

Generation of Phosphonium Sites on Sulfated Zirconium Oxide: Relationship to Brønsted Acid Strength of Surface -OH Sites

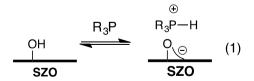
Jessica Rodriguez, Damien B. Culver, and Matthew P. Conley*

Department of Chemistry, University of California, Riverside, California 92521, United States

Supporting Information

ABSTRACT: The reaction of (^tBu)₂ArP (1a-h), where the para position of the Ar group contains electrondonating or electron-withdrawing groups, with sulfated zirconium oxide partially dehydroxylated at 300 °C (SZO_{300}) forms $[(^tBu)_2ArPH][SZO_{300}]$ (2a-h). The equilibrium binding constants of 1a-h to SZO₃₀₀ are related to the p K_3 of $[({}^{t}Bu)_2ArPH]$; R_3P that form less acidic phosphoniums (high pK_a values) bind stronger to SZO₃₀₀ than R₃P that form more acidic phosphoniums (low pK_a values). These studies show that Brønsted acid sites on the surface of SZO₃₀₀ are not superacidic.

he control of active-site structures in heterogeneous catalysts is important to realize the long-standing goal of more selective and reactive solid catalysts. A common method to control the structures of these sites is to support an organometallic complex onto a partially dehydroxylated high surface area oxide to form $M-O_X$ sites (A, Figure 1, O_X =


Figure 1. Chemisorption of organometallic complexes onto oxides to form A or B.

surface oxygen) or electrostatic ion pairs [M][O_X] (B, Figure 1). 1c,d Determining the factors that promote formation of A, B, or mixtures of these two extremes is fundamentally and practically significant. For example, the reaction of partially dehydroxylated SiO₂ with Cp₂ZrMe₂ forms Cp₂Zr(Me)-(OSi≡), a type A surface species, and is inactive in the polymerization of ethylene.² However, supporting Cp₂ZrMe₂ on partially dehydroxylated sulfated oxides (SO) forms [Cp₂ZrMe][SO], a type B surface species, that is very active in ethylene polymerization.³ The reaction of organometallic complexes with SO usually forms type B surface species that are also active in hydrogenation of arenes⁴ and activation of C-H bonds. Sulfated zirconium oxide (SZO) also supports the formation of strong Lewis acid [iPr₃Si][SZO] sites that initiate C-F bond activation reactions.6

Brønsted acidity of the -OH sites on oxides is often presumed to affect the formation of A or B. The example reactions of Cp2ZrMe2 with oxides are illustrative of this argument. Neutral oxides containing weak Brønsted -OH sites (e.g., SiO₂) tend to form A, and oxides containing stronger Brønsted -OH sites (e.g., SO) tend to form B.

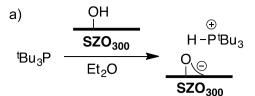
The Brønsted acidity of the -OH sites on SO are the subject of a long-standing debate. Initial reports showed that sulfated zirconium oxide (SZO) catalyzed the isomerization of *n*-butane to isobutane at lower temperatures than neat H_2SO_4 . This result suggests that the Brønsted sites on SZO are stronger than neat H₂SO₄, which would place SZO across the threshold of superacidity (Hammett acidity parameter; $H_0 \leq$ -12.0).8 This observation was supported by adsorption of aromatic colorimetric superacid indicators onto SZO, showing that $H_0 \le -16.04$, ^{7b} suggesting that the -OH sites on **SZO** are about 4 orders of magnitude more acidic than H_2SO_4 (H_0 = -12.0). However, butane isomerization catalyzed by SZO occurs only in the presence of olefin impurities in the reaction feed.⁹ In addition, isothermal calorimetry showed that SZO binds pyridine weaker than zeolites. 10 Solid-state NMR studies of SZO after adsorption of probe molecules showed that, in addition to Brønsted sites, the SZO surface contains Lewis sites 11 and pyrosulfates that are implicated in oxidative reaction pathways. 5a Indeed, pyrosulfate sites were suggested to be active in reactions of SZO with C-H bonds 12 and are also implicated in the reaction of organometallic Ir complexes with SZO.5

