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Abstract

Community detection is considered for a stochastic block model graph of n vertices,
with K vertices in the planted community, edge probability p for pairs of vertices both
in the community, and edge probability q for other pairs of vertices. The main focus
of the paper is on weak recovery of the community based on the graph G, with o(K)

misclassified vertices on average, in the sublinear regime n1−o(1) ≤ K ≤ o(n). A critical
parameter is the effective signal-to-noise ratio λ = K2(p − q)2/((n − K)q), with λ = 1
corresponding to the Kesten–Stigum threshold. We show that a belief propagation (BP)
algorithm achieves weak recovery if λ > 1/e, beyond the Kesten–Stigum threshold by
a factor of 1/e. The BP algorithm only needs to run for log∗ n + O(1) iterations, with
the total time complexity O(|E| log∗ n), where log∗ n is the iterated logarithm of n.
Conversely, if λ ≤ 1/e, no local algorithm can asymptotically outperform trivial random
guessing. Furthermore, a linear message-passing algorithm that corresponds to applying
a power iteration to the nonbacktracking matrix of the graph is shown to attain weak
recovery if and only if λ > 1. In addition, the BP algorithm can be combined with a
linear-time voting procedure to achieve the information limit of exact recovery (correctly
classify all vertices with high probability) for all K ≥ (n/ log n)(ρBP +o(1)), where ρBP
is a function of p/q.
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1. Introduction

The problem of finding a densely connected subgraph in a large graph arises in many research
disciplines such as theoretical computer science, statistics, and theoretical physics. To study
this problem, the stochastic block model [19] for a single dense community is considered.

Definition 1.1. (Planted dense subgraph model.) Given n ≥ 1, C∗ ⊂ [n], and 0 ≤ q ≤ p ≤ 1,
the corresponding planted dense subgraph model is a random undirected graph G = (V , E)

with V = [n], such that two vertices are connected by an edge with probability p if they are
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326 B. HAJEK ET AL.

both in C∗, and with probability q otherwise, with the outcomes being mutually independent
for distinct pairs of vertices.

The terminology is motivated by the fact that the subgraph induced by the community C∗
is typically denser than the rest of the graph if p > q; see [4], [7], [14], [27], and [30]. The
problem of interest is to recover C∗ based on the graph G.

We consider a sequence of planted dense subgraphs indexed by n and assume that p and q

depend on n. For a given n, the set C∗ could be deterministic or random. We also introduce
K ≥ 1 depending on n, and assume either that |C∗| ≡ K or |C∗|/K → 1 in probability as
n → ∞. Where it matters, we specify which assumption holds. Since the focus of this paper is
to understand the fundamental limits of recovering the hidden community in the planted dense
subgraph model, we assume the model parameters (K, p, q) are known to the estimators.
It remains an open question as to whether this assumption can be relaxed without changing
the fundamental limits of recovery. Decelle et al. [9] suggested a method for estimating the
parameters but it is unclear how to incorporate it into our theorems. For simplicity, we further
impose the mild assumptions that K/n is bounded away from 1 and p/q is bounded from
above. We primarily focus on two types of recovery guarantees.

Definition 1.2. (Exact recovery.) Given an estimator Ĉ = Ĉ(G) ⊂ [n], Ĉ exactly recovers C∗
if limn→∞ P{Ĉ 	= C∗} = 0, where the probability is taken with respect to the randomness of G

and with respect to possible randomness in C∗ and the algorithm for generating Ĉ from G.

Depending on the application, it may be enough to seek an estimator Ĉ which almost
completely agrees with C∗.

Definition 1.3. (Weak recovery.) Given an estimator Ĉ = Ĉ(G) ⊂ [n], Ĉ weakly recovers C∗
if, as n → ∞, (1/K)|Ĉ
C∗| → 0, where the convergence is in probability and 
 denotes the
set difference.

Exact and weak recovery are the same as strong and weak consistency, respectively, as
defined in [32]. Clearly, an estimator that exactly recovers C∗ also weakly recovers C∗. Also,
it is not difficult to show that the existence of an estimator satisfying Definition 1.3 is equivalent
to the existence of an estimator such that E[|Ĉ
C∗|] = o(K); see [16, Appendix A] for a proof.

Intuitively, if the community size K decreases, or p and q get closer, recovery of the
community becomes more difficult. A critical role is played by the parameter

λ = K2(p − q)2

(n − K)q
, (1.1)

which can be interpreted as the effective signal-to-noise ratio for classifying a vertex according
to its degree. It turns out that if the community size scales linearly with the network size, optimal
recovery can be achieved via degree-thresholding in linear time. For example, if K � n−K � n

and p/q is bounded, a naïve degree-thresholding algorithm can attain weak recovery in linear
time in the number of edges, provided thatλ → ∞, which is information-theoretically necessary
when p is bounded away from 1. Moreover, one can show that degree-thresholding followed by
a linear-time voting procedure achieves exact recovery whenever it is information-theoretically
possible in this asymptotic regime; see Appendix A for a proof.

