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CHARACTERIZATION OF CYCLE OBSTRUCTION SETS FOR

IMPROPER COLORING PLANAR GRAPHS∗

ILKYOO CHOI† , CHUN-HUNG LIU‡ , AND SANG-IL OUM§

Abstract. For nonnegative integers k, d1, . . . , dk, a graph is (d1, . . . , dk)-colorable if its vertex
set can be partitioned into k parts so that the ith part induces a graph with maximum degree
at most di for all i ∈ {1, . . . , k}. A class C of graphs is balanced k-partitionable and unbalanced

k-partitionable if there exists a nonnegative integer D such that all graphs in C are (D, . . . ,D)-
colorable and (0, . . . , 0, D)-colorable, respectively, where the tuple has length k. A set X of cycles
is a cycle obstruction set of a class C of planar graphs if every planar graph containing none of the
cycles in X as a subgraph belongs to C. This paper characterizes all cycle obstruction sets of planar
graphs to be balanced k-partitionable and unbalanced k-partitionable for all k; namely, we identify
all inclusionwise minimal cycle obstruction sets for all k.

Key words. graph coloring, improper coloring, defective coloring, planar graphs, obstruction
sets
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1. Introduction. All graphs in this paper are finite and simple, which means
no loops and no parallel edges. Let Ck denote a k-cycle, which is a cycle of length
k. A set X of cycles is a cycle obstruction set of a class C of planar graphs if every
planar graph containing none of the cycles in X as a subgraph belongs to C.

A graph is k-colorable if its vertex set can be partitioned into k color classes so
that each color class is an independent set. The celebrated four color theorem [1, 2]
(later reproved in [18]) states that every planar graph is 4-colorable. Since there are
planar graphs that are not 3-colorable, finding sufficient conditions for a planar graph
to be 3-colorable has been an active area of research; many of these conditions can be
translated into the language of obstruction sets. Perhaps the most well-known result
is the following theorem, known as Grötzsch’s theorem [13]:

Theorem 1.1 (Grötzsch [13]). Planar graphs with no 3-cycles are 3-colorable.

In the language of obstruction sets, Grötzsch’s theorem states that {C3} is an
obstruction set of 3-colorable planar graphs. There is also a vast literature regarding
forbidding various cycle lengths to guarantee a planar graph to be 3-colorable; see
Table 1 for a summary of some of these results.
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Table 1

Forbidding various cycle lengths to guarantee 3-colorability of planar graphs.

Year Reference 3 4 5 6 7 8 9 Authors

1959 [13] × Grötzsch
2005 [25] × × × × Zhang–Wu
2006 [24] × × × Xu
2010 [22] × × × × Wang–Lu–Chen
2007 [6] × × × × Chen–Raspaud–Wang
2007 [21] × × × Wang–Chen
2011 [23] × × × × Wang–Wu–Shen

Each result in the aforementioned theorem reveals a new obstruction set of 3-
colorable planar graphs. The interest in forbidding various cycle lengths stems from
Steinberg’s conjecture [20], which states that planar graphs with neither 4-cycles
nor 5-cycles are 3-colorable. There was almost no progress after the conjecture was
first proposed in 1976, but many partial results were produced after 1991, which
is when Erdős [20] proposed the following approach towards Steinberg’s conjecture:
find the minimum k such that planar graphs with no cycle lengths in {4, . . . , k}
are 3-colorable. After 40 years of effort by the coloring community to try to prove
Steinberg’s conjecture, only recently it was disproved via a clever construction by
Cohen-Addad et al. [10]. Yet, the question of whether planar graphs with no cycle
lengths in {4, 5, 6} are 3-colorable or not remains open.

Recently, the following relaxation of proper coloring, also known as improper col-

oring, has attracted much attention: for nonnegative integers k, d1, . . . , dk, a graph is
(d1, . . . , dk)-colorable if its vertex set can be partitioned into k color classes V1, . . . , Vk

so that Vi induces a graph with maximum degree at most di for all i ∈ {1, . . . , k}.
This relaxation allows some prescribed defects in each color class, where defects are
measured in terms of the maximum degree of the graph induced by the vertices
of a color class. We say a class C of graphs is balanced k-partitionable and unbal-

anced k-partitionable if there exists a nonnegative integer D such that all graphs in C
are (D, . . . ,D)-colorable and (0, . . . , 0, D)-colorable, respectively, where the tuple has
length k.

There is a vast literature in improper coloring planar graphs. By the four color
theorem, planar graphs are 4-colorable, which is equivalent to (0, 0, 0, 0)-colorable,
and Cowen, Cowen, and Woodall [11] proved that planar graphs are (2, 2, 2)-colorable.
This is best possible in the sense that for any given nonnegative integers d1 and d2,
there exists a planar graph that is not (1, d1, d2)-colorable; for one such construc-
tion see [8]. Therefore, the question of partitioning planar graphs with no extra
conditions into at least three subgraphs of bounded maximum degrees is completely
solved.

It is often useful to consider girth conditions along with planarity to obtain pos-
itive results. Regarding partitioning planar graphs into two parts, for any given non-
negative integers d1 and d2, a planar graph with girth 4 that is not (d1, d2)-colorable
is constructed in [17]. Yet, Choi et al. [7], Borodin and Kostochka [5], Choi and
Raspaud [9], and Škrekovski [19] proved that planar graphs with girth at least 5 are
(1, 10)-, (2, 6)-, (3, 5)-, and (4, 4)-colorable, respectively. Also, given a nonnegative
integer d, a planar graph with girth 6 that is not (0, d)-colorable is constructed in [3].
On the other hand, it is known that every planar graph with girth at least 7 is (0, 4)-
colorable [5]. For other papers regarding improper coloring sparse (not necessarily
planar) graphs, see [4, 12, 14, 15, 16].
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The previous paragraph concerns girth conditions enforced on planar graphs to
obtain positive results. Instead of forbidding all short cycles, we are interested in
finding the minimal sets of obstacles in partitioning planar graphs into parts with
bounded maximum degrees. We succeed in identifying which cycle lengths are es-
sential obstructions when it comes to partitioning planar graphs in a balanced and
unbalanced way. In other words, this paper characterizes all cycle obstruction sets
of balanced k-partitionable and unbalanced k-partitionable planar graphs for all k;
namely, we identify all the inclusionwise minimal cycle obstruction sets.

By the four color theorem, the empty set is the (only) inclusionwise minimal
cycle obstruction set of both balanced k-partitionable and unbalanced k-partitionable
planar graphs when k ≥ 4. The empty set is also the (only) inclusionwise minimal
cycle obstruction set of balanced 3-partitionable planar graphs, since Cowen, Cowen,
and Woodall [11] proved that planar graphs are (2, 2, 2)-colorable. For the remaining
cases, we characterize the inclusionwise minimal obstruction sets, and for each case
there are exactly two. Our main results are the following three theorems:

Theorem 2.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of balanced 2-partitionable planar graphs if and only if S = {C4} or S is the set

of all odd cycles.

Theorem 3.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of unbalanced 2-partitionable planar graphs if and only if S = {C3, C4, C6} or S

is the set of all odd cycles.

Theorem 4.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of unbalanced 3-partitionable planar graphs if and only if S = {C3} or S = {C4}.