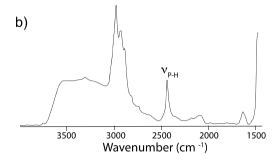
This discussion shows some of the complexities in studying the Brønsted acidity of SZO. The situation is complicated by the nature of H_0 , which is a property of solution acids. SZO is a solid. Among the available methods to assess the Brønsted acidity of solids are temperature-programmed desorption of measurement $\nu_{
m NH}$ stretches of ammonium salts by FTIR, 14 and changes in chemical shift of adsorbed probe molecules by NMR spectroscopy. 15 This paper describes the

reaction of SZO with R_3P to form $[R_3PH][SZO]$ (eq 1). The ³¹P{¹H} NMR chemical shifts of R₃P and [R₃PH] are clearly distinguishable, and the acidity of $[R_3PH]$ spans ~15 pK, units

Received: December 10, 2018 Published: January 9, 2019

in MeCN.16 These properties allow rapid assignment of $[R_3PH][SZO]$ and provide an understanding of how p K_a of $[R_3PH]$ affects the formation of $[R_3PH][SZO]$. These studies show that the Brønsted sites on SZO are certainly not superacidic.


SZO was prepared by suspending precipitated zirconium oxide in dilute aqueous H₂SO₄, followed by calcination at 600 °C. This temperature was chosen because calcination at 600 °C produces SZO containing the strongest Brønsted acid sites based on colorimetric titrations. After being cooled to room temperature under air, SZO was partially dehydroxylated under high vacuum (10⁻⁶ mbar) at 300 °C to form SZO₃₀₀.3c


The reaction of SZO₃₀₀ with excess gas-phase Me₃P forms $[Me_3PH][SZO_{300}]$ as the major product. The $^{31}P\{^1H\}$ magic angle spinning (MAS) spectrum of [Me₃PH][SZO₃₀₀] contains a major signal at -4 ppm, which is characteristic of [Me₂PH] and a minor peak at -33 ppm, assigned to small amounts of Me₃P bound to Lewis sites (Figure S1). This result is important because several previous studies showed that SZO reacts with gas-phase Me₃P to form mixtures of O=PMe₃, [Me₃PH], and [Me₄P]. Indeed, the reaction of PMe₃ with SZO dehydroxylated at 500 °C results in formation of significant amounts of [Me₄P] byproducts (Figure S1).The formation of [Me₃PH] as the major surface species indicates that SZO₃₀₀ does not contain significant quantities of Lewis sites or pyrosulfates that are implicated in the formation of O=PMe₃ or [Me₄P] byproducts.

Reacting bulkier ^tBu₃P with SZO₃₀₀ (1 equiv/OH) in Et₂O slurry results in the formation of [*Bu₃PH][SZO₃₀₀] (Figure 2a). The FTIR of [${}^{t}Bu_{3}PH$][SZO₃₀₀] contains a ν_{P-H} at 2441 cm⁻¹ (Figure 2b), and the ³¹P{¹H} MAS NMR spectrum contains a signal at 52 ppm (Figure 2c). ³¹P NMR signals for other phosphorus species are not observed, consistent with the sole formation of a phosphonium under these conditions. These results indicate that bulky strong donor R₃P are selective probes for Brønsted sites on \dot{SZO}_{300} . The clean reactivity of SZO_{300} with tBu_3P to form $[{}^tBu_3PH][SZO_{300}]$ contrasts with NH₃, a well-known probe for Brønsted sites, because NH₃ can also react with Lewis and strained sites on oxide surfaces.

