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ABSTRACT: The reaction of (‘Bu),ArP (1a—h), where
the para position of the Ar group contains electron-
donating or electron-withdrawing groups, with sulfated
zirconium oxide partially dehydroxylated at 300 °C
(8Z0;9,) forms [(‘Bu),ArPH][SZ0;4] (2a—h). The
equilibrium binding constants of la—h to SZO;y, are
related to the pK, of [(‘Bu),ArPH]; R,P that form less
acidic phosphoniums (high pK, values) bind stronger to
SZ0;, than R;P that form more acidic phosphoniums
(low pK, values). These studies show that Brensted acid
sites on the surface of SZO3, are not superacidic.

he control of active-site structures in heterogeneous
catalysts is important to realize the long-standing goal of
more selective and reactive solid catalysts." A common method
to control the structures of these sites is to support an
organometallic complex onto a partially dehydroxylated high
surface area oxide to form M—Oy sites (A, Figure 1, Oy =
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Figure 1. Chemisorption of organometallic complexes onto oxides to
form A or B.

surface oxygen) or electrostatic ion pairs [M][Ox] (B, Figure
1).lc’d Determining the factors that promote formation of A, B,
or mixtures of these two extremes is fundamentally and
practically significant. For example, the reaction of partially
dehydroxylated SiO, with Cp,ZrMe, forms Cp,Zr(Me)-
(OSi=), a type A surface species, and is inactive in the
polymerization of ethylene.” However, supporting Cp,ZrMe,
on partially dehydroxylated sulfated oxides (SO) forms
[Cp,ZrMe][SO], a type B surface species, that is very active
in ethylene polymerization.” The reaction of organometallic
complexes with SO usually forms type B surface species that
are also active in hydrogenation of arenes® and activation of
C—H bonds.” Sulfated zirconium oxide (SZO) also supports
the formation of strong Lewis acid ['Pr;Si][SZO] sites that
initiate C—F bond activation reactions.

Bronsted acidity of the —OH sites on oxides is often
presumed to affect the formation of A or B. The example
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reactions of Cp,ZrMe, with oxides are illustrative of this
argument. Neutral oxides containing weak Bronsted —OH sites
(e.g., SiO,) tend to form A, and oxides containing stronger
Bronsted —OH sites (e.g., SO) tend to form B.

The Bronsted acidity of the —OH sites on SO are the
subject of a long-standing debate. Initial reports showed that
sulfated zirconium oxide (SZO) catalyzed the isomerization of
n-butane to isobutane at lower temperatures than neat H,SO,.”
This result suggests that the Bronsted sites on SZO are
stronger than neat H,SO,, which would place SZO across the
threshold of superacidity (Hammett acidity parameter; H, <
—12.0).° This observation was supported by adsorption of
aromatic colorimetric superacid indicators onto SZO, showing
that Hy < —16.04,”" suggesting that the —OH sites on SZO are
about 4 orders of magnitude more acidic than H,SO, (H, =
—12.0). However, butane isomerization catalyzed by SZO
occurs only in the presence of olefin impurities in the reaction
feed.” In addition, isothermal calorimetry showed that SZO
binds pyridine weaker than zeolites."” Solid-state NMR studies
of SZO after adsorption of probe molecules showed that, in
addition to Bronsted sites, the SZO surface contains Lewis
sites'' and pyrosulfates that are implicated in oxidative reaction
pathways.>® Indeed, pyrosulfate sites were suggested to be
active in reactions of SZO with C—H bonds'” and are also
implicated in the reaction of organometallic Ir complexes with
$20.>*

This discussion shows some of the complexities in studying
the Bronsted acidity of SZO. The situation is complicated by
the nature of Hy, which is a property of solution acids. SZO is a
solid. Among the available methods to assess the Bronsted
acidity of solids are temperature-programmed desorption of
NH,,"’ measurement vy stretches of ammonium salts by
FTIR,'" and changes in chemical shift of adsorbed probe
molecules by NMR spectroscopy.'> This paper describes the

®
RgP RsP—H
H = Qe 0
Sz0 SZ0

reaction of SZO with RyP to form [RyPH][SZO] (eq 1). The
3P{'H} NMR chemical shifts of R;P and [Ry;PH] are clearly
distinguishable, and the acidity of [R;PH] spans ~15 pK, units
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in MeCN.'® These properties allow rapid assignment of
[R;PH][SZO] and provide an understanding of how pK, of
[RyPH] affects the formation of [R;PH][SZO]. These studies
show that the Bronsted sites on SZO are certainly not
superacidic.

SZO was prepared by suspending precipitated zirconium
oxide in dilute aqueous H,SO,, followed by calcination at 600
°C. This temperature was chosen because calcination at 600
°C produces SZO containing the strongest Bronsted acid sites
based on colorimetric titrations. After being cooled to room
temperature under air, SZO was partially dehydroxylated
under high vacuum (107 mbar) at 300 °C to form SZOj;4."

