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Highlights

e A hybrid of mechanistic and statistical models is needed for a predictive model.

e The plant immune signaling network is necessarily resilient and tunable.

e Network resilience conceals underlying mechanisms from pathogens and from us.
e The reliability of pathogen attack information likely tunes the network output.

e Balancing network reduction and rule simplification is a key to a predictive model.
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Abstract

For predictive biology of a large and complex network, important mechanistic information consists
of network topology, signal-convergence rules, and signal dynamics. In practice, the key to enabling
predictive modeling of a complex network is reducing it sufficiently to allow modeling without omitting
important factors affecting network behavior. Here | argue that the plant immune signaling network
must have high levels of resilience and tunability based on the fundamental facts that plants are
evolutionarily disadvantaged relative to microbial pathogens and that unnecessary immune response is
bad for plants. By reducing the middle part of the immune signaling network to a four-sector network,
we previously showed that the middle part indeed has high levels of resilience and tunability and from
what signaling strategies the network properties emerge. The ability to comprehensively reconstitute
the reduced network enabled a reductionist approach to a resilient network, which was crucial for
revealing signaling mechanisms concealed by network resilience. However, this four-sector network may
be reduced too much to make a predictive model with relatively simple signal-convergence rules and
probably requires deconvolution to generate a highly predictive network model with a set of simple

signal-convergence rules.
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1. The types of models and the types of predictions the models can make

One major goal of current biology research is predictive biology: we would like to make a computer
model that accurately predicts the outcome of the system behavior under conditions previously
unexplored. Particularly, we would like to enable such a computer modeling approach with a complex
system, meaning a system with complex behavior. There are two extreme types of computer models,
which | call a strictly mechanistic model and a narrow-sense statistical model. A mechanistic model
explains the behavior of a system based on the principles in lower scales, such as explaining the
behavior of a biological system by a mass action law acting on the molecular components of the system.
In this example, the mass action law is the lower-scale principle, and the stoichiometry and the
association and dissociation rates of each chemical reaction constitute the rule. Rules derived from
lower-scale principles are what we call mechanisms of the system. A strict mechanistic model refers to a
model in which all rules used are derived only from the lower-scale principles. A strictly mechanistic
model requires all mechanistic information of the system to be implemented in the model, i.e., a strictly
mechanistic model is the in silico copy of the actual system. In contrast, a narrow-sense statistical model
does not require any mechanistic information about the system, rather the model is an arbitrary
mathematical function that interpolates multiple data points that inform input-output relationships of
the system. Linear regression is a simplest form of a narrow-sense statistical model. A more complex
form is an implementation of machine-learning in which an arbitrary neural network structure is used.

The two types of models are distinct regarding what type of predictions the models can accurately
make. A strictly mechanistic model can make accurate predictions of the system behavior for any input
values. A narrow-sense statistical model can make accurate predictions only for input values in ranges
where the input-output data used for fitting or training the model were dense. For example, let’s
assume that we have data of the Arabidopsis hypocotyl length 7 days after germination at light

intensities of 15, 30, 45, 60, and 75 pmole/m?/s with many replications. A narrow-sense statistical model



based on this dataset would accurately predict the hypocotyl length at 50 umole/m?/s, but probably not
at 2 umole/m?/s, while a strictly mechanistic model should accurately predict the hypocotyl length at
any light intensity.

Collecting sufficiently dense input-output relationship data to enable a narrow-sense statistical
model may not be that difficult when the model has only one input variable and one output variable
(the light intensity and the hypocotyl length, respectively, in the above example). However, the amount
of input-output relationship information could explode rapidly when multiple input variables (e.g., the
temperature, light quality, and day after germination in the above example) and output variables (e.g.,
in addition to the hypocotyl length, the cotyledon size and the number of days before true leaves
emerge could also be of interest) are involved. In such a case with multiple input and output variables, a
strictly mechanistic model would be much more useful. However, unless the biological system is very
small, it is unrealistic to obtain all the necessary mechanistic information about the system, so it is not
feasible to make a strictly mechanistic model of a large biological system. For this reason, to model a
large biological system, we need to seek a hybrid between the two extreme types of models. Roughly
speaking, the more mechanistic information is incorporated, the more accurate is the prediction of the
model where input-output relationship information in the data is sparse. Hereafter, when predictions
made by a model is discussed, | generally refer to predictions where the input-output relationship

information is sparse, rather than predictions made by interpolation.