 $({}^{t}Bu)_{2}ArP$ (1a-h, eq 2), where the para position of the Ar group contains substituents that donate or withdraw electron

density, were chosen to systematically evaluate how the electronics at phosphorus affects formation of phosphonium sites on SZO₃₀₀. The reaction of (^tBu)₂ArP (1a-h) with SZO₃₀₀ in MeCN slurry forms [(^tBu)₂ArPH][SZO₃₀₀] (2ah), eq 2. Table 1 contains key spectroscopic data for 2a-h. The ³¹P NMR chemical shifts of [1H][BF₄] are 5-10 ppm downfield from 1a-h in CD₃CN solution, indicating that ³¹P NMR chemical shift can discriminate between free phosphine and [1H][BF₄]. The ³¹P{¹H} MAS spectra of 2a-h contain

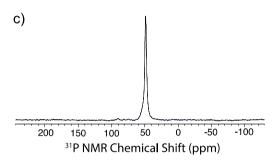
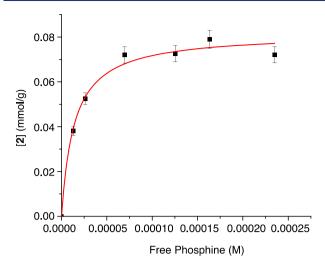


Figure 2. Reaction of ${}^{t}Bu_{3}P$ with SZO_{300} to form $[{}^{t}Bu_{3}PH][SZO_{300}]$ (a); FTIR of [${}^{t}Bu_{3}PH$][SZO₃₀₀], with ν_{PH} labeled for clarity (b); ³¹P{¹H} MAS NMR spectrum of this material (c).


Table 1. ³¹P NMR Data for 1a-h, [1H][BF₄], and 2a-h^a

(^t Bu) ₂ ArP	$\delta^{31}P$ $(ppm)^b$	$\delta^{31}\mathrm{P}~(\mathrm{ppm}) \ [1\mathrm{H}][\mathrm{BF}_4]^c$	$\begin{array}{c} \delta^{31} P \ (ppm) \\ \mathbf{2a} - \mathbf{h}^{d} \end{array}$	$ u_{\mathrm{P-H}} \; (\mathrm{cm}^{-1}) $ 2a-h
1a	36.4	46.8	43	2448
1b	41.8	46.7	46	2445
1c	37.6	47.6	46	2438
1d	39.9	44.7	48	2441
1e	38.9	48.0	49	2439
1f	37.1	46.8	48	2438
1g	38.4	47.2	49	2433
1h	39.0	47.4	46	2432

^aReferenced to 85% H₃PO₄. ^bCD₃CN solution. ^cGenerated in CD₃CN solution (refer to the Supporting Information for details). ^d10 kHz MAS spinning speed.

signals for the phosphonium at, or near, the values observed in [1H][BF₄]. Similar to the grafting of ^tBu₃P onto SZO₃₀₀, signals for oxidized products or (^tBu)₂ArP interacting with Lewis sites were not observed in ³¹P MAS spectra of **2a-h**. In addition to the ³¹P MAS NMR spectra, the FTIR spectra of **2a-h** contain $\nu_{\rm P-H}$ stretches, decreasing from 2448 cm⁻¹ for **2a** to 2432 cm⁻¹ for **2h**.

Equilibrium-binding studies were performed in anhydrous MeCN slurries at 25 °C under rigorously anaerobic conditions; experimental details are provided in the Supporting Information. A representative plot of the binding of 1a to SZO₃₀₀ to form 2a is shown in Figure 3. The data in Figure 3 relate to the equilibrium adsorption constant K_a , shown in eq 3, where [HO_x] are Brønsted sites on SZO₃₀₀ reported in mmol/g. K_a is

Figure 3. Langmuir isotherm of **1a** binding to **SZO**₃₀₀. The study was performed in triplicate using a phosphine stock solution of 0.3 mM; the error bars are standard deviations from these three binding studies.

extracted from fits of the data in Figure 3 to a single-site Langmuir isotherm, shown in eq 4, where $[HO_x]_0$ is the initial OH loading and θ is the surface coverage of the phosphine on SZO_{300} . K_a for the reaction of SZO_{300} with 1a to form 2a is $7.4(4) \times 10^4 \,\mathrm{M}^{-1}$. The extracted binding constants from fits to eq 4 for other phosphines in this study, as well as pK_a values of $[1H][BF_4]$ measured in CD_3CN solution, 18 are given in Table 2. The prevailing trend of these data is that K_a decreases as pK_a

