


Fig. 3. A system diagram of a three-layer feed forward neural network to process the MNIST data

in the DPE grows.

In this paper, the PWM (Pulse-Width Modulation) based

signal, instead of AM based signal, has been adopted as the

computational variable. As depicted in Fig 1 (a), the duty cycle

of a constant amplitude voltage signal is designated as the

computation variable. The most conspicuous advantage of the

PWM system is its potential to significant reduce power con-

sumption and chip area. By replacing DACs, TIAs and ADCs

with “digital-like” circuits, i.e., D-flipflops, IFCs (Integrated-

and-Fire Circuit), and counters, the peripheral circuits that

are associated with each row or column of the MCA could

consume less power compared to the existing AM based circuit

system [5][6], specially with a multi-layer neural network with

large array size used in a CNN/DNN. With the elimination

of amplifiers associated with the DAC, TIA and ADCs, the

reduction of the chip area can also be anticipated.

In this paper, the system and the circuit implementation of

the PWM DPE are described in Section II, followed by the

conclusions in Section III.

II. SYSTEM AND CIRCUIT IMPLEMENTATION

A. Operating Principle

The described PWM based DPE has a global DLL (Delay

Locked Loop) for every DPE in the neural networks, and a

set of write and read circuits for each row (word line) and

column (bit line) of the MCA, as depicted in Fig. 2. The global

DLL produces a set of clock signals whose delay is evenly

distributed within a clock period [7]. In this design, the DLL is

designed to generate 2
n
−1 delayed clocks, where n represents

the number of bits that each PWM signal is going to represent.

At the input of each row, one of the 2
n
− 1 delayed clocks,

the mth delayed clock, is selected by a n-to-1 multiplexer

according to the n-bit digital input. By comparing the selected

m-th clock to the reference clock, a PWM driver, which is

made of two flipflops (similar to the phase-frequency detector

in a regular PLL [8]), is able to produce a voltage signal whose

duty cycle is proportional to m/2n with a constant amplitude

(0 to constant Vin).

When the constant amplitude PWM voltage signal is applied

to each row of the MCA, the averaged current over one clock

period at the output of each column is proportional to the

overall conductance of the specific column (i.e., weights of

the DPE) and the duty-cycle of all input voltage signals (i.e.,

input of the DPE). Based on the input voltage and the output

current that are averaged over one clock period, the PWM

based system is equivalent to the AM based counterpart.

The output current can be sensed by the IFC with a

digital counter [9], since the input voltage signal has constant

amplitude. When the output current from the MCA charges the

sensing capacitor, CS , in the IFC to the pre-defined voltage

VREF , CS will be reset, as depicted in Fig. 2. The reset rate

is proportional to the amount of current that charges CS[9].

By counting the number of resets over one clock period,

the averaged output current from the MCA is measured and

digitized.

B. Circuit System

A three-layer feed forward neural network using the pro-

posed PWM DPE is constructed using 130 nm standard CMOS

technology to process the MNIST data set, as depicted in

Fig. 3 [10]. Similar to [10], the size of the three layers

is 144×64 (hidden), 64×64 (hidden), and 64×10 (output),

respectively. Each layer has two MCAs to represent positive

and negative weights, as depicted in Fig. 3. The weights are

pre-trained and have 3-bit precision. 12×12 4-bit inputs from

MNIST are applied to the first layer MCA with the constant

amplitude PWM voltage signals. The outputs from each pair

of positive and negative weights first subtract each other and

then feed into the sigmoid encoders. The 4-bit output from

each signmoid encoder is delivered to the second layer. The

digit is identified at the output of the third layer.
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Fig. 4. The circuit schematic of the DLL (Delay Locked Loop)

Using the time-division method, the precision of the com-

putation variable can be expanded to 8-bit or higher easily. To

accommodate the computation variable with 8-bit precision,

the PWM based DPE can process the first 4 bits and the last

4 bits consecutively using the same 4-bit PWM DPE with

two clocks. The output of the first 4 bits passes an one-clock

delay cell while the output of the last 4 bits doesn’t. Thus,

the output can be restored to 8-bit by combining these two

outputs in parallel, as depicted in the dashed boxes in Fig.

3. By adding the clocked 4k-to-4 and 4-to-4k delay cell to

the input and the output of each DPE, a 4-bit PWM based

DPE is able to operate with 4k-bit precision by slowing down

the computation speed at k-folds. Without the time-division

method, the PWM DPE could lose half of its computation

speed whenever the precision of the computation variable

increases by 1 bit.