2. Mechanistic information important for a predictive model

What constitutes mechanistic information important for a predictive model when obtaining
sufficiently dense data is not realistic? Here | focus on a signaling network as a model representing a
biological system of interest. A signaling network can be represented by vertices (components)

connected by directed edges (arrows representing signal flows). First, we need to make the network



structure as summarized as possible without strongly affecting the network behavior, so that the
complexity of the summarized network structure becomes comparable to the complexity of the data
that can be collected. This summarization procedure is called network reduction. An essential piece of
mechanistic information in the network structure is the network topology. The network topology is the
network structure from which components with only a single input edge are removed (Figs 1A and 1B).
This is because we assume a monotonous input-output relationship (the output always either increases
or decreases when the input increases) at a vertex and because a single-input vertex cannot cause
complex network behavior. On the other hand, a vertex on which multiple input edges converge could
generate a complex output profile and thus constitutes an important piece of mechanistic information.
A tree-like network, which has only diverging but no converging vertices, is not a complex network
however many vertices and edges it has. In contrast, a very small network could be a complex network if
it has signal-converging vertices. In practice, the resulting network topology may still be too complex for
a large network. In that case, edges with weakly influencing signal flows can be removed, and the
topology of this further reduced network can be used. Second, because multiple converging input
signals can cause complex output profiles, the rules that govern the input-output relationships at such
signal-converging vertices are important. It is common in biology papers that signaling network models
are represented by several gene/protein/small molecule component names, which correspond to
vertices, connected by arrows for signal flows between them. The models may contain multiple signal-
converging vertices without specifying the convergence rules. Although such models are typically used
to explain experimental observations, the models with multiple signal-converging vertices can also
explain different potential outcomes by assuming different rules at the converging vertex (Figs 1C-1F).
Models without specified signal-convergence rules do not have the power to discriminate among
multiple potential outcomes and, therefore, constitute weak hypotheses. Third, signal dynamics are

important pieces of mechanistic information. Interesting behavior of a signaling network is typically



associated with its dynamic state, but not with steady states: we are mainly interested in how the
network behaves when a triggering signal(s) is given to the network. If the timing of multiple signals
reaching the signal-converging vertex is changed, the output time-course profile could be changed (Figs
1G and 1H).

In summary, the network topology, the signal-convergence rules, and the signal dynamics constitute
important pieces of mechanistic information for a signaling network. The molecular identities of
components in signaling pathways have been a focus in molecular biology and genetics. Knowing the
molecular identities of vertices could provide practical means to perturb the network at specific vertices,
such as knocking out the gene corresponding to a particular vertex to remove the vertex from the
network. However, the molecular identities themselves do not constitute important mechanistic
information for the purpose of predictive biology. Note that as long as we know the network topology,
signal convergence rules, and signal dynamics, whether a particular vertex represents a specific protein
kinase or is simply named “vertex A” does not make any difference in predicting the network behavior.

This is the beauty of abstraction using network representation and thinking.

3. Practical applications of the network concepts to plant immune signaling.

Making predictions is highly challenging with the plant immune signaling network - hereafter | will
mainly focus on the Arabidopsis network, for which the most mechanistic information and relevant data
are available. First, the network consists of hundreds, if not thousands, of genes, proteins, and small
signal molecules [1]. We need to employ network reduction. The fundamental challenge is that when
the network structure at the scale of genes, proteins, and small signal molecules is not known, we do
not know the network topology. Furthermore, even if the network topology were known, it could still
have too many vertices to be tractable because the plant immune signaling network is highly

interconnected [2].



