
  

 
Figure 1. Nine complex gestures of the 47 gesture set. 

 

Abstract—In the infancy of electromyography (EMG) based 

pattern recognition (PR) limited numbers of electrode channels 

were anatomically placed over muscles of interest. Modern 

methods have shown that regularly spaced electrodes around 

the circumference of a limb are equally effective and have been 

demonstrated in consumer-ready myoelectric control systems 

such as Thalmic Labs’ Myo armband. In addition to linear 

arrays, grid arrays have also been applied in this field of 

research. Although electrode arrays have mainly been adopted 

to simplify placement, other benefits will be exploited in this 

work.  

Presented in this paper is a novel spatial-temporal feature 

set that separately analyzes the intensity and structure of the 

measured electrical signals (MES) and evaluates the similarities 

between adjacent electrodes, hence the name Adjacent Features 

(AF).  Results in this paper show that AF produced 

classification accuracies about 4%-6% greater than 

autoregression (AR) coefficients and Hudgins’ time-domain 

(TD) features for classifying 47 hand and wrist gestures, while 

having a computational simplicity similar to the TD features.  

I. INTRODUCTION 

The application of surface electromyogram (sEMG) 

pattern recognition (PR) in fields such as powered 

prostheses[1-2], rehabilitation robotics [3], and gesture 

control interfaces [4] have been widely studied in the past 

decades. The general process for sEMG PR starts with the 

segmentation of the raw measured signals into analysis 

windows, then characteristics or features of the signal are 

extracted from the windows. Once these values have been 

concatenated with the features from the other channels, the 

resulting feature vector is used by a classification method to 

discriminate which gesture the subject is intending.  

Common features used for sEMG characterization include 

those extracted from time domain (TD) (e.g. Hudgins’ TD 

features [5]), frequency domain (e.g. autoregression (AR)-

based features), and time-frequency domain (e.g. wavelet-

derived features) [6]. Due to their relatively low 

computational requirements, TD features have been the most 

popular in real-time sEMG PR-controlled applications. Most 

of these feature extraction methods were developed based on 

a few anatomical placed electrodes and focus on the 

extraction of sEMG characteristics from individual sEMG 

channels without exploiting the relations between the 

channels, or information within the space-domain (SD). 
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With the introduction of high-density (HD) sEMG arrays 

in the field of EMG research, information in the SD can be 

harnessed. These HD sEMG electrodes generally consist 16 

of to 256 regularly spaced electrodes and  were originally 

developed for clinical diagnosis of neuromuscular diseases 

[7] and offline analysis of motor unit activities [8] due to the 

high computational burden of resolving these finer details. 

Nevertheless, with the increase in the number of channels 

and knowledge of the spatial relations of the channels, real-

time methods of PR are now being explored [9]. Some of the 

methods utilize the information from the SD; however, most 

of these methods still extract the standard single-channel TD 

features such as intensity, and evaluate the spatial relations 

of these resulting features to tackle issues such as electrode 

shift [10]. This neglects the spatial-temporal relations 

between the raw data. 

This paper aims to prove the strength of spatial-temporal 

features for grid and linear electrode arrays. In particular, a 

set of novel, computational efficient features based on 

adjacent channels have been developed to exploit the spatial 

relationships of sEMG signals. The resulting method is not 

only computationally efficient for real-time EMG PR; it also 

results in higher classification accuracies than Hudgins’ TD 

features and AR coefficients for classifying various hand 

and wrist gestures.  

II. METHODS 

A. Data Collection  

This study is conducted with Institutional Review Board 

(IRB) approval at San Francisco State University (SFSU) and 

informed consent of subjects. Our dataset includes sEMG 

data of 47 hand and wrist gestures recorded from 5 subjects. 

The first 30 gestures are isolated finger movements, subjects 

are instructed to press, lift, push, pull, deviate right, and 

deviate left each of their five fingers. The next four gestures 

are also isolated motions, but of the wrist being lifted, 

pressed, right (ulnar) deviation, and left (radial) deviation. 