C. Circuit Blocks

1) DLL: A traditional DLL is used to produce 2
4
−1 evenly

delayed clocks to support the 4-bit operation [7]. As depicted

in Fig. 4. the DLL consists of 8 differential CML (Current

Mode Logic) delay stages whose delay time can be controlled

by the control voltage (vC), a PFD (Phase Frequency Detector)

that detects the phase-frequency difference between the last

delayed clock and the reference clock, a CP (Charge Pump)

and a loop filter to provide vC to control the delay time of

every delay stage. The PFD, CP and loop filter are widely used

in PLLs [8]. The DLL is implemented in 130 nm standard

CMOS technology. Including the buffers at each tap, the DLL

consumes about 850 µW when it operates at 50 MHz.

2) Input Circuit: An input circuit is needed for each row

(word-line) of the MCA to translate the digital input to the

PWM signal. In the described 4-bit PWM DPE, a 4-to-1

multiplexer is used to select one of 2
4
− 1 delayed clocks

according to the 4-bit digital input, as depicted in Fig. 2 and

Fig. 3. In the circuit implementation, a PWM driver that is

made of two D-type flip-flops is used to generate a signal

whose duty cycle is proportional to the digital input. A digital

buffer is added to the output of the PD so that it is able to drive

a large-size MCA with many parallel-connected memristors.

In this implementation, the input circuit consists of a 4-to-1

MUX, two D-flipflops and a digital buffer.

3) Output Circuit: An output circuit is needed for each

column (bit-line) of the MCA to measure current and convert

it to a digital word. In the PWM based DPE, the input voltage

Fig. 5. The output vs. input of the sigmoid encoder and its schematic
(inserted)
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Fig. 6. The accuracy of the network for each digit

of the MCA has constant amplitude. Thus, a high-speed IFC,

instead of a large and power-hungry ADC [11], is used to

measure the output current from each column of the MCA,

and convert the output current into a set of time rated pulses

[9][12]. In this implementation, a 6-bit counter is used to count

the number of pulses from the output of each IFC within

a clock period. The output number represents the averaged

output current from each column of the MCA. By subtracting

the output of the negative MCA from that of the positive MCA,

as depicted in Fig. 3, the digitized output from the dot-product

operation is acquired.

4) Activation Function: The sigmoid is widely used as a

classic activation function used in feed forward neural net-

works to introduce non-linearity [13]. Its schematic is inserted

in Fig. 5. The output of the sigmoid encoder, is consistent

with the ideal sigmoid function, as depicted in Fig. 5. The

6-bit input has sufficient dynamic range for a large number of

pulses generated by the IFC. The 4-bit output, which has the

same precision as that of the input, differentiates between not

firing from fully saturated.

D. System Performance

A three-layer feed-forward multi-layer perceptron that is

built upon the PWM based DPEs to classify digits off of a
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TABLE I
POWER CONSUMPTION OF PERIPHERAL CIRCUITS IN THE PWM BASED

NEURAL NETWORK

Components Numbers Power/Block Total

Unit: µW mW

4-bit DLL 1 854 0.854

MUX 144+64+64 9 2.45

PWM Driver 144+64+64 32 8.67

IFC 2×(64+64+10) 101 27.85

Counter 2×(64+64+10) 31.7 8.73

Subtractor 64+64+10 16.4 2.67

Sigmoid 64+64 10.2 1.30

randomly assorted 10,000 image MNIST test set, as depicted

in Fig. 3. The conductance of the memristors with 3-bit

precision is pre-trained using the standard stochastic gradient

descent back propagation method. In this implementation, the

precision of the memristor’s resistance is 3-bit. The size of

the input image of the MNIST data set is reduced to 12×12.

Each input is represented by a 4-bit variable. The positive and

negative MCA represent the positive and negative weights,

respectively [10]. After processing 10,000 randomly assorted

images, the accuracy of the digit recognition is depicted in

Fig. 6. “0” and “1” have above 95% accuracy, while “6” and

“8” have above 74% accuracy. Overall, the averaged accuracy

is 86.5%. The recognition accuracy shows little improvement

when the precision of the computation variable is increased to

8-bit.

The power consumption of each circuit block is analyzed in

Table I. The total power consumption of the described neural

network is about 53 mW.

III. CONCLUSIONS

In this paper, a PWM based DPE has been presented.

Using PWM signal as the computation variable could re-

duce the peripheral circuits’ power consumption and chip

area comparing to conventional AM based signals, especially

when multiple large-size MCAs are used. With the time-

division method, this PWM based DPE is able to construct

a high-accuracy neuromorphic computing system, e.g., a 32-

bit system, without significantly sacrificing computation speed,

increasing power consumption or chip area. The PWM based

neuromorphic system is implemented in 130 nm standard

CMOS technology to recognize digits from the MNIST data

set. The novel PWM based DPE described in this paper has

the potential to construct a neuromorphic computing system

with multiple layer, large-size MCAs.
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