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Abstract—We report the first experimental demonstration
of ferroelectric field-effect transistor (FEFET) based spiking
neurons. A unique feature of the ferroelectric (FE) neuron
demonstrated herein is the availability of both excitatory and
inhibitory input connections in the compact 1T-1FEFET
structure, which is also reported for the first time for any neuron
implementations. Such dual neuron functionality is a key
requirement for bio-mimetic neural networks and represents a
breakthrough for implementation of the third generation
spiking neural networks (SNNs)—also reported herein for
unsupervised learning and clustering on real world data for the
first time. The key to our demonstration is the careful design of
two important device level features: (1) abrupt hysteretic
transitions of the FEFET with no stable states therein, and (2)
the dynamic tunability of the FEFET hysteresis by bias
conditions which allows for the inhibition functionality.
Experimentally calibrated, multi-domain Preisach based
FEFET models were used to accurately simulate the FE neurons
and project their performance at scaled nodes. We also
implement an SNN for unsupervised clustering and benchmark
the network performance across analog CMOS and emerging
technologies and observe (1) unification of excitatory and
inhibitory neural connections, (2) STDP based learning, (3)
lowest reported power (3.6nW) during classification, and (4) a
classification accuracy of 93%.

L. INTRODUCTION

In spite of staggering successes of deep neural networks
(DNNs), the second generation of neural networks (NNs), we
have come to the realization that true advances in cognitive
systems will require autonomous agents to learn from the
environment without the need for labelled data. Unsupervised
learning provides such a paradigm. In particular, unsupervised
learning and clustering in spiking neural networks (SNNs)—
which represent the third generation of NNs—emulate neural
properties via their coupled dynamics. Recent advances in
neurosciences as well as estimation theory have revealed the
advantages of data-encoding through  spike-timing:
compactness, sparsity, and the ability to learn via local updates
only (STDP), all of which have led to efficient hardware
implementations of at-scale SNNs [1,2].

In parallel, emerging nanodevices such as resistive RAMs,
memristors, spin and metal-insulator transition devices offer

978-1-7281-1987-8/18/$31.00 ©2018 IEEE

13.3.1

significant benefits in terms of power, performance and area as
physical hardware platforms for implementing NNs—thanks to
their unique properties that are not intrinsic to the CMOS
technology. A template leaky-integrate-and-fire (LIF) neuron
implemented with any of these technologies provides
promising opportunities, but they all suffer from a fundamental
shortcoming. All these neurons are excitatory, which means
that inputs coming to these neurons result in a spike generation.
However, it is well known in neurobiology and also in
biomimetic neuromorphic architectures that excitatory neurons
need to be paired with inhibitory connections to enable
homeostasis, high accuracy in unsupervised learning and
increased sparsity in spiking—all of which are essential to
implement functionally correct and efficient compute models.

In this paper, we introduce ferroelectric field-effect
transistor (FEFET) as the underlying device technology for
implementing SNNs, and demonstrate, for the first time,
ferroelectric spiking neurons—the functional unit of SNNs—
with built-in excitatory (exc.) and inhibitory (inh.) input
connections, which (1) inherently demonstrate bio-mimetic
dynamics, and (2) leads to compact and efficient
implementation of neurons and hence the synaptic weights.

II. EXPERIMENTAL DEMONSTRATION OF
FERROELECTRIC NEURON

The core structure of the FE neuron consists of a
ferroelectric FET (FEFET) and a MOSFET (the discharge FET)
(fig. 1(a)). An important feature of our demonstration is that,
FEFET being a three terminal neuromorphic device with an
intrinsic transistor gain, allows for handling both excitatory and
inhibitory input connections in this simple, area efficient two
transistor neuron structure. The excitatory and the inhibitory
inputs (Vx and Vj, respectively) are connected to the gate
terminals of the discharge FET (Vgu) and FEFET (Vgr),
respectively, through respective leaky integrators (fig. 2(a)).
The output of neuron Vy is at the voltage across the capacitor C
which is digitized by an inverter at Vo. The FEFET was consists
of a L=80 nm n-FinFET with 14 fins with its gate terminal
connected to an epitaxial 100 nm thick Pb(Zr,Tip3)O3 (PZT)
ferroelectric. The key to our demonstration of spike generation
and inhibition in FE neuron is twofold: (1) the existence of
abrupt transitions in the hysteresis edges of the current-voltage
characteristics of our FEFET much below the thermal limit with
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no stable states therein, and (2) the dynamic tunability of the
location and the width of the FEFET hysteresis by bias
conditions which allows for inhibition—both of which are
achieved by careful design of the experiments (Fig. 2(a)).

To explain the operating principle, we refer to the load-line
analysis shown in fig. 3(b). Fig. 3(b) plots the measured d.c.
drain current of the FEFET Ipr as a function of its source
voltage (Vy) while keeping the gate and drain voltages (V- and
Vp) fixed. Also plotted in fig. 3(b) are the output characteristics
of the discharge FET (I/pux-Vy curves at different V).

