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Sample complexity of the distinct elements problem

Yihong Wu and Pengkun Yang

Abstract. We consider the distinct elements problem, where the goal is to estimate the number of
distinct colors in an urn containing k balls based on n samples drawn with replacements. Based
on discrete polynomial approximation and interpolation, we propose an estimator with additive
error guarantee that achieves the optimal sample complexity within O(loglogk) factors, and
in fact within constant factors for most cases. The estimator can be computed in O(n) time for
an accurate estimation. The result also applies to sampling without replacement provided the
sample size is a vanishing fraction of the urn size.

One of the key auxiliary results is a sharp bound on the minimum singular values of a real
rectangular Vandermonde matrix, which might be of independent interest.
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1. The Distinct Elements problem

The Distinct Elements problem [5] refers to the following question:

Given n balls randomly drawn from an urn containing k colored balls,
how to estimate the total number of distinct colors in the urn?

Originating from ecology, numismatics, and linguistics, this problem is also known
as the species problem in the statistics literature [2,29]. Apart from the theoretical
interests, it has a wide array of applications in various fields, such as estimating the
number of species in a population of animals [14,20], the number of dies used to
mint an ancient coinage [12], and the vocabulary size of an author [13]. In computer
science, this problem frequently arises in large-scale databases, network monitoring,
and data mining [3, 5, 37], where the objective is to estimate the types of database
entries or IP addresses from limited observations, since it is typically impossible to
have full access to the entire database or keep track of all the network traffic. The
key challenge in the Distinct Elements problem is the following: given a small set of
samples where most of the colors are not observed, how to accurately extrapolate the
number of unseens?
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1.1. Main results. The fundamental limit of the Distinct Elements problem is char-
acterized by the sample complexity, i.e. the smallest sample size needed to estimate
the number of distinct colors with a prescribed accuracy and confidence level. A
formal definition is the following:

Definition 1. The sample complexity n*(k, A) is the minimal sample size n such that
there exists an integer-valued estimator C based on 1 balls drawn independently with
replacements from the urn, such that P[|C — C| > A] < 0.1 for any urn containing
k balls with C different colors.!

The main results of this paper provide bounds and constant-factor approximations
of the sample complexity in various regimes summarized in Table 1, as well
as computationally efficient algorithms. Below we highlight a few important
conclusions drawn from Table 1:

From linear to sublinear. From the result for k%578 < A < ¢k in Table 1, we
conclude that the sample complexity is sublinear in k if and only if A = k170,
which also holds for sampling without replacement. To estimate within a constant
fraction of balls A = ck for any small constant ¢, the sample complexity is ® (k/logk),
which coincides with the general support size estimation problem [45,47] (see
Section 1.2 for a detailed comparison). However, in other regimes we can achieve
better performance by exploiting the discrete nature of the Distinct Elements problem.
From linear to superlinear. The transition from linear to superlinear sample
complexity occurs near A = +/k. Although the exact sample complexity near
A = /k is not completely resolved in the current paper, the lower bound and upper
bound in Table 1 differ by a factor of at most log log k. In particular, the estimator via
interpolation can achieve A = +/k with n = O(k loglog k) samples, and achieving
a precision of A < k%370 requires strictly superlinear sample size.

To establish the sample complexity, our lower bounds are obtained under zero-one
loss and our upper bounds are under the (stronger) quadratic loss. Hence we also
obtain the following characterization of the minimax mean squared error (MSE) of
the Distinct Elements problem:

. C-cC\? nlogk n
chmk_lgzla]vEmE(T) —exp%—G)((l\/ A ) /\(logkv;))}
@(l), n < k/logk,
exp (— O(nlogk/k)), kjiogk <n <k,
exp(—@(logk)), k <n <klogk,
exp (— O(%/k)). n > klogk,

where C denotes an estimator using n samples with replacements and C is the number
of distinct colors in a k-ball urn.

IClearly, since C — C € Z, we shall assume without loss of generality that A € N, with A =1
corresponding to the exact estimation of the number of distinct elements.
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A Lower bound ‘ Upper bound Estimator
<1 O(k logk) Naive
[1, vVEk(logk)™] O (k logk/a2) Interpolation

(Section 2.4)

[‘/E(logk)_s,ko'ﬂ‘s] Q(k(1 v logk/az)) ‘O(klog logk )

1viog A%/k
[k0.5+§, ck] Q(ﬁ logk/a) {,-approximation
(Section 2.2)
[ck. (0.5 - 8)k] k exp(—+/O(logk loglogk)) [37]2 0(@)

Table 1. Summary of the sample complexity n* (k, A), where § is any sufficiently small constant,
¢ is an absolute positive constant less than 0.5 (same over the table), and the notations a A b and
a Vv b stand for min{a, b} and max{a, b}, respectively. The estimators are linear with coefficients
obtained from either interpolation or £>-approximation.

1.2. Related work.

Statistics literature. The Distinct Elements problem is equivalent to estimating the
number of species (or classes) in a finite population, which has been extensively
studied in the statistics (see surveys [2,21]) and the numismatics literature (see
survey [12]). Motivated by various practical applications, a number of statistical
models have been introduced for this problem, the most popular four being (cf. [2,
Figure 1]):

The multinomial model. n samples are drawn uniformly at random with replacement;

The hypergeometric model. n samples are drawn uniformly at random without
replacement;

The Bernoulli model. each individual is observed independently with some fixed
probability, and thus the total number of samples is a binomial random variable;

The Poisson model. the number of observed samples in each class is independent
and Poisson distributed, and thus the total sample size is also a Poisson random
variable.

These models are closely related: conditioned on the sample size, the Bernoulli
model coincides with the hypergeometric one, and Poisson model coincides with
the multinomial one; furthermore, hypergeometric model can simulate multinomial

2A more precise result from [37] is the following: for A € [ck, 0.5k —2k3/4 \/@], n*(k,A) >
kexp(— \/O(logk(loglogk + log(k/ (52— A)))) ).




40

one and is hence more informative. The multinomial model is adopted as the main
focus of this paper and the sample complexity in Definition 1 refers to the number
of samples with replacement. In the undersampling regime where the sample size
is significantly smaller than the population size, all four models are approximately
equivalent. See Appendix A for a rigorous justification and detailed comparisons.

Under these models various estimators have been proposed such as unbiased
estimators [19], Bayesian estimators [22], variants of Good-Turing estimators [7],
etc. None of these methodologies, however, have a provable worst-case guarantee.
Finally, we mention a closely related problem of estimating the number of connected
components in a graph based on sampled induced subgraphs. In the special case
where the underlying graph consists of disjoint cliques, the problem is exactly
equivalent to the Distinct Elements problem [17].

Computer science literature. The interests in the Distinct Elements problem also
arise in the database literature, where various intuitive estimators [24,33] have been
proposed under simplifying assumptions such as uniformity, and few performance
guarantees are available. More recent work in [4, 5] obtained the optimal sample
complexity under the multiplicative error criterion, where the minimum sample size
to estimate the number of distinct elements within a factor of & is shown to be © (k/a2).
For this task, it turns out the least favorable scenario is to distinguish an urn with
unitary color from one with almost unitary color, the impossibility of which implies
large multiplicative error. However, the optimal estimator performs poorly compared
with others on an urn with many distinct colors [5], the case where most estimators
enjoy small multiplicative error. In view of the limitation of multiplicative error,
additive error is later considered by [37,43]. To achieve an additive error of ck for a
constant ¢ € (0, %), the result in [5] only implies an 2(1/c) sample complexity lower
bound, whereas a much stronger lower bound scales like k!1~0Welek/ioek) opained
in [37], which is almost linear. Determining the optimal sample complexity under
additive error is the focus of the present paper.

