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Abstract—In the infancy of electromyography (EMG) based
pattern recognition (PR) limited numbers of electrode channels
were anatomically placed over muscles of interest. Modern
methods have shown that regularly spaced electrodes around
the circumference of a limb are equally effective and have been
demonstrated in consumer-ready myoelectric control systems
such as Thalmic Labs’ Myo armband. In addition to linear
arrays, grid arrays have also been applied in this field of
research. Although electrode arrays have mainly been adopted
to simplify placement, other benefits will be exploited in this
work.

Presented in this paper is a novel spatial-temporal feature
set that separately analyzes the intensity and structure of the
measured electrical signals (MES) and evaluates the similarities
between adjacent electrodes, hence the name Adjacent Features
(AF). Results in this paper show that AF produced
classification accuracies about 4%-6% greater than
autoregression (AR) coefficients and Hudgins’ time-domain
(TD) features for classifying 47 hand and wrist gestures, while
having a computational simplicity similar to the TD features.

[. INTRODUCTION

The application of surface electromyogram (SEMG)
pattern recognition (PR) in fields such as powered
prostheses[1-2], rehabilitation robotics [3], and gesture
control interfaces [4] have been widely studied in the past
decades. The general process for SEMG PR starts with the
segmentation of the raw measured signals into analysis
windows, then characteristics or features of the signal are
extracted from the windows. Once these values have been
concatenated with the features from the other channels, the
resulting feature vector is used by a classification method to
discriminate which gesture the subject is intending.

Common features used for SEMG characterization include
those extracted from time domain (TD) (e.g. Hudgins’ TD
features [5]), frequency domain (e.g. autoregression (AR)-
based features), and time-frequency domain (e.g. wavelet-
derived features) [6]. Due to their relatively low
computational requirements, TD features have been the most
popular in real-time sEMG PR-controlled applications. Most
of these feature extraction methods were developed based on
a few anatomical placed electrodes and focus on the
extraction of SEMG characteristics from individual sSEMG
channels without exploiting the relations between the
channels, or information within the space-domain (SD).
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With the introduction of high-density (HD) sEMG arrays
in the field of EMG research, information in the SD can be
harnessed. These HD sSEMG electrodes generally consist 16
of to 256 regularly spaced electrodes and were originally
developed for clinical diagnosis of neuromuscular diseases
[7] and offline analysis of motor unit activities [8] due to the
high computational burden of resolving these finer details.
Nevertheless, with the increase in the number of channels
and knowledge of the spatial relations of the channels, real-
time methods of PR are now being explored [9]. Some of the
methods utilize the information from the SD; however, most
of these methods still extract the standard single-channel TD
features such as intensity, and evaluate the spatial relations
of these resulting features to tackle issues such as electrode
shift [10]. This neglects the spatial-temporal relations
between the raw data.

This paper aims to prove the strength of spatial-temporal
features for grid and linear electrode arrays. In particular, a
set of novel, computational efficient features based on
adjacent channels have been developed to exploit the spatial
relationships of SEMG signals. The resulting method is not
only computationally efficient for real-time EMG PR; it also
results in higher classification accuracies than Hudgins’ TD
features and AR coefficients for classifying various hand
and wrist gestures.

II. METHODS

A. Data Collection

This study is conducted with Institutional Review Board
(IRB) approval at San Francisco State University (SFSU) and
informed consent of subjects. Our dataset includes SEMG
data of 47 hand and wrist gestures recorded from 5 subjects.
The first 30 gestures are isolated finger movements, subjects
are instructed to press, lift, push, pull, deviate right, and
deviate left each of their five fingers. The next four gestures
are also isolated motions, but of the wrist being lifted,
pressed, right (ulnar) deviation, and left (radial) deviation.
Four gestures of each finger gripping against the thumb and
nine complex hand gestures, including Fist Close, Hand
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Figure 1. Nine complex gestures of the 47 gesture set.
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Open, Index Point, Wave In, Wave Out, Thumb up, Peace,
Hang Loose, and Rock On (Figure 1). Data acquisition was
conducted with the OT Bioelettronica’s EMG-USB2
amplifier at 2048 samples per second with two surface
electrode grids (placed on subjects dominate forearm) with
10mm spacing in an 8 by 8 arrangement, resulting in 128
channels.

Each subject preformed the 47 gestures in sequence three
times. Each gesture was performed for 6 seconds with 5
seconds rest time in-between. The first and last half second of
each gesture was removed to avoid transitions, resulting in 5
seconds of analyzed data.

B. Feature Extraction

Spatial and temporal filters are applied to the raw
recorded data. A forth order Butterworth bandpass filter of
10Hz to 500Hz is used and then longitudinal single
differential (LSD) (along arm) is applied reducing the data
from 8 rows to 7.

The filtered SEMG data is segmented by overlapped
analysis windows for feature extraction and pattern
classification. The length and increment of the analysis
window were set to 200ms (i.e. 410 samples) and 50ms (i.e.
102 samples) respectively as suggested in [11] for real-time
control applications.