Table 2. Binding Constants for Formation of 2 and pK_a of Phosphoniums

$(^{t}Bu)_{2}ArP$	$K_{\rm a} ({\rm x}10^4 {\rm M}^{-1})^a$	$pK_a [1H][BF_4]^b$
1a	7.4(4)	16.4(1)
1b	5.5(3)	15.8(1)
1c	5.5(4)	15.7(2)
1d	4.7(1)	14.9(1)
1e	4.3(3)	14.7(1)
1f	3.0(2)	14.0(1)
1 g	2.6(1)	12.9(1)
1h	1.9(4)	12.6(2)

"Average of three binding studies in MeCN slurries; errors in parentheses are standard deviations from these data. ^bDetermined in CD₃CN solution using methods described in ref 17; refer to the Supporting Information for details.

of [1H] decreases. A Hammett plot from the data in Table 2 is linear with $\rho = -0.14$ ($R^2 = 0.96$, Figure S2), consistent with buildup of positive charge on phosphorus in the formation of 2a-h.

$$K_{\rm a} = \frac{[2]}{[1][HO_x]} \tag{3}$$

$$\theta = \frac{K_a[\mathbf{1}][HO_x]_0}{1 + K_a[\mathbf{1}]} \tag{4}$$

The data in Table 2 are inconsistent with Brønsted superacid behavior. Superacids are known to protonate MeCN to form $[(MeCN)_xH][X]$ solvates.⁸ The p K_a of solvated protons in MeCN is 0,¹⁹ which should result in

much stronger binding for bases whose conjugate acids have pK_a values as those in Table 2.

To test the strength of the acid sites on SZO_{300} , we contacted this material with Ph_3P . The pK_a of $[Ph_3PH][BF_4]$ is 7.6 in MeCN; therefore, Ph_3P should bind to SZO_{300} weaker than $(^tBu)_2ArP$ as described in Table 2. The reaction of SZO_{300} with Ph_3P forms $[Ph_3PH][SZO_{300}]$ (4) in MeCN. Similar to 2, the $^{31}P\{^1H\}$ MAS NMR chemical shift of 4 appears at a chemical shift close to those observed for solutions of $[Ph_3PH][BF_4]$. $^{31}P\{^1H\}$ NMR studies of SZO_{300} suspended in MeCN solutions containing PPh_3 show that $K_a \sim 3 \ M^{-1}$, indicating that PPh_3 binds much weaker than 1a-h. This is consistent with the hypothesis that pK_a of $[R_3PH]$ influences binding of phosphines to Brønsted sites on SZO_{300} .

The reaction of SZO₃₀₀ with (2-FC₆H₄)Ph₂P in MeCN slurry, followed by successive washings with MeCN, does not contain a signal in the ³¹P{¹H} MAS NMR spectrum. Removal of MeCN of SZO₃₀₀ contacted with a solution of (2-FC₆H₄)Ph₂P results in a ³¹P{¹H} MAS NMR spectrum containing a single signal at -8 ppm, and the chemical shift of (2-FC₆H₄)Ph₂P in CD₃CN solution is -8.3 ppm. These data indicate that (2-FC₆H₄)Ph₂P does not react with Brønsted sites on SZO₃₀₀. [(2-FC₆H₄)Ph₂PH][BF₄] has a p K_a of 6.11 in MeCN.²⁰ This result establishes that the -OHsites on SZO₃₀₀ do not protonate bases whose conjugate acid has a pK_a of 6.11 or below. This assertion is supported by the reaction of SZO₃₀₀ with an acetonitrile solution of pnitroaniline (p K_a (anilinium) = 6.22 in CH₃CN),²¹ a common Hammett indicator. Contacting SZO₃₀₀ with bright yellow MeCN solutions of p-nitroaniline results in a bright yellow solution and a white solid after successive washing with MeCN (Figure S4). This result indicates that p-nitroaniline is not protonated by the acid sites on SZO₃₀₀. Consistent with this observation, the FTIR spectrum of SZO₃₀₀ contacted with pnitroaniline lacks the ν_{NH} stretch of p-nitroanilinium (Figure