The Distinct Elements problem can be viewed as a special case of the Support Size
problem, where the goal is to estimate the cardinality of the support of an unknown
discrete distribution, whose nonzero probabilities are at least %, based on independent
samples. Improving previous results in [45], the optimal sample complexity has been
recently determined in [47] to be

k k
log? — ). 1.1
®(logk g A) (1.1

Samples drawn from a k-ball urn with replacement can be viewed as i.i.d. samples
from a distribution supported on the set {%, % R %}. From this perspective, any
support size estimator, as well as its performance guarantee, is applicable to the
Distinct Elements problem.
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We briefly describe and compare the strategy to construct estimators in [47]
and the current paper. Both are based on the idea of polynomial approximation, a
powerful tool to circumvent the nonexistence of unbiased estimators [28]. The key is
to approximate the function to be estimated by a polynomial, whose degree is chosen
to balance the approximation error (bias) and the estimation error (variance). The
worst-case performance guarantee for the Support Size problem in [47] is governed
by the uniform approximation error over an interval where the probabilities may
reside. In contrast, in the Distinct Elements problem, samples are generated from
a distribution supported on a discrete set of values. Uniform approximation over a
discrete subset leads to smaller approximation error and, in turn, improved sample
complexity. It turns out that 0(@ logk/A) samples are sufficient to achieve an

additive error of A that satisfies k%>+2() < A < O(k), which strictly improves the
sample complexity (1.1) for the Support Size problem, thanks to the discrete structure
of the Distinct Elements problem.

The Distinct Elements problem considered here is not to be confused with the
formulation in the streaming literature, where the goal is to approximate the number
of distinct elements in the observations with low space complexity, see, e.g. [16,27].
There, the proposed algorithms aim to optimize the memory consumption, but still
require a full pass of every ball in the urn. This is different from the setting in the
current paper, where only random samples drawn from the urn are available.

1.3. Organization. The paper is organized as follows: In Section 2 we describe
a unified approach to construct estimators via discrete polynomial approximation,
whose bias is analyzed in Section 2.2 and variance is upper bounded in Sections 2.3
and 2.4 separately. In Section 3 we obtain lower bounds on the sample complexity in
Table 1 which establish the optimality of the proposed estimators. Section 4 explains
how sample complexity bounds summarized in Table 1 follow from various results
in Sections 2 and 3. Connections between the four sampling model mentioned in
Section 1.2 are detailed in Appendix A. Proofs of auxiliary results are deferred to
Appendix B and Appendix C.

1.4. Notations. All logarithms are with respect to the natural base. The transpose
of a matrix A is denoted by AT. Let 1 denote the all-one column vector.
Let || - ||, denote the vector £,-norm, for 1 < p < oo. Let Poi(1) be the
Poisson distribution with mean A, Bern( p) be the Bernoulli distribution with mean p,
Binomial(#, p) be the binomial distribution with 7 trials and success probability p,
and Hypergeometric(N, K, n) be the hypergeometric distribution with probability
mass function (f)(jx:f)/(lr\[) forOv(n+ K—N) <k <nna K. The n-fold
product of a distribution P is denoted by P®". We use standard big-O notations: for
any positive sequence {a,} and {b,}, a, = O(b,) or a, < b, if a, < cb, for some

absolute constant ¢ > 0, or equivalently, sup,, an/b, < 00; a, = Q(by) or a, Z by,
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if by, = O(ay); an = O(by) or a, =< by if both a, = O(b,) and b, = O(ay);
a, = o(by) ifliman/b, = 0; a, = w(by) if b, = o(ay). Furthermore, the subscript
in 0, (1) indicates convergence in # that is uniform in all other parameters. We use
the notations a A b and a Vv b for min{a, b} and max{a, b}, respectively. For M € N,
let [M] 2 {I,...,M}. Foro e Rand § C R, letaS & {ax :x e S}.

2. Linear estimators via discrete polynomial approximation

In this section we develop a unified framework to construct linear estimators and
analyze its performance. Note that linear estimators (i.e. linear combinations of
fingerprints) have been previously used for estimating distribution functionals [36,
45-47]. As commonly done in the literature, we assume the Poisson sampling model,
where the sample size is a random variable Poi(n) instead of being exactly n. Under
this model, the histograms of the samples, which count the number of balls in each
color, are independent which simplifies the analysis. Any estimator under the Poisson
sampling model can be easily modified for fixed sample size, and vice versa, thanks
to the concentration of the Poisson random variable near its mean. Consequently,
the sample complexities of these two models are close to each other, as shown in
Corollary 1 in Appendix A.

2.1. Performance guarantees for general linear estimators. Recall that C
denotes the number of distinct colors in a urn containing k colored balls. Let k;
denote the number of balls of the ith color in the urn. Then ) ; k; = k and
C = Y Lx;>0p. Let X1, X5, ... be independently drawn with replacement from
the urn. Equivalently, the X;’s are i.i.d. according to a distribution P = (p;)i>1,
where p; = k;/k is the fraction of balls of the ith color. The observed data
are Xi,...,Xn, where the sample size N is independent from (X;);>; and is
distributed as Poi(n). Under the Poisson model (or any of the sampling models
described in Section 1.2), the histograms { N; } are sufficient statistics for inferring any
aspect of the urn configuration; here N; is the number of balls of the i th color observed
in the sample, which is independently distributed as Poi(np;). Furthermore, the
fingerprints {®;} j>1, which are the histogram of the histograms, are also sufficient
for estimating any permutation-invariant distributional property [35,43], in particular,
the number of colors. Specifically, the jth fingerprint ®; denotes the number of
colors that appear exactly j times. Note that U 2 ®y, the number of unseen colors,
is not observed.

The naive estimator, “what you see is what you get,” is simply the number of
observed distinct colors, which can be expressed in terms of fingerprints as

éseen = ZCDJ

Jj=1
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This is typically an underestimator because C = éseen + U. In turn, our estimator is
C=Cen+U, 2.1
which adds a linear correction term

U=> u;o; (2.2)

Jjz1

where the coeflicients u ;’s are to be specified. Since the fingerprints ®¢, @1, ...
are dependent (for example, they sum up to C), (2.2) serves as a linear predictor of
U = @y in terms of the observed fingerprints. Equivalently, in terms of histograms,
the estimator has the following decomposable form:

C=) g, (2.3)

i=1

where g:Z+ — R satisfies g(0) = 0 and g(j) = 1 + u; for j > 1. In fact,
any estimator that is linear in the fingerprints can be expressed of the decomposable
form (2.3).

The main idea to choose the coefficients u ; is to achieve a good trade-off between
the variance and the bias. In fact, it is instructive to point out that linear estimators can
easily achieve exactly zero bias, which, however, comes at the price of high variance.
To see this, note that the bias of the estimator (2.3) is

E[C]-C =) (E[g(N)] - 1),
i>1

where

[E[g(Ni) —1]| = e

. J
R UL

Jj=1

<e % max |¢p(a) — 1], (2.4)
aclk]

and .
A jujn/k)y’
mm-Zy—fF—
j=1
is a (formal) power series with ¢(0) = 0. The right-hand side of (2.4) can be made

zero by choosing ¢ to be, e.g. the Lagrange interpolating polynomial that satisfies
¢(0) =—1and ¢(i) = 0fori € [k], namely,

—1)k+1 k
pay = LTl

i=1

however, this strategy results in a high-degree polynomial ¢ with large coefficients,
which, in turn, leads to a large variance of the estimator.
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To reduce the variance of our estimator, we only use the first L fingerprints
in (2.2) by setting u; = 0 for all j > L, where L is chosen to be proportional
to logk. This restricts the polynomial degree in (2.4) to at most L and, while
possibly incurring bias, reduces the variance. A further reason for only using the
first few fingerprints is that higher-order fingerprints are almost uncorrelated with
the number of unseens ®,. For instance, if red balls are observed for n/2 times,
the only information this reveals is that approximately half of the urn are red. In
fact, the correlation between ®( and ®; decays exponentially (see Appendix B for a
proof). Therefore for L = O(logk), {®;} ;> offer little predictive power about ®y.
Moreover, if a color is observed at most L times, say, N; < L, this implies that,
with high probability, k; < M, where M = O(kL/n), thanks to the concentration
of Poisson random variables. Therefore, effectively we only need to consider those
colors that appear in the urn for at most M times, i.e. k; € [M], for which the bias is
at most

