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Abstract—The Dot-Product Engine (DPE) is a critical circuit
for implementing neural networks in hardware. The recent-
developed memristor crossbar array technology, which is able
to efficiently carry out dot-product multiplication and update its
weights in real time, has been considered as one of the viable
technologies to build a high-efficient neural network computing
system. In this paper, the Pulse-Width-Modulation (PWM) based
DPE has been presented and analyzed. Here, the PWM based
signal, instead of the traditional amplitude modulated (AM)
signal, is used as the computation variable. Comparing to the
existing AM based system, this PWM counterpart provides an
alternative approach to reduce the power consumption and chip
area of its peripheral circuits. Power and area saving becomes
more prominent when the size and/or the number of arrays
increase. This new approach also provides the critically needed
scalability to accommodate the computation variable with higher
precision. In this paper, a 4-bit (can be easily expanded to 8-bit)
feed forward neural network with 3-bit weights (memristor’s
conductance) is constructed using the proposed PWM DPE to
identify digits from the MNIST data set. The circuit system
is implemented in 130 nm standard CMOS technology. The
entire circuit system consumes about 53mW with more than 86 %
recognition accuracy in average.

Keywords—Neuromorphic computing, Dot-product engine,
memristor crossbar array.

I. INTRODUCTION

Machine learning has been widely used to boost the com-
putation efficiency in many data-intensive applications. Neural
networks, such as CNNs and DNNs (Convolutional and Deep
Neural Networks), are widely used in machine learning [1][2].
In CNNs or DNNs, a large number of dot-product (multiply-
accumulate) operations with matrices in various sizes have
been frequently carried out [1][2]. DPE (Dot-Product Engine)
becomes one of the most critical components in these popular
machine learning implementations. To avoid the challenge of
the memory wall [3], the MCA (Memristor-Crossbar-Array)
has been proposed to seamlessly combine the memory and
the dot-product operations in the hardware based DPE to
significantly boost the computation efficiency in CNNs and
DNNS [4].

The circuitry implementation of this promising MCA based
DPE has been extensively discussed in [5] and [6]. In [5] [6],
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Fig. 1. Illustration of the (a) PWM (Pulse-Width Modulation) based and (b)
AM (Amplitude Modulation) based computation variable
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Fig. 2. The simplified schematic of the PWM write and read circuit

a DAC (Digital-to-Analog Convertor) is used to convert n-
bit digital input into an AM (Amplitude Modulated) voltage
signal as the computation variable, as depicted in Fig 1(b).
The dot-product operation is carried out by the MCA. The
amplitude of the MCA output current, which represents the
dot-product operation result, is sensed and amplified by a
TIA (Trans-Impedance Amplifier), and then digitized by an
ADC (Analog-to-Digital Convertors) [5][6]. In [5] [6], a DAC
and TIA are required for every row and every column of the
MCA, respectively. An ADC is shared by two or more columns
depending on the desired computation speed and precision [5].
Both [5][6] indicate that the power consumption and the re-
quired chip areas of these peripheral I/O circuits significantly
hinder the MCA based DPE’s computation efficiency. The
efficiency could get worse when the size (number of the rows
and columns) of MCA and the number of matrices involved
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Fig. 3. A system diagram of a three-layer feed forward neural network to process the MNIST data

in the DPE grows.

In this paper, the PWM (Pulse-Width Modulation) based
signal, instead of AM based signal, has been adopted as the
computational variable. As depicted in Fig 1 (a), the duty cycle
of a constant amplitude voltage signal is designated as the
computation variable. The most conspicuous advantage of the
PWM system is its potential to significant reduce power con-
sumption and chip area. By replacing DACs, TIAs and ADCs
with “digital-like” circuits, i.e., D-flipflops, IFCs (Integrated-
and-Fire Circuit), and counters, the peripheral circuits that
are associated with each row or column of the MCA could
consume less power compared to the existing AM based circuit
system [5][6], specially with a multi-layer neural network with
large array size used in a CNN/DNN. With the elimination
of amplifiers associated with the DAC, TIA and ADCs, the
reduction of the chip area can also be anticipated.

In this paper, the system and the circuit implementation of
the PWM DPE are described in Section II, followed by the
conclusions in Section III.

