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We investigated teachers’ responses to a common set of varied-potential instances of student 
mathematical thinking to better understand how a teacher can shape meaningful mathematical 
discourse. Teacher responses were coded using a scheme that both disentangles and coordinates 
the teacher move, who it is directed to, and the degree to which student thinking is honored. 
Teachers tended to direct responses to the same student, use a limited number of moves, and 
explicitly incorporate students’ thinking. We consider the productivity of teacher responses in 
relation to frameworks related to the productive use of student mathematical thinking. 
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Recommendations for ambitious mathematics teaching have identified the importance of 
instruction that honors and incorporates student thinking (e.g., National Council of Teachers of 
Mathematics [NCTM], 2014). Such instruction involves the teacher facilitating meaningful 
mathematical discourse by eliciting and making public student thinking, as well as appropriately 
responding to that thinking. Research has shown that the way in which teachers respond to 
student mathematical thinking (SMT) affects student learning in the classroom. For example, 
research has found that teacher responses that press students to further engage in thinking about 
the mathematics in their contributions provide students with increased learning opportunities 
(Kazemi & Stipek, 2001). More recently, Ing et al. (2015) found that responses that encourage 
students to engage with each other around mathematics correlate with increased student 
participation and higher student achievement.  

Since SMT varies in the degree to which it provides leverage for accomplishing 
mathematical goals (Leatham, Peterson, Stockero, & Van Zoest, 2015), it follows that not all 
thinking should be responded to in the same way. Research examining teachers’ responses to 
different types of SMT has produced mixed findings. Franke et al. (2009) found that the types of 
questions teachers asked did not vary depending on the clarity, correctness or completeness of a 
student’s initial explanation, but other studies have found that teachers’ responses do vary based 
on different types of SMT. For example, Bishop, Hardison, and Przybyla-Kuchek (2016) found 
that short or routine student contributions were related to teacher actions that were not responsive 
to SMT, whereas those that included strategies or reasoning were related to responses that 
engaged students in conversations about the SMT. Similarly, Drageset (2015) reported that brief 
answers to non-complex questions were typically responded to with a recall or procedural 
question, whereas unexplained answers were typically followed by responses that focused on an 
elaboration or rationale. Although prior research provides a foundation for understanding 
teachers’ responses to instances of SMT, more work is required to fully understand variations in 
such responses, including whether particular responses might be more or less productive in 
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supporting student learning in particular situations. Fortunately, scholars have developed a 
number of constructs for characterizing teacher responses that support this line of research. 

Researchers have characterized teacher responses in various ways based on the focus of their 
studies. Brodie (2011) developed a coding scheme for teacher responses that captured two key 
aspects of responses—responsiveness to student ideas and student engagement. Schleppenbach, 
Flavares, Sims, and Perry (2007) analyzed teachers’ responses to student errors using a scheme 
that captured two additional aspects of responses—the form of the response (statements or 
questions) and who questions were directed towards (the same student or other student(s)). 
Peterson et al. (2017) aimed to develop a comprehensive coding scheme that foregrounded 
responsiveness while also capturing other important ideas included in existing teacher response 
constructs. These researchers developed the Teacher Response Coding Scheme (TRC) to both 
disentangle and coordinate a number of components important in a teacher response, including 
the actors invited to respond, the type of action, and responsiveness to the SMT. Such a scheme 
provides a way to study teacher responses to student contributions that simultaneously addresses 
components of responses valued by other scholars working in this area. 

Our study extends earlier research on teacher responses by using the TRC (Peterson et al., 
2017) to examine teachers’ responses to a common set of SMT with varied potential to support 
student mathematical learning. In particular, this study focuses on answering the question: How 
do teachers’ responses vary depending on the potential of an instance of SMT to support student 
mathematical learning? We use these findings to discuss the extent to which various teacher 
responses are productive given the mathematical potential of an instance of SMT. 