A —n/k _
[Elg(Ni) — 1] = 7% max |¢(a) 1|

(2.5)
— —n/k _1 — —n/k B _1
e max [p(x) 1] =¥ | Bu 1l
where p(x) £ ¢p(Mx) = Z]L~=1 wjxj, w = (wi,...,wz) ", and
/M (1/M)* - (1/M)*
(Mn /Y 2/M  (2/M)? - (2/M)E
wjéu]( .n/), B A / (/) (/) 2.6)
J! : : - :
1 1 1

is a (partial) Vangermonde matrix. Lastly, since éseen < C < k, we define the final
estimator to be C projected to the interval [Cgeen, k]. We have the following error
bound:

Proposition 1. Assume the Poisson sampling model. Let

Bk logk

n

L=alogk, M= 2.7

for any B > « such that L and M are integers. Let w € RL. Let C be defined
in (2.1) with u; = wjj!(%)j for j € [L] and u; = O otherwise. Define
C £ (C V Cyen) A k. Then

E(C — C)? < k2e™2"*||Bw — 1|2, + ke /%

+k max Eypoigmsi 3] + kB0 T3 (2.8
me[M]
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Proof. Since éseen <C <k, C is always an improvement of C. Define the event
E& N {N; < L= kp; <M},

which means that whenever N; < L we have p; < M/ k. Since f > «, applying the
Chernoff bound and the union bound yields P[E€] < k!~A+alogF/e and thus

E(C —C)* <E((C — C)1g)* + K*P[E‘]

_ ) 5 s e (2.9
<E((C — C)1g)" + k>~Aratoech/e,
The decomposable form of C in (2.3) leads to
C-O1g= > (g(N)—Dly,<y £ €.
itk; €[M]
In view of the bias analysis in (2.5), we have
E[E]| < ) e /5| Bw — 1], < ke ™ || Bw —1],. (2.10)

itk; €[M]

Recall that g(0) = 0 and g(j) = u; + 1 for j € [L]. Since N; is independently
distributed as Poi(nk; / k), we have

var[E] = ) " var[(g(Ni) — D1y, <03] < D E[(g(N) — DLy, <13]
itk;e[M] itk;€[M]
= Z (e_”ki/k + E[u%vl]) < ke ™* 4+ k max IEproi(nm/k)[ufv].
ik €[M] me[M]
(2.11)
Combining the upper bound on the bias in (2.10) and the variance in (2.11) yields
an upper bound on E[€2]. Then the MSE in (2.8) follows from (2.9). O

Proposition 1 suggests that the coefficients of the linear estimator can be chosen
by solving the following linear programming (LP):

min ||Bw —1 2.12
min [|Bw 1], @12)

and showing that the solution does not have large entries. Instead of the £o,-approxi-
mation problem (2.12), whose optimal value is difficult to analyze, we solve the
{,-approximation problem as a relaxation:

min ||Bw — 1|2, (2.13)
weRL
which is an upper bound of (2.12), and is in fact within an O(logk) factor
since M = O(klogk/n) and n = Q(k/logk). In the remainder of this section,
we consider two separate cases:
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(i) M > L (n < k): Inthis case, the linear system in (2.13) is overdetermined and the
minimum is non-zero. Surprisingly, as shown in Section 2.2, the exact optimal value
can be found in closed form using discrete orthogonal polynomials. The coefficients
of the solution can be bounded using the minimum singular value of the matrix B,
which is analyzed in Section 2.3.

(iil) M < L (n Z k): In this case, the linear system is underdetermined and the
minimum in (2.13) is zero. To bound the variance, it turns out that the coefficients
bound obtained from the minimum singular value is not precise enough in this regime.
Instead, we express the coefficients in terms of Lagrange interpolating polynomials
and use Stirling numbers to obtain sharp variance bounds. This analysis in carried
out in Section 2.4.

We finish this subsection with two remarks:

Remark 1 (Discrete versus continuous approximation). The optimal estimator for
the Support Size problem in [47] has the same linear form as (2.1); however, since
the probabilities can take any values in an interval, the coefficients are found to be
the solution of the continuous polynomial approximation problem

L

inf max |p(x)—1| :exp(—G)(—)). (2.14)
P xe[4.1] v M

where the infimum is taken over all degree-L polynomials such that p(0) = 0,

achieved by the (appropriately shifted and scaled) Chebyshev polynomial [40]. In

contrast, in Section 2.2 we show that the discrete version of (2.14), which is equivalent

to the LP (2.12), satisfies

L2
inf max |p(x) — 1| = poly(M) exp (— @(—)) (2.15)
P xef 12 M

W N |
provided L < M. The difference between (2.14) and (2.15) explains why the sample
complexity (1.1) for the Support Size problem has an extra log factor compared to
that of the Distinct Elements problem in Table 1. When the sample size n is large
enough, interpolation is used in lieu of approximation. See Fig. 1 for an illustration.

(a) Continuous approximation (b) Discrete approximation (c) Interpolation

Figure 1. Continuous and discrete polynomial approximations for M = 6 and degree L = 4,
where (a) and (b) plot the optimal solution to (2.14) and (2.15) respectively. The interpolating
polynomial in (c) requires a higher degree L = 6.
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Remark 2 (Time complexity). The time complexity of the estimator (2.1) consists of:

(a) Computing histograms N; and fingerprints ®; of n samples: O (n);

(b) Computing the coefficients w by solving the least square problem in (2.5):
O(L*(M + L));

(¢) Evaluating the linear combination (2.1): O(n A k).

As shown in Table 1, for an accurate estimation the sample complexity is
n = Q(k/logk), which implies L = O(logk) and M = O(log? k). Therefore,
the overall time complexity is O(n + log* k) = O(n).

2.2. Exact solution to the £,-approximation. Next we give an explicit solution to
the £,-approximation problem (2.13). In general, the optimal solution is given by
w* = (BTB)"'B "1 and the minimum value is the Euclidean distance between the
all-one vector 1 and the column span of B, which, in the case of M > L, is non-zero
(since B has linearly independent columns). Taking advantage of the Vandermonde
structure of the matrix B in (2.6), we note that (2.13) can be interpreted as finding the
orthogonal projection of the constant function onto the linear space of polynomials
of degree between 1 and L defined on the discrete set [M]/ M . Using the orthogonal
polynomials with respect to the counting measure, known as discrete Chebyshev
(or Gram) polynomials (see [38, Section 2.8] or [34, Section 2.4.2]), we show that,
surprisingly, the optimal value of the £,-approximation can be found in closed form:

Lemmal. Forall L>1and M > L + 1,

(M+L+1) —1/2 12 —1/2
min, |Bw—1|, = [(LM;I) - 1} = |:exp (@(ﬁ))—l] . (2.16)
we L+1

Proof. Define the following inner product between functions f and g:

M . .
A 1 1
,8) = — — 2.17
0237 (5) ¢ () @17
and the induced norm || f|| 2 VA{f, f). The least square problem (2.16) can be
equivalently formulated as

min |—1 +w1x+w2x2+---+wLxL||. (2.18)
weRL

This can be analyzed using the orthogonal polynomials under the inner product (2.17),
which we describe next.
Recall the discrete Chebyshev polynomial [38, Sec. 2.8]: forx =0,1,..., M —1,