Theorems 2.1 and 3.1 state that for planar graphs to be balanced 2-partitionable
and unbalanced 2-partitionable, respectively, there is only one inclusionwise minimal
cycle obstruction set other than the set of all odd cycles. Since forbidding all odd cycles
makes the graph bipartite, and thus 2-colorable, which is equivalent to (0, 0)-colorable,
the minimal cycle obstructions for planar graphs to be balanced 2-partitionable and
unbalanced 2-partitionable is a 4-cycle and all of 3-, 4-, 6-cycles, respectively. Note
that previous results by Škrekovski [19] and Borodin and Kostochka [5] imply that
planar graphs are balanced 2-partitionable and unbalanced 2-partitionable when the
forbidden cycle lengths are 3, 4 and 3, 4, 5, 6, respectively.

Theorem 4.1 states that other than a 3-cycle, there is only one other inclu-
sionwise minimal cycle obstruction set of unbalanced 3-partitionable planar graphs.
Since Grötzsch’s theorem says that forbidding a 3-cycle in planar graphs guaran-
tees that it is 3-colorable, which is equivalent to (0, 0, 0)-colorable, the minimal cycle
obstruction for non-3-colorable planar graphs to be unbalanced 3-partitionable is a
4-cycle.

Note that for both balanced 1-partitioning and unbalanced 1-partitioning, cycle
obstruction sets simply do not exist because of planar graphs with arbitrarily large
maximum degree. See Table 2 for a complete list of cycle obstruction sets of both
balanced k-partitionable and unbalanced k-partitionable planar graphs.

In sections 2, 3, and 4, we prove Theorems 2.1, 3.1, and 4.1, respectively. The
constants in all of our main results are probably improvable with some effort. Yet,
we focused on simplifying the proofs and using the minimum number of reducible
configurations and basic discharging rules in order to improve the readability of the
paper. We end this section by posing three questions and some definitions that will
be used in the next sections.
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Table 2

Characterization of inclusionwise minimal cycle obstruction sets.

k Balanced Unbalanced

4+-partitionable ∅ ∅

3-partitionable ∅ {C3}, {C4}

2-partitionable {C2i+1 : i ≥ 1}, {C4} {C2i+1 : i ≥ 1}, {C3, C4, C6}

1-partitionable does not exist! does not exist!

Problem 1.2. What is the minimum D such that every planar graph with no

4-cycles is (D,D)-colorable?

Problem 1.3. What is the minimum D such that every planar graph with no 3-,
4-, 6-cycles is (0, D)-colorable?

Problem 1.4. What is the minimum D such that every planar graph with no

4-cycles is (0, 0, D)-colorable?

The degree of a vertex v, denoted by d(v), is the number of edges incident with
it. A k-vertex, k+-vertex, and k−-vertex are a vertex of degree exactly k, at least k,
and at most k, respectively. Given any embedding of a connected planar graph G on
at least two vertices on the plane, for every face f , we say that a boundary walk Wf

of f is canonical if it traces the edges incident with f according to one of the two
obvious cyclic orderings of those edges. The degree of a face f , denoted by d(f), is the
length of Wf ; note that cut edges are counted twice. A k-face, k+-face, and k−-face

is a face of degree exactly k, at least k, and at most k, respectively. For each face f

and each vertex v of G, we define kf,v to be the number of triples (e, v, e′) such that
e, e′ ∈ E(G) and eve′ is a subwalk of Wf . It is well known that the degree of f and
kf,v is independent of the choice of Wf . Clearly, the degree of f equals

∑
v∈V (G) kf,v.

2. Balanced 2-partitions. In this section, we prove the following theorem.

Theorem 2.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of balanced 2-partitionable planar graphs if and only if S = {C4} or S is the set

of all odd cycles.

We will first show a necessary condition for cycle obstruction sets, and then show
that it is sufficient afterwards.

Lemma 2.2. If a set S of cycles is an obstruction set of balanced 2-partitionable
planar graphs, then either C4 ∈ S or S contains all odd cycles.

Proof. Given a nonnegative integer D and two vertices x and y, let H2(D;x, y)
be the graph consisting of 2D + 1 internally disjoint x, y-paths of length 2. For a
positive integer l and a vertex v1, let H1(D, l; v1) be the graph obtained from a cycle
with vertices v1, . . . , vl+1 and replacing each edge vivi+1 with a copy of H2(D; vi, vi+1)
where i ∈ {1, . . . , l}. Finally, let H(D, l) be the graph obtained from D + 1 pairwise
disjoint copies of H1(D, l; vj1) and identifying all of vj1 for j ∈ {1, . . . , D + 1}.

Now in any (D,D)-coloring of H2(D;x, y), it is easy to see that x and y must
receive the same color. This implies that the cut-vertex of H(D, l) has D+1 neighbors
of the same color, which shows that H(D, l) is not (D,D)-colorable. It is not hard to
see that the cycles in H(D, l) have length either 4 or 2l+1. Therefore the obstruction
set of balanced 2-partitionable planar graphs contains either C4 or all odd cycles. See
Figure 1 for an illustration of H2(D;x, y) and H(D, 2).
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x y
...

x y

H2(D; x, y)

v1

H(D, 2)

Fig. 1. Graphs that are not (D,D)-colorable.

If a planar graph does not contain any odd cycles, then it is bipartite and, thus,
it is (0, 0)-colorable and, hence, it is balanced 2-partitionable. The remainder of this
section proves that planar graphs with no 4-cycles are balanced 2-partitionable. Note
that Lemma 2.2 and Theorem 2.3 imply Theorem 2.1.

Theorem 2.3. A planar graph with no 4-cycles is (5, 5)-colorable.

In the rest of this section, let G be a counterexample to Theorem 2.3 with the
minimum number of 3+-vertices, and, subject to that, choose one with the minimum
number of edges. Also, fix a plane embedding ofG. It is easy to see thatG is connected
and has no 1-vertices. From now on, given a (partially) (5, 5)-colored graph, we will
let a and b be the two colors, and we say a vertex with a color is saturated if it already
has five neighbors of the same color.

2.1. Structural lemmas.

Lemma 2.4. Every edge xy of G has an endpoint with degree at least 7.

Proof. Suppose to the contrary that x and y are both 6−-vertices. Since G \ xy
is a graph with fewer edges than G and the number of 3+-vertices did not increase,
there is a (5, 5)-coloring ϕ : V (G) → {a, b} of G \ xy. If ϕ is not a (5, 5)-coloring of
G, then ϕ(x) = ϕ(y), and either x or y is saturated in G \ xy. For each saturated
vertex z in {x, y}, we may recolor it with the color in {a, b} \ {ϕ(z)} since all of its
neighbors have color ϕ(z) in G \ xy. We end up with a (5, 5)-coloring of G, which is
a contradiction.

Lemma 2.5. There are no 3-vertices in G.

Proof. Suppose to the contrary that v is a 3-vertex of G with neighbors v1, v2, v3.
By Lemma 2.4, we know that v1, v2, v3 are 7+-vertices. Obtain a graph H from G− v

by adding paths v1u1v2, v2u2v3, v3u3v1, where u1, u2, u3 are three distinct vertices
not in G. Note that H is planar and has no 4-cycles since the pairwise distance
between v1, v2, v3 did not change. See Figure 2 for an illustration. Since H has fewer
3+-vertices than G, there is a (5, 5)-coloring ϕ : V (H) → {a, b} of H.
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v

v1

v2 v3

⇒

v1

v2 v3

u2

u1 u3

Fig. 2. Obtaining H from G in Lemma 2.5.

If ϕ(v1) = ϕ(v2) = ϕ(v3), then we may extend ϕ to G by using the color in
{a, b} \ {ϕ(v1)} on v. Otherwise, without loss of generality we may assume ϕ(v1) = a

and ϕ(v2) = ϕ(v3) = b. If a ∈ {ϕ(u1), ϕ(u3)}, then we may extend ϕ to G by using
a on v. Otherwise, ϕ(u1) = ϕ(u3) = b, so we may extend ϕ to G by using b on v. In
all cases we end up with a (5, 5)-coloring of G, which is a contradiction.

