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Abstract—The continuous growth of the cloning of electronic
devices poses a severe threat to our critical infrastructure
that uses the Internet, as cloned devices can transmit secret
information and cause security concerns. Cloned devices can also
be unreliable as they may be manufactured with inferior quality
materials, and they may have many defects as they may not be
tested properly. It is thus extremely important to protect these
electronic devices from cloning. An efficient way to prevent a
device being cloned is to prevent the firmware from being copied
because, without the proper firmware, the device will not function
like the original. In this paper, we present a novel firmware
obfuscation method without encrypting the entire memory. The
firmware is obfuscated by swapping a subset of instructions.
The instructions to be swapped are specifically chosen so that
an attacker cannot discover their location. During operation,
the hardware reconstructs the original program using a PUF-
generated identifier (ID) and a small memory that stores the
swapped instructions. An adversary cannot make a program
work completely without knowing which instructions have been
swapped, as the program will execute in the wrong sequence and
produce the incorrect result. Our proposed solution requires only
a small overhead to reconstruct the firmware, making it practical
for devices with strict resource constraints. This solution also
allows remote updates of new obfuscated firmware without any
modification and is practical for the rising trend of ubiquitous
computing.

Index Terms—Cloning, firmware, obfuscation, Internet of
Things.

I. INTRODUCTION

With the advent of ubiquitous computing under the umbrella
of Internet of Things (IoT) and Cyber-Physical Systems (CPS),
the number of connected electronic devices is expected to grow
exponentially in the following decade. Gartner predicted that
there will be approximately 20 billion connected devices by
2020 [1]. Widespread use of these edge devices in critical ap-
plications (e.g., smart grid, autonomous vehicles, industrial au-
tomation, etc.) will present us with unique security challenges.
Ensuring security of these wide variety of devices requires
immediate intervention. Due to the severe resource constraints,
a majority of these devices do not use standard cryptographic
protocols to ensure secure operations [2]–[5]. Moreover, the
hardware and the firmware running on this system exposed to
piracy. An untrusted entity in the supply chain can copy both
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the hardware and firmware, source them to an untrusted system
integrator, and create clones. Any cloned system may have
backdoors, which can be exploited for malicious purposes [6],
[7]. A recent report from Bloomberg Businessweek revealed
that China used a tiny chip, which is not larger than a grain
of rice to infiltrate 30 U.S. companies, including Apple and
Amazon [8]. The compromised servers were assembled for
Elemental Technologies by Super Micro Computer Inc., which
is a San Jose-based company and the biggest suppliers of
server motherboards for data centers. The report mentioned
that the microchips were inserted at Chinese factories, and then
supplied to Supermicro. According to Bloomberg, Elemental’s
servers could be found in Department of Defense (DoD) data
centers, the CIA’s drone operations, and the onboard networks
of Navy warships. The report also mentioned that an adversary
can gain control of the compromised system when the server
is switched on and the microchip inserts malicious codes to
alter the operating system’s core.

An adversary can perform cloning by retrieving a copy of
the firmware from an embedded device [9]. It is practically
infeasible to develop a cloned product from the original spec-
ification as it requires significant investment in the research
and development (R&D), what an adversary is unwilling to
invest. An easier way of making clones is to illegally obtain
a pirated copy of the design. An adversary can also perform
reverse engineering, which is a process of extracting the design
specification of the inner details of a product [10]. Cloning an
electronic system requires the complete reconstruction of the
hardware and the firmware. Recently, the hardware become
increasingly vulnerable to RE due to the availability of very
advanced imaging instruments and powerful characterization
tools [10]. Similarly, the firmware can also be easily extracted
from an authentic device. The primary challenges for devel-
oping a system, which is resistant to cloning, is twofold. First,
one needs to design either secure hardware or firmware, so that
an adversary cannot perform RE. Second, the solution needs
to be low cost, and low resource overhead (area, and power) to
be widely accepted to the various IoT and CPS applications.

In this paper, we present a novel low-cost firmware obfusca-
tion method to effectively detect cloned systems. The firmware
is obfuscated using reordering of the few selected instructions.
The original flow of the instructions is scrambled using an
efficient algorithm to obfuscate the correct execution flow of
the firmware. The proposed algorithm selects one instruction
and looks for a set of instructions that can be swappable so
that no errors are observed, and the program produces an
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incorrect result. The selection of instructions is performed

based on a set of rules. The relative addresses of these two

swapped instructions are concealed using an identifier (ID)

generated from a physically unclonable function (PUF) and

a unique key programmed into a tamper-proof nonvolatile

memory (NVM). The dynamic reconstruction of the firmware

is assisted by a reorder cache. During power-up, the bootloader

of a device reads all the instructions from the memory and

loads the swapped instructions in the reorder cache. During

the execution of a program, the swapped instructions are

recovered from the cache. Note that our proposed solution does

not prevent an adversary from copying the firmware, rather

than making it operational completely, and provide adequate

protection against cloning. We show that it is infeasible to

reconstruct the original firmware by an adversary considering

the current computing resources, which makes our scheme be

well-fitted in secure IoT and CPS applications.

A. Motivation

Firmware can be extracted from a low-cost embedded de-

vice using a regular computer and a low-cost microcontroller.

To demonstrate the need for an efficient and robust scheme to

counter firmware extraction, we perform an attack proposed

by Obermaier et al. [11] on an Arm-based system. We focus

our attack on The Arm R© Cortex R©-M4-based STM32F4 high-

performance microcontroller [12]. We will present different

ways, which help an attacker to easily access the firmware

stored on the device.

The microcontroller STM32F4 has two levels of on-chip

memory protection to defend against firmware extraction.

When these protections are deactivated, anyone with access

to the debugging interface can access the flash memory.