1 1 & (m ,
tm(x) & %A’”pm(x) = > =1y (J.)pm(x +m—j), 0<m<M-—1,
| &

(2.19)
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where
(@) Ex(x=1) - (x=m+D)(x-M)(x—M—1)---(x—M —m+1), (2.20)

and A™ denotes the mth order forward difference. The polynomials {¢q, ..., fp—1}
are orthogonal with respect to the counting measure over the discrete set
{0,1,..., M — 1}; in particular, we have (cf. [38, Sec. 2.8.2, 2.8.3]):

M-1

D tm()(x) =0, m#L,

x=0

M-1 MM2_12 M2_22 M2_ 2

S 2 = M =2 O =) iy,
x=0

By appropriately shifting and scaling the set of polynomials #,,, we define an
orthonormal basis for the set of polynomials of degree at most L < M — 1 under the
inner product (2.17) by

tm(Mx —1
o) = mMX =D oL 2.21)
ve(M,m)
Since {¢m, },ﬁ=0 constitute a basis for polynomials of degree at most L, the least
square problem (2.18) can be equivalently formulated as

L
min
a:ytya;j¢i(0)=—1

= min_all,,

oy
‘ 9 a:(a,$(0))=—1

i=

where ¢(0) £ (¢0(0),...,¢1(0)), a = (ap,...,ar), and (-,-) denotes vector
inner product. Thus, the optimal value is clearly 1/ ||¢(0)|,, achieved by a* =

—$(0)/ l$(0)]3-
From (2.20) we have

Pm(0) = pm(1) = --- = pp(m —1) = 0.
By the formula of #,, in (2.19), we obtain
1 m
tm(=1) = —(=1)"pm(=1) = (=D [ [(M + ).
m!
j=1

In view of the definition of ¢, in (2.21), we have

m(=1) _ D" (M + ) _ 1y 2m + 1 ﬁ M+ j
Ve (M, m) \/M H;{tzl(Mz_jz) M i M—j

2m+ 1

dm (0) =
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Therefore
L m . M+L+1
2 2m +1 M+J_(L+1)_
IPOIE =3 = ,H:l i A
where the last equality follows from induction since
(A () ot ey
(LIVH) (AZ) M j=1 M=

This proves the first equality in (2.16).
The second equality in (2.16) is a direct consequence of Stirling’s approximation.
If M =L + 1, then

Miat (2(L +1)
(1) L+1

If M > L+2,denotingx = (L+1)/M and applyingn! = ~/2wn(n/e)" (14+0(1/n))
when n > 1, we have

) = exp (O(L)). (222)

(i) _ M L+ DM - L= 1)) (ML + x)(M(1 - x))!
(1) M1y M1y

(m(ww(”” ZM(T — ) (M=) MO )
(I + O30+ + ma=n))
27M (2)*M (14 ©(4))

1+ O(m
= VT=x2exp (M ((1 + x)log(1 + x) + (1 — x) log(1 — x))) 1 Jfgéll‘; )
M
_ 2, L > 1+ O (=)
—exp(®(Mx)—|—§log(l—x)+10g 1+®(%) , (2.23)

where the last step follows from (1 + x)log(1 + x) + (1 — x)log(1 — x) = O(x?)
when 0 < x < 1. In the exponent of (2.23), the term ©(M x?) dominates when
M > L+2. Applying (2.22) and (2.23) to the exact solution (2.16) yields the desired
approximation. O

2.3. Minimum singular values of real rectangle Vandermonde matrices. In Prop-
osition 1 the variance of our estimator is bounded by the magnitude of coefficients u,
which is related to the polynomial coefficients w by (2.6). A classical result from
approximation theory is that if a polynomial is bounded over a compact interval,
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its coefficients are at most exponential in the degree [40, Theorem 2.9.11]: for any
degree-L polynomial p(x) = ZiL=0 w;x’,
| < O(L)), 2.24
Jmax, Jwi| < xren[gfculp(X)lexr)( (L)) (2.24)
which is tight when p is the Chebyshev polynomial. This fact has been applied in
statistical contexts to control the variance of estimators obtained from best polynomial
approximation [9, 26,47,48]. In contrast, for the Distinct Elements problem, the
polynomial is only known to be bounded over the discretized interval. Nevertheless,
we show that the bound (2.24) continues to hold as long as the discretization level
exceeds the degree:

| < O(L)). 2.25
OgixLlwzl_xe{ﬁrr}g ’’’’ 1}|P(x)|exp( (L)) (2.25)

provided that M > L + 1 (see Remark 3 after Lemma 2). Clearly, (2.25)
implies (2.24) by sending M — oo. If M < L, a coefficient bound like (2.25) is
impossible, because one can add to p an arbitrary degree- L interpolating polynomial
that evaluates to zero at all M points.

To bound the coefficients, note that the optimal solution of £,-approximation is
w* = (BTB)"!'BT1, and consequently

111l
Omin(B) '

where omin(B) denotes the smallest singular value of B. Let

Loym (Ym)> - ()"
AN S C

lw*|l2 <

(2.26)

[am—

1 1 1
which is an M x (L 4+ 1) Vandermonde matrix and satisfies omm(E) < Omin(B)
since B has one extra column. The Gram matrix of B is an instance of moment
matrices. A moment matrix associated with a probability measure u is a Hankel
matrix M given by M; ; = m;4 ;_», where my = fxédu denotes the £th moment
of . Then ﬁB T B is the moment matrix associated with the uniform distribution
over the discrete set {%, %, ..., 1}, which converges to the uniform distribution
over the interval (0, 1). The moment matrix of the uniform distribution is the famous
Hilbert matrix H, with
1

i+j—-1

which is a well-studied example of ill-conditioned matrices in the numerical analysis
literature. In particular, it is known that the condition number of the L x L Hilbert

Hij =
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matrix is O((1 + ~/2)*£/+/L) [41] and the operator norm is ©(1), and thus the
minimum singular value is exponentially small in the degree. Therefore we expect the
discrete moment matrix ﬁg T B to behave similarly to the Hilbert matrix when M
is large enough. Interestingly, we show that this is indeed the case as soon as M
exceeds L (otherwise the minimum singular value is zero).

Lemma 2. Forall M > L + 1,

E 1 M+ L L+0.5
Omin = . (227)
JM ) T L227LQL + 1)\ eM

Remark 3. The inequality (2.25) follows from Lemma 2 since the coefficient vector
w = (wo,...,wr) satisfies

— M —
IBwl2 < =[| Bw oo

w < llw < —
[wlloo < lwll2 < o (B) omn(B)

Remark 4. The extreme singular values of square Vandermonde matrices have
been extensively studied (c.f. [1, 18] and the references therein). For rectangular
Vandermonde matrices, the focus was mainly with nodes on the unit circle in the
complex domain [6, 15,30] with applications in signal processing. In contrast,
Lemma 2 is on rectangular Vandermonde matrices with real nodes. The result on
integers nodes in [11] turns out to be too crude for the purpose of this paper.