A 3-face is terrible if it is incident with a 2-vertex.

Lemma 2.6. A 7+-vertex v is incident with at most min{bd(v)
2 c, d(v)−6} terrible

3-faces.

Proof. Since G has no 4-cycles, two 3-faces cannot share an edge, and thus v is

incident with at most bd(v)
2 c terrible 3-faces. Since bd(v)

2 c ≤ d(v)− 6 when d(v) ≥ 11,
we may assume d(v) ≤ 10.

Suppose to the contrary that v is incident with t terrible 3-faces, where t ≥
d(v)− 5. Let w be a 2-vertex of a terrible 3-face wvu; note that u is also a 7+-vertex
by Lemma 2.4. Since G − w is a graph with fewer edges than G and the number
of 3+-vertices did not increase, there is a (5, 5)-coloring ϕ : V (G) \ {w} → {a, b} of
G−w. If ϕ(u) = ϕ(v), then we may extend ϕ to G by using the color in {a, b}\{ϕ(u)}
on w. Thus, we may assume ϕ(u) = a and ϕ(v) = b. Since using the color b on w

should not extend ϕ to G, we know that v must be saturated by ϕ.
There are d(v)−2t neighbors of v in G−w that are not in terrible 3-faces incident

with v. Since v has five neighbors with the color b, at least 5−(d(v)−2t) = 5+2t−d(v)
neighbors of v in G − w with the color b are incident with a terrible 3-face incident
with v. Since neither w nor u is colored with b, there are t − 1 terrible 3-faces
incident with v that might have a vertex colored with b. Since t ≥ d(v) − 5 implies
5 + 2t − d(v) > t − 1, there exists a terrible 3-face xyv where x is a 2-vertex, other
than wuv with ϕ(x) = ϕ(y) = b. Now, we can extend ϕ to G by coloring w with b and
recoloring x with a, which contradicts the assumption that G has no (5, 5)-coloring.

2.2. Discharging. We now define the initial charge at each vertex and each
face. For every v ∈ V (G), let µ(v) = 2d(v) − 6 and for every face f ∈ F (G), let
µ(f) = d(f)− 6. The total initial charge is negative since

∑

z∈V (G)∪F (G)

µ(z) =
∑

v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6)

= −6|V (G)|+ 6|E(G)| − 6|F (G)| = −12 < 0.

The last equality holds by Euler’s formula. Recall that a 3-face is terrible if it is
incident with a 2-vertex.
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7+ 2

1

(R1)

4

6
5 1

(R2)

7+

7+

2

3
2

(R3A)

7+

7+

4+

1

(R3B)

7+

7+

1
2

(R3C)

Fig. 3. Discharging rules.

Here are the discharging rules:
(R1) Each 7+-vertex sends charge 1 to each adjacent 2-vertex.
(R2) Each 4-, 5-, 6-vertex sends charge 1 to each incident 3-face.
(R3) Let v be a 7+-vertex.

(R3A) v sends charge 3
2 to each incident terrible 3-face.

(R3B) v sends charge 1 to each incident 3-face that is not terrible.
(R3C) v sends charge 1

2 to each 5-face f that is incident with v and incident
with a neighbor of v with degree at least 7.

See Figure 3 for an illustration of the discharging rules.
We denote the final charge of z by µ∗(z) for each z ∈ V (G) ∪ F (G). The rest of

this section will prove that µ∗(z) is nonnegative for each z ∈ V (G) ∪ F (G).

Claim 2.7. Every face has nonnegative final charge.

Proof. Let f be a face. It only receives charge and does not give out any charge.
Thus if f is a 6+-face, then f has nonnegative final charge since µ∗(f) = µ(f) =
d(f)−6 ≥ 0. By Lemma 2.4, every 5-face f is incident with at least three 7+-vertices,
and at least two of these are adjacent to each other. Thus, by rule (R3C), f receives
charge 1

2 at least twice. Thus, µ∗(f) ≥ 5 − 6 + 2 · 1
2 = 0. Note that f cannot be a

4-face since G has no 4-cycles.
Now assume f is a 3-face. By Lemma 2.4, f is incident with at least two 7+-

vertices, which must be pairwise adjacent to each other. If f is incident with two
7+-vertices and the third vertex is a 4+-vertex, then f is not a terrible face. Now f

receives either charge 1 twice by rule (R3B) and charge 1 once by rule (R2) or charge
1 three times by rule (R3B). In either case, µ∗(f) = 3− 6+ 3 · 1 = 0. Note that there
are no 3-vertices by Lemma 2.5. If f is incident with exactly two 7+-vertices, then
the third vertex is a 2-vertex, and f is a terrible 3-face. Thus it receives charge 3

2
twice by rule (R3A). Thus, µ∗(f) = 3− 6 + 2 · 3

2 = 0.

Claim 2.8. Each vertex has nonnegative final charge.

Proof. Each neighbor of a 2-vertex v must be a 7+-vertex by Lemma 2.4. There-
fore v receives charge 1 twice by (R1). Thus, µ∗(v) = 2 · 2− 6 + 2 · 1 = 0. Note that

there are no 3-vertices by Lemma 2.5, and every vertex is incident with at most bd(v)
2 c

3-faces since there are no 4-cycles in G. If v is a vertex with d(v) ∈ {4, 5, 6}, then v

sends charge 1 at most bd(v)
2 c times by rule (R2). Thus, µ∗(v) ≥ 2d(v)−6−bd(v)

2 c ≥ 0.
Now assume v is a 7+-vertex. We will show that v has nonnegative final charge

by a weighting argument. Let u1, . . . , ud(v) be the neighbors of v in some cyclic order.
First give all neighbors of v a weight of 1. If ui is not a 2-vertex, then split the weight
of 1 it received from v, and transfer weight 1

2 to each of the two faces that are incident
with vui; if vui is incident with only one face, then transfer the entire weight of 1 to
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x y
...

x y

F1(D; x, y) F (D; 5) F ′(2; 5)

Fig. 4. Graphs that are not (0, D)-colorable.

this face. Now, every neighbor of v that is a 2-vertex and every face incident with v

that is not a terrible 3-face have weight at least the charge that they should receive
from v by the discharging rules. Every terrible 3-face has weight at most 1 short of
the charge it should receive from v by the discharging rules. Now give weight 1 to
each terrible 3-face incident with v. Since v is incident with at most d(v)− 6 terrible
3-faces by Lemma 2.6, and each neighbor of v received weight 1 initially, the total
weight spent is at most 2d(v)− 6, which is exactly the initial charge of v. Thus, the
total weight sent is no more than the initial charge of v, which proves that the final
charge of v is nonnegative.

3. Unbalanced 2-partitions. In this section, we prove the following theorem.

Theorem 3.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of unbalanced 2-partitionable planar graphs if and only if S = {C3, C4, C6} or S

is the set of all odd cycles.

We will first show a necessary condition for cycle obstruction sets, and then show
that it is sufficient afterwards.

Lemma 3.2. If a set S of cycles is an obstruction set of unbalanced 2-partitionable
planar graphs, then either {C3, C4, C6} ⊆ S or S contains all odd cycles.

Proof. For a nonnegative integer D, a positive integer l, and a vertex v, recall that
H(D, l) from section 2 is not (D,D)-colorable and the only cycles in H1(D, l; v) have
length either 4 or 2l+ 1. Therefore H(D, l) is not (0, D)-colorable as well. Therefore
S contains either C4 or all odd cycles.