When the first level is activated, it allows the debugger to

be connected, but it locks the debug interface if there is a

flash memory access. This first level (Level-I) of protection

can be deactivated, but the flash memory gets erased once it is

deactivated, supposedly preventing an attacker from extracting

the firmware. The second level (Level-II) is an irreversible

lock, which disables the debug interface entirely, only allowing

the processor core to access flash memory. Obermaier et al.

demonstrated different attacks on STM32F0, a predecessor to

STM32F4, to bypass these protections. We use these attacks to

show how an attacker can access the firmware of the STM32F4

at any level of protection. Note that if the memory protection

on the system is deactivated, then an attacker can very easily

extract the firmware. Without the protections, flash memory

accesses can occur through the debugging interface, making it

very easy to read the firmware. Any connection to the device’s

JTAG interface is able to retrieve the full contents of memory.

If Level-I protection is active, the proposed attack is to

focus instead on reading the data in SRAM. While the memory

protection locks the debugging interface during a flash read,

it was reported in [11] that it does not prevent someone from

reading the SRAM. This leads to an attack on any device

that loads instructions into SRAM, such as when a device

is performing a cyclic redundancy check (CRC) to check

firmware integrity. As the program runs, it loads instructions

into SRAM, allowing an attacker to read the instructions as

they are checked. We have successfully recreated this attack

on the STM32F4.

Figure 1: Experimental setup to extract the firmware from

STM32F4

Figure 1 shows the experimental setup to launch this at-

tack. A microcontroller acts as an interface device, which is

programmed with the UART module and a driver for the

Serial Wire Debug (SWD) interface. The Interface device

connects to the target device using the SWD, and controls

both the target device’s power and reset connections. The

interface device reads the SRAM while the target device is

performing the CRC, controlling the power to the target device

and resetting when necessary. A python script running on the

laptop communicates over UART with the interface device,

and the SRAM snapshots can be sent to the laptop to extract

the firmware. Even with the Level-I firmware protection, we

are able to extract the firmware using this simple measurement.

The attack on Level-II protection is an invasive attack on

the microcontroller. After decapsulation, precise UV light is

applied to reprogram memory protection bits [11]. Once the

memory protection bits are reprogrammed down to Level-I,

the above attack can extract the firmware from the device.

No matter what level of protection is used, an adversary

can directly access the device firmware. The current memory

protections in place for these smaller systems are not enough

to prevent an attacker from cloning the firmware. Note that

disabling the debug port severely limits the troubleshooting

capability of an authentic user, and highly discouraged. Based

on the above discussion, it can be concluded that cloning a

resource constraint device is rather uncomplicated. Therefore,

a new method to provide clone-resistance is essential.

B. Contributions

In this paper, we propose a novel and low-cost method of

firmware obfuscation that does not require standard crypto-

graphic methods to protect the firmware against piracy. We

identify a few selected instructions from the firmware and

reorder them in such a way that it functions incorrectly without
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letting the attacker know which instructions have been moved.
If an adversary downloads the firmware directly from the non-
volatile memory (NVM) and runs it on a different device,
those selected instructions will execute out of order, causing
the program to produce incorrect results.

Only the devices that are authenticated by the manufacturer
can reconstruct the firmware at boot time. The devices use
a unique device identifier (ID) that can be generated from a
PUF such as an on-chip SRAM-PUF [13]. During boot-up,
the device uses its ID and a stored program key to generate
an obfuscation key, which consists of the relative addresses
of the swapped instructions. A bootloader reconstructs the
original firmware by storing the swapped instructions in a
small cache (we call this a reorder cache). After boot-up,
the processor begins fetching instructions from memory like
normal, except when there is a hit in the cache. The cache hit
would steer the instruction fetching away from the memory to
the cache. Therefore, the processor will execute the instruction
fetched from the cache instead of the memory. However,
the processor still accesses the memory even if it executes
the instructions inside the cache. When the device needs an
update, the manufacturer can send the obfuscated firmware
update with a new obfuscation key. The device uses the new
obfuscation key to reconstruct the updated firmware, allowing
it to transition to the updated firmware with a simple reboot.

This solution serves as a low-cost alternative to the existing
system-level cloning prevention techniques. Our proposed
solution does not require expensive run-time overhead like
encryption/decryption. Once the on-chip reorder cache is pop-
ulated at boot time, there is no extra processing required to
execute the firmware. This makes it very practical for IoT/CPS
and other small devices with strict resource constraints. While
the instructions are still unencrypted and visible to the attacker,
it is still very difficult to locate the moved instructions and
reorder them to the correct arrangement. The complexity of
estimating the correct sequence is O(NL), where N is the
number of instructions from which L pairs of instructions are
reordered. Note that for a reasonable size firmware (≈ 1, 000
instructions), with a small number of swaps (≈ 16), an
adversary needs to try approximately 2200 trials to make the
program completely working, which is infeasible with current
computing resources.

The rest of the paper is organized as follows. Section
II describes related prior works. Section III describes our
proposed obfuscation methodology. The firmware reconstruc-
tion methodology is presented in Section IV. The security
evaluation and overhead analysis of our proposed approach are
presented in Section V. The paper is concluded in Section VI.

II. RELATED WORK

Researchers have presented numerous solutions to protect
both hardware and firmware. The protection of hardware can
be ensured cost-effectively by the verification of an unclonable
identification number (ID) created from the hardware finger-
print [14]–[17]. However, a cost-effective solution needs to
be developed to protect firmware from piracy, especially from
copying or cloning. A variety of solutions have been proposed

