e., adding/deleting nodes or causal paths)
based on the data analysis in DT-SITE.

Currently, DT-SITE has the following five methodological elements:

• Automated Extraction of Information; Text Mining (#2.1 in Fig. 2).

• Generating Conditional and Marginal Probabilities for BBN (#2.2 in
Fig. 2).

• Developing Aggregated Conditional and Marginal Probabilities
based on Multiple Data Sources (#2.3 in Fig. 2).

• Bayesian Integration of SITE and BASE Probabilities (# 2.4 in
Fig. 2).

• Integration in a Bayesian Belief Networks Computational Platform
(#2.5 in Fig. 2).

DT-SITE is still in an early stage of development, and its computa-
tional platform has not yet been integrated with DT-BASE in the Data-
Theoretic Module. The following sub-sections explain the purpose of
each of the current five elements of DT-SITE, and Section 3.2 demon-
strates its limited-scope implementation for the NPP case study.

2.2.2.1. Automated extraction of Information; text mining (Element #2.1
in Fig. 2). The DT-SITE element for the automated extraction of
information includes the following two steps:

i Information searching: Factors, causal relationships, keywords, and
contextual statements from element #1.5 of DT-BASE are used to
guide the text mining [120], to extract semantic ‘safety-oriented’
terminology from organizational communications. This step imple-
ments computational approaches for pre-processing unstructured
textual information to ensure that extracted information maintains
conformity to the original texts. At this stage of research, text
mining is designed for one specific type of database, i.e., the NPP
incident reporting system called the Corrective Action Program
(CAP), which is also used in Section 3 for the case study. Ongoing
research by the authors is focused on the development of more ad-
vanced text mining that can be applied to other safety-related da-
tabases.

ii Frequency development: To convert the outputs of the information
searching step to frequencies, depending on the type and format of
the database, specific subjective and objective interpretations
should be included in the computational process. Also, each data-
base needs to be normalized into performance period timeframes.
For instance, the CAP database of NPPs can receive thousands of
entries in a year. Each CAP entry refers to one incident (or one
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safety-related issue) that is represented by a row in a table. For each
entry, multiple contributing causes are possible and are written in a
text narrative. Using the DT-BASE causal factors (from element #1.5
of Fig. 2) as the keywords included in the ‘input file’ of the text
mining code, the process is guided to find the number of occurrences
of a construct (or multiple constructs) in each CAP entry. For sim-
plification, at this stage of research, the following assumption is
made; a factor is counted only once as a contributor despite the
number of times it appears in the narrative of one entry. For ex-
ample, fB1, which stands for the frequency of factor “B1,” refers to
the number of CAP entries including factor B1 in the data collection
period (e.g., one year); fB ,C1 represents the number of CAP entries
which include both B1 and C in the data collection period; and
fB ,B ,C1 2 represents the number of CAP entries which simultaneously
include B1, B2, and C in the data collection period.

2.2.2.2. Generating conditional and marginal probabilities for BBN
(Element #2.2 in Fig. 2). In this element of DT-SITE, frequencies
developed in element #2.1 are used to estimate marginal and
conditional probabilities associated with the CPT values of the BBN
model developed in element #1.5 of DT-BASE. For instance, consider
one parent node B1 and a child node C. The marginal probability of
node B1, Pr(B1), can be estimated from the frequency outputs of text
mining using Eq. (9):

=
f
N

Pr(B ) ,
CAP

1
B1

(9)

where NCAP represents the total number of CAP entries in the same data
collection period as fB1.

Meanwhile, the conditional probability of the child node C, given a
specific state of the parent node B1, Pr(C|B1), are defined in Eq. (10);

= ∩Pr(C|B ) Pr(B C)
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.1
1
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On the right-hand side of this equation, the estimate of the de-
nominator, Pr (B1), is obtained from Eq. (9). The numerator, Pr(C∩B1),
refers to the probability of joint occurrence of B1 and C, and can be
estimated based on Eq. (11):
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When there is more than one parent node in the BBN, for example,
three parent nodes in Fig. 4, Eq. (12) represents the conditional prob-
ability, of which the numerator can be estimated based on the fre-
quency data obtained by the text mining using Eq. (13);
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It should be noted that the probabilities estimated by the approach
shown in this section are biased by (or conditioned on) the number (and
quality) of CAP entries, and this bias is further explained in Section 3.3.

2.2.2.3. Developing aggregated conditional and marginal probabilities based
on multiple data sources (Element #2.3. in Fig. 2). The mathematical
structure of aggregating conditional and marginal probabilities,
estimated from multiple databases, would be similar to the
Arithmetic (Eq. (1)) or Geometric (Eq. (2)) aggregation methods used
in Section 2.2.1.3. Similarly, the analyst will have the option to give
credibility and importance weights to each database. Since at this stage
of the research only one data source (the CAP database of an NPP) has
been used, this element of DT-SITE has not yet been implemented.
Possible challenges of element #2.3 would be dealing with

dependencies among diverse data sources or conflicting information
among the data sources. Future research will address these challenges.

2.2.2.4. Bayesian integration of DT-BASE and DT-SITE probabilities
(Element #2.4 in Fig. 2). In this element of DT-SITE, each conditional
probability, estimated from element #2.3, is combined with the
associated conditional probability estimated from the DT-BASE that is
stored in the BBN of the organizational causal input model (#1.5). This
helps develop the updated conditional probabilities and leads to the
generation of the updated organizational causal input model (#2.5 in
Fig. 2). In other words, the updated organizational causal input model
(#2.5) has the same causal structure developed from element #1.5, but
it has the updated (i.e., integration of SITE and BASE) conditional
probabilities. Note that it also has the marginal probabilities estimated
from element #2.3 of DT-SITE. The mathematical mechanism for
integrating conditional probabilities from DT-SITE and DT-BASE is
Bayesian updating, as described in Eq. (14):

∫
=π p D

L D p π p
L D p π p dp

( | )
( | ) ( )
( | ) ( )