Given a nonnegative integer D and two vertices x and y, let F1(D;x, y) be the
graph that consists of 2D+1 internally disjoint x, y-paths of length 3. See Figure 4 for
an illustration of F1(D;x, y). For an odd integer l ≥ 3 and a vertex v1, let Fo(D, l; v1)
be the graph obtained from an odd cycle with vertices v1, . . . , vl by replacing each
edge vivi+1 with F1(D; vi, vi+1), where i is an odd integer at most l (where vl+1 is
treated as v1). Finally, obtain F (D; l) from two disjoint copies of Fo(D, l; v1) and
adding an edge between the two vertices that correspond to v1. See Figure 4 for an
illustration of F (D; 5).

Now in any (0, D)-coloring of F1(D;x, y), it is easy to see that x and y cannot
both receive the color 2. The two cut-vertices of F (D; l) cannot both receive the color
1 in any (0, D)-coloring, thus at least one cut-vertex v receives the color 2. In the copy
that corresponds to Fo(D, l; v), either there is an edge with both endpoints colored
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with the color 1 or there is a copy of F1(D;x, y) where both x and y receive the color
2. This shows that F (D; l) is not (0, D)-colorable. It is not hard to see that the only
cycles in F (D; l) have length either 6 or 2l + 1, where l is an odd integer at least 3.
Therefore S contains either C6 or all cycles of lengths 4k + 3, where k is a positive
integer.

For an odd integer l ≥ 3 and a vertex v1, let Fe(D, l; v1) be the graph ob-
tained from an odd cycle with vertices v1, . . . , vl by replacing each edge vivi+1 with
F1(D; vi, vi+1), where i is an even integer at most l. Finally, let F ′(D; l) be the graph
obtained from a star with D + 2 vertices by attaching a copy of Fe(D, l; v) to each
vertex v of the star. See Figure 4 for an illustration of F ′(2; 5).

As above, x and y cannot both receive the color 2 in any (0, D)-coloring of
F1(D;x, y). This implies that every cut vertex of F ′(D; l) must be colored with
color 2 in a (0, D)-coloring. Yet, now there exists a cut vertex of that has D + 1
neighbors colored with the color 2, which implies that F ′(D; l) is not (0, D)-colorable.
It is not hard to see that the cycles in F ′(D; l) have length either 6 or 2l − 1, where
l is an odd integer at least 3. Therefore S contains either C6 or all cycles of lengths
4k + 1, where k is a positive integer.

Let T0(D;x) be the graph obtained from D + 1 pairwise disjoint 3-cycles by
identifying one vertex in each cycle into x. Now let T (D) be the graph obtained from
two copies of T0(D;x) and adding an edge between the two vertices corresponding to
x. In any (0, D)-coloring of T0(D;x), the vertex x must not receive color 2 since it
will have D + 1 neighbors colored with 2. Yet, in T (D), one of the two cut vertices,
which corresponds to x in a copy of T0(D;x), will receive color 2. This shows that
T (D) is not (0, D)-colorable, and it is easy to see that T (D) contains only 3-cycles.
Hence S contains C3.

To sum up, the obstruction set of unbalanced 2-partitionable planar graphs must
contain C3, and contains either {C4, C6} or all odd cycles of length at least five. In
other words, S contains either {C3, C4, C6} or all odd cycles.

If either C4 or C6 is not in an obstruction set S of unbalanced 2-partitionable
planar graphs, then all odd cycles must be in S. This implies that the graph is bipartite
and (0, 0)-colorable, and hence it is unbalanced 2-partitionable. The following theorem
shows that {C3, C4, C6} is an obstruction set of unbalanced 2-partitionable planar
graphs. Note that Lemma 3.2 and Theorem 3.3 imply Theorem 3.1.

Theorem 3.3. A planar graph with no 3-, 4-, 6-cycles is (0, 45)-colorable.

In this section, let G be a counterexample to Theorem 3.3 with the minimum
number of vertices. Also, fix a plane embedding of G. It is easy to see that G is
connected and has no 1-vertices. From now on, given a (partially) (0, 45)-colored
graph, we will let a and b be the two colors where b is the color class allowed to have
maximum degree at most 45, and we say a vertex colored with b is saturated if it
already has 45 neighbors colored with b.

3.1. Structural lemmas.

Lemma 3.4. Any 46−-vertex is adjacent to a 47+-vertex.

Proof. Suppose to the contrary that a 46−-vertex v is adjacent to only 46−-
vertices. Since G− v is a graph with fewer vertices than G, there is a (0, 45)-coloring
ϕ of G − v; choose ϕ that maximizes the number of neighbors of v with the color a.
At least one neighbor of v has color a, since otherwise we can extend ϕ to all of G by
coloring v with color a. Also, every neighbor of v colored b has a neighbor in G − v
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2

47+

2 2

47+

47+

2 2

3 to 46 3 to 46

Fig. 5. Bad faces.

with the color a, otherwise it can be recolored by a and violates the choice of ϕ. Since
each neighbor u of v has at most 45 neighbors in G − v, u has at most 44 neighbors
with the color b in G− v. So no neighbor of v is saturated. Hence we can extend ϕ to
G by coloring v with color b. This contradicts that G is a counterexample, and thus
proves the claim.

Since G has no 3-cycles and no 4-cycles, every 5-face is bounded by a cycle. A
bad face is a 5-face f where the degrees of the vertices on a boundary walk is as in
Figure 5.

Lemma 3.5. Any 2-vertex cannot be incident with two bad faces.

Proof. Suppose to the contrary that a 2-vertex v is incident with two bad faces,
where x, v, y, v1, v2 and x, v, y, u1, u2 are vertices, in this order, of boundary walks of
the two bad faces. If v1 = u2 (or v2 = u1), then G contains a 3-cycle xv1v2 (or yv1v2),
which is a contradiction. If v1 = u1 (or v2 = u2), then G has a 4-cycle v1v2xu2

(or yv1v2u1), which is again a contradiction. Therefore, {v1, v2} ∩ {u1, u2} = ∅,
and this implies that G contains a 6-cycle with vertices x, v2, v1, y, u1, u2, which is a
contradiction.

Lemma 3.6. Any 47+-vertex v is incident with at most bd(v)
2 c bad faces.

Proof. Suppose to the contrary that some 47+-vertex v is incident with at least

bd(v)
2 c + 1 bad faces. Then some edge e incident with v is contained in two different

bad faces. By the definition of bad faces, the end of e other than v has degree 2. So
this 2-vertex is incident with two different bad faces, contradicting Lemma 3.5.

3.2. Discharging. We now define the initial charge at each vertex and each
face. For every v ∈ V (G), let µ(v) = 2d(v) − 6 and for every face f ∈ F (G), let
µ(f) = d(f)− 6. The total initial charge is negative since

∑

z∈V (G)∪F (G)

µ(z) =
∑

v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6)

= −6|V (G)|+ 6|E(G)| − 6|F (G)| = −12 < 0.

The last equality holds by Euler’s formula.
Recall that a bad face is a 5-face and there are two nonadjacent 2-vertices on that

face. For each face f , let Wf be a canonical boundary walk of f . Recall that for any
face f and vertex v, kf,v is the number of triples (e, v, e′) such that e, e′ ∈ E(G) and
eve′ is a subwalk of Wf .

Here are the discharging rules:
(R1) Let v be a 47+-vertex.
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47+

1

(R1A)

47+ 1 bad

(R1B)

47+
3
4

(R1C)

3 to 46 2

1
2

(R2A)

3 to 46

47+

47+

1
2

(R2B)

3 to 46

3 to 46

3 to 46

1
2 3 to 46

3 to 46

2

1
4

(R2C)

2

2

47+

47+

1
2

1
2

(R3A)

2

47+

3 to 46

1
4

(R3B)

Fig. 6. Discharging rules.