over the years to protect firmware from various attacks. Li et
al. proposed the integrity verification of peripherals’ firmware
of a computer system by using remote software-based attes-
tation [18]. LeMay et al. developed Cumulative Attestation
Kernel (CAK) to verify the integrity of the firmware over
an interval of time [19]. The solution provides the cumula-
tive attestation for memory constraint devices by adding a
Cumulative Attestation Coprocessor (CAC) that handles the
computation and storage. To safeguard the firmware against
non-invasive attacks, Schellekens et al. proposed a solution to
protect the persistent state of a trusted module by maintaining
an authenticated channel between the trusted module and
the memory [20]. Maskiewicz et al. proposed a signature
verification scheme to prevent the installation of malicious
firmware on a mouse [21]. Morais et al. developed a solution
that uses integrity verification at different levels of the boot-
up process to ensure the loading of proper firmware into the
memory [22]. Chakraborty et al. proposed a key-based control
flow obfuscation based on a sequential unlocking mechanism
to protect piracy and malicious modification to the embedded
software [23]. This solution requires a code overhead up to
10%, and the instructions used for validation need to be
hidden from an adversary. Zhuang et al. developed a hardware-
assisted control flow obfuscation, which relies on additional
hardware such as shuffle buffer and block address table
cache [24]. There are several implementations of Oblivious
RAMs proposed by Goldreich et al. (ORAM) [25], which
obfuscate control flow and patterns of memory accesses [26],
[27]. There are also a few designs that have been proposed
for FPGAs which encrypt the firmware with PUF-generated
keys [28], [29]. One other potential solution was proposed by
Guin et al., where mutual authentication is performed to pre-
vent system-level cloning [9]. In this approach, the hardware
verifies the firmware and the firmware ensures the authenticity
of the hardware. The firmware is obfuscated by removing a
select number of instructions such that the firmware is inoper-
able. This method requires the entire firmware reconstruction
during the powerup stage, where the reconstructed firmware
must be kept in the volatile memory (e.g., SRAM or DRAM)
during execution. It is often challenging to store the entire
firmware in the memory for resource-constrained devices, as
many of these embedded devices may not possess an on-chip
SRAM or an off-chip DRAM.

Lee et al. proposed a hardware and software codependent
anti-cloning scheme [30]. Here, authors proposed to obfuscate
each instruction Ii with a response from a PUF or a block
cipher function F . The memory stores the obfuscated version
of instructions as I

′

i = Ii ⊕ F (Ci). The function F has
to be evaluated for a particular challenge Ci for each of
the instructions during run-time. Similarly, Zheng et al. [31]
proposed to incorporate a device signature during firmware
binary generation. Inter-device signature variation makes the
firmware uniquely obfuscated for each of the devices. Digitally
re-configurable PUF has been employed to counter cloning
in [32]. In this method, each of the devices would have a
different copy of the obfuscated firmware, and it is bound
to a specific hardware. The primary limitation of the above
methods is excessive timing overhead as each instruction
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has to go through a complex and power consuming de-

obfuscation/decryption process during execution.

While all of the above solutions can help protect devices

from firmware modification and tampering, their applicability

in the low-cost, low-power and resource constraint IoT/CPS

devices is questionable as the majority of these devices do

not use standard cryptographic protocols [2]–[4]. Integrity

and signature verification are often expensive which requires

either software support or cryptoprocessor. As these edge

devices have limited memory, implementing verification can

be infeasible. Moreover, severe energy constraint prohibits

IoT edge devices to use standard cryptographic schemes [2].

Signature verification requires additional energy budget, which

may pose additional challenges. In addition, adding a copro-

cessor will significantly increase the cost. Moreover, integrity

and signature verification cannot prevent an adversary from

copying a firmware. It can be easy for an adversary to tap

into the data bus between external memory and the processor

and read the firmware. Even devices with on-chip memory

and memory protection may not be completely secure from

firmware cloning. Recently, Obermaier et al. showed that

memory protection can be bypassed by attacks on debug

interfaces or even by modifying security bits with UV-C

light [11].

III. OBFUSCATION METHODOLOGY

The fundamental idea of preventing an adversary to develop

cloned systems is to design an obfuscated firmware that

runs only on authentic hardware, and an adversary cannot

reconstruct the original firmware. As the existing cloning

prevention techniques (e.g., encryption or integrity verification

of the firmware) are prohibitively expensive both from the

perspectives of development cost and resource consumption

during execution in the resource constraint devices, the indus-

try is in urgent need for a low-cost solution. In this section, we

propose a low-cost solution to prevent system-level cloning.

A. Firmware Obfuscation Process

An efficient way of preventing system-level cloning is to

add a unique hardware signature to the firmware such that

it runs correctly on an authentic hardware. We propose to

obfuscate the original firmware such that an adversary cannot

reconstruct it and works only when the firmware receives

an authentic hardware fingerprint. We call this fingerprint as

device identification or device ID (ID). The obfuscation is

performed by swapping a few selected instructions so that

the execution would produce incorrect results. Note that the

firmware is not encrypted by using any techniques widely used

for data encryption. Our solution is simple and low-cost, which

makes it suitable for low-cost IoT and CPS applications.

Figure 2 shows the proposed solution to prevent system-

level cloning. The trusted system integrator (SI) obfuscates

the firmware and loads it into a non-volatile memory (e.g.,

flash memory) of the device. The detailed obfuscation process

is described in Algorithm 1. When the firmware is obfuscated,

the relative addresses of the swapped instruction pairs are

combined into a single key called the obfuscation key (KO). If

1.pus h {r0-r3,lr}
2.ldr  r5,=per iodLo c
3.ldr b r1,[r0]
4.ldr  r5,=DAC value
5.and  5,r5,r3
6.ldr b r2, [r0]
….
….
….

1.pus h {r0-r3,lr}
2.ldr b r2,[r0]
3.ldr b r1,[r0]
4.ldr  r5,=DAC value
5.and  5,r5,r3
6.ldr  r5,=per iodLo c
….
….
….

Figure 2: Proposed flow for creating a clone-resistant elec-

tronic device.

the obfuscation has L swaps, then the obfuscation key would

be:

(Inst1 ⇐⇒ Inst2), . . . , (Inst2L−1 ⇐⇒ Inst2L)

KO = [Addr1, Addr2, . . . , Addr2L−1, Addr2L] (1)

The size of the obfuscation key depends on the address

space and the number of instructions used in the swapping

process. Since every swap includes two instructions, two

addresses need to be stored for each swap. Therefore, the

length of the obfuscation key is

|KO| = |Addri| × L× 2 (2)

As an example, if there are 32-bit addresses and L = 16 swaps,

the key length of KO would be 32× 16× 2 = 1024 bits.

To prevent an adversary reconstructing the original firmware

by comparing multiple copies of obfuscated firmware, it is

necessary to load the same obfuscated copy to all the devices.