Resting state: When at rest (no exc. ¥, and inh. V; input spikes,
Veu and Vgr are constant), the operating point of the system is
the intersection of the Ipm~Vy (FEFET) and Ipy-Vy (discharge
FET) curves which is point F in fig. 3(b).

Neuron firing: Upon the arrival of an exc. spike train at Vi, Vou
reaches the threshold (Veu=1.15V for V=1V as in fig. 3(b))
for firing when the corresponding Ipy-Vy curve intersects the
abrupt transition regions of the IpsVy curve of the FEFET.
Note that there are no stable states in these transition regions,
and hence, the system oscillates through the loop ABCD in fig.
3(b) [3]. Fig. 4(a) shows the measured waveform of the neuron
output voltage Vy in response to an exc. input spike train V. of
period 7= 28 ms and no inh. input spikes (thereby, V=1 V).
Output spikes have a period of 27.9 ms. During this input spike
train, Ve varies between 1.225 V and 1.425 V (corresponding
load-lines drawn in fig. 3(b)). In the zoomed-in version of the
output spikes in fig. 4(a), note that the capacitor C is discharged
during the transition A->B through the discharge FET, and
during C->D, the FEFET charges the capacitor C. Fig. 4(b)
shows the evolution of the /'y waveform as the exc. input spike
period T is changed from 26 ms to 300 ms. The decrease of the
period decreases the output firing rate and at 7=300 ms, no
firing is observed.

Neuron Inhibition: Fig. 5(a) shows the measured neuron output
voltage waveform Vy and the digital output voltage Vo in
response to an exc. input Vy spike train of period 7=32 ms
starting at =0 and an inh. input V; spike train of duration 0.18 s
starting at t=1.025 s. When both exc. and inh. inputs spikes are
present, the output spikes are inhibited and the average voltage
level of Vy moves to a higher value. The digitized outputs are
also shown in fig. 4(a). The key to neuron inhibition is the fact
that the hysteresis in the Ips-Vy curve (FEFET) becomes
narrower and shifts to the right when Ver increases (fig. 3(b)).
This effect arises due to that the location and the width of the
hysteresis in Ip-Vgs curve of the FEFET depends on the value
of Vp (fig. 2(a)). Moreover, the hysteretic transition is actually
not abrupt enough when Vg—=1.6V to travel around the
hysteresis. The inh. input V; spikes raise Vgr from 1 V to 1.6
V; the corresponding the IpVy curve with Vgr=1.6 V is shown
in fig. 3(b). The Ipy-Vw curves corresponding to Veur swing
(1.225 V to 1.425 V) intersects to the IpmVy curve at Vgr=1.6
V at point S and P where hysteretic transition is not steep
enough. As such, in this case, the neuron does not fire, and Vy
moves back and forth between S and P. Fig. 5(b) shows that a
relatively large, single exc. input V; pulse can generate a series
of chirped output spike train which is inhibited when an inh.
input V; pulse arrives (fig. 5(c)).

III. SPICE SIMULATION & PERFORMANCE
PROJECTION

A SPICE model for the FEFET was developed using multi-
domain Preisach model [4] (fig. 6(a)) and calibrated with
experimental results by considering the device geometry,
measured FE hysteresis loop, and parasitic capacitances (fig.
6(b)). An accurate and quantitative agreement between the
simulated and experimentally measured FE neuron waveforms
and the rate coding is observed in fig. 6(d) and 6(e),
respectively. The performance of a scaled FE neuron was
projected at the 45 nm node using the PTM 45nm model (PSD
shown in fig. 6(f)). The scaled 45 nm node FE neuron
dissipates 0.36 nJ/cycle which is an improvement of 390x
compared to the experimental one (0.13 pJ per cycle). The
SPICE FE Neuron model was also used to simulate a specific
topology of neuromorphic networks (Fig. 6(g) and 6(f)) which
is used to implement and benchmark the spiking neural
network (SNN) described in section I'V.