II. SYSTEM AND CIRCUIT IMPLEMENTATION
A. Operating Principle

The described PWM based DPE has a global DLL (Delay
Locked Loop) for every DPE in the neural networks, and a
set of write and read circuits for each row (word line) and
column (bit line) of the MCA, as depicted in Fig. 2. The global
DLL produces a set of clock signals whose delay is evenly
distributed within a clock period [7]. In this design, the DLL is
designed to generate 2" — 1 delayed clocks, where n represents
the number of bits that each PWM signal is going to represent.

At the input of each row, one of the 2™ — 1 delayed clocks,
the mth delayed clock, is selected by a n-to-1 multiplexer
according to the n-bit digital input. By comparing the selected
m-th clock to the reference clock, a PWM driver, which is
made of two flipflops (similar to the phase-frequency detector
in a regular PLL [8]), is able to produce a voltage signal whose
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duty cycle is proportional to m /2™ with a constant amplitude
(0 to constant V).

When the constant amplitude PWM voltage signal is applied
to each row of the MCA, the averaged current over one clock
period at the output of each column is proportional to the
overall conductance of the specific column (i.e., weights of
the DPE) and the duty-cycle of all input voltage signals (i.e.,
input of the DPE). Based on the input voltage and the output
current that are averaged over one clock period, the PWM
based system is equivalent to the AM based counterpart.

The output current can be sensed by the IFC with a
digital counter [9], since the input voltage signal has constant
amplitude. When the output current from the MCA charges the
sensing capacitor, C'g, in the IFC to the pre-defined voltage
Vrer, Cs will be reset, as depicted in Fig. 2. The reset rate
is proportional to the amount of current that charges Cs[9].
By counting the number of resets over one clock period,
the averaged output current from the MCA is measured and
digitized.

B. Circuit System

A three-layer feed forward neural network using the pro-
posed PWM DPE is constructed using 130 nm standard CMOS
technology to process the MNIST data set, as depicted in
Fig. 3 [10]. Similar to [10], the size of the three layers
is 144x64 (hidden), 64x64 (hidden), and 64x10 (output),
respectively. Each layer has two MCAs to represent positive
and negative weights, as depicted in Fig. 3. The weights are
pre-trained and have 3-bit precision. 12x12 4-bit inputs from
MNIST are applied to the first layer MCA with the constant
amplitude PWM voltage signals. The outputs from each pair
of positive and negative weights first subtract each other and
then feed into the sigmoid encoders. The 4-bit output from
each signmoid encoder is delivered to the second layer. The
digit is identified at the output of the third layer.
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Fig. 4. The circuit schematic of the DLL (Delay Locked Loop)

Using the time-division method, the precision of the com-
putation variable can be expanded to 8-bit or higher easily. To
accommodate the computation variable with 8-bit precision,
the PWM based DPE can process the first 4 bits and the last
4 bits consecutively using the same 4-bit PWM DPE with
two clocks. The output of the first 4 bits passes an one-clock
delay cell while the output of the last 4 bits doesn’t. Thus,
the output can be restored to 8-bit by combining these two
outputs in parallel, as depicted in the dashed boxes in Fig.
3. By adding the clocked 4k-to-4 and 4-to-4k delay cell to
the input and the output of each DPE, a 4-bit PWM based
DPE is able to operate with 4k-bit precision by slowing down
the computation speed at k-folds. Without the time-division
method, the PWM DPE could lose half of its computation
speed whenever the precision of the computation variable
increases by 1 bit.

C. Circuit Blocks

1) DLL: A traditional DLL is used to produce 2% —1 evenly
delayed clocks to support the 4-bit operation [7]. As depicted
in Fig. 4. the DLL consists of 8 differential CML (Current
Mode Logic) delay stages whose delay time can be controlled
by the control voltage (v¢), a PFD (Phase Frequency Detector)
that detects the phase-frequency difference between the last
delayed clock and the reference clock, a CP (Charge Pump)
and a loop filter to provide vc to control the delay time of
every delay stage. The PFD, CP and loop filter are widely used
in PLLs [8]. The DLL is implemented in 130 nm standard
CMOS technology. Including the buffers at each tap, the DLL
consumes about 850 pW when it operates at 50 MHz.