As a practical approach we focused on four signaling sectors (subnetworks), the jasmonate (JA),
ethylene (ET), PADA4, and salicylate (SA) signaling sectors. This was because each signaling sector can be
removed from the network by a mutation in its hub gene and because simultaneous removal of the four
signaling sectors abolished most inducible immunity in two well-defined cases [3]. We do not think that
the entire immune signaling network can be reduced to the four-sector network. Rather, we interpret
our results as indicating that the four-sector network forms a relative bottleneck in the immune
signaling network while there are substantial parts of the network acting upstream and downstream of
the four-sector network (Fig 2A) [4]. In short, we focused on a middle part of the immune signaling
network and reduced the middle part to a network consisting of four vertices. Technical advantages of
the four-sector network are that the four vertices can be experimentally perturbed individually or in
combinations and the output of each sector can be measured by the associated hormone levels or
marker gene mRNA levels. These advantages enabled us to collect data that supported inference of
network topology, signal-convergence rules and signal dynamics in the four-sector network [5].
Although the precision of the inference was limited mainly due to limited time resolution of the data, we
were able to identify the mechanisms underlying two important properties of the network, resilience

(formerly we used the term robustness for this property) and tunability.

4. Network resilience

Network resilience is defined by the stability of the network output when part of the network is
disabled. In the immune signaling network, pathogens not only trigger the network response but also
produce effectors that attack the network. This pathogen attack differentiates the immune signaling
network from other signaling networks (Fig. 3). Many pathogens are microbes and can evolve much
faster than plants. Therefore, the immune signaling network cannot use adaptive evolution as a main

mechanism to fend off pathogen assault: straightforward evolutionary arms-races do not favor the



plant. The network needs to have some mechanism to buy time to make co-evolution with pathogens
feasible. As discussed below, network resilience can provide a time-buying mechanism, and thus, the
plant immune signaling network needs to be highly resilient.

Network resilience can effectively conceal the underlying signaling mechanism from pathogen
evolution by presenting a deceptive selection landscape to pathogens (Fig 4). We showed that both JA-
mediated signaling and SA-mediated signaling (the latter acting with PAD4-mediated signaling) positively
contribute to two types of inducible immunity against the bacterial pathogen Pseudomonas syringae [3].
However, the positive contribution of the JA-mediated signaling was weaker. In addition, JA- and SA-
mediated signaling negatively regulate each other. This compensating relationship between JA- and SA-
mediated signaling results in the selection landscape of the pathogen, which is a summation of JA- and
SA-mediated signaling contributions (red curve in Fig 4). Note that in this figure, lower parts of the
landscape curve represent better fit of the pathogen as the landscape curve represents the overall plant
immunity level. Through rapid adaptive evolution, often including horizontal transfer of useful effector
genes, the pathogen manipulates the plant’s JA-SA balance toward the minimum of the selection
landscape. Although the plant is more susceptible to the highly adapted pathogen strain, which
corresponds to the minimum of the selection landscape, than the original strain, a substantial level of
immunity is yet to be compromised by the pathogen (“concealed immunity” in Fig 4). It would be
difficult for the pathogen to break the concealed immunity because the pathogen would need to
“decipher” the underlying compensatory relationships between JA-mediated and SA-mediated immunity
and manipulate the JA and SA sector activities independently, instead of just manipulating one of the JA
and SA sectors to shift the JA-SA balance. This difficulty in breaking the concealed immunity could buy
time for the plant to co-evolve a specific counter measure to this pathogen. Not just the JA and SA
sectors but multiple immune signaling mechanisms negatively regulate others [2]. Thus, it is conceivable

that the actual selection landscape presented to a pathogen is much more complex than that in Fig 4,



and the underlying immune signaling mechanisms are likely much better concealed than the situation
illustrated in Fig 4.

Network resilience conceals the underlying signaling mechanisms not only from pathogen evolution
but also from us, researchers. Imagine that a researcher tries to study the network by completely
removing the SA contribution in Fig 4. The effect on immunity is not just loss of the SA contribution but
also compensation by the JA contribution as JA signaling is released from inhibition by SA signaling.
Without knowledge of a positive JA contribution and JA signaling inhibition by SA signaling, the
researcher cannot make a correct mechanistic interpretation of the result. This demonstrates that the
mechanistic interpretation of the effect of removing one vertex from a complex network is not simple: it
is not like studying a pathway with no converging signals, where the function of a vertex is the opposite
of the effect observed by removing the vertex. This is the reason we took the opposite approach in
studying the four-sector network. Instead of comparing the effect of removing sectors to the intact
(wild-type) network, we compared the effect of restoring sectors to the completely broken (quadruple
mutant) network. We call this approach signaling allocation analysis [3] or, more recently, network
reconstitution [6,7]. By network reconstitution, the independent effects of single sectors and the
interactions among the sectors are quantified, which allows much simpler mechanistic interpretations of
the mechanisms underlying the network behavior.