Four gestures of each finger gripping against the thumb and 

nine complex hand gestures, including Fist Close, Hand 
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Figure 2. Seven longitudinally aligned channels of EMG for a period 
of 0.1s. Red line illustrates the effect of conduction velocity. 

 
Figure 3. Adjacent Feature extraction process. 

Open, Index Point, Wave In, Wave Out, Thumb up, Peace, 

Hang Loose, and Rock On (Figure 1). Data acquisition was 

conducted with the OT Bioelettronica’s EMG-USB2 

amplifier at 2048 samples per second with two surface 

electrode grids (placed on subjects dominate forearm) with 

10mm spacing in an 8 by 8 arrangement, resulting in 128 

channels.  

Each subject preformed the 47 gestures in sequence three 

times. Each gesture was performed for 6 seconds with 5 

seconds rest time in-between. The first and last half second of 

each gesture was removed to avoid transitions, resulting in 5 

seconds of analyzed data. 

B. Feature Extraction 

Spatial and temporal filters are applied to the raw 

recorded data. A forth order Butterworth bandpass filter of 

10Hz to 500Hz is used and then longitudinal single 

differential (LSD) (along arm) is applied reducing the data 

from 8 rows to 7. 

The filtered sEMG data is segmented by overlapped 

analysis windows for feature extraction and pattern 

classification. The length and increment of the analysis 

window were set to 200ms (i.e. 410 samples) and 50ms (i.e. 

102 samples) respectively as suggested in [11] for real-time 

control applications.  

Standard Features Used for Comparison 

The Hudgins' TD features [5] have been used extensively 

in real-time EMG PR for decades due to the low 

computational requirements and accuracy. AR features are 

also commonly used because of their effectiveness in EMG 

PR and they typically require more computations than TD 

features. Both of these common feature sets were used in this 

study for comparison. The TD features included mean 

absolute value (MAV), wavelength (W), zero crossings (Z), 

and sign slope changes (T). AR features model the signal 

within the analysis window as each sample being a 

polynomial function of the previous values with the addition 

of a white Gaussian noise. Generally AR features sets are 

used in combination with an intensity feature like MAV or 

root mean square (RMS). 

Scaled Intensity 

An additional feature presented in our previous work [12] 

is also used in this study, scaled intensity. The intensity of the 

signal is the most effective and telling indicator of the muscle 

activity and is calculated with MAV or RMS. Scaled 

intensity can be applied to any multi-channel system and 

simply scales out the overall gesture intensity from the 

individual channels. For example, the scaled MAV feature 

extracted from input channel i is expressed as 





ch

j

j

i

i

MAV
ch

MAV
SMAV

1

1

 

where MAVi is the non-scaled intensity of channel  i, ch is the 

total number of channels, and the denominator is the average 

of all channels’ intensities, or the gesture intensity. 

This results in feature vectors from the same gestures 

being more consistent regardless of the intensity by which the 

gesture is being preformed. The gesture intensity is relevant 

to proportional controls, but is not necessary for gesture 

discrimination, as seen from our previous work [12]. 

Adjacent Features (AF) 

With the use of electrode grid and linear arrays the spatial 

relations between channels can be exploited to provide 

features based on the relations of signal shapes from adjacent 

channels. Whereas standard single channel feature extraction 

methods attempt to quantize the absolute structure of the 

individual measured electrical signals (MES), the AF 

methods use the neighboring MES’s structure as a template 

to evaluate the relative structural similarities. 

The sEMG signals being analyzed are the result of 

multiple pulses or motor unit action potentials (MUAP) 

propagating through the muscle tissues. Figure 2 shows 

sEMG signals from seven LSD filtered channels aligned with 

the muscle fibers while the subject performed the closed fist 

gesture. Between two neighboring channels, similarities in 

pulses can be observed, some being synchronized while 

others show a slight temporal shift (marked in red line in 

Figure 2) due to the conduction velocity of the MUAPs. The 

proposed features aim to approximate and quantify these 

characteristics. 

As the focus of these features are on the similarities in the 

signal shapes or structure, and the signal intensity for each 

channel is represented by other features, the analysis 

windows of all channels are normalized to have an intensity 

(MAV or  RMS) of 1. 