,0

0 (14)

where π0(p) refers to the prior distribution of an unknown quantity, p,
referring to the conditional probability of interest that is needed to be
updated. L D p( | ) stands for the likelihood function for a set of new
evidence, given that the true value of the unknown quantity is p, and
π p D( | ) is the posterior (updated) distribution of p, given the set of new
evidence D. In this research, the DT-SITE and DT-BASE estimations of p
is treated as two pieces of evidence to help find the updated value for
the conditional probability; hence, D = p p{^ , ^ }BASE SITE where p̂BASE and
p̂SITE are the estimate of p generated by DT-BASE and DT-SITE,
respectively. With the assumption of independence between the
estimations from DT-SITE and DT-BASE, the likelihood function,
L D p( | ), can be formulated as the product of two likelihood functions:

=L D p L p p L p p( | ) (^ | )* (^ | ).BASE SITE (15)

In this formulation, L p p(^ | )BASE represents a measure of accuracy of
the DT-BASE estimation, and L p p(^ | )SITE is a measure of accuracy of the
DT-SITE estimation with respect to the conditional probability of the
specific construct. Depending on the type of knowledge available re-
garding the accuracy of measurements in DT-BASE and DT-SITE, a
mathematical model needs to be chosen for the likelihood functions.
One example of such a likelihood function is demonstrated in
Section 3.2, where the DT approach is applied to a case study for the
training causal model.

3. Application of the data-theoretic approach to develop and
quantify the training causal model in nuclear power plants

The focus of this section is on the implementation of the Data-
Theoretic approach (Data-Theoretic Module in Fig. 2) for a single factor
– “training” – as an exemplar among the myriad of factors at the ‘or-
ganizational-level’ of analysis (i.e., the overall training program that
supports different groups at an NPP). Based on an independent third-
party review at an NPP, ‘training quality’ was identified as risk-sig-
nificant. Because it has not been explicitly modeled and integrated with
PRA, understanding the contribution of training quality to risk needed
additional modeling. The results of this research help model the un-
derlying organizational mechanisms associated with the training/ex-
perience PSF in HRA. Ref. [121] states that, if training is considered to
be a performance driver, “this PSF might also include the quality of the
training provided.” The goal of this research is to go beyond the quali-
tative judgment derived from HRA workbook estimations and to de-
velop a plant-specific distribution of training quality utilizing plant CAP
data.

In this research, the training causal model (Fig. 6) is developed and
quantified based on theoretical literature and using industry and
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regulatory guidelines and plant database, receiving validation on the
structure and contents from training experts at an NPP. By Bayesian
integration of generic and site-specific information, the plant-specific
distribution of the training quality (Fig. 7) estimation is generated.
More thorough validation regarding the estimated probabilities relates
to the Probabilistic Validation methodology [71] under development by
the authors for the I-PRA framework. Probabilistic Validation is a
methodology to characterize and propagate sources of epistemic un-
certainty (e.g., parameter uncertainty, model uncertainty, statistical
convergence, analyst's epistemic uncertainty about M1, M2, M3, etc.) in
an integrated manner to construct the total epistemic uncertainty, as-
sociated with the model output, as a measure for the degree of validity
of the probability estimated from the model. The following subsections
cover the implementation of DT-BASE and DT-SITE elements.

3.1. Applying DT-BASE elements to model and quantify training quality in
nuclear power plants

This section explains the implementation of DT-BASE elements
(#1.1 to #1.5 in Fig. 2) for the development of the “training” theore-
tical causal model and its generic quantification. As it is stated in
Section 2.2.1.1, the theory-building process in element #1.1 starts with
five key steps that are applied in the following:

• Step 1: Identifying the unknown of interest: The unknown of interest
is the target node “Training,” which stands for the organization's
ability to provide adequate training to its workforce, based on the
programmatic, process-based approaches implemented at the NPP.
“Training Program” is placed at the target node (Level 0) of the
causal model (Fig. 6) and is divided into in-house and outsourced
training. In this research, we focus on causal modeling of in-house
training. For simplification, the causal model developed in the scope
of this paper does not cover some of the contributing factors such as
student performance, availability of student time, availability of
simulator time, cultural factors, or management attitudes towards
training. Therefore, in the quantification phase, a LV (introduced in
Section 2.2.1.2) is considered at each layer of the causal model to
represent model uncertainty, which implicitly considers the poten-
tial of excluding some factors in the causal model.

• Step 2: Identifying the literature related to training: Starting with the
language of industry and based on NPP documentation, diverse
training categories were identified, such as electrical maintenance,
mechanical maintenance, chemistry technician, etc. The NPP im-
plements a Systematic Approach to Training (SAT), and therefore,
each theoretical construct associated with SAT was used as an initial
search term to identify relevant literature from industry, regulatory
and academic sources, expanding the scope of search terms. The
criteria for adding sub-factors was if they were supported by either
industry, regulatory or academic sources (i.e., written evidence
could be found to support the inclusion and placement of each sub-
factor). For example, if some aspects of training were implicitly
included in the industry SAT but were explicitly included and sup-
ported in the academic literature, they could be added. The litera-
ture is added dynamically as we progress through the remaining
steps of the methodology. Therefore, the literature review in Step 2
is not final, it is the starting point of an iterative process, and the
identification of relevant literature continues to process through the
remaining steps. It should be noted that the Nuclear Energy Institute
issued Efficiency Bulletin: 17–15 ‘Standardization of the Systematic
Approach to Training’ [122], provides suggestions to the industry
that are not fully incorporated into the training causal model shown
in this paper.

• Step 3: Locating the selected organizational factor within the
SoTeRiA framework (Fig. 1): Training is a sub-factor of “human
resource practices,” which is a factor of “organizational structure
and practices,” i.e., Node 7 of SoTeRiA; Fig 1.