We have shown that transcriptome response to an immune elicitor is highly resilient against
perturbations to the signaling sectors [6]. Using the same set of exhaustively combinatorial sector
perturbation lines of Arabidopsis, the level of resilience in other molecular processes involved in

inducible immunity can be determined as well.

5. Network tunability
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A simple way to build a resilient network is to make a network with switch-like behavior (i.e., a
network with only two output states, ON or OFF). For example, various networks that mediate
developmental programs often use networks with switch-like behavior. However, the immune signaling
network needs more quantitative control of its outputs. This is because immune response is expensive
so that misfiring of immune response would result in a strong negative impact on plant fitness. At the
same time, it is difficult to determine when and what level of immune response is needed, as the
reliability of pathogen attack information is not perfect. The reliability of the information is particularly
limited at the early stages of interactions with microbes. If strong immune response were induced every
time microbes, whether pathogens or non-pathogens, are detected by a plant, the negative impact of
misfiring it against non-pathogens would surpass the benefit of completely stopping occasional
pathogen attacks. Even more subtle control of immune response should be beneficial: plants that induce
just enough immune response according to the potency of pathogens would have better fitness.

The level of the outputs and the spectrum of the outputs need to be tuned. Roughly speaking, a
single large immune signaling network deals with a wide variety of pathogens. This large signaling
network controls hundreds of molecular defenses. A spectrum of defenses is defined by information
about the induced level of each defense. While there is no clear-cut specialization of the immune
signaling mechanisms to particular pathogens, the spectrum of defenses could be shifted in one way or
another. Figs 2B and 2C illustrate shifts in a spectrum of defenses.

We showed that the four-sector network has multiple input ports (shaded circles on the top of the
4-sector network boxes in Fig 2) and that the level and timing pattern of inputs to the multiple input
ports can tune the output level of this highly resilient network (Figs 2B and 2C) [5]. It is likely that
modulation of the signal input pattern can tune the spectrum of defenses as well since the major

defense genes regulated by different signaling sectors are different [8].
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An important difference between situations in which immune response is triggered by well-defined
chemical signals or infection by a pathogen is that with a pathogen, multiple pathogen attack signals of
varying level and timing can be recognized by plant cells. This pathogen signal pattern can be used as a
signature to classify the type of the pathogen. Then, the upstream network can generate the input
pattern to the multiple input ports of the four-sector network according to the pathogen signal
signature (Fig 2D). This computation of the pathogen signal pattern to the four-sector network signal
input pattern is likely selected probabilistically: the level of fitness loss caused by the pathogen if
effective plant immunity is or is not induced and the level of fitness loss associated with misfiring of
immune response are weighted by various probabilities, including the probability that this type of
pathogen attack occurs in the natural environment and the probability that this classification of the
pathogen type is correct. The network tunability based on patterns among multiple input signals can

enable such probabilistic selection of the output tuning.

6. Types of immune response are likely selected according to the reliability of pathogen attack
information.

Pattern-Triggered Immunity (PTI) and Effector-Triggered Immunity (ETI) are two well-characterized
modes of plant immunity, which are generally effective against biotrophic pathogens and
hemibiotrophic pathogens in the early biotrophic phase [9]. PTl and ETI are defined by the types of
molecules that trigger them [10]. PTl is triggered when molecular patterns directly or indirectly derived
from microbes, such as structural molecules of microbes, products of microbe-originated enzymes, and
plant molecules produced in response to damage, are recognized by plant membrane receptors called
pattern recognition receptors. ETl is triggered when pathogen effectors, which are delivered by
pathogens and can inhibit plant immune signaling or promote pathogen virulence in other ways, are