Proof. Note that BT B is the Gramian of monomials x = (1, x, X2, ..., xL)—r under

the inner product defined in (2.17). When M > L + 1, the orthonormal basis
¢ = (¢o.....¢r) " under the inner product (2.17) are given in (2.21). Let ¢ = Lx
where L € REFDX(LAD) g4 Jower triangular matrix and L consists of the coefficients
of ¢. Taking the Gramian of ¢ yields that / = L(BT B)L, i.e. L™! can be obtained
from the Cholesky decomposition: BT B = (L™')(L™!)T. Then3

1

L,
0. (B)y=——5 > ——,
L2, ~ L)%

min

(2.28)

where |-, denotes the £ operator norm, which is the largest singular value of L,

and ||-||  denotes the Frobenius norm. By definition, ||L||% is the sum of all squared
coefficients of ¢y, ...,¢r. A useful method to bound the sum-of-squares of the
coefficients of a polynomial is by its maximal modulus over the unit circle on the
complex plane. Specifically, for any polynomial p(z) = > ;_, a;z', we have

n

1
Slal =5-¢ IpePd < swp pE)P, (2.29)
i=0 7 Jlz1=1

|z|=1

3The lower bound (2.28), which was also obtained in [8, (1.13)] using Cauchy—Schwarz inequality, is
tight up to polynomial terms in view of the fact that ||L|| 7 < (L + D||IL|lop.
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Therefore
1

>
o L
Ik o suppicy [m(2)?
o1 1
T VL4 18UPg<m<r jz|=1 lpm (2)]

For a given M, the orthonormal basis ¢, (x) in (2.21) is proportional to the
discrete Chebyshev polynomials t,,, (M x — 1). The classical asymptotic result for the
discrete Chebyshev polynomials shows that [38, (2.8.6)]

— 1
Gmin(B) >
ILI 7
(2.30)

lim M "t,(Mx) = P,(2x — 1),
M —oco

where Py, is the Legendre polynomial of degree m. This gives the intuition that
tm(x) ~ M™ for real-valued x € [0, M]. We have the following non-asymptotic
upper bound (proved in Appendix C) for 7, over the complex plane:

Lemma3. Forall0 <m < M —1,

ltm(2)] < m?2°™ sup (|z +&|v M)". (2.31)

0<é<m

Applying (2.31) on the definition of ¢,, in (2.21), for any |z| = 1 and any
M > L + 1, we have

(M2 —1)] m227m pm
pm(2)] = — < .
Ve(M,m) M(M2—12)(M2=22)-~(M2—m?)
2m+1

The right-hand side is increasing with m. Therefore,

L227LML
sup | (2)| <
o<m<L|zl=1 \/M(MZ—12)(M2—22)---(M2—L2)
2L+1

1 ) 7L¢7 M2L+l
= L2L L +1 .
M (gﬁﬁ)(zL + 1)!

Combining (2.30), we obtain

AN I \/(gﬁfl)(zLH)!
min \/M - L227L\/(L+1)(2L+1) M2L+1

1 M+ L L+0.5
>
= L227LQ2L + 1) ( eM ) ’

where in the last inequality we used (Z) > (n/k)* and n! > (n/e)". O
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Using the optimal solution w* to the £>-approximation problem (2.13) as the
coefficient of the linear estimator C, the following performance guarantee is obtained
by applying Lemma 1 and Lemma 2 to bound the bias and variance, respectively:

Theorem 1. Assume the Poisson sampling model. Then,

R log k
E(C - C)? < k2exp (—@ (1 v’ ;’f A logk)) . (2.32)

Proof. If n < @, then the upper bound in (2.32) is ©(k?), which is trivial thanks
to the thresholds that C = (5 \Y éseen) A k. It is hereinafter assumed that n > @,

or equivalently M < O%Lz; here M, L are defined in (2.7) and the constants «, 8 are
to be determined later. Then, from Lemma 1,

L2
1Bw* — 1 < | Bw* — 1]l < exp (—@ (ﬁ)) | (233)
In view of (2.26) and Lemma 2, we have
0¥ < 0¥l < M2 < o (0(1)),.
- - Omin(B) -

Recall the connection between u; and w; in (2.6). For 1 < j < L < Blogk, we
have

Uu; = W; j' < wj
ogk) — Blogk’
7 7 (Blogk)l ~ Blogk
Therefore,
* exp (O(L
[ ]loo < [w”lleo _ exp (O(L)) (2.34)

Blogk = PBlogk
Applying (2.33) and (2.34) to Proposition 1, we obtain

R 2 log k
E(C —C)? < k?exp (—?” e (” ;’f )) + ke Ik

exp (0(ogh))  _(g-aioe —3)
(Blogk)? '

Then the desired (2.32) holds as long as f is sufficiently large and « is sufficiently
small. 0

2.4. Lagrange interpolating polynomials and Stirling numbers. When we samp-
le at least a constant faction of the urn, i.e. n = Q(k), we can afford to choose o
and f in (2.7) so that L = M and B is an invertible matrix. We choose the coefficient
w = B~'1 which is equivalent to applying Lagrange interpolating polynomial and
achieves exact zero bias. To control the variance, we can follow the approach in
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Section 2.3 by using the bound on minimum singular value of the matrix B, which
implies that the coefficients are exp(O(L)) and yields a coarse upper bound

0 ( X logk i )
1 vlogA“/k
on the sample complexity. As previously announced in Table 1, this bound can be
improved to
log k

1V logAa?/ k)
by a more careful analysis of the Lagrange interpolating polynomial coefficients
expressed in terms of the Stirling numbers, which we introduce next.

The Stirling numbers of the first kind are defined as the coefficients of the falling
factorial (x), where

O(k log

n

p=x(x=1...x—n+1)= Zs(n,j)xj.

j=1

Compared to the coefficients w expressed by the Lagrange interpolating polynomial:

M
ijxj—l =_(1—xM)(2—xA]l4/I!)...(M—xM)’
j=1

we obtain a formula for the coefficients w in terms of the Stirling numbers:
(_ 1 )M +ipJ
W = ————

M!

Consequently, the coefficients of our estimator u ; are given by

S(IM+1,j+1), 1<j<M.

) j
u; = (—1)M+1# (%) s(M 41,7 +1). (2.35)
The precise asymptotics the Stirling number is rather complicated. In particular, the
asymptotic formula of s(n, m) asn — oo for fixed m is given by [25] and the uniform
asymptotics over all m is obtained in [32] and [39]. The following lemma (proved
in Appendix C) is a coarse non-asymptotic version, which suffices for the purpose of
constant-factor approximations of the sample complexity.

Lemma 4.

Is(n + 1,m + 1) :n!(G) (l (1vlogﬁ))) (2.36)
m m

We construct C as in Proposition 1 using the coefficients u ; in (2.35) to achieve
zero bias. The variance upper bound by the coefficients u is a direct consequence
of the upper bound of Stirling numbers in Lemma 4. Then we obtain the following
mean squared error (MSE):
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Theorem 2 (Interpolation). Assume the Poisson sampling model. If n > nk for some
sufficiently large constant 0, then
E(é _ C)2 < ke—@(n/k) + k—0.5—3.5%log(k/en)

k exp (—k2 lggke_g("/k)), n < kloglogk,

n

+ {k(©(k/n)log kii#k)zn/k, kloglogk <n < k/logk,

0, n 2 ky/logk.

Proof. In Proposition 1, fix § = 3.5 and @ = Bk/n so that L = M. Our goal is to
show an upper bound of

M .
A/
max IEproi(A)[u%v]z max uz-e_k,—r (2.37)

ren/i[M] renfi[M] ot J

Here the coeflicients u ; are obtained from (2.35) and, in view of (2.36), satisfy:

nk M\’
|uj|§( (1vlog—.)) , 1<j<M, (2.38)
J

n

for some universal constant . We consider three cases separately:

Casel: n > \/ﬁk‘/log k. 1In this case we have #/k > M. The maximum of each
summand in (2.37) as a function of A € R occurs at A = j. Since j < n/k, the
maximum over A € n/k[M] is attained at A = #/k. Then,

EnNpoicn [u%] = E N <poicn/ir [4%]- 2.39
Aer’{}%m N~poi(i) (U] N~Poi(n/x) Uy ] (2.39)

In view of (2.38) and j > 1, we have |u;| < (O(k/n)log M)/ . Then,
k log M \? N
EvaPoi(n/k)[u%V] < E N ~poi(n/x) (9( Y ) )

log M \?
eolj o) ) e

as long as n = kloglogk and thus (klog M)/n < 1. Therefore,

max  Ey-poin[ud] < e 0 n > kylogk. (2.40)
Aen/k[M]
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CaseIl: nkloglogk <n < \/ﬁk,/log k. We apply the following upper bound:

max Epy~ u
Aen/x[M] N Pm()L)[ N]