• Step 4: Identifying logical abstract-level phases evolving and leading
to the quality of training: Based on evidence supporting independent
causality and cross-level causality, high-level patterns depicting
programs and processes associated with training follow the high-
level phases of Analysis, Design, Development, Implementation and
Evaluation (ADDIE) [123]. The phases of SAT are consistent with
those of ADDIE, with the differentiation of ‘design and development’
being considered as one phase in SAT. Therefore, for the SAT, the
phases are; needs assessment, design and development, im-
plementation, and evaluation [124]. In the causal model developed
in this research, “implementation” and “evaluation” are considered
as two types of activity factors in Level 1 of Fig 6, influencing the
quality of “In-House Training.” The other two phases including
“design and development” and “need assessment” are covered
through the causal factors affecting “Implementation.” For example,
“Program Design” and “Training Needs Analysis” are the causal
factors in Levels 2 and 2.1 of Fig. 6, respectively. This section only
demonstrates the causal model associated with implementation
quality, and the causal models supporting evaluation factors (e.g.,
internal evaluation and regulatory evaluation in Level 1 of Fig. 6)
are not covered.

• Step 5: Developing theoretical causal constructs for the organiza-
tional mechanisms leading to the quality of training: Using the semi-
formal process modeling approach of SADT (Fig. 5), any activity in
Level 1 of Fig. 6 is affected by its direct causes including the direct
resource/tool, procedure, and personnel. These causal factors are
placed in Level 1.1 of Fig. 6. For example, the quality of im-
plementation depends on the quality of “Training Procedures (pro-
cedure)/Facility (resource/tool)” and the “Instructor Performance”
(personnel). In the SADT approach for the “implementation” activity
node, procedure and resource/tool are lumped into one factor, i.e.,
“Training Procedures/Facility,” because enough evidence to sepa-
rately quantify them have not been found. The next level of caus-
ality, Level 1.1.1 in Fig. 6, includes the sub-factors influencing the
quality of resources, procedures, and instructors in Level 1.1. For
example, “Instructor Performance” is influenced by “Instructor
Training,” “Instructor Time & Preparation,” and “Instructor
Knowledge.” Level 2 of the causal model includes “Program Design,”
that is, the activity supporting the factors in Level 1.1.1 of the
model. Again, based on SADT approach, Level 2.1 covers the direct
resource/tool (“Training Records Documentation System” in Fig. 6),
procedure (“Training Needs Analysis” in Fig. 6), and personnel
(“Instructional Technologists” in Fig. 6) that are needed for the ac-
tivity in Level 2 (i.e., Program and Design). Level 2.1.1 of the causal
model includes the sub-factors influencing the quality of the re-
source and procedures in Level 2.1. Every node and relationship
between layers are supported by evidence from literature (academic
articles, regulatory and industry documents) and standards to create
a theoretical justification and validation of its placement and inter-
relationships within the model. For example, Table 3 shows a partial
list for the industry, regulatory and academic references that are
used for the factor “Job/Task Analysis” in Level 2.1.2 of the causal
model. The full implementation information for the ‘Training’ or-
ganizational causal input model in DT-BASE can be found in the
supplementary dataset [125].

It should be noted that the numbers associated with the Levels in
Fig. 6 are used to organize and communicate the causal model. How-
ever, there is theoretical support for the ordering and arrangement of
these Levels in the model. The logical order of Levels 0, 1, and 2, is
explained in Step 4 (above), and is supported by ADDIE [123] and the
SAT [122, 126, 127]. The logical order of levels 1.1, 1.1.1, 2.1, 2.1.1,
and 2.1.2 is explained in Step 5 (above) and is structured by SADT [103,
104].

In element #1.2 of DT-BASE (Fig. 2), the analyst enters the values
for M1, M2, and M3 based on his/her interpretation of each piece of
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evidence and using the probability categories listed in Table 2. The full
M values used for the ‘Training’ organizational causal input model in
DT-BASE can be found in the publicly available supplementary dataset
[125]. As an example of one entry in the database, evidence to support
the connection between ‘Job/Task Analysis’ (JTA) and ‘Knowledge,
Skills and Abilities (KSA) Evaluation’ (i.e., pre-training evaluation of
KSAs) is extracted from a reference with the following contextual
statement; “entry-level requirements should be based on a familiarity
with the general level of KSAs of the trainees and by a careful review of
documents such as job descriptions, position descriptions or personnel
qualification requirements” [130]. Considering this piece of evidence,
the analyst's interpretation based on probability language is shown in
Table 4. Another piece of evidence for the same causal edge is shown in
Table 5 to demonstrate the aggregation of conditional probabilities
based on multiple evidence in element #1.3.

The analyst interpretation process is repeated with multiple evi-
dence entries, generating unique M1, M2, and M3 values for each entry.

For the training causal model, a minimum of three references were
entered for each causal connection. Each piece of evidence can be seen
in the Training model database [125]. Once all evidence is added to
support causality, element# 1.3. of DT-BASE (Fig. 2) is performed using
either Arithmetic (Eq. 1) or Geometric (Eq. 2) aggregation methods. For
example, considering two evidence entries in Tables 4 and 5, and
adding a third evidence, where M1= 0.945, M2= 0.995, and
M3= 0.78, the results of arithmetic and geometric aggregations for the
conditional probability of good quality KSA, given a good quality JTA
has been performed, are Pr (KSA|JTA)= 0.86 and Pr
(KSA|JTA)= 0.85, respectively.

The resulting conditional probabilities for each causal relationship
in the network are then extended in element #1.4 of DT-BASE to gen-
erate the CPT for the BBN (Element #1.5) using ICI modeling (ex-
plained in Section 2.2.1.4). In this example, the Noisy-OR method
(Eq. 4) is used. Using the evidence entries in the Training causal model
[125], the CPT for the target node Training Implementation is shown in

Fig. 6. NPP training causal model developed based on element #1.1 of DT-BASE.

Table 3
Example for the construct of job/task analysis from [125].