directly or indirectly recognized by resistance (R) proteins inside the plant cell. Since the receptors for
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PTI and ETI are of different types and have different cellular localization, the upstream immune signaling
networks are likely different between PTl and ETI. Although the middle part of the network, the four-
sector network, is highly shared between PTIl and ETI signaling, the four-sector network is used
differently in PTI than in ETI signaling [3]: the main difference between PTI and ETI signaling from the
middle to the downstream network is not the machinery used but how the common machinery is used.
Responses associated with PTI typically include very fast responses (on the order of minutes), but
PTI typically takes long time to develop strong immunity (on the order of 1 day). Responses associated
with ETI typically take a little longer to initiate (on the order of a few hours) but reach strongly induced
levels very rapidly (on the order of another few hours). Although for the sake of simplicity, these typical
responses or signaling processes are called PTl and ETI responses or signaling in the subsequent
paragraphs, it should be noted that there are PTI or ETI cases in which the immunity mode dissociates
from its typical responses. This dissociation is nothing surprising because PTI and ETI are not defined by
the types of immune responses. For example, the rice XA21 receptor kinase recognizes a sulfated
peptide, RaxX21-sY, from the bacterial pathogen Xanthomonas oryzae, and the recognition results in
strong immunity to X. oryzae [11]. Since XA21 recognizes RaxX21 in the apoplast, this recognition mode
is akin to PTI. However, the associated responses are more like typical ETI responses. It clearly shows
that the particular types of receptors, either for PTI or ETI, are not hardwired to the particular types of
responses. Rather, the response types are likely selected according to the reliability of pathogen attack
information. Many molecular patterns that trigger PTI are associated with certain taxa of microbes and
do not particularly distinguish pathogens from non-pathogens. For example, a 22 amino acid peptide
region in flagellin (flg22) is a well-characterized PTI-triggering molecular pattern in Arabidopsis and well-
conserved among Gram-negative bacteria, whether pathogenic or non-pathogenic to Arabidopsis [12].
In contrast, detection of pathogen effectors inside the plant cell that lead to ETl induction indicates that

it is very likely a potent pathogen is present. Thus, lower reliability of pathogen attack information is
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associated with typical PTI response, and higher reliability is associated with typical ETI response. In the
case of PTl triggered by RaxX21-sY, the distribution of RaxX21-sY among bacteria is highly biased toward
potential plant pathogens [11]. Thus, the reliability of RaxX21-sY as pathogen attack information is much
higher than that of a molecular pattern that is nondiscriminatory between pathogens and non-
pathogens, such as flg22, and consequently more ETI-like response and signaling were likely selected in
PTI triggered by RaxX21-sY.

| often use a guard-dog analogy to explain typical PTl and ETI responses. PTl and ETI responses are
analogous to “Fifi” the Chihuahua and “Max” the German Shepherd, respectively. Both Fifi and Max are
dogs (analogous to PTl and ETI using the highly overlapping machinery: in the following, analogous
concepts in immunity are shown in the parentheses following the guard-dog analogies). However, since
they are extreme representatives among dog breeds, there are many qualitative differences between
them (typical PTI and ETI responses are pretty different). Note that there are dog breeds that can be
placed between Fifi and Max as well (potentially selectable output levels and spectra of the immune
signaling network). Whether the different output levels and spectra of the immune signaling network
are fundamentally continuous or whether there are some boundaries among different dynamical
domains in the same network is completely unknown at this point.

When you see a suspicious person, who you are confident is criminal and dangerous, you want to
send Max: “Go get him, Max!” However, if you made a mistake and actually the person was innocent,
you get sued big time (a high cost of misfiring immunity). You want to send Max only when you are
highly confident about the person (highly reliable information about pathogen attack). When you are
not confident, you should send Fifi and have Fifi yap around the person instead (typical PTI response
only). This could be sufficient to chase away a petty criminal (a non-host pathogen). Even when it was a
mistake and the person was innocent, the person would just say, “Oh, silly doggie.” (a low cost of

misfiring immunity). Usually information about the person is limited, particularly in the early stage, so
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sending Fifi first is a smart thing to do. Send Max later if it is necessary. That is what plants usually do:

induce PTI first and induce ETI later.