Since it is easy to recover a hidden community of size K = �(n) weakly or exactly up to the
information limits, we next turn to the sublinear regime where K = o(n). However, detecting
and recovering polynomially small communities of size K = n1−�(1) is known (see [14]) to
suffer a fundamental computational barrier; see Section 2 for details. In the search for the
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Recovering a hidden community 327

critical point where statistical and computational limits depart, the main focus of this paper
is in the slightly sublinear regime of K = n1−o(1) and np = no(1) and analysis of the belief
propagation (BP) algorithm for community recovery.

The BP algorithm is an iterative algorithm which aggregates the likelihoods computed in the
previous iterations with the observations in the current iteration. Running BP for one iteration
and then thresholding the beliefs reduces to degree thresholding. Montanari [30] analyzed the
performance of the BP algorithm for community recovery in a different regime with p = a/n,
q = b/n, and K = κn, where a, b, and κ are assumed to be fixed as n → ∞. In the limit where
first n → ∞, and then κ → 0 and a, b → ∞, it was shown that using a local algorithm, namely
BP running for a constant number of iterations, E[|Ĉ�C∗|] = o(n); conversely, if λ < 1/e,
for all local algorithms, E[|Ĉ�C∗|] = �(n). However, since we focus on K = o(n) and weak
recovery demands E[|Ĉ�C∗|] = o(K), the following question remains unresolved: is λ > 1/e
the performance limit of BP algorithms for weak recovery when K = o(n)? With regard to the
local algorithm, loosely speaking, an algorithm is t-local if the computations determining the
status of any given vertex u depend only on the subgraph induced by vertices whose distance
to u is at most t ; see [30] for a formal definition. In this paper, t is allowed to slowly grow with
n so long as (2 + np)t = no(1).

In this paper we answer positively this question by analyzing BP running for log∗ n + O(1)

iterations. Here log∗(n) is the iterated logarithm, defined as the number of times the logarithm
function must be iteratively applied to n to obtain a result less than or equal to 1. We show
that if λ > 1/e, weak recovery can be achieved by a BP algorithm running for log∗(n) +
O(1) iterations, whereas if λ < 1/e, all local algorithms including BP cannot asymptotically
outperform trivial random guessing without the observation of the graph.

The proof is based on analyzing the analogous BP algorithm to classify the root node of a
multitype Galton–Watson tree, which is the limit in distribution of the neighborhood of a given
vertex in the original graph G. In contrast to the analysis of BP in [30], where the number
of iterations was held fixed regardless of the size of graph n, our analysis on the tree and the
associated coupling lemmas entail the number of iterations converging slowly to ∞ as the size
of the graph increases, in order to guarantee adequate performance of the algorithm in the case
that K = o(n). Also, our analysis is based mainly on studying the recursions of exponential
moments of beliefs instead of Gaussian approximations as used in [30].

Furthermore, we analyze a linear message-passing algorithm corresponding to applying the
power method to the nonbacktracking matrix of the graph (see [6] and [25]) whose spectrum
has been shown to be more informative than that of the adjacency matrix for the purpose of
clustering. It is established that this linear message-passing algorithm followed by thresholding
provides weak recovery if λ > 1 and it does not improve upon trivial random guessing
asymptotically if λ < 1.

As shown in Remark 4.1, the threshold λ = 1 coincides with the Kesten–Stigum threshold
(see [23] and [31]), which originated in the study of phase transitions of limiting offspring
distributions of multitype Galton–Watson trees. Since the local neighborhood of a given vertex
under stochastic block models is a multitype Galton–Watson tree in the limit, the Kesten–
Stigum threshold also plays a critical role in the study of community detection. Dacelle
et al. [9] first conjectured and later rigorously proved that for stochastic block models with
two equal-sized planted communities, recovering a community partition positively correlated
with the planted one is efficiently attainable if it is above the Kesten–Stigum threshold (see
[6], [26], and [34]), while it is information-theoretically impossible if below the threshold;
see [33]. With more than three equal-sized communities, correlated recovery has been shown
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328 B. HAJEK ET AL.

to be information-theoretically possible beyond the Kesten–Stigum threshold (see [1] and [5]);
however, a conjecture of [9], that no polynomial-time algorithm can succeed in correlated
recovery beyond the Kesten–Stigum threshold, still stands. In contrast, we show that in the
case of a single hidden community, the BP algorithm achieves weak recovery efficiently beyond
the Kesten–Stigum threshold by a factor of e. The problems mentioned above with equal-
sized communities are balanced in the sense that the expected degree of a vertex given its
community label is the same for all community labels. The single community problem we
study is unbalanced; vertex degrees reveal information on vertex community labels. Hence,
our results do not disprove that the Kesten–Stigum threshold is the limit for computationally
tractable algorithms in the balanced case.