Perspective* Node: Job/Task Analysis

Industry Perspective “The systematic process of examining a task by collecting data from subject-matter experts and/or source documents to identify conditions standards
references knowledge and skills associated with each task element.” [125]

Regulatory Perspective “The result of the job analysis will be a set of typical tasks which represents the training content of the job. Skills and knowledge needed for the job can
be derived from the typical tasks.” (Ref. [128])

Academic Perspective “Abilities-oriented job analysis is concerned with identifying human attributes necessary to perform the job” (Ref. [129])

⁎ This example is reduced to one reference for each perspective.
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Table 6. It should be noted that the conditional probabilities in Table 6
are not direct representations of the outcome (success or failure) of a
training program, instead they are indicators of the quality of the ele-
ments comprising a training program; for example, the 50% probability
shown in Table 6 is a conditional probability of having “poor training
implementation” given “poor quality training procedure” and “poor
quality instructor performance.” In this example, an LV is assigned to
each layer based on probability language, considering it is ‘unlikely’
that the model is complete, with a lower bound of 0.1 and an upper
bound of 0.33 to represent model uncertainty. Integration in a BBN
computational platform (Element #1.5) is performed using the DT-
BASE web application [131].

3.2. Applying DT-SITE elements to model and quantify training quality in
nuclear power plants

This section explains the results of implementing DT-SITE elements
(Fig. 2) to quantify the training causal model utilizing plant-specific
data. Since DT-SITE has not yet been integrated into the DT-BASE ap-
plication, a preliminary text mining approach, in the form of a keyword
search, was run in MATLAB Simulink software [81]. Using string search
functions in MATLAB, each CAP entry was analyzed for the occurrence
of keywords from the training causal model, and the results were
mapped to a matrix resembling the conditional probability table of the
training causal model. The approach was applied to one full year
(2013–2014) of CAP data from one NPP, which initially included fifty
thousand initial entries and follow-up entries. The algorithm, applied
only to ‘initial’ CAP entries (i.e., not corrective actions or resolutions)
totaling around fifteen thousand, searched for keywords associated
with nodes in the causal model (Fig. 6), finding the occurrence and co-
occurrence of theoretical constructs within each entry of CAP. Using
truth tables, the results are stored in a CPT, serving as the new fre-
quency dataset. Frequencies were converted to probabilities by dividing
the total number of entries during the data collection period of one year
(see Section 2.2.2.2) [81]. The resulting conditional probabilities were
used to calculate the probability of the target node probability of the
Training BBN (Fig. 6).

This simplified word search approach is applicable for CAP entries
because of the format of the CAP entries, where ‘cause identification’ is
explicitly separated from other text data. Therefore, using MATLAB

Simulink string search functions, it was possible to analyze each entry
for the occurrence of keywords and assign matches in a matrix which
resembled the conditional probability tables of our causal models. In
future work, a more rigorous text mining will be developed to expand
DT-SITE applicability to more unstructured datasets (e.g., Licensee
Event Reports (LERs), root cause analysis documents, and maintenance
logs) which require preprocessing for cleaning text.

Because of the difficulty in obtaining CAP data, and the use of CAP
data for only one year from one NPP in this example, the accuracy of
estimated probabilities is dependent on the quantity of CAP entries, as
well as the quality of CAP entries. To partially overcome the limitation
of data quantity, as explained in Section 2.2, a two-step methodology is
used in this research, where DT-BASE is used to generate the pre-
liminary causal model and quantification based on generic information
from literature and analyst interpretation, and DT-SITE then analyzes
the plant-specific data (i.e., CAP data in this case study) to update the
causal model using a Bayesian approach. With this approach, the lack of
plant-specific data is partially addressed by combining it with generic
information from the literature. The authors also plan to improve these
estimates in future work by increasing the CAP dataset size and con-
sidering the quality of CAP data entries (as also mentioned in
Section 3.3). Also, ongoing research by the authors focuses on devel-
oping a methodology to quantify the degree of confidence in the
probability estimates by characterizing the epistemic uncertainty as-
sociated with limited data size, the relevancy of the data, and subjective
interpretation of information.

Since DT-SITE has not yet been integrated into the DT-BASE ap-
plication, it is not feasible at this stage of the research to integrate each
conditional probability of SITE and BASE in element #2.4 of DT-SITE in
order to develop an updated organizational causal input model
(Element #2.5 in Fig. 2). Therefore, for this example, only the “target
node” probability from DT-BASE and DT-SITE are integrated using the
Bayesian method explained in Section 2.2.2.4. Bayesian updating is
performed using the open source program OpenBUGS [132] to in-
tegrate the target node probability resulted from DT-BASE (Section 3.1)
[125] and the target node probability resulting from a simplified de-
monstration of DT-SITE using a sample dataset [81].

In this Bayesian updating, the unknown of interest is Pr (Training
Quality= Poor), denoted as PTQ. A non-homogeneous population is
assumed over PTQ, as the evidence extracted from literature in the DT-

Table 4
Evidence entry for the first reference supporting the causality between ‘Job/Task Analysis' (JTA) and 'Knowledge, Skills and Abilities' (KSA) (Source: [127]).

Parameter Lower Bound Upper Bound Median Memo

M1 0.9 0.99 0.95 Official Government Document, Revised in 2014 (Very Likely Credible)
M2 0.66 0.9 0.78 Knowledge, Skills and Abilities are developed after careful review of job descriptions [127] (Likely)
M3 0.66 0.9 0.78 Analyst is likely confident about the topic of Job Analysis and Knowledge, Skills and Abilities (Likely Confident)

Table 5
Evidence entry for the second reference supporting the causality between 'Job/Task Analysis' (JTA) and 'Knowledge, Skills and Abilities' (KSA) (Source: [128]).

Parameter Lower Bound Upper Bound Median Memo

M1 0.66 0.9 0.78 International Government Document, Over 30 Years Old (Likely Credible)
M2 0.66 0.9 0.78 “The result of the job analysis will be a set of typical tasks which represents the training content of the job. Skills and

knowledge needed for the job can be derived from typical tasks” [128] (Likely)
M3 0.66 0.9 0.78 Analyst is likely confident about the topic of Job Analysis and KSA (Likely Confident)

Table 6
Conditional probability table for training implementation target node.