(R1A) v sends charge 1 to each adjacent vertex.
(R1B) v sends charge 1 to each incident bad face.
(R1C) v sends charge 3

4kf,v to each incident face f that is not bad.
(R2) Let v be a vertex where d(v) ∈ {3, . . . , 46}.

(R2A) v sends charge 1
2 to each adjacent 2-vertex.

(R2B) v sends charge t
2 to each incident face f , where t is the number of triples

(x, v, y) such that x, y ∈ V (G), xvy is a subpath in Wf , and either both
d(x), d(y) are at least 47, or both d(x), d(y) ∈ {3, . . . , 46}.

(R2C) v sends charge t
4 to each incident face f , where t is the number of triples

(x, v, y) such that x, y ∈ V (G), xvy is a subpath in Wf , d(x) = 2, and
d(y) ∈ {3, . . . , 46}.

(R3) Let f be a face.
(R3A) f sends charge 1

2kf,v to each incident 2-vertex v that is adjacent to
another 2-vertex.

(R3B) f sends charge 1
4kf,v to each incident 2-vertex v that is adjacent to a

vertex y with d(y) ∈ {3, . . . , 46}.
The discharging rule (R1) shows how a 47+-vertex distributes its initial charge,

(R2) shows how a vertex with degree in {3, . . . , 46} sends charge, and (R3) shows how
a face sends its charge. Note that by Lemma 3.4, a face does not send charge to a
2-vertex via both (R3A) and (R3B). See Figure 6 for an illustration of the discharging
rules.
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The rest of this section will prove that the final charge µ∗(z) is nonnegative for
each z ∈ V (G) ∪ F (G).

Claim 3.7. Every vertex has nonnegative final charge.

Proof. Assume v is a 2-vertex. If v is adjacent to two 47+-vertices, then v receives
charge 1 from each of its neighbors by (R1A). Thus, µ∗(v) = −2+2 ·1 = 0. Note that
v is adjacent to at least one 47+-vertex by Lemma 3.4. If v is adjacent to another
2-vertex, then v receives charge 2 · 1

2 from the faces incident with v by (R3A). Thus,
µ∗(v) = −2 + 2 · 1

2 + 1 = 0. Otherwise, v is adjacent to a vertex of degree from 3 to
46, which sends charge 1

2 to v by (R2A). Also, v receives charge 2 · 1
4 from the faces

incident with v by (R3B). Thus, µ∗(v) = −2 + 2 · 1
4 + 1

2 + 1 = 0.
Assume v is a 47+-vertex. By (R1A), v sends charge at most d(v) to its adjacent

vertices in total. By Lemma 3.6, v is incident with at most bd(v)
2 c bad faces. Since

v sends charge 1 to each of its incident bad faces by (R1B) and sends charge 3
4 to

each of its incident faces that are not bad by (R1C), the final charge µ∗(v) is at least

2d(v)− 6− d(v)− bd(v)
2 c − 3

4 · dd(v)
2 e, which is nonnegative since d(v) ≥ 47.

Assume d(v) ∈ {4, . . . , 46}. We will show that v has nonnegative final charge by
using a weighting argument. Let u1, . . . , ud(v) be the neighbors of v in some cyclic

order. First give all neighbors of v a weight of 1
2 . If ui is not a 2-vertex, then split the

weight of 1
2 it received from v, and transfer weight 1

4 to each of the two faces that are
incident with vui (if vui is incident with only one face, then transfer weight 1

2 to this
face). Now, every 2-vertex adjacent to v and every face that is incident with v have
weight equal to the charge sent from v in the discharging rules. So the total charge

sent from v is at most the weight sent from v. Since v has charge 2d(v) − 6 ≥ d(v)
2

when d(v) ≥ 4, v has nonnegative final charge.
Assume v is a 3-vertex. If v is adjacent to at least two 47+-vertices, which each

sends charge 1 to v by (R1A), then v is adjacent to at most one 2-vertex. Thus,
µ∗(v) ≥ 0 + 2 − 4 · 1

2 = 0. If v is adjacent to exactly one 47+-vertex, then v sends
charge at most 1

2 at most twice according to the discharging rules. In either case,
µ∗(v) ≥ 0 + 1− 2 · 1

2 = 0.

Claim 3.8. Each 7+-face f has nonnegative final charge.

Proof. We will show that f has nonnegative final charge by using a weighting
argument. Pull weight 3

4kf,v from each 47+-vertex v on f (note that this corresponds
to (R1C)), and transfer weight 3

8kf,v to each 2-vertex on f that is adjacent to v. Each
2-vertex on f receives weight at least 3

8kf,v, since it must be adjacent to a 47+-vertex,
which is on f , by Lemma 3.4. Now if f sends an additional weight of 1

8kf,v to each
2-vertex on f , then (R3) is satisfied. By Lemma 3.4, there cannot be three consecutive
2-vertices on a boundary walk of f , so it follows that

∑
kf,v ≤ b 2

3d(f)c, where the
sum is over all 2-vertices incident with f . Therefore, µ∗(f) ≥ d(f) − 6 − 1

8

∑
kf,v ≥

d(f)− 6− 1
8b

2
3d(f)c > 0 when d(f) ≥ 7, where the sum is over all 2-vertices incident

with f .

Note that there is no 6-face since G has no 1-vertex and no 3-, 4-, 6-cycles.

Claim 3.9. Each 5-face f has nonnegative final charge.

Proof. Since G has no 1-vertex, every 5-face is bounded by a cycle. Let v1, v2,
v3, v4, v5 be the vertices of f in some cyclic order.

Assume f is incident with at most one 2-vertex, and assume v1 is the 2-vertex, if
any. Note that f sends charge 1

4 to v1 by (R3B) if it is a 2-vertex. If at least two of
v2, . . . , v5 are 47+-vertices, then f receives charge 3

4 from each one by (R1C), thus,
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µ∗(f) ≥ −1 + 2 · 3
4 − 1

4 > 0. If exactly one of v2, . . . , v5 is a 47+-vertex, then without
loss of generality we may assume it is v2 by Lemma 3.4. Now v4 sends charge 1

2 to f

by (R2B), thus, µ∗(f) ≥ −1 + 3
4 + 1

2 − 1
4 = 0. If none of v2, . . . , v5 is a 47+-vertex,

then v1 cannot be a 2-vertex. Since both v3 and v4 send charge 1
2 by (R2B), it follows

that µ∗(f) ≥ −1 + 2 · 1
2 = 0.

Assume f is incident with at least two 2-vertices, where two of them, say v2 and
v3, are adjacent to each other. Note that f sends charge 1

2 to each of v2 and v3 by
(R3A). By Lemma 3.4, both v1 and v4 must be 47+-vertices. If v5 is not a 2-vertex,
then f is not a bad face, and v1, v4, v5 send charge 3

4 ,
3
4 , at least 1

2 , respectively, by
(R1C) and (R2B). Thus, µ∗(f) ≥ −1 + 2 · 3

4 + 1
2 − 2 · 1

2 = 0. If v5 is a 2-vertex,
then f is a bad face, and both v1 and v4 send charge 1 each to f by (R1B). Thus,
µ∗(f) ≥ −1 + 2 · 1− 2 · 1

2 = 0.
If f is incident with at least two 2-vertices and where no pair is nonadjacent,

then f is incident to exactly two 2-vertices by Lemma 3.4. Thus, the only remaining
case is when f is incident with exactly two nonadjacent 2-vertices, say v1 and v3.
Note that f sends charge 1

4 to each of v1 and v3 by (R3B). If f is incident with
at least two 47+-vertices, which each sends charge at least 3

4 to f by (R1), then
µ∗(f) ≥ −1 + 2 · 3

4 − 2 · 1
4 = 0. Now f must be incident with exactly one 47+-vertex

because f is incident with a 2-vertex, and by Lemma 3.4 we know that v2 must be
the 47+-vertex. It follows that d(v4), d(v5) ∈ {3, . . . , 46} and, therefore, f is a bad
face. Now, v2, v4, v5 send charge 1, 1

4 ,
1
4 , respectively, to f by (R1B) and (R2C). Thus,

µ∗(f) ≥ −1 + 1 + 2 · 1
4 − 2 · 1

4 = 0.