Theoretical Framework 
Our work draws on two distinct, but related theoretical constructs. To make sense of the 

potential of an instance of SMT to support student mathematical learning, we use the MOST 
Analytical Framework (Leatham et al., 2015). To interpret the productivity of teachers’ 
responses to these instances of varying potential, we use a set of principles drawn from the 
literature that underlie productive use of SMT. Descriptions of these constructs follow. 
Leatham et al. (2015) characterized particular high potential instances of SMT as MOSTs—
Mathematically Significant Pedagogical Opportunities to Build on Student Thinking. The 
MOST Analytic Framework defines three characteristics of these instances—student 
mathematical thinking, significant mathematics, and pedagogical opportunity—each having two 
criteria that are used to determine whether an instance of SMT embodies that characteristic. For 
student mathematical thinking the criteria are that the student mathematics is inferable and that 
one can articulate a closely related mathematical point that the contribution could be used to 
better understand. For the significant mathematics characteristic, the criteria are that the 
mathematical point is appropriate for the students in the class—not too easy or too hard—and 
central to mathematical goals for their learning. To satisfy the pedagogical opportunity 
characteristic, the instance must create an opening to build on the SMT and the pedagogical 
timing must be right to take advantage of the opening when it occurs. The six criteria are 
considered linearly and an instance of SMT is classified according to the last criteria it satisfies 
(Student Mathematics, Mathematical Point, Appropriate, Central, Opening). Instances that meet 
all six criteria are classified as MOSTs. Those instances that appear mathematical, but for which 
the student mathematics cannot be inferred, are designated cannot infer (CNI). 

To determine whether a teacher response to an instance of SMT is likely to be productive, we 
focus on the extent to which it coordinates core ideas about effective teaching and learning of 
mathematics drawn from the literature (e.g., NCTM, 2014)—what we refer to as principles 
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underlying productive use of SMT (see Figure 1). We see these four principles as simultaneously 
coordinated in the teaching practice of building on SMT—making student thinking “the object of 
consideration by the class in order to engage the class in making sense of that thinking to better 
understand an important mathematical idea” (Van Zoest et al., 2017, p. 36). Further, we see 
MOSTs as instances of SMT that are prime opportunities for a teacher to engage in building.  
 

1. The mathematics of the instance is at the forefront. (Mathematics Principle) 
2. Students are positioned as legitimate mathematical thinkers. (Legitimacy Principle) 
3. Students are engaged in sense making. (Sense-Making Principle) 
4. Students are working collaboratively. (Collaboration Principle) 
Figure 1. Principles underlying productive use of student mathematical thinking. 

Methodology 
The Scenario Interview 

The Scenario Interview (Stockero et al., 2015) is a tool to investigate how teachers respond 
to SMT during instruction and their reasoning underlying those responses. Teachers are 
presented with eight instances of SMT—four each from geometry and algebra contexts. The 
instances represent a range of SMT that satisfy different sets of MOST criteria, including those 
for which the SMT cannot be inferred and those that are mathematically significant but have 
poor timing. Four instances—two from each context—are MOSTs. Figure 2 provides four 
sample instances, their contexts and the last criteria they met on the MOST Analytic Framework. 
 

Scenario Context Instance Criteria 

G1 
Students were sharing their solutions 
to the following task (a corresponding 
picture was on the board).  
Given two concentric circles, radii 
5cm and 3cm, what is the area of the 
band between the circles? 

Chris shared his solution: “The radius 
of the big circle is 5 and the radius of 
the little circle is 3, so the gap is 2, so 
the area of the band is 4π cm2.” 

MOST 

G2 
Before the teacher had a chance to 
respond to Chris, Pat says, “I also got 
4π cm2, but I did it a different way.” 

SM 

A1 

Students had been discussing the 
following task and had come up with 
the equation y = 10x + 25. Task: 
Jenny received $25 for her birthday 
that she deposited into a savings 
account. She has a babysitting job 
that pays $10 per week, which she 
deposits into her account each week. 
Write an equation that she can use to 
predict how much she will have saved 
after any number of weeks. 

Terry says, “If you deposit $20 per 
week instead of $10 per week, the 
number in front of the x in the 
equation would change, but the 
number that is added would stay the 
same.” 

Central 

A2 
Casey said, “You could also change 
the story so the number in front of the 
x is negative.” 

MOST 

Figure 2. Sample Scenario Interview instances, contexts and the last MOST criteria met. 