Training Procedure Good Quality Poor Quality
Instructor Performance Good Quality Poor Quality Good Quality Poor Quality

Training Implementation Good Quality 0.98 0.93 0.87 0.51
Training Implementation Poor Quality 0.02 0.07 0.13 0.50
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BASE (Section 3.1) can include information from multiple sources and
contexts. The population variability over PTQ is represented by the beta
distribution with two hyperparameters, α, and β. The beta distribution
is a convenient choice because; (i) its range is [0, 1], which is consistent
with the theoretical range of the PTQ, and (ii) it does not impose strong
assumptions on the shape of the probability distribution. For two hy-
perparameters, α and β, independent flat hyper-prior distributions
spread over all positive values are developed [133, 134]. Under this
setting, the Bayes’ theorem is formulated as follows:

∫∝π α β D L D P φ P α β dP π α β( , | ) ( | ) ( | , ) · ( , ),
P TQ TQ TQ 0
TQ (16)

where

π α β D( , | ): Posterior distribution of the hyper parameters α and β
L(D|PTQ): Likelihood function for the evidence D, given the true
value PTQ
φ(PTQ|α, β): Probability distribution for the hyper parameters α and
β (beta distribution)
π0(α, β): Prior distribution of the hyper parameters α and β

After computing the posterior distribution for α and β based on
Eq. 16, the updated probability distribution for PTQ is obtained using
the law of total probability.

As mentioned in Section 2.2.2.4, the likelihood function should be
chosen based on the types of evidence available for informing the es-
timation of the unknown of interest. In this case study, the available
evidence consists of the PTQ estimates generated by DT-BASE and DT-
SITE, =D P P{ ^ , ^ }TQ,BASE TQ,SITE . As shown in Eq. 16, if we assume that the
PTQ estimates from DT-BASE and DT-SITE are independent, the like-
lihood function is written as follows:

=L D P L P P L P P( | ) ( ^ )* ( ^ )TQ TQ,BASE TQ TQ,SITE TQ (17)

In Eq. 17, both pieces of evidence, P̂TQ,BASE and P̂TQ,SITE, are outputs
from the BBN model; thus, an additive or multiplicative model would
be a reasonable choice for the likelihood function that represents the
degree of model error [135, 136]. The selection between additive and
multiplicative models depend on the nature of the problem and avail-
able evidence. At this stage of research, for demonstration of the
methodology, the multiplicative error model is selected as the like-
lihood function. Based on this model, ∈P i^ ; {BASE, SITE}iTQ, , is re-
presented by the product of the true value of the unknown quantity and
the error term: =P P E^ ·i iTQ, TQ . The likelihood function for each piece of
evidence is given as the lognormal distribution shown in Eq. 18:
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where bi and σi stand for the bias factor and the logarithmic standard
deviation of the error term Ei, respectively. For example, the analyst can
assume that the causal models developed for DT-BASE and DT-SITE
have no systematic bias concerning the true value (bBASE= bSITE= 1).
Meanwhile, σi for each model can be estimated by considering upper
and lower bounds for P̂ iTQ, , which need to be entered by the analyst or
estimated by performing uncertainty propagation in the DT-BASE and
DT-SITE models. When the upper and lower bounds of P̂ iTQ, are entered
as PTQ,i;upp and PTQ,i;low, then σi can be estimated from Eq. 19 by con-
sidering the 95th and 5th percentiles of the lognormal likelihood equal
to the upper and lower bounds:

= −σ
P
P
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Φ (0.95)
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i

i
1

TQ, ;upp

TQ, ;low (19)

where Φ–1 is the inverse cumulative distribution function of the stan-
dard normal distribution. As the conversation-text cycle progresses in
an organization, a new piece of evidence can be generated. Using BBN
inference techniques, the new piece of evidence can be conditioned in
the BBN engine to provide real-time updating for the target node
probability of the BBN model.

The results from BASE and SITE are treated as two independent
pieces of evidence: P̂TQ,BASE =0.0296 and P̂TQ,SITE =0.00023. σi is es-
timated using Eq. 17, assuming: (i) the upper bound and lower bounds
of the target node probability estimates are 0.1 and 0.005, respectively,
and (ii) DA-BASE and DT-SITE models have the common σi, because the
structure of the causal model developed for DT-BASE is unchanged for
DT-SITE. Using OpenBUGS, the posterior distributions for hyper para-
meters α and β are computed, and the expected beta distribution for the
integrated probability of the poor quality of training target node is
obtained by calculating the mean of the family of beta distributions
over the posterior distributions of hyper parameters. The Bayesian in-
tegration of DT-BASE and DT-SITE results in the expected beta dis-
tribution shown in Fig. 7, with a median of 0.0039.

3.3. Sensitivity analysis & extended discussion

One of the advantages of the I-PRA framework is that sensitivity and
importance measure analyses can be used to obtain the ranking of or-
ganizational risk-contributing factors based on their contribution to
human errors and system risk. To illustrate this advantage, sensitivity
analysis is conducted to rank factors based on their influence on the
target node probability, i.e., Pr (Training Quality= Poor). This study
uses the Fussell-Vesely Importance Measure (FV-IM) method, developed
in classical PRA [137, 138] and extended to BBN by Groth et al. [139].
The FV-IM method measures the sensitivity of the model output (i.e.,
target node probability, PTQ) to individual factors by:

=
− =I

P P
P

,B
FV TQ TQ|B GoodQuality

TQ
i

i

(19)

where IBFVi is the FV-IM computed for the factor Bi, PTQ is the nominal
output of the target node probability, where each causal node has its
nominal/realistic state, and =PTQ|B GoodQualityi is the target node prob-
ability computed by conditioning that the node Bi has a ‘Good Quality’
with certainty. Conceptually, Eq. 19 assesses how much the target node
probability decreases (i.e., the probability of Poor Quality of Training
decreases) when each child node has a perfectly ‘Good Quality’ ; hence,
IBFVi indicates the importance of each factor in terms of improving the
training quality. In the commercial BBN software GeNIe Modeler, the
set evidence function is used to compute Eq. 19 for each factor by setting

Fig. 7. DT-BASE and DT-SITE Bayesian integration for poor training quality
distribution: OpenBUGS output.
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the occurrence of ‘Poor Quality’ to 0 for each node in the model to see
the changed probability of the training implementation target node, Pr
(Training Quality= Poor), which is logged in Table 7.