7. Interpretations of PTl and ETI signaling and response from a network property viewpoint.

Since the signaling machinery highly overlaps, it is very likely that PTI and ETI signaling interact. In
nature, ETl is usually accompanied by PTI because a microbe that delivers an effector that triggers ETI
presents molecular patterns that trigger PTl as well. Of course, a typical natural situation is much more
complex: other effectors delivered could interfere with immune signaling for PTl and ETI, which is called
Effector-Triggered Susceptibility (ETS) [10]; other microbes and environmental factors could affect
immunity; etc. To allow mechanistic interpretations of observations, we should take a strategy
commonly taken to simplify a complex problem, i.e., a reductionist approach. That is what we did in
[13]. To focus on PTI and ETI but to exclude influence of ETS and other factors, we used a single
molecular pattern at a time to trigger PTI and a single pathogen effector at a time to trigger ETI. To
simplify the middle part of the immune signaling network, the four sectors were removed leaving a
remaining functional sector, which we called the ETI-meditating, PTl-inhibited Sector (EMPIS; Fig 2A).

The things we discovered in [13] are: (1) EMPIS can mediate ETI signaling for hypersensitive cell
death response (HR) and ETl-associated gene expression change even when the four sectors are
disabled; (2) this ETI signal-mediating function of EMPIS is inhibited by PTI signaling; (3) Whether the ETI
signal reaches EMPIS before or after inhibition of EMPIS by PTI signaling depends on the ETI triggering
effectors and the consequential ETI signaling rate. Points (1) and (2) explain why EMPIS was not
detected in our earlier study in which ETI was triggered by AvrRpt2 delivered from a bacterium [3]:
molecular patterns unavoidably presented by the bacterium inhibited EMPIS. Point (3) explained why

the HR phenotype caused by different ETI-triggering effectors delivered from a bacterial strain has
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different sensitivities to removal of the four sectors, complete loss of ETI responses in the case of
AvrRpt2 to no effect on ETl responses in the case of AvrRpm1.

These discoveries can be interpreted in a network resilience and tunability context using the guard-
dog analogy. When Fifi is sent first, can we get Fifi’s feedback in deciding whether or not to send Max,
i.e., use Fifi as a scout? If Fifi is happily running back, saying, “I did it! | chased the person away!”, you
can send Max to bed and save the cost of a big meal Max would demand after work (If PTl is effective,
i.e., not compromised by PTS, it is better to stop inducing ETI to reduce the negative impact of
unnecessary immunity). In some cases you may recognize the person as a particularly dangerous
criminal based on previous experience (through natural selection). In this case, Fifi is not a match to the
person and you should send Max even before Fifi reports back (for some ETI triggering effectors, the
signal to induce ETI responses goes through EMPIS before EMPIS has been inhibited by PTI signaling).
This interpretation of Point (3) suggests that pathogen effectors that trigger faster ETI signaling are more
potent than those that trigger slower ETI signaling.

The idea of using Fifi as a scout also has a risk. Can we trust Fifi’s report? Is it smart to make the
potentially dangerous decision of sending Max to bed based only on Fifi’s report? Fifi may be happily
running back because the person gave Fifi a doggie treat but not because Fifi successfully chased the
person away (a pathogen effector could fake an effective PTI signal although PTlI is actually
compromised). A potentially dangerous decision should be made conservatively. The four sectors
needed to be disabled to observe the EMPIS function because the four sectors and EMPIS compensate
each other for ETl signaling, i.e., four sectors and EMPIS together form a highly resilient network. Thus,
in the intact (wild-type) immune signaling network, every signaling sector of the five needs to be
disabled simultaneously to abolish the ETI response. It is conceivable that different measures of immune
success, such as cell integrity and decrease of the ETl-inducing effector amount, can inhibit different

sectors and that ETI response is abolished only when all the different measures report immune success,
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which is highly conservative decision making. A highly resilient signaling network can be used for
conservative decision making about aborting the function of the network. To test this hypothesis, each
signaling sector needs to be isolated first and then measures of immune success that inhibit the sector

needs to be identified.