The Scenario Interview situates the interviewee as the teacher in the context presented. They 
are asked to describe what they might do next were the instance to occur in their classroom and 
to explain why they would respond in that way. The interviewee may ask for contextual 
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information they feel is needed before giving their initial response and is later provided common 
contextual information, after which they can revise their response if desired. If they did so revise, 
the revised response was used for this analysis. Using a common set of instances of SMT and 
providing common contextual information allowed for direct comparisons among teacher 
responses to a collection of instances that satisfy different subsets of the MOST criteria. This 
comparison allowed us to determine whether teachers seem to differentiate their responses based 
on the type of SMT to which they are responding.  
Data Collection and Analysis 

Data consisted of video-recorded Scenario Interviews conducted with 25 grade 6-12 
mathematics teachers from across the United States. We segmented each interview into the 8 
instances of SMT and the 25 teachers’ responses to each individual instance. A teacher response 
was defined as the collection of actions that a teacher describes they would take immediately 
following an instance of SMT. There were a total of 198 teacher responses because one teacher 
was not able to envision one of the instances occurring in their classroom, and another teacher’s 
interview was cut short before the last scenario was completed.  

To begin to understand teachers’ responses, we focused on teachers’ initial responses to the 
instances in the Scenario Interview. Thus, preparing data for coding required making inferences 
about how the teacher would respond in the moment to each instance by considering both the 
teacher’s description of their initial response and their rationale. Three coders individually 
analyzed each instance for a participating teacher, distilled the teacher’s response to its essence, 
and met to discuss their inferred responses until a final teacher response was agreed upon. Any 
disagreements were brought to the larger research team for further discussion.  

The teacher responses were coded using the TRC (Peterson et al., 2017), a scheme that 
disentangles the teacher move (Move) from other aspects of the teacher response, including who 
is publicly given the opportunity to consider the SMT (Actor) and the degree to which the SMT 
is honored (Recognition-Student Action and Recognition-Student Ideas). Figure 3 provides the 
TRC coding categories and codes discussed in this paper. Note that the TRC allows for multiple 
moves to be present in a teacher response. To facilitate our analysis, in cases of multiple actions 
in a given teacher response we identified the predominate code for each category—the code that 
the students are most likely to experience as the instructional intent of the response. The analysis 
used the predominate codes for each of the 198 teacher responses. 
 

Category Coding Category Description Codes 

Actor Those who are publicly given the opportunity to consider 
the instance of SMT 

teacher, same student(s), whole 
class 

Recognition- 
Action 

The degree to which the teacher response (either verbal 
or non-verbal) uses the student action explicit, implicit, not 

Recognition- 
Ideas 

The extent to which the student who contributed the 
instance of SMT is likely to recognize their idea(s) in the 

teacher response 

core, peripheral, other, not 
applicable 

Move What the actor is doing or being asked to do with respect 
to the instance of SMT 

adjourn, clarify, collect, connect, 
develop, dismiss, justify 

Figure 3. Subset of the Teacher Response Coding Scheme (TRC) discussed in this paper. 

We use two teachers’ responses to Scenario G1 (see Figure 1) to illustrate our application of 
the TRC. T1’s response, “I would just ask [Chris] to explain by using pictures and words how he 
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came up with the 4 pi,” asks the same student a question that is a develop move in that the 
student is asked to explain how he arrived at the answer. T1 uses the student’s words so Action is 
coded explicit, and the question stays core to the student’s Ideas because it focuses on how Chris 
arrived at his answer. In T2’s response, “Who else has another answer? Did everybody get that? 
Give me some more answers,” Actor is coded as whole class because all students are invited to 
participate. Move is collect as T2 requests that other students share their answers. The student’s 
words are not used, but referred to (by “that”), so Action is implicit. Asking other students to 
share their answers to the same task is peripheral to the contributing student’s Ideas.  

Results and Discussion 
To understand how teachers’ responses vary depending on the potential of an instance of 

SMT to support student mathematical learning, we begin by comparing results related to the 
Actor, Move, and Recognition categories for MOSTs and non-MOSTs. Then, we discuss how 
particular responses might be more or less productive in particular situations by considering how 
they adhere to the principles underlying productive use of SMT. Note that there were 99 MOSTs 
and 99 non-MOSTs in the data set; since the frequencies and percentages are essentially 
equivalent, we report only the frequencies. 
Comparison of Teacher Responses 

Actor. Responses coded same student were the most prevalent in the data and occurred at 
about the same frequency for MOSTs (65 of 99) and non-MOSTs (63 of 99). This even 
distribution among MOSTs and non-MOSTs did not occur for instances with a whole class or 
teacher actor. More MOSTs (26) than non-MOSTs (6) were coded whole class, while the 
opposite was true for instances coded teacher (4 MOSTs; 30 non-MOSTs). This suggests that 
teachers may distinguish, at least to some extent, instances that have potential to be discussed by 
the class from those that the teacher might just quickly deal with and move on.  