It should be noted that due to the limited data set used in this
analysis, the FV-IM differences identified below 1% are not interpreted
as significant. As additional data is included in future work for this type
of analysis, these small differences can be evaluated in a more mean-
ingful way for risk management. The FV-IM results (Table 7) for the DT-
BASE model reveal the following:

• Among all the causal factors, “Program Design,” “Training
Procedures/Facility,” and “Instructor Performance” are identified as
the first, second, and third most important factors, respectively.

• From Level 1.1. of the causal model (Fig. 6), “Training Procedures/
Facility” is ranked more important than “Instructor Performance,”
with a 4% difference.

• In Level 1.1.1 of the causal model (Fig. 6), there are small differ-
ences among the estimated FV-IMs, and so the factors are considered
at the same level of significance.

• In Level 2.1 of the causal model (Fig. 6), among the sub-factors
influencing the quality of “Program Design,” “Training Records
Documentation System” and “Training Needs Analysis” are identi-
fied as more important than “Instructional Technologists.” These
two factors may require more attention for the improvement of the
training program. For example, Training Records and Documenta-
tion Systems manage information to help maintain employee li-
censes, qualifications, and certifications by scheduling training and
continuing training. Training Records and Documentation Systems
may also keep track of attendance/completion for crediting, and of
performance evaluation results to inform the next cycle of training
scheduling.

The importance ranking results provide insights for decision-makers
responsible for resource allocation in order to develop effective stra-
tegies for improving operator training and decreasing human errors. It
also gives the analyst the important factors that require more accurate
data extraction and interpretation in order to generate more accurate
practical recommendations for improvement policy. Future work will
address methodological advancements in sensitivity analysis for the
Data-Theoretic Module in the I-PRA (Fig. 2): (i) conducting multi-way

[140] and global sensitivity methods [77, 82, 141, 142] to account for
the influences of non-linearity and interactions among multiple input
parameters; and (ii) integration of DT-BASE and DT-SITE into one
computational platform to run the sensitivity analysis on a single causal
model. The ongoing research by the authors is focusing on the in-
tegration of the DT-BASE and DT-SITE into one computational platform
so that the Bayesian updating of DT-BASE and DT-SITE (explained in
Section 2.2.2.4) can be conducted at the level of conditional prob-
abilities (rather than at the level of target node that is the case in
Section 3.2) to develop one updated training causal model to be used
for the SA.

As mentioned in Section 2.2.2.2, the estimated marginal prob-
abilities are biased by the number (and quality) of CAP entries; there-
fore, Pr (Training Quality= Poor)= PTQ is also biased by CAP entries.
Future research should focus on resolving this bias; for example, by the
following conceptualization. The ideal goal is to find the unbiased
probability of “Poor Training Quality” (P), which can be defined as of
A'/NDemand where (A' ) stands for the real number of incidents involving
operator training as a contributor, during the data collection period
and, (NDemand) represents the total number of operator demands during
the data collection period. With this definition, (P) takes on values
between 1.0 (every demanded action involves training issues) and 0.0
(training is never a contributor). Eq. 20 shows the relationship between
P, which is the unbiased probability of poor training quality, and the
output of the Data-Theoretic (PTQ) (i.e., the biased probability of poor
training) which is associated to ‘A/NCAP’ (i.e., the ratio of all training
issues (A) to all reported incidents during the data collection period
(NCAP)). In Eq. 20, A'/A stands for the quality of the CAP program in
terms of accurately identifying training contributions. If all incidents
involving training are correctly identified (A'/A)= 1; if there is any
underreporting, A'/A>1 and P is correspondingly increased. To cal-
culate P, future research will focus on the application of a qualitative/
qualitative strategy to assign a value to the quality of NPP CAP pro-
grams. Another required term to estimate P is the value of (NDemand) in
Eq. 20, and its estimation also needs further empirical research.

=
′

= × ×
′

P A
N

A
N

N
N

A
ACAP

CAP

Demand Demand (20)

As stated in Section 2.1, to operationalize the entire I-PRA frame-
work (Fig. 2), the key performance measures (e.g., Ka1, Ka2, Ka3 in
Fig. 2), indicating the measured performance outputs of the organiza-
tional model, need to be generated to help define the states of PSFs in
HRA. For instance, in the training case study, a key performance
measure associated with the training/experience PSF in I-PRA needs to
be generated. Ongoing research by the authors is on developing a
methodology for using the estimated training quality distribution
(Fig. 7) from the Data-Theoretic Module, along with the analysis in
Eq. 20, to develop a plant-specific training indicator that can be used as
a key performance measure in I-PRA. By developing threshold values
that can be associated with the low, nominal, and high training/ex-
perience PSFs in the Standardized Plant Analysis of Risk-Human Re-
liability Analysis (SPAR-H) HRA method [143], the authors plan to
develop a technique for calibrating the model outputs and mapping
them to the states of PSFs for the same plant's risk scenarios. It should
be noted, however, that the scope of the training causal model in this
paper is not specific to one procedural action, and therefore, additional
research is needed to develop causal factors associated with task-spe-
cific training quality that creates an interface to the PSFs of HRA. The
authors envision that updating the states of PSFs (#5 in Fig. 2) in the
interface module of I-PRA would not only help develop site-specific
human error probabilities but would also help address issues of HRA
dependencies [143, 144] as well as dependency among human actions.

Because it is not practical to connect all organizational factors to all
PSFs in HRA, future research will focus on developing a structured
approach to analyze the following items: (a) which HEPs need to be

Table 7
DT-BASE Fussell-Vesely importance measure results (‘Node’ Set
Evidence_Poor=0).