The reaction of phosphines with SZO_{300} produces $[R_3PH]$ - $[SZO_{300}]$ without formation of byproducts that would arise from side reactions on this material. The clean formation of $[R_3PH][SZO_{300}]$ allowed an evaluation of how pK_a in $[R_3PH]$ is related to surface binding. These studies clearly show that the -OH sites on SZO_{300} cannot be superacidic. If these sites were superacidic, SZO_{300} would certainly protonate $(2-FC_6H_4)Ph_2P$. The weak acidity of the Brønsted sites on SZO_{300} suggest they are probably not involved in alkane isomerization reactions. 9,12 However, pyrosulfate formed during the material synthesis is implicated in reactions with C-H bonds 12 and can also play a role in organometallic grafting reactions. 5a Since the quantity of pyrosulfate is related to thermal activation temperatures, appropriate thermal treatment of these materials prior to grafting and/or catalysis requires special attention.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b13204.

Experimental details, solid-state NMR spectra, pK_a determinations, and Langmuir titration data (PDF)

AUTHOR INFORMATION

Corresponding Author

*matthew.conley@ucr.edu

ORCID ®

Matthew P. Conley: 0000-0001-8593-5814

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

M.P.C. is a member of the UCR Center for Catalysis. This work was supported by the National Science Foundation (CHE-1800561). Solid-state NMR measurements were recorded on an instrument supported by the National Science Foundation (CHE-1626673).

REFERENCES

- (1) (a) Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.; Basset, J.-M. Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry. Angew. Chem., Int. Ed. 2003, 42, 156-181. (b) Marks, T. J. Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. Acc. Chem. Res. 1992, 25, 57-65. (c) Wegener, S. L.; Marks, T. J.; Stair, P. C. Design Strategies for the Molecular Level Synthesis of Supported Catalysts. Acc. Chem. Res. 2012, 45, 206-214. (d) Copéret, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.; Nagae, H.; Núñez-Zarur, F.; Zhizhko, P. A. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem. Rev. 2016, 116, 323-421. (e) Guzman, J.; Gates, B. C. Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans 2003, 17, 3303-3318. (f) Copéret, C.; Allouche, F.; Chan, K. W.; Conley, M.; Delley, M. F.; Fedorov, A.; Moroz, I.; Mougel, V.; Pucino, M.; Searles, K.; Yamamoto, K.; Zhizhko, P. Bridging the Gap between Industrial and Well-Defined Supported Catalysts. Angew. Chem., Int. Ed. 2018, 57, 6398-6440. (g) Basset, J.-M.; Coperet, C.; Soulivong, D.; Taoufik, M.; Cazat, J. T. Metathesis of Alkanes and Related Reactions. Acc. Chem. Res. 2010, 43, 323-334. (h) Basset, J. M.; Choplin, A. Surface organometallic chemistry: A new approach to heterogeneous Catalysis? J. Mol. Catal. 1983, 21, 95-108. (i) Ballard, D. G. H. Pi and Sigma Transition Metal Carbon Compounds as Catalysts for the Polymerization of Vinyl Monomers and Olefins. In Advances in Catalysis; Eley, D. D., Pines, H., Weisz, P. B., Eds.; Academic Press, 1973; Vol. 23, pp 263-325;. (j) Yermakov, Y. I., Anchored Complexes in Fundamental Catalytic Research. In Studies in Surface Science and Catalysis; Seivama, T., Tanabe, K., Eds.; Elsevier, 1981; Vol. 7, Part A, pp 57-76.
- (2) Jezequel, M.; Dufaud, V.; Ruiz-Garcia, M. J.; Carrillo-Hermosilla, F.; Neugebauer, U.; Niccolai, G. P.; Lefebvre, F.; Bayard, F.; Corker, J.; Fiddy, S.; Evans, J.; Broyer, J.-P.; Malinge, J.; Basset, J.-M. Supported Metallocene Catalysts by Surface Organometallic Chemistry. Synthesis, Characterization, and Reactivity in Ethylene Polymerization of Oxide-Supported Mono- and Biscyclopentadienyl Zirconium Alkyl Complexes: Establishment of Structure/Reactivity Relationships. J. Am. Chem. Soc. 2001, 123, 3520-3540.
- (3) (a) Review: Stalzer, M.; Delferro, M.; Marks, T. Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins. Catal. Lett. 2015, 145, 3-14. (b) For late transition metal sites for olefin polymerization, see: Culver, D. B.; Tafazolian, H.; Conley, M. P. A Bulky Pd(II) α-Diimine Catalyst Supported on Sulfated Zirconia for the Polymerization of Ethylene and Copolymerization of Ethylene and Methyl Acrylate. Organometallics 2018, 37, 1001-1006. (c) Tafazolian, H.; Culver, D. B.; Conley, M. P. A Well-Defined Ni(II) α -Diimine Catalyst Supported on Sulfated Zirconia for Polymerization Catalysis. Organometallics 2017, 36, 2385-2388.