If an adversary finds multiple copies of the original firmware,

he/she can easily launch an attack to find the dissimilar instruc-

tions and can reconstruct the original firmware by majority

voting. To prevent this attack, we propose to use a single copy

of the obfuscated firmware, which needs to be loaded in all

devices. This results in a single obfuscation key (KO) for every

device the trusted SI produces. Programming of this KO into

every device will make an easy target for cloning this key. To

prevent this, we propose to derive a unique key (K) from KO

for every device, and then program this derived key K into

an electronic device. A physically unclonable function (PUF)

[14]–[16] can be used to derive this K, as a PUF produces an

unclonable ID (ID). Since the majority of electronic devices

have SRAM-based memory and embedded processors, a stable

SRAM PUF [33] can offer a better choice as it does not require

any additional cost. To create the key, the trusted SI reads the

response (ID) of the SRAM PUF for each device, once it is

being tested and becomes defect free. SI then creates K by

using the following equation:

K = ID ⊕KO (3)

Note that once K is programmed into a device, the outside

access of PUF responses is disabled. Because of this, each

device will have a separate public ID so that the SI can identify
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each device for the future firmware updates (see Section IV).
The SI needs to keep a database linking the public ID to the
private ID (ID) generated by a PUF.

B. Algorithm for Firmware Obfuscation

The proposed obfuscation scheme is a novel way to provide
protection to the firmware. Most firmware protection schemes
involve encrypting the firmware in some way, but encryption
is expensive for embedded applications. It requires special
hardware and extra time to decrypt every single instruction
from memory. By swapping instructions instead of encrypt-
ing them, the firmware is still protected without needing
the special decryption hardware, which reduces the cost to
implement. The obfuscation, while keeping the majority of
the program unchanged, still keeps the firmware secure from
cloning because the swapping is done in a way that prevents
an attacker from knowing which instructions were swapped.
It is necessary that obfuscated program does not produce any
errors during the program compilation so that an adversary
finds the swapped instruction simply by debugging. Note that
the firmware obfuscation is performed by the trusted system
integrator, and only known to it.

Algorithm 1: Firmware obfuscation algorithm
Input : Program (PE), number of swaps (LT )
Output : Obfuscated Program and obfuscation key

1 Read the entire program (PE);
2 Find all valid swappable instructions,

PNT ← candidateSwap(PE) ;
3 Initialize index to 1, i = 1 ;
4 while i ≤ LT && PNT 6= NULL do
5 Randomly choose a instruction, Instx from PNT ;
6 Find all possible instructs to swap,

PInstx ← findPossibleSwaps(PNT , Instx);
7 if PInstx 6= NULL then
8 Randomly select one instruction, Insty ∈ PInstx ;
9 Create ith obfuscation key, kOi, where

kOi = [RAddInstx RAddInsty ] ;
10 Update program to include ith swap.

PE ← updateProgram(PE , RAddInstx ,
RAddInsty ) ;

11 Drop these two instructions (Instx, Insty) from
PNT ;

12 i = i+ 1;
13 end
14 else
15 Drop instruction Instx from PNT ;
16 i = i ;
17 end
18 end
19 Construct obfuscation key, KO , where

KO = [kO1 kO2 . . . kOL ];
20 Report obfuscated program, PE , and obfuscation key, KO

Algorithm 1 shows the pseudo-code for obfuscating a
firmware by swapping a small set of instructions. The algo-
rithm starts with reading all the instructions (E) of a program
P (Line 1). It is also necessary to provide the number of swaps
(LT ), which is determined based on the size of the device
ID and the address bus width as mentioned before. Note that
all the instructions of a program cannot be swappable (see

details in Section III-C). candidateSwap() function stores
all swappable instructions to a temporary program variable,
PNT

(Line 2). Here, NT represents the number of instructions
that can be swapped. The index (i) for selecting a swap is
initialized at Line 2, and the algorithm performs LT swaps
iteratively (Line 4 - Line 18). In each iteration, an instruction
(Instx) is randomly selected. Note that this instruction cannot
be swapped with all NT −1 instructions (see details in Section
III-C). findPossibleSwaps() function returns all possible
swaps with Instx (Line 6). It is necessary to check whether
there is a swappable instruction exists for Instx. If swappable
instructions exist, the algorithm selects one (Insty) randomly
(Line 8). An obfuscation key (kOi ) that represents the relative
addresses of these two instructions (Intrx and Insty), is
created for this swap, where kOi

= [RAddInstx RAddInsty ]
(Line 9). Intrx and Insty are now swapped in the original
program, PE using updateProgram() function (Line 10).
The algorithm now drops these two instructions from the
temporary program variable, PNT

(Line 11) and increases the
index (Line 12). If findPossibleSwaps() function does not
find any instruction to swap with Instx (Line 6), the algorithm
drops Instx (Line 15) and keep the index constant. Once
the entire program is obfuscated by performing LT swaps,
the complete obfuscation key (KO) is constructed (Line 19).
Finally, the algorithm reports the obfuscated program, PE , and
obfuscation key, KO (Line 20).

C. Swapping Rule Check (SRC) for Instructions

To ensure the security of our proposed obfuscation method,
it is necessary to prevent an attacker from finding out the
swapped instructions. The ability to hide a pair of swapped
instructions in the obfuscated firmware is dependent on the
instruction types and registers used in each instruction. In this
section, we propose Swapping Rule Check (SRC) to ensure that
two instructions (e.g., Instx and Insty) are swappable. The
SRC ensures that the swapped instructions in the obfuscated
firmware are not obvious to an attacker. In this paper, we
follow ARM assembly language to describe these rules with
examples. Note that, instructions are individually checked
by the algorithm to examine whether it is swappable with
any other instructions or not. Therefore, instruction length
variability will not affect the obfuscation technique. Therefore,
these rules can be extended to other assembly languages (e.g.,
x64 [34], AVR [35], or PIC [36]). However, the cache design
will be different for fixed and variable length instruction sets.

The SRC is divided into two sets of rules. The first set
determines which instructions are candidates for the swapping
algorithm. These rules filter out any instructions that could
not be swapped with any other instruction without alerting an
attacker. The second set of rules determines which pairs out of
the instruction candidates are indeed swappable. Even among
the candidate instructions, only certain pairs can be swapped
without tipping off an adversary. These two sets of rules are
described in detail below:

• Set-I: Rules for finding candidates swaps
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These rules define which instructions are candidates for

swapping and are implemented in candidateSwap() function

(see Line 2 of Algorithm 1).