= max Epy~ Livonsa] + max Eno Linvon
renjitmy N ro [ L] renjetmy N poi() [ L <] oan

< max |u;|> 400,
nk<j<M

where the upper bound of the second addend is analogous to (2.39) and (2.40). Since

nk/n < 1, the right-hand side of (2.38) is decreasing with j when j > M/e. It

suffices to consider j < M/e, when the maximum as a function of j € R occurs at

j* < Me™"/"% Since Me™"/"% < n/k when n > nk loglogk, the maximum over

n/k < j < M is attained at j = n/k. Applying (2.38) with j = n/k to (2.41) yields

2n/k

k k210 k
E n poi ® lo —O/k) 2.42
jnax By poiy [ N] < ( (n) og ) +e (2.42)

Case III: nk < n < nkloglogk. We apply the upper bound of expectation by the
maximum:

max Epy- u%] < max u?
Aen/k[M] N Po1(,1)[ N] je[M] Jj

Since nk/n < 1, the right-hand side of (2.38) is decreasing with j when j > M/e,
so it suffices to consider j < M/e. Denoting x = logM/j and t = O(k/n),
in view of (2.38), we have |u;| < exp(Me *log(rx)), which attains maximum
at x* satisfying e'/*" /x* = 7. Then,

where the last inequality is because of 7 > 1/x*. Therefore,

k?logk
max IEprm(A)[uN] < exp (%6_@)("/")) , k <n<kloglogk.

Aen/k[M]
(2.43)
Applying the upper bounds in (2.40), (2.42) and (2.43) to Proposition 1 concludes
the proof. O

Remark 5. It is impossible to bridge the gap near A = +/k in Table 1 using the
technology of interpolating polynomials that aims at zero bias, since its worst-case
variance is at least k' 7 when n = O(k). To see this, note that the variance term
given by (2.11) is

ZE N~poi(np;) [U 3] Z Z 2o ("L. (2.44)
j=1

Di pi
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Consider the distribution Uniform[r/jo] with jo = Le >/ = Q(logk), which
corresponds to an urn where each of the »/;, colors appears equal number of times.
By the formula of coefficient u; in (2.35) and the characterization from Lemma 4,
the j = jo term in the summation of (2.44) is of order %(% log M/ jy)?/0 = ;’—02210,
which is already k!9,

3. Optimality of the sample complexity

In this section we develop lower bounds of the sample complexity which certify the
optimality of estimators constructed in Section 2. We first give a brief overview
of the lower bound in [5, Theorem 1], which gives the optimal sample complexity
under the multiplicative error criterion. The lower bound argument boils down to
considering two hypothesis: in the null hypothesis, the urn consists of only one color;
in the alternative, the urn contains 2A -+ 1 distinct colors, where k — 2A balls share
the same color as in the null hypothesis, and all other balls have distinct colors.
These two scenarios are distinguished if and only if a second color appears in the
samples, which typically requires Q2(k/A) samples. This lower bound is optimal for
estimating within a multiplicative factor of \/Z, which, however, is too loose for
additive error A.

In contrast, instead of testing whether the urn is monochromatic, our first lower
bound is given by testing whether the urn is maximally colorful, that is, containing k
distinct colors. The alternative contains k — 2A colors, and the numbers of balls of
two different colors differ by at most one. In other words, the null hypothesis is the
uniform distribution on [k] and the alternative is close to uniform distribution with
smaller support size. The sample complexity, which is shown in Theorem 3, gives
the lower bound in Table 1 for A < Vk.

Theorem 3. If 1 < A < £ then

n*(k,A) > Q (k :/;A) . (3.1)

1< A<k then

. k klog(l + %), A<k,
n*(k,A) > Q (k arccosh (1 + m)) = {k% A A= VR (3.2)

Proof. Consider the following two hypotheses: The null hypothesis Hy is an urn
consisting of k distinct colors; The alternative H; consists of k — 2A distinct colors,
and each color appears either b, £ Lk—%J or by £ [k_%] times. In terms of
distributions, Hj is the uniform distribution Q = (%, el %); H, is the closest
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perturbation from the uniform distribution: randomly pick disjoint sets of indices
I, J C [k] with cardinality |/| = ¢; and |J| = ¢3, where ¢; and ¢, satisfy
(number of colors) ¢y + ¢y =k —2A,
(number of balls)  ¢1by + c2b, = k.

Conditional on § £ (1, J), the distribution Py = (pg,1,..., pek) is given by
bk, i€,
PO = \bosi, ieJ.

Put the uniform prior on the alternative. Denote the marginal distributions of the n
samples X = (Xq,..., Xy) under Hy and H; by Q x and Py, respectively. Since the
distinct colors in Hy and H are separated by 2A, to show that the sample complexity
n*(k, A) > n, it suffices to show that no test can distinguish Hy and H; reliably
using n samples. A further sufficient condition is a bounded y? divergence [42]

P2
£exlon 2 [ 2 -1 <o
Ox
The remainder of this proof is devoted to upper bounds of the y? divergence.

Since Pxjg = P2" and Qx = Q®”, we have

X (PX||QX)+1—/ Ox (EQPXIO)Q(;E;G/PXW/)

Px0 Px\o/ PgPgr\"

where 6’ is an independent copy of 6. By the definition of Py and Q,

PPy b? b3 bib
A =—1|101’|+f|JnJ’|+ 2

((InJ'[+]|JNnT)

0
(3.3)
—1+ZA,,
i=1
where
b2 6‘2 2 CZ
A b n_ ‘1 a by 2
Al_k(um k), As (|Jm| )
_ b1b2 ’ Cc1C2 b bz C1C2
A3_T(|1mJ|—T), and Ay = 2 (|Jm|— k)

are centered random variables. Applying 1+x < e¢* and Cauchy—Schwarz inequality,
we obtain

4
(Px0x) + 1 = Ele"=i=14] < [T (E[e*4)) ", (3.4)
i=1
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Consider the first term E[e*"41]. Note that |/ N I’| ~ Hypergeometric(k, ¢y, c1),
which is the distribution of the sum of ¢; samples drawn without replacement
from a population of size k which consists of ¢y ones and k — c¢; zeros. By the
convex stochastic dominance of the binomial over the hypergeometric distribution
[23, Theorem 4], for Y ~ Binomial(cy, ¢1/k), we have

2 1/4
@l < (& [oo (G20 /0 |)
< cf ( (4nbf)_1_ 4nbf)
eXp(4k TP\ k )
< c? 4nb3 ! 4nb3 3.5
oo (5 (oo (%) 1 -7)). 09

where the last inequality follows from the fact that x — e* — 1 — x is increasing
when x > 0. Other terms in (3.4) are bounded analogously and we have

X (Px|0x) +1

2 2 2 2
¢y +¢5 +2cic2 4nb; 4nb;
—1=
fe"p( 4K (eXp( k k
_. (k —2A)? oo (4] K 2 |4k 2
B Y A% | k=2a kKlk=2al))

If k —2A > <k, the upper bound (3.6) implies that n*(k, A) > Q(k—2A/Vk)
since the y2-divergence is finite with O (k—24/k) samples, using the inequality that

Y 1l—x<x*2forx > 0;ifk —2A < Vk, the lower bound is trivial since
k=2A/k < 1.

Now we prove the refined estimate (3.2) for 1 < A < k/4, in which case |/| =
c1 = k—4A,|J| = ¢ = 2A, and by = 1, b, = 2. When c; is close to £,
Hypergeometric(k, ¢y, ¢1) is no longer well approximated by Binomial(cy, ¢1/k), and
the upper bound in (3.5) yields a loose lower bound for the sample complexity. To
fix this, note that in this case the set K £ (I U J)€ has small cardinality |K| = 2A.
The equality in (3.3) can be equivalently represented in terms of J, J’ and K, K’ by

(3.6)

Py Py [JNJ|+|KNK'|—|JNK'|—|KNJ|
— =14+ .