4. Unbalanced 3-partitions. In this section, we prove the following theorem.

Theorem 4.1. A set S of cycles is an inclusionwise minimal cycle obstruction

set of unbalanced 3-partitionable planar graphs if and only if S = {C3} or S = {C4}.

We will first show a necessary condition for cycle obstruction sets, and then show
that it is sufficient afterwards.

Lemma 4.2. If a set S of cycles is an obstruction set of unbalanced 3-partitionable
planar graphs, then either C3 ∈ S or C4 ∈ S.

Proof. Let X0(D; v) be the graph that is obtained from starting with D + 1
pairwise disjoint copies of K4 and picking one vertex from each copy of K4 and
identifying them into v. Now let X(D) be the graph obtained from three copies of
X0(D; v) and adding three edges between the three vertices that correspond to v. See
Figure 7 for an illustration of X0(2; v) and X(2). Now in any (0, 0, D)-coloring of
X0(D; v), the vertex v cannot receive the color 3. This is because each copy of K4−v

must contain a vertex colored with 3, and since there are D + 1 copies, v has D + 1
neighbors with the same color, which is a contradiction. However, in any (0, 0, D)-
coloring of X(D), one vertex v of the three cut vertices must receive the color 3, and
this shows that X(D) is not (0, 0, D)-colorable. It is not hard to see that the only
cycles in X(D) have length either 3 or 4.

If a planar graph does not contain 3-cycles, then it is 3-colorable, which is equiv-
alent to (0, 0, 0)-colorable, by Grötzsch’s theorem [13], and thus it is unbalanced 3-
partitionable. This means that {C3} is an inclusionwise minimal obstruction set of
unbalanced 3-partitionable planar graphs. The remainder of this section proves The-
orem 4.3 below, which states that planar graphs with no 4-cycles are unbalanced
3-partitionable. Note that Lemma 4.2 and Theorem 4.3 imply Theorem 4.1.

Theorem 4.3. Any planar graph with no 4-cycles is (0, 0, 117)-colorable.
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v

vv

X0(2; v) X(2)

Fig. 7. Graphs that are not (0, 0, D)-colorable.

In this section, let G be a counterexample to Theorem 4.3 with the minimum
number of vertices. Also, fix a plane embedding of G. It is easy to see that G is
connected and there are no 2−-vertices in G.

From now on, given a (partially) (0, 0, 117)-colored graph, we will let a, b, c be
the color of the color class that is allowed to have maximum degree at most 0, 0,
117, respectively, and we say a vertex colored with c is saturated if it already has 117
neighbors colored with c.

4.1. Structural lemmas.

Lemma 4.4. A 119−-vertex is adjacent to a 120+-vertex.

Proof. Suppose to the contrary that a 119−-vertex v is adjacent to only 119−-
vertices. SinceG−v is a graph with fewer vertices thanG, there is a (0, 0, 117)-coloring
ϕ of G−v. We further assume that ϕ minimizes the number of neighbors of v colored
with c. If there exists a neighbor u of v in G such that ϕ(u) = c and u is saturated,
then at most one neighbor of u in G−v has a color in {a, b}, so we can recolor u to be
a color in {a, b} that does not appear in its neighborhood in G− v, contradicting the
minimality of ϕ. Hence no neighbor u of v with color c is saturated. If no neighbor of
v is colored with a color in {a, b}, then we can extend ϕ to all of G by coloring v with
a color in {a, b} that does not appear in the neighborhood of v in G, contradicting
that G is a counterexample. So both a and b appear in the neighborhood of v in G,
and thus there are at most 117 neighbors of v colored with c. Since no neighbor of
v with color c is saturated, we can extend ϕ to all of G by coloring v with color c, a
contradiction.

Lemma 4.5. Let X be a set of 3-vertices of G such that the subgraph of G induced

on X is a path v1v2 . . . vk, where k ≥ 2. If x and y are the neighbors of vk in G−X,

then c ∈ {ϕ(x), ϕ(y)} and ϕ(x) 6= ϕ(y) for every (0, 0, 117)-coloring ϕ of G − X.

Moreover, the vertex in {x, y} that receives the color c must be a 116+-vertex.
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Proof. Let ϕ be a (0, 0, 117)-coloring of G−X and let x′ and y′ be the neighbors
of v1 in G − X. For each integer i with 2 ≤ i ≤ k − 1, let ui be the vertex in
G−X adjacent to vi. First we extend ϕ to a (0, 0, 117)-coloring of G− vk by defining
ϕ(v1) ∈ {a, b, c} \ {ϕ(x′), ϕ(y′)} and ϕ(vi) ∈ {a, b, c} − {ϕ(vi−1), ϕ(ui)} for each
i ∈ {2, . . . , k − 1}. If ϕ(x) = ϕ(y), then we can extend ϕ to be a (0, 0, 117)-coloring
of G by further defining ϕ(vk) to be an element in {a, b, c} \ {ϕ(vk−1), ϕ(x)}. This
proves ϕ(x) 6= ϕ(y). If either c 6∈ {ϕ(x), ϕ(y)} or the vertex in {x, y} with the color c
is a 115−-vertex, then by defining ϕ(vk) = c, we extended ϕ to a (0, 0, 117)-coloring
of G since the degree of vk−1 is 3. Therefore, c ∈ {ϕ(x), ϕ(y)}.

Lemma 4.6. Let X be a set of 3-vertices of G such that the subgraph of G induced

on X is a path v1v2 . . . v2k on an even number of vertices. Let ui be a neighbor of

vi in G −X for each i with 1 ≤ i ≤ 2k. Let x and y be the neighbor of v1 and v2k,

respectively, in G −X other than u1 and u2k. If there exists a (0, 0, 117)-coloring ϕ

of G−X such that ϕ(ui) = c for every i with 1 ≤ i ≤ 2k, then ϕ(x) = ϕ(y).

Proof. By Lemma 4.5, we may assume ϕ(x) 6= ϕ(u1) = c. Define ϕ(v1) = {a, b} \
{ϕ(x)} and ϕ(vi) = {a, b} \ {ϕ(vi−1)} for every 2 ≤ i ≤ 2k. Since |X| is even,
ϕ(v1) 6= ϕ(v2k). That is, ϕ(v2k) = ϕ(x). As this must not extend ϕ to be a (0, 0, 117)-
coloring of G, ϕ(y) = ϕ(v2k). Therefore ϕ(y) = ϕ(x).

A face f is annoying if exactly one vertex incident with f is a 120+-vertex and
all other vertices incident with f are 3-vertices. We say that two faces are adjacent if
they share at least one edge.

Lemma 4.7. If an annoying 5-face f is adjacent to only annoying 3-faces and

annoying 5-faces, then f is adjacent to at most two 3-faces.