8. Challenges ahead

Our work based on the four-sector network has been successful in discovery of a resilience-
concealed sector, quantification of network properties, identification of signaling strategies underlying
the network properties, and quantitative interpretations of the network behavior. However, | must
admit that it has not generated many new quantitative predictions. | will discuss what is needed to
enable a quantitatively predictive model based on the modeling fundamentals discussed at the
beginning of this paper.

The four-sector network is not a network reduced from the true network structure. Instead it was
defined by experimental data indicating that the four sectors form a relative bottleneck in immune
signaling. Thus, the network topology needs to be determined based on the data. Although the network
reconstitution approach allowed network topology and signal-convergence rule inferences [5], they
were time-dependent, i.e., they were not determined separately from signal dynamics. This is because
three pieces of mechanistic information are not independent of each other when inferred from the data.
For example, when no significant signal flow from vertices A to B was observed, is it because the vertices
are not connected, which is a topology issue, or because no signal was transmitted at that particular
time point with the particular trigger, which is a dynamics issue? To untangle three pieces of
information, we need to know the exact input and output values of each sector during the entire time

range of interest. Defining these is not a simple task.
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First, definitions of exact inputs and outputs of a sector are unclear because a sector is an
experimentally-defined, highly summarized subnetwork. Since it was not structurally defined, the
boundary of a sector within the network structure is not clear. If the boundary were clear, the edges
coming into and going out of the boundary could be unambiguously defined as inputs and outputs,
respectively, of the sector. Second, since a sector was not topologically defined, there could be feedback
and/or feedforward loop motifs within a sector, which can make behavior within a sector complex. Even
without such motifs, a signal time-course could be delayed by a single-input vertex, i.e, even a vertex
that would be removed from the network topology could affect signal dynamics. A signal-convergence
rule at the sector vertex could be very complex since all potential signal modulations made within the
sector should be included in the convergence rule.

To overcome these complexities, | think that the four-sector network model needs to be
deconvoluted to a model with some more vertices, resulting in a network of vertices with relatively
simple input-output rules. We need two things to enable the deconvolution procedure. First, we need to
define the lower-scale principle to incorporate the mechanistic modeling aspect of the hybrid model.
Since this model has an arbitrary scale, there is no known fundamental lower-scale principle — this is
different from modeling at the chemical reaction scale. Since the model is not expected to be strictly
mechanistic, the lower-scale principle does not have to be exact, but it just needs to be a good
approximation. The principle should be expressed in a particular mathematical function form that is
mechanistically justifiable and has as few parameters as possible. Once the mathematical function form
is defined, the deconvolution procedure is to make a model with the minimum number of additional
vertices (i.e., the most parsimonious network), while each vertex operates based on the mathematical
function with a different set of parameter values. The parameter values and the network topology at
each vertex constitute the rules. Second, we need data to support the deconvolution procedure, which

are input-output relationship data of most, if not all, vertices. How can we collect such data when we do
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not know all the vertices in advance? This is where deep profiling technologies, such as mRNA profiling
(RNA-Seq), help. In this case, we do not use deep profiling data as causal information (e.g., using the
MRNA level of a gene as a proxy of the activity level of the function encoded by the gene) instead we use
the data as detailed descriptions of the network state. For the latter purpose, probably mRNA profiling is
the best deep profiling technology of choice considering data accuracy, information content, and cost.
We anticipate that the mRNA levels of particular genes report the activity levels of specific parts of the
network, possibly with some delay. It is conceivable that mRNA profiling data contain input-output
relationship data of most vertices. Selecting the genes whose mRNA levels are associated with a
particular sector (the marker genes of parts within the sector) is simple. For example, the marker genes
within the JA sector are those whose mRNA levels respond to the trigger in the triple mutant in which
only the JA sector is functional (triple mutations in the ET, PAD4, and SA sectors) but do not respond in
the other triple mutants. Then limited time-series mRNA level patterns among the selected genes are
considered to correspond to the activity time-series patterns somewhere within the JA sector.