1) Branches: Any branch instructions are not allowed for

swapping. Branches (e.g., b, beq, blt, bhi, etc.) cannot

be swapped as it will provide information to an attacker

that is dynamically monitoring the memory bus. If the

processor branches to an unexpected location because it

executed a swapped branch instead of the instruction in

memory, it will let the attacker know that the instruction

has been swapped.

2) Function Headers and Footers: There are instructions that

serve as function headers and footers that designate a

function block. If these instructions are moved, an at-

tacker will know immediately that a change has occurred.

For example, if halt/return instructions are misplaced, it

will reduce the search space for an attacker. Therefore,

the obfuscation algorithm leaves the header and footer of

functions in the program.

• Set-II: Rules for finding pairs

These rules define which pair of instructions are swappable,

and are implemented in findPossibleSwaps() function (see

Line 5 of Algorithm 1).

1) Equivalent Instruction: Equivalent instructions cannot be

swapped as this will not obfuscate the firmware. Two

instructions are equivalent if they perform the same

function and have the same operands.

2) Register Initialization: Instructions cannot be swapped

into a location where one of the source registers becomes

uninitialized. For example, in Figure 3(a) instruction 3

uses register r5. Instruction 2 (i.e., ldr r5, = periodLoc)
initializes register r5. Now, swapping instruction 2 with

instruction 6 will give an attacker an indication that

instruction 2 has been swapped as r3 has no initial value

(see Fig. 3).

1. push {r0-r3, lr}
2. ldr r5, =periodLoc
3. ldrb r1, r5     
4. ldr r5, =DACvalue
5. and r3,r2,r5 
6. ldrb r0, [r3]
  

1. push {r0-r3, lr}
2. ldrb r0, [r3]
3. ldrb r1, r5     
4. ldr r5, =DACvalue
5. and r3,r2,r5   
6. ldr r5, =periodLoc
  

Figure 3: ARM assembly code snippet as an example for

register initialization. Instructions 2 and 6 cannot be swapped.

3) Register Utilization: Instructions cannot be swapped into

a location where its destination register is never used.

For instance, let us assume that register r5 is last used

in Line 6 in Figure 3(b). If ldr instruction in Line

2 in Figure 3(a) is swapped with ldrb in Line 6, the

assignment ldr r5, = periodLoc becomes redundant and

will tip off the attacker because the destination register

r5 has not been utilized in the obfuscated firmware.

4) Operation Efficacy: Instructions cannot be swapped into

a location where the operation performed is redundant

and only extends the operation of the last instruction.

For example, assume instructions sub r3 , r2, #5 and

addr3 , r3, #2 have been placed in consecutive locations

after obfuscation. Since, sub r3 , r2, #3 can replace

the previous two instructions. Therefore, one of them

is clearly swapped instructions and it narrow downs the

search area for an attacker.

5) Index Distinction: If the instructions are to be mapped

into a cache as described in Section IV, part of the

instruction address should be reserved as an index into

the cache. For example, if a 32-entry direct-mapped cache

is used for reconstruction, then 5-bits in the instruction

address must be reserved as the index. No two chosen

instructions can have the same index, or else there will

be a collision in the cache.

1. mov r3, #3 
2. lsl r3, r3, #1 
3. sub r3, r3, #2 
4. mov r2, r3 
5. lsl r3, r3, #2 
6. add r3, r3, r2 
7. mul r3, r3, #5
8. mov r0, r3 

1. mov r3, #3 
2. mul r3, r3, #5
3. sub r3, r3, #2 
4. mov r2, r3 
5. lsl r3, r3, #2 
6. add r3, r3, r2 
7. lsl r3, r3, #1 
8. mov r0, r3 

;r3 = 3
;r3 = 3*2 = 6
;r3 = 6 - 2 = 4
;r2 = 4
;r3 = 4*4 = 16
;r3 = 16+4 = 20
;r3 = 20*5 =100
;return 100

;r3 = 3
;r3 = 3*5 = 15
;r3 = 15-2=13
;r2 = 13
;r3 = 13*4 = 52
;r3 = 52+13 =65
;r3 = 65*2 = 130
;return 130

1. mov r3, #3
2. lsl r3, r3, #1
3. sub r3, r3, #2
4. mov r2, r3 
5. lsl r3, r3, #2
6. add r3, r3, r2
7. mul r3, r3, #5
8. mov r0, r3

Figure 4: A simple obfuscated firmware illustration.

A simple and comprehensive example of the obfuscation

scheme is illustrated in Figure 4. The instructions that usually

are not swappable (e.g., branches, push and pops, etc.) have

been omitted for simplicity. The eight instructions in the figure

can be swapped in eleven different ways according to the SRC.

If we randomly choose the swappable instruction ls1r3, r3, r2
(blue), then we can make four possible swaps that adhere to the

SRC (Figure 4(a)). We then randomly choose sub r3, r3, #1
(green) as the other instruction to swap with. Figure 4(b) shows

how the program generates a completely wrong result when

these two instructions are swapped. In actual application, a

firmware can follow many execution paths. It is difficult to

quantify the probability of “incorrect execution” based on

a static copy of an obfuscated firmware. However, Rule 5

in Set-I guarantees multiple instructions swapping is spread

throughout the firmware. This will maximize the probability

of wrong execution of an obfuscated firmware. After swap-

ping the instruction, the obfuscated firmware is simulated

in ARMkeil R© compiler to verify the rules’ efficacy. This is

considered a sufficient condition to prove that the rules are in

fact capable of obfuscating the proper execution flow of the

firmware.
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Figure 5: Proposed scheme for firmware reconstruction during program execution.

IV. RECONSTRUCTION METHODOLOGY

Since the obfuscated firmware is stored in the non-volatile
memory, additional hardware support is needed on the pro-
cessor to reconstruct the original firmware. In this section,
we present a structure that consists of a small direct mapped
cache, which translates the addresses of the swapped in-
structions. Note that one can use different implementations
based on the processor and memory organization for address
translation.

