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Recent experimental work has shown that the assumed hydrophobicity of graphitic surfaces
is the result of hydrocarbon contaminants and that clean graphitic surfaces are actually mildly
hydrophilic.'* The widespread results for the contact angle of water on the surface obtained from
simulations using force field methods”!® has provoked studies of the water-graphene interaction
potential using electronic structure calculations.!=3? These studies can be divided into two classes,

namely, those carried out on the "infinite" system using a supercell replicated through periodic

boundary conditions and those involving a sequence of H,O- (Cénszn ) cluster models followed by

extrapolation to the graphene limit. Due to the challenges of accurately describing the various
contributions to the binding energy and in properly extrapolating long-range interactions, these
calculations have resulted in a considerable spread in the values of the binding energy.

Recently, Brandenburg and co-workers® reported the results of periodic coupled cluster
singles and doubles with perturbative triples [CCSD(T)],>* random phase approximation®> with
GW?3¢ singles excitations (RPA + GWSE)*’, and fixed-node diffusion Monte Carlo (DMC)*®
calculations on the water graphene system. These calculations are the most ambitious carried out
to date on this system. The DMC and RPA+GWSE calculations gave, respectively, binding
energies of -99(6) and -98 meV for the most stable structure with the two H atoms of the water
molecule pointing toward the surface, while the CCSD(T) calculations gave a binding energy of -
87 meV. Given the various approximations involved in the CCSD(T) calculations, we consider
the DMC and RPA+GWSE calculations to be more accurate and the "true" binding energy of a
water molecule on the graphene surface to be -98+10 meV.

Other recent theoretical studies using cluster models combined with extrapolation to the

water-graphene limit obtained values of the binding energy of -120 to -140 meV,?!?¢ significantly
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larger than the results of Brandenburg et al.. This disparity led these authors to conclude that
extrapolation of the results of calculations of a water molecule interacting with a series of
polyaromatic hydrocarbons does not lead to an accurate value of the water-graphene binding
energy. We show here that such an approach yields a binding energy in close agreement with the
results of Brandenburg et al. provided that one properly accounts for long-range electrostatics.

In a study from one of our groups, hereafter referred to as JKJ, density functional theory
based symmetry-adapted perturbation theory (DFT-SAPT)**** was used to calculate the binding
energies of a water molecule interacting benzene, coronene, hexabenzocoronene, and
circumcoronene sequence of molecules.?? For weakly interacting molecules, DFT-SAPT
calculations generally give interaction energies very close to large basis set CCSD(T) calculations.
Moreover, the SAPT procedure provides a dissection of the net interaction energy into different
physical contributions. This dissection, when applied to water interacting with the above
polyaromatic molecules, revealed that the exchange and induction contributions are well
converged at the water-hexabenzocoronene cluster, but that the electrostatic and dispersion
interactions are not well converged at this cluster size. JKJ also decomposed the electrostatics
contribution to the binding energy into a short-range term due to charge penetration and a longer-
ranged contribution due to interactions between atomic multipoles of the two molecules. The
former is already well converged at water-coronene.

JKJ estimated the long-range dispersion and electrostatics contributions to the water-
graphene system using a HoO-Cz1¢ cluster model, with the dispersion contributions being described
by a sum over C¢/R;® terms and the long-range electrostatic interaction being described using a
point-charge model* for water and the Q20 component of the atomic quadrupole on the C atoms,

with the value of Q20 chosen to be that of the central C atoms of circumcoronene as calculated
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using a distributed multiple analysis*’ of the MP2% charge density. The results for the long-range
dispersion and electrostatics contributions, -28 and -3 meV, respectively, were combined with the
DFT-SAPT results for water-circumcoronene to obtain a value of -124 meV for the water-graphene
binding energy. This value is significantly larger than that obtained by Brandenburg et al.,
seemingly supporting their conclusion of the inadequacy of extrapolating the results on small
clusters to estimate the water-graphene binding energy.

In a recent paper, one of us revisited the calculation of long-range electrostatics interactions
in the water-graphene system,’? evaluating the multipole interaction energy using permanent
moments of up to rank ¢ =5 on all atoms and a periodic lattice for the graphene surface together
with Ewald summation. This calculation gave a value of -0.01 meV for the interaction between
the multipoles of water and graphene as opposed to the -28 meV value obtained by JKJ in a more
approximate treatment. When this result is combined with the other contributions from the DFT-
SAPT calculations, a net binding energy of -96 meV, in excellent agreement with the result of
Brandenburg, et al., is obtained (see Table 1). Thus, we conclude that a DFT-SAPT calculations
on finite cluster models combined with a careful treatment of long-range multipole interactions, in
fact, gives a quantitatively accurate value of the water-graphene binding energy. This is an
important finding since DFT-SAPT calculations on the finite cluster models it is far less
computational demanding than periodic DMC calculations with very small statistical errors or
periodic RPA + GWSE calculations, especially considering the additional calculations needed to
correct for finite size effects.

Acknowledgments: KDJ acknowledges the support of the National Science Foundation under
grant CHE1762337. AH acknowledges financial support through the priority program SPP1807
of the Deutsche Forschungsgemeinschaft. We acknowledge valuable discussions with G.

Brandenburg.
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Table 1. Interaction energy (meV) of the water-graphene dimer. The multipole electrostatics
contribution obtained using Ewald summation.32 Other contributions are taken from the SAPT-
DFT calculations on the water-circumcoronene cluster.22

EJiat Egh. Eexcn Eina Eqisp Eine
-28.22 -124.4
-26.9 123.6 -33.0 -160.0
-0.0P -96.3

(Emultand EP

.15 Multipole and charge-penetration contributions to the electrostatic interaction,

+6(HF), Egisp = E® +g® Ein:: total

. 2 2
Eexcn: first-order exchange, Eiq = EW+g® disp T Eexch—disp>

ind exch—ind
interaction energy)
aRef. 22: rank ¢ < 2 moments, assessment for water-C,,s cluster model
b Ref. 32: rank ¢ < 5 moments, Ewald summation
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