Finally, we address exact recovery. As shown in [16, Theorem 3], if there is an algorithm that
can provide weak recovery even if the community size is random and only approximately equal
to K , then it can be combined with a linear-time voting procedure to achieve exact recovery
whenever it is information-theoretically possible. For K = o(n), we show that both the BP
and the linear message-passing algorithms indeed can be upgraded to achieve exact recovery
via local voting. Somewhat surprisingly, BP plus voting achieves the information limit of exact
recovery if

K ≥ n

log n

(
ρBP

(
p

q

)
+ o(1)

)
,

where

ρBP(c) := 1

e(c − 1)2

(
1 − c − 1

log c
log

e log c

c − 1

)
.

2. Related work

The problem of recovering a single community demonstrates a fascinating interplay between
statistics and computation and a potential departure between computational and statistical limits.

In the special case of p = 1 and q = 1
2 , the problem of finding one community reduces to

the classical planted clique problem [21]. If the clique has size K ≤ 2(1 − ε) log2 n for any
ε > 0, then it cannot be uniquely determined; if K ≥ 2(1 + ε) log2 n, an exhaustive search
finds the clique with high probability. In contrast, polynomial-time algorithms are only known
to find a clique of size K ≥ c

√
n for any constant c > 0 (see [2], [3] [10], and [13]), and

it was shown in [11] that if K ≥ (1 + ε)
√

n/e, the clique can be found in O(n2 log n)-time
with high probability and

√
n/e may be a fundamental limit for solving the planted clique

problem in nearly linear time in the number of edges in the graph. Recent work by Metra et al.
[28] showed that the degree-r sum-of-squares (SOS) relaxation cannot find the clique unless
K � (

√
n/ log n)1/r ; an improved lower bound K � n1/3/ log n for the degree-4 SOS was

proved in [12]. Further improved lower bounds can be found in [20] and [36].
The recent work of Hajek et al. [14] focused on the p = n−α , q = cn−α case for fixed

constants c < 1 and 0 < α < 1, and K = �(nβ) for 0 < β < 1. It was shown that
no polynomial-time algorithm can attain the information-theoretic threshold of detecting the
planted dense subgraph unless the planted clique problem can be solved in polynomial time;
see [14, Hypothesis 1] for the precise statement. For exact recovery, the maximum likelihood
estimator succeeds with high probability if α < β < 1

2 + 1
4α; however, no randomized

polynomial-time solver exists, conditioned on the same planted clique hardness hypothesis.
In sharp contrast to the computational barriers discussed in the previous two paragraphs, in

the regime p = a log n/n and q = b log n/n for fixed a and b, and K = ρn for a fixed constant
0 < ρ < 1, recent work by Hajek et al. [15] derived a function ρ∗(a, b) such that if ρ > ρ∗,
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Recovering a hidden community 329

exact recovery is achievable in polynomial time via semidefinite programming relaxations of
the maximum likelihood estimation; if ρ < ρ∗, any estimator fails to exactly recover the cluster
with probability tending to 1 regardless of the computational costs.

In summary, the previous work revealed that for exact recovery, a significant gap between the
information limit and the limit of polynomial-time algorithms emerges as the community size K

decreases from K = �(n) to K = nβ for 0 < β < 1. In the search of the exact phase transition
point where information and computational limits depart, in this paper we focus on the regime
K = n1−o(1). In Appendix B, we show that BP plus voting attains the sharp information limit if
K ≥ (n/ log n)(ρBP(p/q) + o(1)). However, as soon as limn→∞ K log n/n ≤ ρBP(p/q), we
observe a gap between the information limit and the necessary condition of local algorithms,
given by λ > 1/e; see Figure 1 for an illustration. For weak recovery, as soon as K = o(n), a
gap between the information limit and the necessary condition of local algorithms emerges.

3. Main results

As mentioned above, in the search for the critical point where statistical and computational
limits depart, we focus on the regime where K is slightly sublinear in n and invoke the following
assumption.

Assumption 3.1. As n → ∞, p ≥ q, p/q = O(1), n1−o(1) ≤ K ≤ o(n), and the signal-to-
noise ratio λ is a positive constant; see 1.1.