0 k
By upper bounds analogous to (3.4)—(3.6),

4
1
P(Px]0x) + 1 HE[e“"B )"
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where

(>

By %(u nJ'|— (Zkﬁ) B, 2 %(|Kﬂ K| - (Zkﬁ)

(2A)? (24)?
e )

B2 (17 nk-220) and B2 (1K~

Note that |J N J'|, |[K N K|, |J N K'|, |K N J’| are all distributed as
Hypergeometric(k,2A,2A), which is dominated by Binomial(2A,24/k). For
Y ~ Binomial(2A, 24/k), we have

1/4
(IE[e‘”’[”i])l/4 < (IE |:exp (t (Y — (22)2)))] < exp ((24Ak)2 (e —1— t)).

with t = 4n/k fori = 1,2 and t = —4n/k for i = 3, 4. Therefore,

2

A —an
XZ(PX”QX) +1< exp( . (2e4n/k 42 4nfk _4))
4A?
= exp (T(cosh(4n/k) — 1)) (3.7
The upper bound (3.7) yields the sample complexity

n*(k,A) > Q(k arccosh (1 + Alk?)) O

Now we establish another lower bound for the sample complexity of the Distinct
Elements problem for sampling without replacement. Since we can simulate sampling
with replacement from samples obtained without replacement (see (A.1) for details),
it is also a valid lower bound for n*(k, A) defined in Definition 1. On the other
hand, as observed in [37, Lemma 3.3] (see also [44, Lemma 5.14]), any estimator C
for the Distinct Elements problem with sampling without replacement leads to an
estimator for the Support Size problem with slightly worse performance: Suppose
we have n i.i.d. samples drawn from a distribution P whose minimum non-zero
probability is at least 1/£. Let éseen denote the number of distinct elements in these
samples. Equivalently, these samples can be viewed as being generated in two steps:
first, we draw k i.i.d. samples from P, whose realizations form an instance of a
k-ball urn with éseen distinct colors; next, we draw n samples from this urn without
replacement (n < k), which clearly are distributed according to P®". Suppose Cieen
is close to the actual support size of P. Then applying any algorithm for the Distinct
Elements problem to these # i.i.d. samples constitutes a good support size estimator.
Lemma 5 formalizes this intuition.
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Lemma 5. Suppose an estimator C takes n samples from a k-ball urn (n < k)
without replacement and provides an estimation error of less than A with probability
at least 1 —48. Applying C withn i.id. samples from any distribution P with minimum
non-zero mass 1/ and support size S(P), we have

IC —S(P)| <2A

with probability at least 1 —§ — (ﬁ) (1- %)k.

Proof. Suppose that we take k i.i.d. samples from P = (p1, p2,...), which form a
k-ball urn consisting of C distinct colors. By the union bound,

PIC-S(P) 2 A]= ) (1—Zpi)ks(i) (1—%)k.

I)1|=A, iel
pi=1/e,iel

Next we take n samples without replacement from this urn and apply the given
estimator C. By assumption, conditioned on any realization of the k-ball urn,
|C —C| < A with probability at least 1 —§. Then |C — S(P)| < 2A with probability
atleast 1 —§ — (ﬁ) (1 — %)k. Marginally, these n samples are identically distributed
as n i.i.d. samples from P. O

Combining with the sample complexity of the Support Size problem in (1.1),
Lemma 5 leads to the following lower bound for the Distinct Elements problem:

Theorem 4. Fix a sufficiently small constant c¢. For any 1 < A < ck,

k k
*k,A) > Q[ —log — ).
n*(k,A) > (logk ogA)

The same lower bound holds for sampling without replacement.

Proof. By the lower bound of the support size estimation problem obtained in [47,

Theorem 2], if n < % log2 £/2A and 2A < ¢of for some fixed constants co < 1/2

and «, then for any C , there exists a distribution P with minimum non-zero mass 1/¢
such that |C — S(P)| < 2A with probability at most 0.8. Applying Lemma 5 yields
that, using n samples without replacement, no estimator can provide an estimation

error of A with probability 0.9 for an arbitrary k-ball urn, provided (ﬁ) (1 - %)k <

0.1. Consequently, as long as 2A < ¢¢f and (2) (1 — %)k < 0.1, we have

ol {
*(k,A\) > — log® —.
n" (k. )_logﬂ %% 2A

The desired lower bound follows from choosing £ =< bg%' O



62
4. Proof of results in Table 1

Below we explain how the sample complexity bounds summarized in Table 1 are
obtained from various results in Section 2 and Section 3:

— The upper bounds are obtained from the worst-case MSE in Section 2 and the
Markov inequality. In particular, the case of A < +/k(logk)™® follows from the
second and the third upper bounds of Theorem 2; the case of vk < A < k0519
follows from the first upper bound of Theorem 2; the case of k 1-8 < A < ¢k follows
from Theorem 1. By monotonicity, we have the O(k loglog k) upper bound when
Vk(logk)™ < A < Vk, the O(k/1ogk) upper bound when A > ck, and the O(k)
upper bound when k%>t < A < k179,

— The lower bound for A < Vk follows from Theorem 3; the lower bound for
k05+8 < A < ck follows from Theorem 4. These further implies the (k) lower
bound for vk < A < k05+8 by monotonicity.

A. Connections between various sampling models

As mentioned in Section 1.2, four popular sampling models have been introduced
in the statistics literature: the multinomial model, the hypergeometric model, the
Bernoulli model, and the Poisson model. The connections between those models are
explained in details in this section, as well as relations between the respective sample
complexities.

Bernoulli model Poisson model
Binomial(k, p) samples Poi(n) samples

hypergeometric model ———— > multinomial model
simulate

Figure 2. Relations between the four sampling models. In particular, hypergeometric
(resp., multinomial) model reduces to the Bernoulli (resp., Poisson) model when the sample
size is binomial (resp., Poisson) distributed.

The connections between different models are illustrated in Fig. 2. Under the
Poisson model, the sample size is a Poisson random variable; conditioned on the
sample size, the samples are i.i.d. which is identical to the multinomial model.
The same relation holds as the Bernoulli model to the hypergeometric model.
Given samples (Y1, ..., Y5) uniformly drawn from a k-ball urn without replacement
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(hypergeometric model), we can simulate (X1,...,X,) drawn with replacement
(multinomial model) as follows: foreachi = 1,...,n, let

Y;, with probability 1 — 5,

X; = i
! Y,,, with probability %, m ~ Uniform([i — 1]).

(A.1)

In view of the connections in Fig. 2, any estimator constructed for one specific
model can be adapted to another. The adaptation from multinomial to hypergeometric
model is provided by the simulation in (A.1), and the other direction is given by
Lemma 5 (without modifying the estimator). The following result provides a recipe
for going between fixed and randomized sample size:

Lemma 6. Let N be an N-valued random variable.

(a) Given any* C that uses n samples and succeeds with probability at least
1 — 8, there exists C' using N samples that succeeds with probability at least
1-8§—P[N <n].

(b) Given any C _using N samples that succeeds with probability at least 1 — 8,
there exists C' that uses n samples and succeeds with probability at least
1—-6§—P[N > n].

Proof. (a) Denote the samples by Xi,..., Xy. Following [37, Lemma 5.3(a)],

define C" as R
o _ [C(Xi. Xy), Nz,
0, N <n.

Then C’ succeeds as long as N > n and C succeeds, which has probability at least
1-8§—-P[N <n].

(b) Denote the samples by 3( 1,...,X,. Draw a random variable m from the
distribution of N and define C’ as

¢ = G(Xl,...,Xm), m<n,
0, m > n.