- (4) (a) Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.; Delferro, M.; Marks, T. J. Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d⁰ Organozirconium Catalyst. Angew. Chem., Int. Ed. 2016, 55, 5263-5267. (b) Gu, W.; Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.; Gallagher, J. R.; Zhang, G.; Miller, J. T.; Kobayashi, T.; Pruski, M.; Delferro, M.; Marks, T. J. Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst···Acidic Oxide Surface Binding Geometry. J. Am. Chem. Soc. 2015, 137, 6770-6780. (c) Williams, L. A.; Guo, N.; Motta, A.; Delferro, M.; Fragala, I. L.; Miller, J. T.; Marks, T. J. Surface structural-chemical characterization of a single-site d⁰ heterogeneous arene hydrogenation catalyst having 100% active sites. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 413-418.
- (5) (a) Klet, R. C.; Kaphan, D. M.; Liu, C.; Yang, C.; Kropf, A. J.; Perras, F. A.; Pruski, M.; Hock, A. S.; Delferro, M. Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. J. Am. Chem. Soc. 2018, 140, 6308-6316. (b) Kaphan, D. M.; Klet, R. C.; Perras, F. A.; Pruski, M.; Yang, C.; Kropf, A. J.; Delferro, M. Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition Metal-Support Interactions in C-H Activation. ACS Catal. 2018, 8, 5363-5373.
- (6) Culver, D. B.; Conley, M. P. Activation of C-F Bonds by Electrophilic Organosilicon Sites Supported on Sulfated Zirconia. Angew. Chem., Int. Ed. 2018, 57, 14902-14905.
- (7) (a) Hino, M.; Kobayashi, S.; Arata, K. Solid catalyst treated with anion. 2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. J. Am. Chem. Soc. 1979, 101, 6439-6441. (b) Hino, M.; Arata, K. Synthesis of solid superacid catalyst with acid strength of $H_0 \leq -16.04$. J. Chem. Soc., Chem. Commun. 1980, 851-852.
- (8) Olah, G. A.; Prakash, G. K. S.; Sommer, J.; Molnar, A.: Superacid Chemistry; John Wiley & sons, 2009.
- (9) Tabora, J. E.; Davis, R. J. On the Superacidity of Sulfated Zirconia Catalysts for Low-Temperature Isomerization of Butane. J. Am. Chem. Soc. 1996, 118, 12240-12241.
- (10) Drago, R. S.; Kob, N. Acidity and Reactivity of Sulfated Zirconia and Metal-Doped Sulfated Zirconia. J. Phys. Chem. B 1997, 101, 3360-3364.
- (11) Haw, J. F.; Zhang, J.; Shimizu, K.; Venkatraman, T. N.; Luigi, D.-P.; Song, W.; Barich, D. H.; Nicholas, J. B. NMR and Theoretical Study of Acidity Probes on Sulfated Zirconia Catalysts. J. Am. Chem. Soc. 2000, 122, 12561-12570.
- (12) (a) Haase, F.; Sauer, J. The Surface Structure of Sulfated Zirconia: Periodic ab Initio Study of Sulfuric Acid Adsorbed on ZrO2(101) and ZrO2(001). J. Am. Chem. Soc. 1998, 120, 13503-13512. (b) Li, X.; Nagaoka, K.; Simon, L. J.; Olindo, R.; Lercher, J. A.; Hofmann, A.; Sauer, J. Oxidative Activation of n-Butane on Sulfated Zirconia. J. Am. Chem. Soc. 2005, 127, 16159-16166.
- (13) Farneth, W. E.; Gorte, R. J. Methods for Characterizing Zeolite Acidity. Chem. Rev. 1995, 95, 615-635.
- (14) Stoyanov, E. S.; Kim, K.-C.; Reed, C. A. An Infrared ν NH Scale for Weakly Basic Anions. Implications for Single-Molecule Acidity and Superacidity. J. Am. Chem. Soc. 2006, 128, 8500-8508.
- (15) (a) Osegovic, J. P.; Drago, R. S. Measurement of the Global Acidity of Solid Acids by 31P MAS NMR of Chemisorbed Triethylphosphine Oxide. J. Phys. Chem. B 2000, 104, 147-154. (b) Farcasiu, D.; Ghenciu, A. Acidity functions from carbon-13 NMR. J. Am. Chem. Soc. 1993, 115, 10901-10908. (c) Zheng, A.; Liu, S. B.; Deng, F. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solic and Liquid Catalysts. Chem. Rev. 2017, 117, 12475-12531.
- (16) Haav, K.; Saame, J.; Kütt, A.; Leito, I. Basicity of Phosphanes and Diphosphanes in Acetonitrile. Eur. J. Org. Chem. 2012, 2012, 2167-2172.
- (17) (a) Asefa, T.; Kruk, M.; Coombs, N.; Grondey, H.; MacLachlan, M. J.; Jaroniec, M.; Ozin, G. A. Novel Route to Periodic Mesoporous Aminosilicas, PMAs: Ammonolysis of Periodic Mesoporous Organosilicas. J. Am. Chem. Soc. 2003, 125, 11662-11673.