Level of Causality in
Fig. 6

Node (Poor Quality=0) FV-IM Ranking

2. Training Program Design 26.8% 1
1.1. Training Procedure 25.7% 2
1.1. Instructor Performance 21.5% 3
1.1.1. Training Sequence 12.0% 4
1.1.1. Training Method 12.0% 5
1.1.1. Training Setting 12.0% 6
1.1.1. Training Content 12.0% 7
1.1.1. Training Structure 11.8% 8
1.1.1. Training Media 11.8% 9
1.1.1. Instructor Training 11.8% 10
1.1.1. Instructor Knowledge 11.7% 11
1.1.1. Instructor Time Preparation 11.7% 12
2.1. Training Records Documentation

System
10.3% 13

2.1. Training Needs Analysis 9.9% 14
2.1. Instructional Technologist 6.2% 15
2.1.1. Performance Analysis 4.3% 16
2.1.1. Training Objectives 2.9% 17
2.1.1. Knowledge, Skills, and Abilities

Evaluation
2.2% 18

2.1.2. Job/Task Analysis 1.9% 19
2.1.2. Conditions & Standards 1.8% 20
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connected to the underlying organizational mechanisms, (b) which
PSFs need to be connected to the underlying organizational mechan-
isms, (c) what organizational factors should be explicitly and causally
modeled, and (d) the depth of causality and level of details that selected
organizational factors should be expanded to. With respect to items (a)
and (b), because the Data-Theoretic approach is developed for in-
tegration with PRA, importance measure analysis (e.g., Fussell-Vesely
importance measure, Risk Achievement Worth, and Birnbaum im-
portance measure [145]) can be used to identify human failure events
that significantly contribute to risk. Within each of these events, the
dominant PSFs could be identified based on (i) existing guidance, task
type, operating context, and/or (ii) a quantitative sensitivity analysis
which aims to assess the sensitivity of the system risk estimate to each
PSF. At this point, the Data-Theoretic approach can be applied for de-
veloping detailed causal models for those important HEPs and their
dominant PSFs. Item (c) relates to the first step of the theory building
process in Element #1.1 of DT-BASE and, as it is mentioned in
Section 2.2.1.1, this step is associated with Principle I.A (i.e., identi-
fying unknown of interest) in Table 1. The selection of dominant or-
ganizational factors associated with a specific PSF can be conducted
using data (if available) and/or organizational science literature. Item
(d) relates to Step 5 of theory building in Element #1.1 of DT-BASE as
well as Principle II.E in Table 1. The depth of causality and level of
detail in this context need to be determined by the analyst, considering
several aspects, such as (i) risk importance of each causal factor, (ii)
availability of data at each level of causality, and (iii) usefulness in
accident prevention (e.g., the level of causal factors that are more ef-
fective for risk management). It should be noted that the process of
model development and data analytics for Data-Theoretic approach is
iterative. In other words, the analyst needs to start with a certain level
of causality, by conducting risk importance measure and sensitivity
analyses, to identify the causal factors where extension and quantifi-
cation is needed

To produce a more accurate distribution of training quality (Fig. 7),
the authors are executing uncertainty analysis with respect to the
analysts’manual extraction and interpretation of generic information in
DT-BASE (Section 2.2.1). In the current training case study, the point
values of the evidence weighting variables M1, M2, and M3 are used.
However, there are potential issues associated with different meanings
by different analysts, and with different contextual interpretations
[108, 146]. In this paper, the authors make the assumption that sub-
jectivity and between-analyst variability is allowable for theory-
building if the associated uncertainty is explicitly identified and char-
acterized. The authors have ongoing research to incorporate un-
certainty analysis techniques in the DT-BASE code to consider the entire
range of probability values for M1, M2, and M3.

The boundary between ‘good’ and ‘poor’ in the performance out-
come nodes (e.g., safety critical tasks) in the SoTeRiA framework is
reasonably clear; however, as the analyst gets further from the perfor-
mance outcome nodes, the boundary between good and poor in the
causal factors involves expert or analyst subjective judgment and un-
certainty. The current stage of this research does not focus on analyzing
the uncertainty involved in the measurement of good versus poor in
each single factor; instead, the goal of this paper is to the develop a
unified platform to quantitatively connect underlying organizational
causal factors (as well as their associated variability and uncertainty) to
the safety performance outcome (e.g., estimated risk). The next stage of
the research will focus on running sensitivity analysis with respect to
these variabilities and uncertainties to prioritize the critical areas that
need more in-depth studies. Future research will also consider running
sensitivity analysis with respect to underlying assumptions (e.g., un-
biased estimates, lognormally distributed uncertainties, etc.) in the
methodology and application to provide additional justification for the
identified critical assumptions.

4. Concluding remarks

Organizational factors have an ever-present underlying influence on
socio-technical systems and have been identified as important con-
tributors to incidents and accidents in diverse industries. Due to the
complexity of organizational performance modeling, the integration of
organizational mechanisms into Probabilistic Risk Assessment (PRA)
has been a challenge. This paper is a product of a line of research to
incorporate organizational factors into Human Reliability Analysis
(HRA) and PRA to (a) explicitly assess the risk due to specific organi-
zational weaknesses, (b) find and rank the critical organizational root
causes of failure, which enhances risk management, and (c) avoid the
possibility of under-or-over estimating the risk associated with human
error.

Two requirements for incorporating emergent organizational safety
behavior into PRA include: (i) the integration of a theoretical model of
how organizations perform, considering causal factors with their cor-
responding level of analysis and relational links; (ii) the adaptation of
appropriate techniques (i.e., “modeling” and “measurement” ), capable
of capturing complex interactions of causal factors within their possible
ranges of variability and across different levels of analysis, to quantify
the theoretical framework.

To meet the first requirement in this research, the Socio-Technical
Risk Analysis (SoTeRiA) (Fig. 1), a multi-level theoretical framework
that connects the structural and behavioral aspects of an organization
with PRA, is used [27]. Regarding the “modeling” techniques, this re-
search introduces the Integrated PRA (I-PRA) methodological frame-
work (Fig. 2) to operationalize SoTeRiA and to improve the realism of
risk estimations by quantifying the incorporation of human and orga-
nizational performance into PRA. I-PRA preserves plant-specific PRA
models while generating a probabilistic interface to connect the model
of underlying failure mechanisms to PRA. This makes I-PRA econom-
ically efficient and practical for adoption by the nuclear industry. Re-
garding “measurement” techniques, this research develops the Data-
Theoretic approach, the focus of this paper, which is executed in the
data input module of I-PRA (Fig. 2). The Data-Theoretic is an approach
where “data analytics” are guided by “theory” to enhance the accuracy
and completeness of “causality” being analyzed from data. The Data-
Theoretic approach not only contributes to the development of a new
“measurement” technique for organizational factors, but also makes
theoretical contributions by expanding the theoretical causal details of
SoTeRiA.