The given estimator C fails with probability

Y P[C fails | N = jIP[N = j] < 6.
Jj=0

Consequently,

> P[C fails | N = jJP[N = j] <6.

Jj=0

“More precisely, here and below C is understood as a sequence of estimators indexed by the sample

size (X1,...,Xn) > C(X1,..., Xn).
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The estimator C’ fails with probability at most

n

Y PIC fails | m = j]P[m = j] + P[m > n] <8+ Plm > n],

j=0
which completes the proof. O

The adaptations of estimators between different sampling models imply the

relations of the fundamental limits on the corresponding sample complexities.
Extending Definition 1, let n}, (k, A, 8), n; (k, A, 8), ng(k, A,8), and np (k, A, 5)
be the minimum expected sample size under the multinomial, hypergeometric,
Bernoulli, and Poisson sampling model, respectively, such that there exists an
estimator C satisfying IP’[|6 — C| = A] < §. Combining Chernoff bounds
(see, e.g. [31, Theorem 4.4, 4.5, and 5.4]), we obtain Corollary 1, in which the

connection between multinomial and Poisson models gives a rigorous justification of
the assumption on the Poisson sampling model in Section 2.

Corollary 1. The following relations hold:
* Ny versusny,:
(@) ny(k,A,8) = nj(k,A,6);

0) ni (e, A8) < n = ni (k28,8 + (K)(1 = BY) < n, forany k' € N.
In particular, if § is a constant, then we can choose k' = @ (k/logk/A).

> n’p versusny,:
(©) np(k,A8) <n = nj(k,A,§+ (e/4)") < 2n;
(d) ny(k,A8) <n=npk,A,8+(2/e)") <2n.
s n’y versus ny:
(e) nxk,A,8) <n=npk, A+ (e/4)") <2n;
() ny(k,A8) <n = nyxk,A, 5+ (2/e)") < 2n.

B. Correlation decay between fingerprints

Recall that the fingerprints are defined by ®; = ), 1yx,—j;, where N; denotes the

histogram of samples. Under the Poisson model, N; x Poi(np;). Then
cov(®, ;) ==Y P[N; = jIP[N; = j'l. j #J',

var[@;] = > "P[N; = j1(1-P[N; = j]).
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The correlation coefficient between ®¢ and ®; follows immediately:

P(®o. ®))
-y P[N; = 0]P[N; = J]
S PING = 0](1 = PIN; = 0) X, PIN; = j1(1 = P[N; = /)
P[N; = 0]P[N; = j]

7 \JPIN; = 0)(1 = P[N; = 0))P[N; = j](1 - P[N: = /) (B.1)

<

e i A{

_Z = 0] P[N; = j] _Z et i
1— ~—0]1—]P’[N—j] 1—.«3_)”1 e i)’

i J—

where A; = np;. Note that

e*x/ e 7JjJ .
max — = - —0 asj — oo.
x>0 ]! j!

Therefore, for any x > 0,

—XJ
e % 1 e_zxx]
l_e—xl_e—).c'xj =]!1_ —x (1+0](1)) (B.2)
J!

. . . . . . . —2XxJ
where 0 (1) is uniform as j — oo. Taking derivative, the function x > =2+ on

x > 0 is increasing if and only if x 4+ e*(j —2x) — j > 0, and the maximum is
attained at x = J/2 4+ 0 (1). Therefore, applying j! > (i/e)’,

1 e 2%y/

T e = < (1+40,(1))27/ (B.3)

Combining (B.1)-(B.3), we conclude that
(Do, )| < k272(1 + 0 (1)).

C. Proof of auxiliary lemmas

Proof of Lemma 3. For any z € C, we can represent the forward difference in (2.19)
as an integral:

Amf(Z)=f(Z+M)—(T)f(Zer—1)+~--+(—1)"’f(2)

:/ f(m)(z+x1—|—~--—|—xm)dx1---dxm.
[0,1]
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Therefore,

1
< — sup |pp"(z+8). (4

0<é<m

1
|[m(z)| = ‘ﬁAum(z)

Recall the definition of p,, in (2.20). Let py,(z) = lefo agzt. Let
m .
zz=1)--(z=—m+1) = Zbiz’
i=0

and (Z—M)(Z—M—l)u-(z—M—m—i—l)=Zcizi
i=0

Expanding the product and collecting the coefficients yields a simple upper bound:

|bi| <2 (m — 1),
lei] <2™(M +m — )™ <2mQM)™ < 22m M

Since
2m m m
S aprt = (Zbiz’)(chzf),
=0 i=0 j=0

for £ > m,

i 23m(m . 1)m—iMm—Z+i

i=ft—m

Z bicg—i| <
j m

3m g g2m—L - (m_l)m_i 3 2m—4

i={—m

Taking mth derivative of p,,, we obtain

(J +m)'
P ()] = Z <
j=0
“ m—l—j z |J 3 Sz
< |a,+mM| m'lﬁ‘ <m2 mMmm!(Ze)mZ‘M‘
j=0 j=0

<m225" M"™m! (L\Zl—' v 1) = m*2"m!(|z| v M)".

Then the desired (2.31) follows from (C.1). O
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Proof of Lemma 4. The following uniform asymptotic expansions of the Stirling
numbers of the first kind was obtained in [10, Theorem 2]:

,’Zl_!y(l()g” +y)™(1+o(1), 1=m=logn,

_ C(n+1+R) o _ /3
|S(n+17m+1)| F(R)Rm+lm(1+0(1))’ logn Sm Sn n ’
(i) D (1 o). n—n' <m <,

where y is Euler’s constant, R is the unique positive solution to 4’(x) = 0 with

F'x+n+1)

A
h(x) = log C(x+ Dxm’

H = R*1(R),
and all o(1) terms are uniform in m. In the following we consider each range

separately and prove the non-asymptotic approximation in (2.36).

Case 1. For 1 <m < /logn, Stirling’s approximation gives

! 1 m
™ (logn + y)™ =n!(®( Ogn)) .
m! m
CaseIL. Forn —n'® <m <n,
n+1\(m+1\""" n! of ™
m+1 2 T om! n—m
n_
=n!exp(m(
m
1 m
=n!(®(—)) .
m

Case III. For \/logn < m < n —n'/3, note that

3
<)
(i
—
©)
—
S
I3
3
~—
~—
|
<)
(i
2
S
~——
~—

n
h(x) = Zlog(x +i)—mlogx,
i=1
and thus
R2

_ p2pn _ _
H = R*0'(R) =m Z—(R+i)2 <m

i=1
By [32, Lemma 4.1], H = w(1) in this range. Hence,

IT'(n+1+R)

m n! T(m+14+ R)
F(R)Rm+1 (®(1)) = om T P L1

1 | = =
|s(n+1,m+1)| R TR+ 1)

(e()™, (C.2)



68

where R is the solution to x (m +t xi —) = m. Bounding the sum by integrals,
we have

n n
R1 1+ —) <m<RI 1+—.
0g(+R+1)_m_ og(+R)

If J/logn <m <n/e, then R < m/logn/m, and hence

C'(n+1+R) n+ R\\%
= WIN(R+ 1) 5(0( R )) = P (06m).

In view of (C.2), we have
n!

[s(n +1,m+ 1)| = W

which is exactly (2.36) whenm < n/e. Ifn/e <m < n—n'/3,then R < n?/(n—m),
and
1 T 1+ R R "
1 I'(n+1+4R) _rmfef™t
R™ nT'(R+ 1)

— e - mlog@( ”2m)+n10g@(njm))

( mlog®(n) + (n —m)log@( nm))
= exp ( mlog @(n))
Combining (C.2) yields that
ls(n +1,m+ 1)| = n!(@(l/n))m,
which coincides with (2.36) since n < m is this range. ]
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