Consider a single MUAP wave propagating at a slight 

angle to the longitudinal alignment of the electrode array. 

Figure 3 demonstrates the process of extracting the proposed 

AF for one channel (labeled as reference (R)). As shown in 

the left diagram of Figure 3, a slanted line represents the 

peak of an idealized MUAP wave traveling in the direction 

of the arrow. The MES of the three electrodes (transverse 

(T), reference (R), and longitudinal (L)) in the middle of the 

diagram show this wave influencing them at the different 

times. To calculate the AF, the transverse and longitudinal 
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MES are shifted forward and backward by dn samples, and 

then compared to the reference MES.  

Multiple methods were explored to compare MES in our 

previous work including correlation coefficients and linear 

regression; however, a computationally simpler method was 

found which produced better accuracies [12]. The Mean 

Absolute Difference (MAD) is similar to MAV of the 

resulting time series from subtracting one normalized MES 

from another. Assuming an i by j grid of MESs, the MAD in 

the longitudinal and transverse direction are calculated as 
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where n is the sample within the window, wl is the number of 

samples, dn is the number of samples to shift by, and Xi,j is 

the normalized MES at the i, j location.  

 Note that the proposed AF cannot be extracted from the 

last row or column as they require a neighboring MES to 

compare against. A continuous ring of channels around a 

limb would avoid this in one dimension; however, in this 

setup both a row and column of AF are omitted. This results 

in 6 rows by 7 columns of AF from each of the 8 by 8 grid 

electrodes.  

C. Validation and Testing 

Evaluation of the effectiveness of these feature extraction 

methods was based on the resulting accuracies from 

classification. A simple linear discriminant analysis (LDA)-

based classifier was adopted in this study for pattern 

classification because of its previous success in EMG PR and 

its computational efficiency for real-time processing. For 

each subject,  a classification accuracy was calculated using 

three-fold cross validation. The resulting accuracies were 

then averaged across all five subjects and the results were 

reported as the average classification accuracies (ACA).   

Along with evaluating these features extracted from the 

128 channels discriminating 47 gestures (labeled as full mesh 

47 in the Results section), three additional configurations 

where also investigated. A subset of input channels from the 

full mesh was extracted which uses 3 of the 8 rows of raw 

data to calculate two rows of TD features and a single row of 

the AF, labeled as the row mesh. The second configuration 

was to classify 47 gestures using the row-mesh data (row 

mesh 47).  The gesture set was also reduced to 13 gestures 

which still included the 9 complex gestures shown in Figure 

1 and the four fingers individually gripping against the 

thumb. The third and fourth configurations were designed to 

classify these 13 gestures using both full-mesh (full mesh 13) 

and row-mesh (row mesh 13) data.  

III. RESULTS 

Table 1 shows a selection of feature sets tested on the 

recorded data and the resulting ACA for the four 

configurations. The adjacent features are denoted by AF 

followed by the dn used in the longitudinal (L, along muscle 

fibers) and transverse (T) directions. In our experiments 

either only a dn of zero or a dn of zero and a positive and 

negative integer pair were used for each direction. For 

example, the feature set ‘AF L0 T0,1’ refers to 4 values per 

channel, with dn = 0 in the longitudinal and dn = -1, 0, and 1 

in the transverse. 

A.  Classification Results with Scaled Intensity 

Comparing the first four rows of Table 1, the positive 

effects of scaled intensity (SMAV) are evident, increasing 

the ACA by at least 2% in all cases. These results are similar 

to those from our previous work with a lower resolution 

acquisition system [12].  

B.  Classification Results with Adjacent Features 

The last eight rows of Table 1 show the resulting ACA for 

AF sets both with and without the SMAV feature. The four 

sets of dn presented demonstrate three different sizes of 

feature vectors and the resulting increases in ACA. ‘L0 T0’ 

uses no sample shift and represents only two values. The last 

two sets of dn both represent 6 values per channel and show 

how the selected values of these shifts only slightly alters the 

accuracies.  