Moves. Two dominant moves in the data, develop and justify, occurred more frequently in 
response to MOSTs than non-MOSTs (Table 1). Develop moves accounted for 37 MOST 
responses and only 25 non-MOST responses, while justify moves accounted for 18 MOST and 
11 non-MOST responses. Together these two moves accounted for over half of responses to 
MOSTs. Two other dominant moves, adjourn and clarify, occurred more frequently in response 
to non-MOSTs. These moves accounted for 21 and 23 non-MOST responses, respectively, and 
for only 3 and 5 MOST responses, respectively. Thus, adjourn and clarify moves accounted for 
nearly half of non-MOST responses. As with Actor, the differences in Move for MOSTs versus 
non-MOSTs suggest the teacher actions differ depending on the type of SMT. 
 

Table 1: Actor and Move Totals for MOSTs and non-MOSTs 
 Actor Move 
 Same Student Whole Class Teacher Develop Justify Adjourn Clarify 

MOST 65 26 4 37 18 3 5 
non-MOST 63 6 30 25 11 21 23 

 
Actor/Move interactions. We also considered the distribution of Moves by Actor. Three 

moves—develop, clarify and justify—accounted for 111 of the 128 responses with a same 
student actor. We found that the distribution of these moves between MOSTs and non-MOSTs 
paralleled that for the data set overall; develop and justify moves occurred more frequently in 
response to MOSTs and clarify moves occurred more frequently in response to non-MOSTs. The 
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predominant moves directed to the whole class—collect and connect—each occurred twice as 
often for MOSTs as non-MOSTs (although the numbers are small). Still different moves were 
the most common when the teacher was the actor, with adjourn being the most common move, 
followed by dismiss. Adjourn and dismiss moves necessarily had a teacher actor since when a 
teacher uses these moves, they do not provide an opportunity for students to publicly consider 
the instance. The majority of both of these moves were in response to non-MOSTs.  

Recognition of Student Actions and Ideas. The Recognition codes operationalize the extent 
to which the student who provided the instance would recognize their thinking in the teacher’s 
response. More responses to MOSTs than to non-MOSTs were classified as explicit or implicit 
for Student Action (86 MOSTs; 65 non-MOSTs), while more responses to non-MOSTs were 
classified as not aligning with student actions (13 MOSTs; 34 non-MOSTs). In terms of Student 
Ideas, 139 of the 198 total responses remained core to the SMT, and 19 of 198 were peripheral. 
As with the student actions, more responses to MOSTs than non-MOSTs were classified as core 
or peripheral (89 MOST; 69 non-MOST), while more responses to non-MOSTs were classified 
as other and not applicable (10 MOSTs; 30 non-MOSTs). These findings suggest that teachers’ 
responses generally valued students’ contributions by incorporating their actions and ideas. 
Discussion of Productivity of Responses  

We consider the productivity of teacher responses by examining the extent to which a 
response adheres to the four principles for productive use of student mathematical thinking (see 
Figure 1). We discuss several instances, including both MOSTs and non-MOSTs, to illustrate 
how responses with different coding can be more or less productive given the type of SMT to 
which the response is given.  

The majority of adjourn moves (21 of the 24) occurred in response to two particular non-
MOSTs instances. The productivity of this move is not the same for each instance, however. The 
first instance, classified as Opening, involved a student, Sam, giving an answer before other 
students had time to think about the task. Here, the common response, "Let’s give everyone a 
chance to work it out and see what everyone else gets" (T10) is productive because of the poor 
timing of Sam blurting out his answer. Adjourning Sam’s response provides all of the students in 
the class sufficient time to engage in sense making. In scenario G2 (where Pat claims to have 
arrived at the same answer in a different way; classified as Student Mathematics), a similar 
adjourning response to “address Chris’s [the previous student’s] comment first" (T3) might be 
less productive. Because we do not know Pat’s “different way,” making a move to develop his 
idea (as 12 teachers did) could lead to an opportunity to compare and contrast two different 
solution methods. Thus, develop responses, such as, "Talk to us Pat. What did you do?" (T9) 
seem more productive than adjourning this instance. T9’s develop move would position Pat as a 
legitimate mathematical thinker and provide an opportunity for all students to make sense of the 
relationship between Pat’s and Chris’s contributions. 