The reaction of SZO;y, with excess gas-phase Me;P forms
[Me;PH][SZO5q] as the major product. The *'P{'H} magic
angle spinning (MAS) spectrum of [Me;PH][SZO;]
contains a major signal at —4 ppm, which is characteristic of
[Me;PH] and a minor peak at —33 ppm, assigned to small
amounts of Me;P bound to Lewis sites (Figure S1). This result
is important because several previous studies showed that SZO
reacts with gas-phase Me;P to form mixtures of O=PMe;,
[Me;PH], and [Me,P]."" Indeed, the reaction of PMe, with
SZO dehydroxylated at 500 °C results in formation of
significant amounts of [Me,P] byproducts (Figure S1).The
formation of [Me;PH] as the major surface species indicates
that SZOj;4 does not contain significant quantities of Lewis
sites or pyrosulfates that are implicated in the formation of
O=PMe, or [Me,P] byproducts.

Reacting bulkier ‘Bu;P with $ZO;4 (1 equiv/OH) in Et,O
slurry results in the formation of [‘BusPH][SZO;,] (Figure
2a). The FTIR of [‘BuyPH][SZO;y,] contains a vp_yy at 2441
em™ (Figure 2b), and the *'P{'H} MAS NMR spectrum
contains a signal at 52 ppm (Figure 2c). *'P NMR signals for
other phosphorus species are not observed, consistent with the
sole formation of a phosphonium under these conditions.
These results indicate that bulky strong donor R;P are selective
probes for Brensted sites on SZOj;49. The clean reactivity of
SZ 05300 with ‘Bu,P to form [BusPH][SZO;0] contrasts with
NHj;, a well-known probe for Bronsted sites, because NH; can
also react with Lewis and strained sites on oxide surfaces.'”

(*Bu),ArP (la—h, eq 2), where the para position of the Ar
group contains substituents that donate or withdraw electron

X
®
Keg H-P(Bu),Ar
o) 2
‘Bu““f + OH \o 2
Bu sz0 $z0
X=OMe,1a H,1e 2a-h
Bu,1b  F 1f
Me,1¢ CF3 1g
TMS,1d CN,1h

density, were chosen to systematically evaluate how the
electronics at phosphorus affects formation of phosphonium
sites on SZQO;p. The reaction of (‘Bu),ArP (la—h) with
SZ0;4, in MeCN slurry forms [("Bu),ArPH][SZO;,] (2a—
h), eq 2. Table 1 contains key spectroscopic data for 2a—h.
The *'P NMR chemical shifts of [1H][BF,] are 5—10 ppm
downfield from la—h in CD;CN solution, indicating that *'P
NMR chemical shift can discriminate between free phosphine
and [1H][BF,]. The *'P{"H} MAS spectra of 2a—h contain
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Figure 2. Reaction of '‘Bu;P with SZO;q, to form [‘Bus;PH][SZ O]
(a); FTIR of [‘BusPH][SZO;0,], with vpy labeled for clarity (b);
SIP{"H} MAS NMR spectrum of this material (c).

Table 1. P NMR Data for la—h, [1H][BF,], and 2a—h“

5P 5P (ppm) 5P (ppm) Up_y (cm™)
(‘Bu),ArP  (ppm)” [1H][BF,] 2a—h“ 2a—h
la 36.4 46.8 43 2448
1b 41.8 46.7 46 2445
1c 37.6 47.6 46 2438
1d 39.9 44.7 48 2441
Ie 389 48.0 49 2439
1f 37.1 46.8 48 2438
ig 384 472 49 2433
1h 39.0 474 46 2432

“Referenced to 85% HPO,. CD;CN solution. “Generated in
CD;CN solution (refer to the Supporting Information for details).
910 kHz MAS spinning speed.

signals for the phosphonium at, or near, the values observed in
[1H][BF,]. Similar to the grafting of ‘BusP onto SZO;,
signals for oxidized products or (‘Bu),ArP interacting with
Lewis sites were not observed in *'P MAS spectra of 2a—h. In
addition to the *'P MAS NMR spectra, the FTIR spectra of
2a—h contain vp_y stretches, decreasing from 2448 cm™' for
2a to 2432 cm™! for 2h.