Figure 5 shows our proposed implementation which re-
quires the bootloader to recover the swapped instructions
to reconstruct the firmware back to its proper arrangement.
Today, almost all the devices use a bootloader to perform
memory partitioning, hardware checks, clearing interrupt flags
etc. by obtaining the entire firmware from the non-volatile
memory [37]. We propose to generate the swapped instructions
during this power-up time. In this initial phase, the bootloader
retrieves the system ID from the PUF and program key K
from the NVM to reconstruct the obfuscation key KO. Since
KO is the relative addresses of the swapped instructions, the
bootloader maps the relative addresses to physical addresses of
the flash memory. Whenever an address matches with an entry
in the KO, the instruction is loaded into the cache location
corresponding to the address with which the instruction is
swapped. Once this is complete, the reorder cache contains
all the instructions that have been swapped in the original
firmware. The red dotted portion in the Figure 5 highlighted
this power-up sequence, and it is executed only once at the
system boots up.

Since the swapped instructions and their relative addresses

are in the cache, further execution would not require any au-
thentication. During the execution of a program, the instruction
memory is accessed by the processor sequentially, unless there
is a hit in the reorder cache. Assume that the program counter
points to an address AIo1, which is the address for instruction
Io1 for an obfuscated program. The memory should fetch the
instruction Io1; however, the address AIo1 leads to a cache
hit as it is present in the cache. Consequently, Io2 is fetched
to the processor from the cache and Io1 is discarded by the
multiplexer. While it thwarts information leakage regarding
swapped instructions even if the address bus is dynamically
monitored, this simple reconstruction method ensures that the
firmware can be executed seamlessly by the system.

A direct mapped cache has been employed in the design
because its lower hardware overhead compared to fully set
associative cache [38]. The cache contains all the swapped-
instruction pairs and the tags of their corresponding relative
addresses. In this manuscript, we considered the device ID of
1024 bits and the address for instructions of 32 bits. Therefore,
we can have 32 cache lines and requires 5 address bits to
represent index. We also consider instructions are of 4 bytes
wide. As a result, we reserve two address bits for byte offset.
Therefore, the size of the Tag will be 32 − 5 − 2 = 25 bits
and takes Address[31 : 7] for tag comparison.

Firmware updates are an essential part of secure IoT system
development. Usually, recent embedded devices are capable of
handling the update process through a built-in device firmware
update (DFU) features [39], [40]. In general, the system
integrator can achieve the firmware update functionality using
a bootloader if no DFU is available. The bootloader is forced

7
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Figure 6: Directed Acyclic Graph of a Firmware. The path, P1

highlighted in red, represents a failing execution. Instruction
I8 is swapped with I11.

into a secure update state during power-up by a hardware in-
terrupt. Before the firmware update, the original manufacturer
or system integrator (SI) obtains the public device ID from
the device. The SI can then use the public ID to access a
database and retrieve the private ID (PUF responses during
registration). Using the private ID, the SI generate a new key
K for that device. An obfuscated firmware also created using
Algorithm 1. Then, the SI can send the obfuscated firmware
and the updated key K to the system. Note that the program
key K may not have to be updated if the instructions in the
obfuscated update still adhere to the SRC guidelines. After the
updated obfuscated firmware and program key are stored into
flash, the device can reboot or reload its cache with the new
instructions. With the cache updated for the updated firmware,
the program can begin executing the reconstructed update.

With the additional hardware support and extra code to
the bootloader, the firmware can be reconstructed on power-
up without extra overhead on computational performance
during normal execution. It also allows for simple and secure
firmware updates, making it suitable for devices with strict
resource-constraints.

V. ANALYSIS AND OVERHEAD

In this section, we develop a mathematical model to analyze
the security of the proposed obfuscation method. We also
provide an estimate of the area overhead of our proposed
scheme.

A. Security analysis

The total number of trials or arrangements of instructions
(denoted as attacker’s effort, AE) the attacker must perform to
ensure the complete reconstruction of the original firmware,
is calculated using this model. We calculate AE using few
example cases of firmware to show that the obfuscation is
practical and secure for real programs.

To find the attacker’s effort, the firmware is modeled as
a directed acyclic graph (DAG) [9], [23]. This is done by

removing loops in the firmware and showing the possible
ways the program can execute. Let the vertices I be the
instructions in the firmware, and paths P are the different ways
the program can execute. Let us assume that there are m paths
in the graph that represents all different execution flows, total
E number of instructions, and NT number of instructions that
are swappable according to the swapping rule check, SRC. Let
LT be the total number of swaps performed by the algorithm.
Let h be the set of path lengths in the DAG. Figure 6 shows
the DAG model.

The total AE depends on how many paths an attacker can
identify as a failing path. These are paths that do not complete
or produce an obviously incorrect output. The total AE is the
sum of the effort required to reconstruct the failing paths that
were identified, and the effort required to reconstruct the rest
of the firmware.

AET = AEF +AEU (4)

When the attacker knows exactly which paths are failing,
the effort to find the swapped instructions should be smaller
than the effort when he/she does not observe a failing program
execution. We will first examine the effort to make a program
completely working when an attacker knows the failing exe-
cution paths. For example, let us assume that the red path in
Figure 6 has been identified by an attacker as a failing path.
Here, I11 and I8 have been swapped, which causes a failure
in P1. Since the attacker knows that at least one instruction
in that path is swapped, it reduces the number of instructions
that must be checked. Equation 5 shows how many trials an
attacker must run to check a single swap in M failing paths.

AEF = h1(NT − 1) + h2(NT − 3) + . . .+

hM (NT − 2M + 1) (5)

where, h1, h2, . . ., hM are the length of path P1, P2, . . .,
PM respectively. While there may be more swapped instruc-
tions in the same failing path that would add complexity, the
best-case for the adversary is that every modified path only
has one swapped instruction.

Even if the attacker has found a failing path and reduced
the number of instructions to check, there may be multiple
instructions that cause the path to succeed. For example, if
there are multiple occurrences of the same instruction in the
firmware, an attacker may make a swap that causes the known
path to succeed, but another unknown path to fail. Since each
swap is unique, the only way an attacker can be sure that the
firmware is correct is to check every possible swap, not just
the swaps that fix the one known failing path.