- (b) Hamzaoui, B.; Bendjeriou-Sedjerari, A.; Pump, E.; Abou-Hamad, E.; Sougrat, R.; Gurinov, A.; Huang, K.-W.; Gajan, D.; Lesage, A.; Emsley, L.; Basset, J.-M. Atomic-level organization of vicinal acid-base pairs through the chemisorption of aniline and derivatives onto mesoporous SBA15. *Chem. Sci.* **2016**, 7, 6099–6105. (c) Bendjeriou-Sedjerari, A.; Pelletier, J. D. A.; Abou-hamad, E.; Emsley, L.; Basset, J.-M. A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia. *Chem. Commun.* **2012**, 48, 3067–3069.
- (18) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. An Acidity Scale for Phosphorus-Containing Compounds Including Metal Hydrides and Dihydrogen Complexes in THF: Toward the Unification of Acidity Scales. *J. Am. Chem. Soc.* **2000**, *122*, 9155–9171.
- (19) Morris, R. H. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes. *Chem. Rev.* **2016**, *116*, 8588–8654.
- (20) Greb, L.; Tussing, S.; Schirmer, B.; Oña-Burgos, P.; Kaupmees, K.; Lõkov, M.; Leito, I.; Grimme, S.; Paradies, J. Electronic effects of triarylphosphines in metal-free hydrogen activation: a kinetic and computational study. *Chem. Sci.* **2013**, *4*, 2788–2796.
- (21) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales. J. Org. Chem. 2005, 70, 1019–1028