As expected, AR features out-perform the standard TD 

feature sets, but only by as much as the use of SMAV. The 

use of scaled intensity with AR features does increase AR 

results (not shown), but not as much as AF sets. 

Overall the AF sets performed the best. Increasing the 

number of dn of the AF sets increases the ACA, but with 

diminishing returns; however, this still shows the benefit of 

comparing temporally shifted MES of adjacent channels. 

One anomaly seen in the results is the slightly lower 

ACA when including SMAV with the AF features for the 

full mesh discriminating 13 gestures. Considering this does 

not happen with the other configurations, it is believed this is 

due to the large feature vector of the full mesh and the 

reduced gesture set not fully training the models, or ‘the 

curse of dimensionality ’[13]. 
TABLE I. CLASSIFICATION ACCURURACY  RESULTS OF  FEATURE SETS 

Data Points Used Full Mesh Row Mesh 

# of Gestures 47 13 47 13 

MAV 72.33% 83.58% 66.47% 79.85% 

SMAV 75.93% 86.72% 70.92% 84.72% 

MAV, W, ZC, TC 75.71% 86.71% 71.52% 84.55% 

SMAV, W, ZC, TC 77.95% 89.54% 73.82% 87.85% 

MAV, 4th Order AR 78.19% 88.78% 73.05% 86.69% 

MAV, 6th Order AR 78.04% 89.30% 73.50% 86.63% 

MAV, 8th Order AR 77.76% 88.94% 73.53% 86.24% 

AF L0 T0  78.86% 88.94% 68.35% 83.74% 

AF L0 T0,1 81.40% 90.67% 74.78% 88.58% 

AF L0,2 T0,1 81.71% 90.66% 76.53% 89.73% 

AF L0,4 T0,1 81.84% 90.58% 76.35% 88.99% 

SMAV,AF L0 T0  79.76% 88.78% 76.03% 89.26% 

SMAV,AF L0 T0,1 81.71% 90.05% 78.16% 91.07% 

SMAV,AF L0,2 T0,1 81.93% 90.44% 79.06% 91.78% 

SMAV,AF L0,4 T0,1 82.11% 90.37% 79.13% 91.67% 
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Figure 4. Confusion Matrix from TD features of row mesh 

discriminating 13 gestures. 

 
Figure 5. Confusion Matrix from adjacent features of row mesh 

discriminating 13 gestures. 

C. Confusion Matrices 

Figures 4 and 5 show the between-gesture confusion 

matrices of the ACAs derived from the standard TD features 

(2
nd

 row of Table 1) and from the scaled intensity and AF set 

(last row of Table 1) respectively; for the reduced mesh and 

gesture set configurations (last column). Figure 4 shows 

significant confusion between the thumb grip gestures, as 

well as a small confusion of wave in and wave out. Figure 5 

shows that the AF set noticeably reduces the thumb grip 

confusions and nearly eliminates the confusion between 

wave in and wave out. 

IV. DISCUSSION AND CONCLUSION 

This paper has investigated the effectiveness of spatial-

temporal adjacent feature sets including scaled intensity. 

These methods have shown potential improvements over 

standard TD feature sets as well as AR features. Though this 

is based off of data taken from equally space electrode 

arrays, applications of other electrode configurations may be 

possible. 

The AF set computational requirements are comparable 

with those of TD features and are estimated to be a seventh 

of the required computational requirements of a 6
th

 order 

auto-regression. AF requires a single multiplication per 

sample, per analysis window to normalize the data, then for 

each series compared (number of values of dn) a calculation 

similar to the one required to calculate wavelength is 

executed (a single subtraction and absolute summation) per 

sample per window. This poses significantly less time-

complexity compared to the at least 42 multiplications 

required per sample per window of a 6
th

 order AR. Due to 

the mathematical simplicity of the AF set, these should be 

applicable for real-time computing on embedded systems.  

The proposed adjacent features have the potential of 

improving accuracies in other EMG PR-based applications. 

Future work includes evaluating the AF with more advanced 

classifiers as well as real-time experiments.  
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