We will now examine the case where an adversary does
not know the failing paths. We believe that it is possible to
swap instructions from paths that are difficult to execute by
an adversary. In addition, there is usually a large number of
execution sequences or paths (� E) for a program. It would
be difficult for an attacker to find all the failing paths in
the firmware, as he does not know which inputs cause the
execution to go down each path. If the attacker cannot find all
the failing paths, an attacker must try every arrangement of the
remaining swappable instructions to reconstruct the original
firmware. Let’s say that an attacker has performed M swaps

8
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to fix the failing paths that have been discovered. This means
those swaps and instructions can be removed from the analysis.

L = LT −M (6)
N = NT − 2M (7)

It is useful to represent the remaining swappable instructions
(N ) as an undirected graph as we do not require to preserve the
directivity to calculate attacker’s effort. Let G be an undirected
graph of N instructions in the firmware that can be swapped
based on the swapping rule check, SRC described in Sec-
tion III. Let every edge between two vertices in the undirected
graph indicate that the two instructions can be swapped with
each other. A swap occurs when an edge is chosen in the graph.
After the first edge is chosen, the two swapped instructions
(e.g., I1 and I2) cannot swap with any other instruction. The
edges must be chosen so that no two edges are adjacent. This
is shown Figure 7, where Figure 7. (a) shows all the potential
swaps in a firmware with five swappable instructions. After
I1 and I2 are swapped in Figure 7. (b), all edges adjacent
to those instructions are no longer valid swaps and cannot be
counted for further arrangements. But the attacker still has to
try every other non-adjacent (disjoint) edge to find the second
swap.

Figure 7: Graph model of two instructions being swapped in
firmware. Adjacent edges are removed when a swap is chosen.

The attacker’s effort (AEU ) to find L swaps in the firmware
can thus be described as the number of ways one can choose L
disjoint edges. This is also known as a “matching” of the graph
G, or more specifically the “k-edge matching” where k = L.
This is a difficult problem and has not been solved in closed
form for a general graph [41]. Still, using the k-edge matching
for special graphs, the upper bound and lower bounds for the
attacker’s effort can be calculated. Figure 8 shows the graphs
in which these bounds would occur for N = 6.

Figure 8: Worst-case (a) and best-case (b) graphs for the
adversary when N = 6

In the worst-case scenario for an attacker, the graph G is a
complete graph, and any instruction can be swapped with any
other instruction. In this case, the number of “k-edge matches”
is closely related to mathematical “telephone numbers” or
“involution numbers” [42]. The number of arrangements can
be described as the number of ways you can choose 2
instructions out of N instructions, multiplied by the number
of ways you can choose 2 instructions out of the remaining
N−2 instructions, and so on until you have L swaps. Since the
order in which the instructions are swapped does not matter,
this term is then divided by L!. The number of arrangements
in the worst-case is then shown to be:

AEU−W =

(
1

L!

)(
N

2

)(
N − 2

2

)
. . .

(
N − 2L+ 2

2

)
=

N !

2L(L)!(N − 2L)!

=
N(N − 1) . . . (N − 2L+ 1)

2L(L)!
(8)

Equation 8 gives the worst-case effort for an adversary to
reconstruct an obfuscated firmware and has a complexity of
O(N2L) as N >> L.

In the best-case situation for an adversary, every swappable
instruction in the graph can only swap with one other instruc-
tion. In this case, the attacker would be choosing L edges from
N/2 possible swaps, so the effort to find the remaining swaps
would be:

AEU−B = N/2CL =

(
N/2

L

)
=

N(N − 2) . . . (N − 2L+ 2)

2L(L)!
(9)

Equation 9 gives the best-case effort for an adversary to re-
construct an obfuscated firmware and of O(NL) as N >> L.

In both of these cases, AEU � AEF for even small values
of L, we can ignore the AEF term and estimate AET to be
approximately equal to AEU .

AET ≈ AEU (10)

For further analysis, we consider the specific implementa-
tion of the obfuscation where LT = 16. In this case, 16*2=32
instructions need to be swapped. If we use a 32-entry direct-
mapped cache, described in Section IV, the Index Distinction
rule will apply (see Section III-C). This means that for every
swap, roughly 2/32 = 1/16 of the remaining swappable
instructions will no longer be swappable. This reduces the
number of possible arrangements in both the best-case and
the worst-case. The adjusted attacker’s effort will then be:

AET−W ≈
(32− 2M)!

322L
AEU−W (11)

AET−B ≈
∏L

i=1(2i− 1)

32L
AEU−B (12)

where M represents the number of swaps an attacker has
found from failing paths, and L represents the remaining
unknown swaps.

While the model provides best-case and worst-case scenar-
ios on attacker’s effort, it is necessary to calculate the definite

9
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Table I: Attacker’s Effort (AE) to reconstruct a complete program.

Program # Total
Instructions (E)

# Swappable
Instructions (N)

Attacker’s Effort (AE)
L = 4 : M = 12 L = 8 : M = 8 L = 12 : M = 4 L = 16 : M = 0

qsort large.s 181 77 1.56× 27 1.32× 224 1.24× 247 1.96× 276

dijkstra.s 342 237 1.49× 213 1.22× 240 1.48× 277 1.58× 2107

fft.s 368 191 1.62× 215 1.10× 242 1.01× 271 1.27× 2110

basicmath.s 480 209 1.47× 219 1.82× 253 1.43× 287 1.18× 2124

sha.s 577 471 1.09× 228 1.88× 272 1.68× 2118 1.51× 2172

rsa.s 1658 1297 1.48× 237 1.54× 290 1.37× 2150 1.43× 2211

aes.s 1757 1134 1.38× 235 1.81× 284 1.73× 2140 1.11× 2203

number of trials for an adversary, which needs to be performed
to reconstruct different benchmark programs. In this analysis,
we write a Python script to analyze the firmware and count a
potential number of swaps in a given program using the SRC
described in Section III. The script parses through the ARM
assembly file that is generated by the GNU Arm Embedded
Compiler [43] and locates the instructions that are swappable.
Then, it counts up the number of possible swaps between
all the swappable instructions, before using Algorithm 1 to
generate the obfuscated firmware. It finally estimates AEU by
taking the product of the number of possible swaps after each
swap in the algorithm.