Equilibrium-binding studies were performed in anhydrous
MeCN slurries at 25 °C under rigorously anaerobic conditions;
experimental details are provided in the Supporting Informa-
tion. A representative plot of the binding of 1a to SZO;, to
form 2a is shown in Figure 3. The data in Figure 3 relate to the
equilibrium adsorption constant K,, shown in eq 3, where
[HO,] are Bronsted sites on SZO 3, reported in mmol/g. K, is
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Figure 3. Langmuir isotherm of 1a binding to SZO34. The study was
performed in triplicate using a phosphine stock solution of 0.3 mM;
the error bars are standard deviations from these three binding
studies.

extracted from fits of the data in Figure 3 to a single-site
Langmuir isotherm, shown in eq 4, where [HO, ], is the initial
OH loading and @ is the surface coverage of the phosphine on
S8Z0;. K, for the reaction of SZO;y, with 1a to form 2a is
7.4(4) X 10* M. The extracted binding constants from fits to
eq 4 for other phosphines in this study, as well as pK, values of
[1H][BF,] measured in CD,CN solution,"® are given in Table
2. The prevailing trend of these data is that K, decreases as pK,

Table 2. Binding Constants for Formation of 2 and pK, of
Phosphoniums

(‘Bu),ArP K, (x10* M~Y)~ pK, [1H][BF,]”
la 7.4(4) 16.4(1)
1b 5.5(3) 15.8(1)
1c 5.5(4) 15.7(2)
1d 4.7(1) 14.9(1)
le 4.3(3) 14.7(1)
1f 3.0(2) 14.0(1)
1g 2.6(1) 12.9(1)
1h 1.9(4) 12.6(2)

“Average of three binding studies in MeCN slurries; errors in
parentheses are standard deviations from these data. “Determined in
CD;CN solution using methods described in ref 17; refer to the
Supporting Information for details.

of [1H] decreases. A Hammett plot from the data in Table 2 is
linear with p = —0.14 (R* = 0.96, Figure S2), consistent with
buildup of positive charge on phosphorus in the formation of
2a—h.

K= 12
[1][HO,] 3)

_ K[11[HO],
1+ K,[1] 4)

The data in Table 2 are inconsistent with Brensted
superacid behavior. Superacids are known to protonate
MeCN to form [(MeCN)H][X] solvates.” The pK, of
solvated protons in MeCN is 0,"” which should result in

much stronger binding for bases whose conjugate acids have
pK, values as those in Table 2.

To test the strength of the acid sites on SZOjq, we
contacted this material with Ph;P. The pK, of [Ph,PH][BF,] is
7.6 in MeCN; therefore, Ph;P should bind to SZO5y, weaker
than (‘Bu),ArP as described in Table 2. The reaction of
S$Z0;y, with PhyP forms [Ph;PH][SZO;y] (4) in MeCN.
Similar to 2, the ¥P{'H} MAS NMR chemical shift of 4
appears at a chemical shift close to those observed for solutions
of [PhyPH][BF,]. ¥P{'H} NMR studies of SZ0;, suspended
in MeCN solutions containing PPh; show that K, ~ 3 M},
indicating that PPh; binds much weaker than la—h. This is
consistent with the hypothesis that pK, of [RyPH] influences
binding of phosphines to Brensted sites on SZO;y,.

The reaction of SZ0jy with (2-FC,H,)Ph,P in MeCN
slurry, followed by successive washings with MeCN, does not
contain a signal in the *'P{'H} MAS NMR spectrum. Removal
of MeCN of SZO;q contacted with a solution of (2-
FC¢H,)Ph,P results in a *'P{'H} MAS NMR spectrum
containing a single signal at —8 ppm, and the chemical shift
of (2-FC4H,)Ph,P in CD;CN solution is —8.3 ppm. These
data indicate that (2-FC4H,)Ph,P does not react with
Bronsted sites on SZOsy. [(2-FC¢H,)Ph,PH][BF,] has a
pK, of 6.11 in MeCN.”" This result establishes that the —OH
sites on SZ03yy do not protonate bases whose conjugate acid
has a pK, of 6.11 or below. This assertion is supported by the
reaction of SZOj4 with an acetonitrile solution of p-
nitroaniline (pK,(anilinium) = 6.22 in CH,CN),”" a common
Hammett indicator. Contacting SZO;y, with bright yellow
MeCN solutions of p-nitroaniline results in a bright yellow
solution and a white solid after successive washing with MeCN
(Figure S4). This result indicates that p-nitroaniline is not
protonated by the acid sites on SZO;q,. Consistent with this
observation, the FTIR spectrum of SZO;, contacted with p-
nitroaniline lacks the vy stretch of p-nitroanilinium (Figure
SS).

The reaction of phosphines with SZO5o, produces [Ry;PH]-
[SZO;y,] without formation of byproducts that would arise
from side reactions on this material. The clean formation of
[RyPH][SZ04] allowed an evaluation of how pK, in [Ry;PH]
is related to surface binding. These studies clearly show that
the —OH sites on SZO5, cannot be superacidic. If these sites
were superacidic, SZO5o, would certainly protonate (2-
FC¢H,)Ph,P. The weak acidity of the Brensted sites on
SZ03 suggest they are probably not involved in alkane
isomerization reactions.”'”> However, pyrosulfate formed
during the material synthesis is implicated in reactions with
C—H bonds'” and can also play a role in organometallic
grafting reactions.” Since the quantity of pyrosulfate is related
to thermal activation temperatures, appropriate thermal
treatment of these materials prior to grafting and/or catalysis
requires special attention.
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