Standard Features Used for Comparison

The Hudgins' TD features [5] have been used extensively
in real-time EMG PR for decades due to the low
computational requirements and accuracy. AR features are
also commonly used because of their effectiveness in EMG
PR and they typically require more computations than TD
features. Both of these common feature sets were used in this
study for comparison. The TD features included mean
absolute value (MAV), wavelength (W), zero crossings (Z),
and sign slope changes (T). AR features model the signal
within the analysis window as each sample being a
polynomial function of the previous values with the addition
of a white Gaussian noise. Generally AR features sets are
used in combination with an intensity feature like MAV or
root mean square (RMS).

Scaled Intensity

An additional feature presented in our previous work [12]
is also used in this study, scaled intensity. The intensity of the
signal is the most effective and telling indicator of the muscle
activity and is calculated with MAV or RMS. Scaled
intensity can be applied to any multi-channel system and
simply scales out the overall gesture intensity from the
individual channels. For example, the scaled MAV feature
extracted from input channel 7 is expressed as
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where MAV is the non-scaled intensity of channel i, ¢/ is the
total number of channels, and the denominator is the average
of all channels’ intensities, or the gesture intensity.

This results in feature vectors from the same gestures
being more consistent regardless of the intensity by which the

gesture is being preformed. The gesture intensity is relevant
to proportional controls, but is not necessary for gesture
discrimination, as seen from our previous work [12].

Adjacent Features (AF)

With the use of electrode grid and linear arrays the spatial
relations between channels can be exploited to provide
features based on the relations of signal shapes from adjacent
channels. Whereas standard single channel feature extraction
methods attempt to quantize the absolute structure of the
individual measured electrical signals (MES), the AF
methods use the neighboring MES’s structure as a template
to evaluate the relative structural similarities.

The sEMG signals being analyzed are the result of
multiple pulses or motor unit action potentials (MUAP)
propagating through the muscle tissues. Figure 2 shows
SsEMG signals from seven LSD filtered channels aligned with
the muscle fibers while the subject performed the closed fist
gesture. Between two neighboring channels, similarities in
pulses can be observed, some being synchronized while
others show a slight temporal shift (marked in red line in
Figure 2) due to the conduction velocity of the MUAPs. The
proposed features aim to approximate and quantify these
characteristics.

As the focus of these features are on the similarities in the
signal shapes or structure, and the signal intensity for each
channel is represented by other features, the analysis
windows of all channels are normalized to have an intensity
(MAV or RMS) of 1.

Consider a single MUAP wave propagating at a slight
angle to the longitudinal alignment of the electrode array.
Figure 3 demonstrates the process of extracting the proposed
AF for one channel (labeled as reference (R)). As shown in
the left diagram of Figure 3, a slanted line represents the
peak of an idealized MUAP wave traveling in the direction
of the arrow. The MES of the three electrodes (transverse
(T), reference (R), and longitudinal (L)) in the middle of the
diagram show this wave influencing them at the different
times. To calculate the AF, the transverse and longitudinal

e

Figure 2. Seven longitudinally aligned channels of EMG for a period
of 0.1s. Red line illustrates the effect of conduction velocity.
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Figure 3. Adjacent Feature extraction process.

5979



MES are shifted forward and backward by dn samples, and
then compared to the reference MES.

Multiple methods were explored to compare MES in our
previous work including correlation coefficients and linear
regression; however, a computationally simpler method was
found which produced better accuracies [12]. The Mean
Absolute Difference (MAD) is similar to MAV of the
resulting time series from subtracting one normalized MES
from another. Assuming an 7 by j grid of MESs, the MAD in
the longitudinal and transverse direction are calculated as
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where 7 is the sample within the window, w/ is the number of
samples, dn is the number of samples to shift by, and X;; is
the normalized MES at the i, j location.

Note that the proposed AF cannot be extracted from the
last row or column as they require a neighboring MES to
compare against. A continuous ring of channels around a
limb would avoid this in one dimension; however, in this
setup both a row and column of AF are omitted. This results
in 6 rows by 7 columns of AF from each of the 8 by 8§ grid
electrodes.

C. Validation and Testing

Evaluation of the effectiveness of these feature extraction
methods was based on the resulting accuracies from
classification. A simple linear discriminant analysis (LDA)-
based classifier was adopted in this study for pattern
classification because of its previous success in EMG PR and
its computational efficiency for real-time processing. For
each subject, a classification accuracy was calculated using
three-fold cross validation. The resulting accuracies were
then averaged across all five subjects and the results were
reported as the average classification accuracies (ACA).

Along with evaluating these features extracted from the
128 channels discriminating 47 gestures (labeled as fill mesh
47 in the Results section), three additional configurations
where also investigated. A subset of input channels from the
full mesh was extracted which uses 3 of the 8 rows of raw
data to calculate two rows of TD features and a single row of
the AF, labeled as the row mesh. The second configuration
was to classify 47 gestures using the row-mesh data (row
mesh 47). The gesture set was also reduced to 13 gestures
which still included the 9 complex gestures shown in Figure
1 and the four fingers individually gripping against the
thumb. The third and fourth configurations were designed to
classify these 13 gestures using both full-mesh (full mesh 13)
and row-mesh (row mesh 13) data.