The Data-Theoretic module of I-PRA Fig. 2) has two sub-modules
including DT-BASE and DT-SITE, and their elements are explained in
detail in Sections 2.2.1 and 2.2.2. The Data-Theoretic approach is ad-
vancing the measurement of organizational factors in the following
ways: (1) it combines different sources and types of information: (a)
articles from academic literature, practical industry procedures and
regulatory standards from industry are integrated through DT-BASE
elements, (b) analysts’ “subjective” interpretation of information in DT-
BASE is combined with “objective” event data extracted in DT-SITE,
and (c) “generic” information obtained in DT-BASE is integrated with
“plant-specific” information extracted in DT-SITE; (2) it guides “data
analytics” with “theory.” The theoretical causal structure of the So-
TeRiA framework and the contextual keywords of each node in So-
TeRiA guide data analytics; therefore, the underlying theory supports
the completeness of causal factors, the accuracy of their causal re-
lationships, and helps avoid the potentially misleading results of a so-
lely data-oriented approach; (3) it uses text mining (in DT-SITE), in
addition to expert opinion (in DT-BASE), as a measurement technique.
Although lack of data has been suggested as one of the key reasons for
making slow progress in the incorporation of organizational factors into
PRA, this research provides a new perspective by highlighting that data
is available for organizational factors; however, this data is different
from tabular equipment reliability data. Organizational data are a
compilation of textual operational experience documents such as
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Corrective Action Program (CAP) entries, Licensee Event Reports
(LERs), root cause analysis documents, and maintenance logs that are
unstructured and heterogeneous; therefore, it is necessary to use text
mining as a data analytics technique for socio-technical risk analysis.

A case study in this paper demonstrates the implementation of DT-
BASE elements for the development of the theoretical causal model for
organizational “training” (Fig. 6) and for its generic quantification. The
case study also explains the application of DT-SITE elements to quantify
the causal model for training, utilizing plant-specific CAP data. The
Bayesian integration of DT-BASE and DT-SITE results has generated the
distribution of poor training quality (Fig. 7) with a median of 0.0039.
An importance measure analysis is performed on the causal model for
training, and as a result, “Program Design,” which is highly influenced
by the quality of “Training Records Documentation System,” is identi-
fied as the most important factor. More detailed results of the ranking of
the factors are included in Table 7. This type of ranking contributes to
more scientific and in-depth root cause analysis and more effective
prevention of system failures caused by human errors or organizational
factors. The causal model for training is not only theoretically validated
but is also verified on its structure and contents by training experts at a
Nuclear Power Plant (NPP). However, it should be noted that there are
several assumptions and simplifications that were made in this analysis,
and these are highlighted throughout the paper; hence, the numerical
outputs of the case study, presented in this paper, are only for de-
monstration and should not be used directly in the context of specific
practical applications. In ongoing research, the authors are conducting
a Probabilistic Validation [71] methodology to evaluate and measure
the epistemic uncertainty (or the degree of confidence) associated with
the estimated probability from the model as a measure of validation.

The computational platform of DT-BASE is an open-source web
application [131] to enable a scientific network for collaborative model
building. Using a client-server architecture, multiple analysts can work
in parallel on a single causal model. Ongoing research by the authors
focuses on advancing several modules of I-PRA (Fig. 2), as follows: (a)
developing advanced safety-oriented text mining that can be applicable
for a wide range of unstructured organizational communications such
as root cause analysis documents, work packages, training records,
management systems, maintenance reports, and policy documents for
DT-SITE; (b) integrating DT-SITE and DT-BASE into one computational
platform to improve the Bayesian updating (See discussion in
Section 3.3); (c) adding uncertainty analysis into the DT-BASE code
(See discussion in Section 3.3); (d) advancing spatio-temporal meth-
odologies [72, 79, 147, 148] for the simulation module (#3 in Fig 2) of
I-PRA and facilitating the interface of the Data-Theoretic module and
the simulation module; (e) developing methodologies for updating PSFs
(# 5 in Fig. 2) of existing HRA techniques based on the results of or-
ganizational causal modeling (See discussion in Section 3.3); (f) ap-
plying Data-Theoretic approach to other factors of SoTeRiA, such as the
quality of organizational safety procedures and safety culture; and (g)
developing global sensitivity analysis and importance measure analyses
[82, 140] for the Data-Theoretic approach to increase the validity of the
ranking of factors in the training causal model (See discussion in
Section 3.3).

The topic of analyzing organizational influence on the risk of
technological systems is a complex multidisciplinary research area.
Although this paper provides a scientific contribution from the per-
spectives of modeling and measuring of organizational factors in PRA,
many critical challenges remain, requiring future research. Some of
these challenges may include: (i) the need for comprehensive calibra-
tion and integration of organizational mechanisms into HRA and PRA
across the lifecycle (i.e., design, construction, operation, decom-
missioning), (ii) the need to include inter-organizational and broader
factors in organizational performance models, (iii) dealing with a wider
variety and larger volume of unstructured data sources (e.g., Licensee
Event Reports, Root Cause Analysis reports, etc.), and calibrating those
data sources to explicitly consider data quality and bias, (iv) dealing

with dependencies among diverse data sources and amongst underlying
performance shaping factor models, (v) implementing quantitative
techniques for handling complex interactions in a causal model growing
exponentially, (vi) considering the role of automated data analytics and
data mining techniques in the building of theoretical causal models,
(vii) methodological advancement of sensitivity analysis and im-
portance measure analysis in the I-PRA framework, and (ix)
Probabilistic Validation to characterize and propagate sources of epis-
temic uncertainty. Forthcoming publications by the authors will pro-
vide more thorough reviews of studies associated with theorizing,
modeling, and measuring organizational factors, considering their im-
pact on technological system risk to comprehensively adopt knowledge
from diverse disciplines for the advancement of PRA.
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