Table I shows the actual attacker’s effort, which is calculated
using the Python script describe above.

The example programs listed were benchmark tests from
MiBench2 [44]. Here, columns 4, 5, 6, and 7 represent AE for
unknown paths L= 16, 12, 8, and 4. Note that, L= 4, 8, 12, and
16 correspond to M= 12, 8, 4, and 0 respectively (See Eqn. 6).
The length of the ID depends on the number of instructions
to be swapped, therefore, must be defined depending on the
expected security level during design phase of the system.
Here, all calculations assume the ID to be 1024 bits, instruction
width 32 bits, LT = 16, and the addresses must fit in a
32-entry direct-mapped cache. For example, lets consider a
sha.s ARM assembly code that composed of 577 instructions,
and algorithm 1 finds total 471 swappable instructions. If the
attacker can find four of the failing paths (L = 12), then it
would require 1.68×2118 simulations to ensure reconstruction
of the original firmware.

Figure 9 shows the comparison between the theoretical
and actual attacker’s effort. The theoretical worst-case and
best-case values for each benchmark are calculated using
Equations 11, and 12, respectively. The actual value is the
effort calculated by the Python script. The vertical axes of all
the graphs are on the logarithmic scale. Figure 9(a) shows the
AET when an attacker cannot find any failing paths (L = 16)
for the firmware. We expect the actual value should be lower
and upper bounded by the best-case and worst-case estimate
of the attacker’s effort, respectively. Figures 9(b)-(d) show the
AET when an attacker can find 4, 8, and 12 swaps from
observing different failing paths. Note that an attacker needs
to perform a smaller number of trials once he/she observes
an increased number of failing swaps. However, it will be
difficult for an adversary to find all failing paths. Based on
the discussion above, we conclude that the number of trials
to make a program completely work is 1.54× 290 for a small
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Figure 9: Comparison of actual and estimated attacker’s effort
(AET ). Worst-case and best-case AEs are estimated from
Equations 11 and 12, respectively.

program like rsa.s, showing the obfuscation to be secure
considering current computing resources.

B. Tamper Resistivity

This proposed firmware obfuscation and reconstruction
method can inherently thwart any tampering with the firmware
or hardware. This scheme can help us to detect cloned systems
without performing expensive and less reliable test methods
(visual inspection, X-Ray, etc.). The cloning incidents reported
by Bloomberg [8] can easily be detected. These cloned moth-
erboards have a small chip that creates a stealthy doorway
for malicious purposes by injecting malicious codes. When an
infected code runs in the motherboard, the original address
space for the program is modified. This modified program
will produce incorrect results as the swapped addresses in
the obfuscated program will not be reconstructed properly.
By observing a flag, any modifications on the obfuscated
program will easily be detected. For example, we illustrated
the firmware obfuscation concept in Figure 4 and it will be
further used to show that how malicious modifications can be
detected. If an adversary injects new instructions, the relative
addresses of swapped instructions will be changed in the
obfuscated program. For instance in the obfuscated program
(Figure 4.b), insertion of one instruction before instruction
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7 (lsl r3, r3, #1) will change the address of instruction
7. When this happens, the reorder cache will swap a wrong
instruction, and the obfuscated program will not run. If an
adversary inserts a malicious instruction at the first address,
instruction 6 (add r3, r3, r2) will be swapped with instruction
2 (lsl r3, r3, #1) as the address of instruction 6 in the
tampered program is 7, which is present in the reorder cache.
As a result, the obfuscated firmware will not be compensated
properly, and will produce incorrect results.

C. Overhead analysis

The proposed method does not add any overhead in the
firmware size since the overall code size is the same for
the original and obfuscated version. However, the boot-loader
needs to be modified so that it can handle power-up cache
loading and firmware update mechanism. Hardware overhead
comes from the reorder cache and obfuscation key memory
requirements. Specifics of cache circuit design is out of the
scope of this paper. Nevertheless, we can provide a close ap-
proximation of gate counts essential to the design. Maintaining
consistency with the previous discussion let us assume 1024-
bit ID, 32 cache lines with 16-bit width, and 25 tag bits for
each line. The cache needs 32× 16 bit and 32× 25 bit cache
memory elements for instructions and tags respectively. One
5-to-32 address decoder, 2-to-1 multiplexers, and 25-bit com-
parator are required for cache hit/miss decision and instruction
fetch from cache or memory. It would take approximately 200
gates to implement these components along with 1024 XOR
gates for key (K0) generation. The key storage would take 1K
bit nonvolatile memory. Note that, we do not need to require
any overhead to generate the ID as system’s SRAM can be
used as a PUF. The logic overhead is insignificant considering
the size of modern embedded processors that are common in
IoT devices.

VI. CONCLUSION

In this paper, we presented a novel low-cost method of
firmware obfuscation that protects a system from cloning. The
proposed technique obfuscates the firmware by swapping a few
instructions rather encrypting the entire firmware. We showed
how swaps can be selected according to the Swapping Rule
Check (SRC) to ensure that the obfuscated instructions are
not obvious to an attacker. The relative addresses of these
swapped instructions are combined with an unclonable ID
to generate a unique obfuscation key that gets stored on
each device. Using this obfuscation key and the device ID,
a device can reconstruct the relative addresses of the swapped
instructions and store them in a small cache. As the program
executes, we explained how this cache is used by the processor
to execute the program in the correct order. Our proposed
solution does not increase the number of instructions. Only a
small reorder cache (e.g., direct mapped cache) and a PUF is
required to reconstruct the original firmware. Swapping a small
set of instructions provides exponential complexity and thus
infeasible for an adversary to reconstruct the original firmware
considering current computing resources. Note that an attacker
needs to perform a smaller number of trials, once he/she

observes an increased number of failing paths for a program.
Our future work will address the selection of an instruction
for a possible swap, such that an adversary cannot find a
failing program execution. In addition, we plan to implement
our proposed scheme into a custom chip and further test the
effectiveness of this obfuscation in preventing system-level
cloning.
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