Proof. Let f = wx′xyy′, where w is the 120+-vertex on f and x′, x, y, y′ are all
3-vertices. For e ∈ {wx′, x′x, xy, yy′, y′w}, let fe be the face incident with e other
than f .

Suppose to the contrary that f is adjacent to three annoying 3-faces. Since G

has no 4-cycles, two 3-faces cannot share an edge, and two faces incident with the
same 3-vertex must share an edge. Since x′, x, y, y′ are all 3-vertices, this implies that
fxy, fwx′ , fy′w must be the annoying 3-faces adjacent to f .

Let fxy = xyz so that z is a 120+-vertex and the common neighbor of x and y.
Also, let fwx′ = wx′x and fy′w = wy′y1 so that x1 and y1 is the common neighbor
of w, x′ and w, y′, respectively, which must be a 3-vertex. Note that z, x1, y1 must be
all distinct since otherwise that would imply the existence of a 4-cycle.

Let z1 be the common neighbor of z and x1. Since fxx′ is an annoying 5-face,
z1 must be a 3-vertex. Also, z1 6∈ {z, x, y, x′, y′, x1, y1, w} since there are no 4-cycles.
Let z2 be the common neighbor of z and y1. Similarly, z2 is a 3-vertex and z2 6∈
{z, x, y, x′, y′, x1, y1, w}. Note that z1 6= z2, since z has degree at least 120, fxx′

and fyy′ are 5-faces, and xyz is a 3-face. Note that the subgraph of G induced on
{x1, x

′, x, y, y′, y1} is a path. See Figure 8 for an illustration.
Suppose that z1z2 is not an edge of G. Set H = (G− {x, y, x′, y′}) ∪ x1y1. Note

that H is still a plane graph with no 4-cycles, since z1z2 is not an edge. Since H is a
graph with fewer vertices than G, there is a (0, 0, 117)-coloring ϕ of H. Note that ϕ
is a (0, 0, 117)-coloring of G− {x, y, x′, y′}. If ϕ(z) 6= c, then let

ϕ(x) = c, ϕ(x′) ∈ {a, b, c} \ {ϕ(x1), ϕ(w)},

ϕ(y′) ∈ {a, b, c} \ {ϕ(w), ϕ(y1)}, ϕ(y) ∈ {a, b, c} \ {ϕ(z), ϕ(y′)},

to extend ϕ to all of G. Hence ϕ(z) = c. Since w is a 120+-vertex, by Lemma 4.5,
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y′

yx

x′

w

z

z2

y1

z1

x1

Fig. 8. Figure for Lemma 4.7.

ϕ(w) = c and {ϕ(x1), ϕ(y1)} ⊆ {a, b}. Since ϕ(z) = ϕ(w) = c, Lemma 4.6 implies
that ϕ(x1) = ϕ(y1). However, {ϕ(x1), ϕ(y1)} ⊆ {a, b} and x1y1 is an edge of H, so
ϕ(x1) 6= ϕ(y1), a contradiction.

Therefore, z1z2 is an edge of G. Since G − {x, y, x′, y′, x1, y1} is a graph with
fewer vertices than G, there exists a (0, 0, 117)-coloring ϕ for G− {x, y, x′, y′, x1, y1}.
If ϕ(z) 6= c, then let

ϕ(x) = c, ϕ(x1) ∈ {a, b, c} \ {ϕ(z1), ϕ(w)},

ϕ(x′) ∈ {a, b, c} \ {ϕ(x1), ϕ(w)}, ϕ(y1) ∈ {a, b, c} \ {ϕ(z2), ϕ(w)},

ϕ(y′) ∈ {a, b, c} \ {ϕ(w), ϕ(y1)}, ϕ(y) ∈ {a, b, c} \ {ϕ(z), ϕ(y′)},

to extend ϕ to all of G, which is a contradiction. Hence ϕ(z) = c. Since w is a 120+-
vertex, by Lemma 4.5, ϕ(w) = c and {ϕ(z1), ϕ(z2)} ⊆ {a, b}. Since ϕ(z) = ϕ(w) = c,
Lemma 4.6 implies that ϕ(z1) = ϕ(z2). However, {ϕ(z1), ϕ(z2)} ⊆ {a, b} and z1z2 is
an edge of G− {x, y, x′, y′, x1, y1}, so ϕ(z1) 6= ϕ(z2), a contradiction.

4.2. Discharging. We now define the initial charge at each vertex and each
face. For every z ∈ V (G) ∪ F (G), let µ(z) = d(z) − 4. The total initial charge is
negative since

∑

z∈V (G)∪F (G)

µ(z) =
∑

v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4)

= −4|V (G)|+ 4|E(G)| − 4|F (G)| = −8 < 0.

The last equality holds by Euler’s formula.
Here are the discharging rules:

(R1) Each 5+-face f sends charge
kf,v

r
(d(f)−4) to each incident 3-vertex v, where

r =
∑

kf,u and the sum is over all 3-vertices u incident with f .
(R2) Let v be a 120+-vertex.

(R2A) v sends charge 2
3 to each neighbor.

(R2B) v sends charge 3
5 to each incident 3-face.

(R3) Each vertex v, where d(v) ∈ {4, . . . , 119}, sends charge 1
3 to each incident

3-face.
(R4) Each 3-vertex that is not incident with a 3-face sends charge 1

15 to each
adjacent 3-vertex.

The discharging rule (R1) shows how a face distributes its initial charge, (R2)
shows how a 120+-vertex sends charge, (R3) shows how a vertex with degree in
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120+

2
3

(R2A)

120+
3
5

(R2B)

4 to 119 1
3

(R3)

3 3

1
15

(R4)

Fig. 9. Discharging rules.

{4, . . . , 119} sends charge, and (R4) shows how a 3-vertex that is not incident with
a 3-face sends charge to an adjacent 3-vertex. See Figure 9 for an illustration of the
discharging rules.

The rest of this section will prove that the sum of the final charge µ∗(z) is non-
negative for z ∈ V (G) ∪ F (G). Note that every 5+-face has nonnegative final charge
since it only distributes its initial charge, which is positive. There are no 4-faces since
there are no 4-cycles, and each edge is incident with at most one 3-face since there
are no 4-cycles. We will first show that each 4+-vertex has nonnegative final charge.
Then, instead of counting 3-vertices and 3-faces separately, we will compute the final
charge of 3-faces and 3-vertices together.

Claim 4.8. Every 4+-vertex v has nonnegative final charge.

Proof. Note that v is incident with at most bd(v)
2 c 3-faces since there are no

4-cycles. If v is a 119−-vertex, then by Lemma 4.4, v has a neighbor u that is a
120+-vertex. By (R2A), u sends charge 2

3 to v, and by (R3), v sends charge at most
1
3 · bd(v)

2 c to its incident 3-faces. Thus, µ∗(v) ≥ d(v) − 4 + 2
3 − 1

3 · bd(v)
2 c ≥ 0 when

d(v) ≥ 4.

Now assume v is a 120+-vertex. Then v sends charge at most 2d(v)
3 to its neighbors

by (R2A) and v sends charge at most 3
5 · b

d(v)
2 c to its incident 3-faces by (R2B). Thus,

µ∗(v) ≥ d(v)− 4− 2d(v)
3 − 3

5 · bd(v)
2 c ≥ 0 when d(v) ≥ 120.

Note that a 6+-face and 5+-face send charge at least 1
3 and at least 1

5 , respectively,
to each incident 3-vertex. In particular, a 5-face that is incident with at least one 3-
vertex and at least two 4+-vertices sends charge at least 1

4 and at least 1
3 , respectively,

to each incident 3-vertex.

Claim 4.9. Each 3-vertex v that is not incident with a 3-face has positive final

charge.