Toward predictive biology of the four-sector part of the immune signaling network, we need: (1) the
simple mathematical function form as the lower-scale principle and (2) dense time-series mRNA profile
data from exhaustively combinatorial network perturbations. For (2), it will be helpful if the data are
generated with multiple different triggers, which generate different patterns of input signals to the
multiple input ports of the four-sector network (Figs 2B and 2C). Then we need algorithms: (3) to find
the most parsimonious network when mathematical function form (1) is applied to every vertex; (4) to
calculate input-output level values of most vertices in the networks found in (3) based on data (2).
Although the four-sector network is only a middle part of the entire immune signaling network, it is
already a large and complex network. With the road map discussed above, | envision that a highly

predictive model for this large complex signaling network is within reach. Furthermore, success in
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predictive biology of this signaling network will lay a framework that can be broadly applicable to

predictive biology of other complex signaling networks at any scales.
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Figure legends

Fig 1. Network topology, signal-convergence rules, and signal dynamics are important mechanistic
information about a network. (A) The structure of an example signaling network. The shaded vertices
show those with single input edges. (B) The network topology of (A). The shaded vertices in (A) are
removed. (C-F) Networks with the same topology but different signal-convergence rules. For the sake of
simplicity, Boolean networks, in which each vertex can take the value of either 1 (“on”) or 0 (“off”).
Vertices X and Y are input vertices, and vertices U and V are output vertices. Each row of the tables
shows when vertices X and Y take particular values, what the output values at vertices U and V are. The
logic operators of “AND” or “OR” are used as signal-convergence rules at two signal-converging vertices
U and V. The value of 1 is shaded in the tables, so that it is easy to see that while the input patterns are
the same in (C-F), the output patterns are different. (G-H) Dynamic response of network (D). The time
unit is defined as the time for a signal to travel one edge length in the network. The initial values of the
vertices are all 0 (Time=0). Then the value of input vertex X is changed to 1 permanently, and the value
of input vertex Y is changed to 1 transiently (for 2 time units). The only difference between (G) and (H) is
that the value change at vertex X was 1 time unit delayed in (H). As a result, the output at vertex V is

qualitatively changed: while it is turned on transiently in (G), it never gets turned on in (H).

Fig 2. A conceptual diagram of the immune signaling network. (A) There are substantial networks
upstream and downstream of the 4-sector network. Triggers a-d represent molecular patterns or
pathogen effectors, which trigger signaling for PTI or ETI. The upstream network feeds multiple signals
into the multiple input ports (shaded circles) of the 4-sector network. The four-sector network also
feeds multiple signals into the downstream network. There are many outputs from the downstream

network, which represent induced molecular defenses. Although we initially thought that the four
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sectors form a bottleneck in the middle, later we discovered another sector, EMPIS, for ETI signaling.
EMPIS was not detected earlier due to interactions between ETIl and PTl signaling. There are early
outputs and minor signals, which are independent of the four-sector network. They are represented by
dotted arrows on the left in this panel but omitted in the subsequent panels. (B-C) Different triggers
could generate different signal input patterns at the input ports of the four-sector network. This
difference results in different signal input patterns to the downstream network and eventually results in
different spectra of the defenses (Outputs). The differences in the signal input patterns to the next
network and in the spectrum of the defense induced levels are represented by different patterns of the
widths of the signal flow edges. (D) Combinations of triggers can be used for classification of pathogen
types and generate specific signal input patterns. This idea is signified by illustration showing that the
signal input patterns and the spectrum of the defenses in (D) are different from the additive effects of
(B) and (C) for the signal input patterns and the spectrum of the defenses although the triggers for (D)

(triggers a and c) are the union of triggers for (B) and (C).

Fig 3. Comparison between (A) an ordinary signaling network and (B) the immune signaling network.

Particular challenges plants face in the immune signaling network are boxed in (B).

Fig 4. A conceptual diagram: two compensating immune signaling sectors can generate a deceptive
selection landscape. When both JA (blue) and SA (green) signaling mediate immunity and they are
antagonistic to each other (bottom), the selection landscape (red) resulting from the summation of JA-
and SA-mediated immunity can conceal some immunity (“Concealed immunity”) after adaptation of the

pathogen strain (from “Original strain” to “Adapted strain”).
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