2) Input Circuit: An input circuit is needed for each row
(word-line) of the MCA to translate the digital input to the
PWM signal. In the described 4-bit PWM DPE, a 4-to-1
multiplexer is used to select one of 2* — 1 delayed clocks
according to the 4-bit digital input, as depicted in Fig. 2 and
Fig. 3. In the circuit implementation, a PWM driver that is
made of two D-type flip-flops is used to generate a signal
whose duty cycle is proportional to the digital input. A digital
buffer is added to the output of the PD so that it is able to drive
a large-size MCA with many parallel-connected memristors.
In this implementation, the input circuit consists of a 4-to-1
MUX, two D-flipflops and a digital buffer.

3) Output Circuit: An output circuit is needed for each
column (bit-line) of the MCA to measure current and convert
it to a digital word. In the PWM based DPE, the input voltage
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of the MCA has constant amplitude. Thus, a high-speed IFC,
instead of a large and power-hungry ADC [11], is used to
measure the output current from each column of the MCA,
and convert the output current into a set of time rated pulses
[9]1[12]. In this implementation, a 6-bit counter is used to count
the number of pulses from the output of each IFC within
a clock period. The output number represents the averaged
output current from each column of the MCA. By subtracting
the output of the negative MCA from that of the positive MCA,
as depicted in Fig. 3, the digitized output from the dot-product
operation is acquired.

4) Activation Function: The sigmoid is widely used as a
classic activation function used in feed forward neural net-
works to introduce non-linearity [13]. Its schematic is inserted
in Fig. 5. The output of the sigmoid encoder, is consistent
with the ideal sigmoid function, as depicted in Fig. 5. The
6-bit input has sufficient dynamic range for a large number of
pulses generated by the IFC. The 4-bit output, which has the
same precision as that of the input, differentiates between not
firing from fully saturated.

D. System Performance

A three-layer feed-forward multi-layer perceptron that is
built upon the PWM based DPEs to classify digits off of a



TABLE I
POWER CONSUMPTION OF PERIPHERAL CIRCUITS IN THE PWM BASED
NEURAL NETWORK

Components Numbers Power/Block | Total
Unit: W mW
4-bit DLL 1 854 0.854
MUX 144464+64 9 2.45
PWM Driver 1444+64+64 32 8.67
IFC 2% (64+64+10) 101 27.85
Counter 2x(64+64+10) 31.7 8.73
Subtractor 64+64+10 16.4 2.67
Sigmoid 64+64 10.2 1.30

randomly assorted 10,000 image MNIST test set, as depicted
in Fig. 3. The conductance of the memristors with 3-bit
precision is pre-trained using the standard stochastic gradient
descent back propagation method. In this implementation, the
precision of the memristor’s resistance is 3-bit. The size of
the input image of the MNIST data set is reduced to 12x12.
Each input is represented by a 4-bit variable. The positive and
negative MCA represent the positive and negative weights,
respectively [10]. After processing 10,000 randomly assorted
images, the accuracy of the digit recognition is depicted in
Fig. 6. “0” and “1” have above 95% accuracy, while “6” and
“8” have above 74% accuracy. Overall, the averaged accuracy
is 86.5%. The recognition accuracy shows little improvement
when the precision of the computation variable is increased to
8-bit.

The power consumption of each circuit block is analyzed in
Table I. The total power consumption of the described neural
network is about 53 mW.

III. CONCLUSIONS

In this paper, a PWM based DPE has been presented.
Using PWM signal as the computation variable could re-
duce the peripheral circuits’ power consumption and chip
area comparing to conventional AM based signals, especially
when multiple large-size MCAs are used. With the time-
division method, this PWM based DPE is able to construct
a high-accuracy neuromorphic computing system, e.g., a 32-
bit system, without significantly sacrificing computation speed,
increasing power consumption or chip area. The PWM based
neuromorphic system is implemented in 130 nm standard
CMOS technology to recognize digits from the MNIST data
set. The novel PWM based DPE described in this paper has
the potential to construct a neuromorphic computing system
with multiple layer, large-size MCAs.
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