Develop moves with a same student actor were common for MOSTs. However, because 
MOSTs are opportunities for building on SMT—making student thinking the object of 
consideration by the class—asking the same student to develop or justify their idea may not 
always be necessary and may actually limit other students’ opportunities to jointly participate in 
making sense of mathematical ideas. For example, consider scenario A2 (Figure 2), for which 
nearly half of the develop move responses with same student actor for MOSTs occurred. The 
most common teacher response in this instance was to ask Casey, the student who made the 
suggestion, to explain how they would change the story (e.g., “Well what do you mean? What 
sort of an equation, or what sort of a real-life situation can you think of where that would be a 
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negative?” (T6)). Contrast this response with a similar response directed instead to the whole 
class: “Interesting comment; who can come up with a story, a situation that would match what 
Casey is saying?” (T7). In this case, directing the response to the whole class might be more 
productive, as it would engage all of the students in trying to come up with a situation where the 
coefficient is negative, increasing the likelihood of advancing the entire class’s understanding of 
the mathematics of linear equations. This type of response aligns with all four core principles 
underlying productive use of a MOST, as it positions the students as capable of collaboratively 
making sense of the SMT. 

Sometimes it is productive, however, to direct a response back to the same student. Consider 
an instance in which the student, Jesse, said, “It would have to be divided by x,” an imprecise 
statement that needs clarification because “it” is unclear. The most common move in response to 
this instance was clarify, typically by asking Jesse, “what do you want to divide by x?” (T8). 
This response might be quite productive in helping members of the class figure out what Jesse 
was saying, and in doing so, would position Jesse’s statement as legitimate mathematical 
thinking. Although the collaboration principle for productive use of SMT (Figure 1) privileges 
turning SMT over to the whole class whenever appropriate, cases like this one illustrate instances 
where directing the teacher response to the same student may be a productive first step.  
Productivity also depends on the recognition of student actions and ideas. A large percentage of 
the responses in our data were both explicit and core, meaning that the teachers in this study 
honored the SMT by incorporating the student’s verbal or non-verbal actions and staying focused 
on the student’s core ideas. For example, T8’s response to Jesse discussed above is explicit and 
core as it incorporates both the student’s words (divide by x) and his ideas (what he wanted to 
divide). A response such as this positions the student as a legitimate mathematical thinker by 
keeping the students’ mathematics at the forefront, important aspects of productively using SMT.  

Conclusion and Implications 
By studying teachers’ responses to a common set of instances of SMT with varying potential 

for incorporation into instruction, this study contributes to the teacher response literature by 
illuminating (a) how teachers’ responses vary depending on the potential the SMT that is shared 
has to support student mathematical learning and (b) why some teacher responses are more 
productive than others in particular situations.  

The results revealed that the teachers were generally able to distinguish when different 
moves might be more productive, as different moves were often employed in response to 
MOSTs and non-MOSTs. For example, most whole class actor responses occurred with MOSTs 
and most teacher actor responses occurred with non-MOSTs. However, our finding that the 
majority of teacher responses to both MOSTs and non-MOSTs were directed to the same student 
raises some concerns, as MOSTs are prime opportunities for teachers to engage in the teaching 
practice of building on SMT. Thus, directing responses to such instances to a single student 
results in a missed opportunity. In terms of responsiveness, we found that teacher responses to 
both MOSTs and non-MOSTs often stayed core to the ideas in the SMT and explicitly 
incorporated the students’ actions, signaling that these teachers valued students’ contributions 
and often positioned students as legitimate mathematical thinkers who can make valid 
contributions to the development of the mathematics in the classroom.  

Our findings have the potential to help teacher educators develop a more nuanced 
understanding of what teachers are doing well and where they may need support, thus providing 
more focus to their teacher development efforts. For example, suppose the majority of a teacher’s 
responses honor SMT, but engage only the contributing student. Professional development work 
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could focus specifically on expanding the ways that they honor SMT by studying the potential in 
directing a response to the whole class, and when it would and would not be appropriate to do so. 
Such focused efforts would allow teacher educators to leverage teachers’ strengths and thus 
develop teachers’ practice more effectively. 
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