IV. SNN IMPLEMENTATION AND BENCHMARKING

The experimentally calibrated SPICE models have been
used to evaluate network performance for unsupervised
learning. We emulate the dynamics of a fully connected
network (Fig. 7a) with 784 input neurons, 400 excitatory and
400 inhibitory neurons. We apply images from the MNIST
data-set and use STDP to learn synaptic weights over. Fig. 7(b)
illustrates how the network performs unsupervised clustering
over the data-set over training examples and clusters become
stronger as training progresses. This is also reflected in Fig. 7(c)
and (d) where the square of the change of weights decreases and
the classification and clustering accuracy increases. We
benchmark the network performance across analog CMOS and
emerging technologies and observe (1) unification of excitatory
and inhibitory neural connections, (2) STDP based learning, (3)
lowest reported power (3.6nW) during classification, and (4) a
classification accuracy of 93%.
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Fig. 1: Neuron implementation using Ferroelectric FETs and associated spiking neural network. (a) The circuit topology of a ferroelectric
spiking neuron with excitatory and inhibitory inputs. (b) A biological neuron. (c¢) A schematic representation of spiking neural network (SNN)
with an excitatory and an 1nh1b1t0ry neuron layer. (d) The concept of unsupervised clustering on unlabeled, raw data using an SNN .
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Fig. 2: Device characterization. Measured Fig. 3: Operating principle and Load line analysis of the experimental ferroelectric neuron (a)
d.c. Ip-Vgg characteristics of the FEFET. Operating principle of the ferroelectric neuron and circuit diagram of the leaky integrator. (b)
Polarization-voltage and switching current- Load-line analysis. Measured d.c. I»-Vy characteristics of FEFET at V=1 V and 1.6 V and
voltage characteristics of epitaxial PZT Vp=V;p=3.3 V and output characteristic (/,-V5) of the discharge FET. At V;=1.6 V, the hysteresis
ferroelectric in the FEFET structure at 150 in /-Vgcharacteristics shifts to the right compared to that at ¥;-=1 V. The neuron generates spikes
Hz (inset). The transitions for V¢=2.6V and when the discharge FET load lines intersect the FEFET [,-V curves in the unstable transition
2.8V are abrupt. However, for V2.4V, regions (i.e., BC and DA @V;r=1 V). For V;~=1.6V, the hysteretic transition is not abrupt enough

only the downward transition is abrupt. to travel around the hysteresis (i.e., move back and forth between S and P).
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Fig. 4: Experimental demonstration of a ferroelectric neuron. (a) Measured waveforms of the excitatory input ¥, and the neuron output voltage
Vy in response to excitatory input 7, spike train with period 7=28 ms and no inhibitory input spikes at 7;. The output spikes have a reverse polarity
compared to the usual polarity of biological neurons. The output spike period is 27.9 ms. Also shown in a zoomed in version of two spikes. During
a spike, the state of the FEFET approximately traverses the path ABCD as shown in the load line analysis shown in fig. 3(b). (b) The neuron output
voltage Vy in response to excitatory input spike trains with periods 7=26, 32, 35, and 300 ms and no inhibitory input spikes. The output spike
period is 24.8, 63.8, 114.1 ms for 7=26, 32, 35 ms, respectively. The neuron do not output any spikes for 7>100 ms.
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Fig. 5: Demonstration of Inhibition in Ferroelectric Neuron. (a) Measured waveforms of the excitatory input ¥, inhibitory input 7, and the
neuron output voltage ¥y in response to excitatory input spike train with period 7=32 ms and inhibitory input spike train of 0.18 s duration starting
at +=1.025 s. When both inhibitory and excitatory input is present, the neuron do not fire and do not generate any spikes. The crests and troughs of
the inhibited neuron output correspond to point S and P in the load-line analysis shown in Fig. 2(b). (b,c) A large spike in the excitatory input V.
generates a chirped output spike train (fig. ¢) which is be inhibited when an inhibitory pulse at V; is arrives during this spiking mode (fig. c).

v26v] (d) T (e) ()mput Exitatory Synapse
4 Excwatorv Input v, = Measurement o—~EN E " output
40
= z [ ! vl
V. =24 3
) § 30 ( h ) Inhibtatory Synapse
Inhibitory Input V, 8 50 4l input
2 w
= 2
g 16 N
o
7 £ [ Neuron output ||, f2 30 35 AR ‘
T > Voltage, V, ( )m Input Frequency (Hz) EOB ‘h NPN r ¢ ¢ u NN¢ “ " " '.
Inhibitory
Input =1.0V 1 go.e \ ‘ \'h
S Inhibitory
! pNSNWY]
N
£ [
X
> " z |“ J \‘Uw*‘h 'Iﬂlh L\ = Neutral -
o A 20 { qu
| LAY | 08
Vo= 06 o u l' 06
Bocitinc et b .
'"P“‘ Leaky 02 04 06 08 1 02 03 04 05 06 07 08 09 0 20 40 60 80 0 02 04 06 08 1
Integrator — = Vs (V) Time (s) Frequency (Hz) Time (s)

Fig. 6: SPICE Simulation of Ferroelectric Neuron. (a) SPICE model of the FE neuron. (b, ¢, d) Simulated the -V (b) and I,-Vy (c)
characteristics for the FEFET and the neuron waveforms (c) under similar experimental conditions presented in Fig. 5(a) showing reasonable
agreement between experiment and simulation. (e) Input Frequency versus firing frequency of the neuron. (f) Simulated power spectrum density of
a FE neuron projected at 45 nm node. (g,h) The neuromorphic topology of interconnected neurons (g) used in SNN simulation in Fig. 7 and its
SPICE simulated behavior (h) when either of the excitatory (red) and inhibitory (green) connections are active or both of them are neutral (black).
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Fig. 7:Ferroelectric Spiking Neural Network. (a) Ferroelectric spiking neural network architecture. (b) Illustration of MINST over training
epochs of 1k, 10k, 50k, and 150k. (c,d) Average (Aw)? (c) and %accuracy (d) versus number of examples. (¢) Benchmark table.
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