III. RESULTS

Table 1 shows a selection of feature sets tested on the
recorded data and the resulting ACA for the four
configurations. The adjacent features are denoted by AF
followed by the dn used in the longitudinal (L, along muscle

fibers) and transverse (T) directions. In our experiments
either only a dn of zero or a dn of zero and a positive and
negative integer pair were used for each direction. For
example, the feature set ‘AF L0 T0,1’ refers to 4 values per
channel, with dn = 0 in the longitudinal and dn = -1, 0, and 1
in the transverse.

A. Classification Results with Scaled Intensity

Comparing the first four rows of Table 1, the positive
effects of scaled intensity (SMAV) are evident, increasing
the ACA by at least 2% in all cases. These results are similar
to those from our previous work with a lower resolution
acquisition system [12].

B.  Classification Results with Adjacent Features

The last eight rows of Table 1 show the resulting ACA for
AF sets both with and without the SMAV feature. The four
sets of dn presented demonstrate three different sizes of
feature vectors and the resulting increases in ACA. ‘L0 TO’
uses no sample shift and represents only two values. The last
two sets of dn both represent 6 values per channel and show
how the selected values of these shifts only slightly alters the
accuracies.

As expected, AR features out-perform the standard TD
feature sets, but only by as much as the use of SMAV. The
use of scaled intensity with AR features does increase AR
results (not shown), but not as much as AF sets.

Overall the AF sets performed the best. Increasing the
number of dn of the AF sets increases the ACA, but with
diminishing returns; however, this still shows the benefit of
comparing temporally shifted MES of adjacent channels.

One anomaly seen in the results is the slightly lower
ACA when including SMAV with the AF features for the
full mesh discriminating 13 gestures. Considering this does
not happen with the other configurations, it is believed this is
due to the large feature vector of the full mesh and the
reduced gesture set not fully training the models, or ‘the
curse of dimensionality *[13].

TABLE I. CLASSIFICATION ACCURURACY RESULTS OF FEATURE SETS

Data Points Used Full Mesh Row Mesh

# of Gestures 47 13 47 13
MAV 72.33% [83.58% [66.47% [79.85%
SMAV 75.93% [86.72% [70.92% |84.72%
MAV, W, ZC, TC  |75.71% [86.71% |71.52% |84.55%
SMAV, W, ZC, TC 77.95% |89.54% |73.82% |87.85%
MAV, 4" Order AR [78.19% |88.78% [73.05% [86.69%
MAV, 6" Order AR [78.04% |89.30% [73.50% [86.63%
MAV, 8" Order AR [77.76% 88.94% |73.53% [86.24%
AF L0 TO 78.86% [88.94% 168.35% [83.74%
AF L0 TO,1 81.40% [90.67% ]74.78% |88.58%
AF 10,2 TO,1 81.71% [90.66% ]76.53% [89.73%
AF 10,4 TO,1 81.84% [90.58% ]76.35% [88.99%
SMAV,AF L0 TO 79.76% [88.78% [76.03% 189.26%
SMAV,AF L0 TO,1 [81.71% |90.05% |78.16% [91.07%
SMAV,AF 10,2 T0,1}81.93% [90.44% ]79.06% 191.78%
SMAV,AF 10,4 T0,1182.11% |90.37% |79.13% [91.67%
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C. Confusion Matrices

Figures 4 and 5 show the between-gesture confusion
matrices of the ACAs derived from the standard TD features
(2™ row of Table 1) and from the scaled intensity and AF set
(last row of Table 1) respectively; for the reduced mesh and
gesture set configurations (last column). Figure 4 shows
significant confusion between the thumb grip gestures, as
well as a small confusion of wave in and wave out. Figure 5
shows that the AF set noticeably reduces the thumb grip
confusions and nearly eliminates the confusion between
wave in and wave out.

IV. DISCUSSION AND CONCLUSION

This paper has investigated the effectiveness of spatial-
temporal adjacent feature sets including scaled intensity.
These methods have shown potential improvements over
standard TD feature sets as well as AR features. Though this
is based off of data taken from equally space electrode
arrays, applications of other electrode configurations may be
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Figure 4. Confusion Matrix from TD features of row mesh
discriminating 13 gestures.

100%
90%
80%
70%
60%

50%

40%

30%

20%

10%

0%

Index Thumb
Middle Thumb

Figure 5. Confusion Matrix from adjacent features of row mesh
discriminating 13 gestures.

possible.

The AF set computational requirements are comparable
with those of TD features and are estimated to be a seventh
of the required computational requirements of a 6™ order
auto-regression. AF requires a single multiplication per
sample, per analysis window to normalize the data, then for
each series compared (number of values of dr) a calculation
similar to the one required to calculate wavelength is
executed (a single subtraction and absolute summation) per
sample per window. This poses significantly less time-
complexity compared to the at least 42 multiplications
required per sample per window of a 6™ order AR. Due to
the mathematical simplicity of the AF set, these should be
applicable for real-time computing on embedded systems.

The proposed adjacent features have the potential of
improving accuracies in other EMG PR-based applications.
Future work includes evaluating the AF with more advanced
classifiers as well as real-time experiments.
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