Proof. By Lemma 4.4, v has a 120+-vertex u as a neighbor. The faces incident
with v send charge at least 3 · 15 to v by (R1) and u sends charge 2

3 to v by (R2). Also
v loses charge 1

15 at most twice by (R4). Thus, µ∗(v) ≥ −1 + 3
5 + 2

3 − 2
15 > 0.

Claim 4.10. If f is a 3-face that is incident with three 3-vertices x, y, z, then the

sum of the final charge of f, x, y, z is nonnegative.

Proof. Let x′, y′, z′ be the neighbor of x, y, z, respectively, that is not on f . Since
there are no 4-cycles, x′, y′, z′ are pairwise distinct. By Lemma 4.4, x′, y′, z′ are all
120+-vertices. Since x, y, z are 3-vertices, xx′, yy′, zz′ are not contained in 3-faces.
Therefore each face that is adjacent to f is incident with at least two 120+-vertices.
Thus, each of x, y, z receives charge at least 2

3 from the incident faces by (R1). Now
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x′, y′, z′ sends charge 2
3 to x, y, z, respectively, by (R2A). Thus, µ∗(f)+µ∗(x)+µ∗(y)+

µ∗(z) ≥ −4 + 3 · 2
3 + 3 · 2

3 = 0.

Claim 4.11. If f is a 3-face xyz that is incident with exactly two 3-vertices x and

y, then the sum of the final charge of f, x, y is nonnegative.

Proof. Let x′ and y′ be the neighbor of x and y, respectively, that is not on f .
Note that x′ and y′ are distinct, and xx′ and yy′ are not contained in any 3-faces
since x and y are 3-vertices and G has no 4-cycles.

Assume z is not a 120+-vertex. This implies that x′ and y′ are both 120+-vertices
by Lemma 4.4. Therefore each face that is adjacent to f is incident with at least two
4+-vertices. Thus, each of x and y receives charge at least 2

3 from the incident faces
by (R1). Now x′ and y′ sends charge 2

3 to x and y, respectively, by (R2A). Also z

sends charge 1
3 to f by (R3). Thus, µ∗(f)+µ∗(x)+µ∗(y) ≥ −3+2 · 23 +2 · 23 +

1
3 = 0.

Assume z is a 120+-vertex. This implies that x, y, f receive charge 2
3 ,

2
3 , at least

3
5 ,

from z by (R2A), (R2A), (R2B), respectively; note that the sum of these charges is 29
15 .

Let fxy, fzx, fzy be the face incident with xy, zx, zy, respectively, that is not f . It is
possible that fxy, fzy, and fzx are not pairwise distinct. Assume that one of x′, y′ is a
4+-vertex. Without loss of generality, we may assume that x′ is a 4+-vertex. By (R1),
fzx and fxy give charges at least 1

3 and at least 1
2 to x and x, y, respectively. Also, fzy

gives charge 1
4 to y by (R1). Thus, µ∗(f)+µ∗(x)+µ∗(y) ≥ −3+ 29

15 +
1
3 +

1
2 +

1
4 > 0.

So we may assume both x′ and y′ are 3-vertices. By Lemma 4.4, x′ and y′ must
have a neighbor x′′ and y′′, respectively, that is a 120+-vertex. Note that x′′ = y′′ is
possible.

If none of x′′ and y′′ is incident with fxy, then fxy sends charge at least 2
5 to x

and y by (R1), and each fzx and fzy sends charge at least 1
3 to x and y, respectively,

by (R1). Thus, µ∗(f) + µ∗(x) + µ∗(y) ≥ −3 + 29
15 + 2

5 + 2 · 1
3 = 0. If exactly one of

x′′ and y′′ is incident with fxy, then without loss of generality, we may assume x′′ is
incident with fzx and y′′ is incident with fxy. Now, by (R1), fxy sends charge at least
1
4 to each of x and y, and fzx and fzy sends charge at least 1

3 and at least 1
4 to x and

y, respectively. Thus, µ∗(f) + µ∗(x) + µ∗(y) ≥ −3 + 29
15 + 1

3 + 3 · 1
4 > 0.

Assume both x′′ and y′′ are incident with fxy. If x
′′ 6= y′′, then d(fxy) ≥ 6 and fxy

sends charge at least 1
3 to each of x and y by (R1), and fzx and fzy sends charge at least

1
4 to x and y, respectively, by (R1). Thus, µ∗(f)+µ∗(x)+µ∗(y) ≥ −3+ 29

15+
2
3+2· 14 > 0.

Now consider the case when x′′ = y′′, so fxy sends charge 1
4 to each of x and y by

(R1). If one of fzy and fzx is either a 6+-face or a 5-face that is not annoying, then
it sends charge at least 1

3 to y or x by (R1) and the other face still sends charge to x

or y at least 1
4 by (R1). Thus, µ∗(f) + µ∗(x) + µ∗(y) ≥ −3 + 29

15 + 1
3 + 3 · 1

4 > 0. So
assume each of fzx and fzy is an annoying 5-face, which sends charge 1

4 by (R1). In
particular, x′ and y′ have degree 3. Therefore, x and y receive a total of charge 1 by
the surrounding faces.

If f ′ is a 3-face incident with x′, then it is incident with x′, x′′, and a vertex
on fzx other than z. Since fzx is an annoying 5-face, f ′ is an annoying 3-face. So
every 3-face incident with x′ is annoying. Similarly, every 3-face incident with y′

is annoying. Since xyy′x′′x′ is an annoying 5-face and xyz is an annoying 3-face,
either one of x′, y′ is not incident with any 3-face, or some 3-face is incident with
both x′, y′, by Lemma 4.7. The later implies that x′ is adjacent to y′, which is
a contradiction since x′y′yx is now a 4-cycle. Hence one of x′, y′ is not incident
with any 3-face, and that vertex sends charge 1

15 to either x or y by (R4). Thus,
µ∗(f) + µ∗(x) + µ∗(y) ≥ −3 + 29

15 + 1 + 1
15 = 0.
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Claim 4.12. If f is a 3-face xyz that is incident with exactly one 3-vertex x, then

the sum of the final charge of f and x is nonnegative.

Proof. By Lemma 4.4, x has a neighbor x′ that is a 120+-vertex.
Assume x′ 6∈ {y, z}. The sum of charge received from the faces incident with x is

at least 2 · 1
3 by (R1). Also, x′ sends charge 2

3 to x by (R2A). Each of y and z sends
charge at least 1

3 to f by either (R2B) or (R3). Thus, µ∗(f)+µ∗(x) ≥ −2+4· 13+
2
3 = 0.

So we may assume x′ ∈ {y, z}. Without loss of generality, assume x′ = y. The sum
of charge received from the faces incident with x is at least 2 · 14 by (R1). Now x′ sends
charges 2

3 and 3
5 to x and f by (R2A) and (R2B), respectively. Also, z sends charge at

least 1
3 to f by either (R2B) or (R3). Thus, µ∗(f)+µ∗(x) ≥ −2+2· 14+

2
3+

3
5+

1
3 > 0.

Claim 4.13. If f is a 3-face xyz that is incident with no 3-vertices, then the final

charge of f is nonnegative.

Proof. Since each of x, y, z is a 4+-vertex, each of x, y, z sends charge at least 1
3

to f by either (R2B) or (R3). Thus, µ∗(f) ≥ −1 + 3 · 1
3 = 0.

Since no 3-vertex is contained in two different 3-faces, the sum of the final charge
on all 3-faces and all 3-vertices is nonnegative by Claims 4.9, 4.10, 4.11, 4.12,
and 4.13.
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