3.1. Upper and lower bounds for BP

Let σ ∈ {0, 1}n denote the indicator vector of C∗ and A denote the adjacency matrix of the
graph G. To detect whether a given vertex i is in the community, a natural approach is to compare
the log-likelihood ratio log(P{G | σi = 1}/P{G | σi = 0}) to a certain threshold. However,
it is often computationally expensive to evaluate the log-likelihood ratio. As we show in this
paper, when the average degree scales as no(1), the neighborhood of vertex i is tree-like with high
probability as long as the radius t of the neighborhood satisfies (2 + np)t = no(1); moreover,
on the tree, the log-likelihoods can be exactly computed in a finite recursion via BP. These
two observations together suggest the following BP algorithm for approximately computing
the log-likelihoods for the community recovery problem; see Lemma 4.1 for the derivation of
the BP algorithm on a tree. Let ∂i denote the set of neighbors of i in G and

ν := log
n − K

K
,

which is equal to the log prior ratio log(P{σi = 0}/P{σi = 1}). Define the message transmitted
from vertex i to its neighbor j at the (t + 1)th iteration as

Rt+1
i→j = −K(p − q) +

∑
�∈∂i\{j}

log

(
exp(Rt

�→i − ν)(p/q) + 1

exp(Rt
�→i − ν) + 1

)
(3.1)

for initial conditions R0
i→j = 0 for all i ∈ [n] and j ∈ ∂i. Then we approximate

log

(
P{G | σi = 1}
P{G | σi = 0}

)
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330 B. HAJEK ET AL.

by the belief of vertex i at the (t + 1)th iteration Rt+1
i , which is determined by combining

incoming messages from its neighbors as follows:

Rt+1
i = −K(p − q) +

∑
�∈∂i

log

(
exp(Rt

�→i − ν)(p/q) + 1

exp(Rt
�→i − ν) + 1

)
. (3.2)

Algorithm 3.1. (BP for weak recovery.) The algorithm comprises five steps.

(i) Input: n, K ∈ N. p > q > 0, adjacency matrix A ∈ {0, 1}n×n, tf ∈ N.

(ii) Initialize: set R0
i→j = 0 for all i ∈ [n] and j ∈ ∂i.

(iii) Run tf − 1 iterations of BP as in (3.1) to compute R
tf −1
i→j for all i ∈ [n] and j ∈ ∂i.

(iv) Compute R
tf
i for all i ∈ [n] as per (3.2).

(v) Return Ĉ, the set of K indices in [n] with largest values of R
tf
i .

Theorem 3.1. Suppose that Assumption 3.1 holds with λ > 1/e and (np)log∗ ν = no(1). Let
tf = t̄0 + log∗(ν) + 2, where t̄0 is a constant depending only on λ. Let Ĉ be produced by
Algorithm 3.1. If the planted dense subgraph model (Definition 1.1) is such that |C∗| ≡ K then
for any constant r > 0, there exists ν0(r) such that for all ν ≥ ν0(r),

E[|C∗
Ĉ|] ≤ no(1) + 2Ke−νr . (3.3)

If, instead, |C∗| is random with P{||C∗| − K| ≥ √
3K log n} ≤ n−1/2+o(1) then

E[|C∗
Ĉ|] ≤ n1/2+o(1) + 2Ke−νr . (3.4)

For either assumption about |C∗|, weak recovery is achieved: E[|C∗
Ĉ|] = o(K). The
running time is O(|E(G)| log∗ n), where |E(G)| is the number of edges in the graph G.

We remark that the same conclusion also holds for the estimator Ĉo = {i : R
tf
i ≥ ν}, but

returning a constant size estimator Ĉ leads to a simpler analysis of the algorithm for exact
recovery.

Next we discuss how to use the BP algorithm to achieve exact recovery. The key idea is
to attain exact recovery in two steps. In the first step, we apply BP for weak recovery. In the
second step, we use a linear-time local voting procedure to clean-up the residual errors made
by BP. In particular, for each vertex i, we count ri the number of neighbors in the community
estimated by BP, and pick the set of K vertices with the largest values of ri . To facilitate the
analysis, we adopt the successive withholding method described in [16] and [32] to ensure the
first and second steps are independent of each other. In particular, we first randomly partition
the set of vertices into a finite number of subsets. One at a time, one subset is withheld to
produce a reduced set of vertices, to which BP is applied. The estimate obtained from the
reduced set of vertices is used to classify the vertices in the withheld subset. The idea is to gain
independence: the outcome of BP based on the reduced set of vertices is independent of the
data corresponding to edges between the withheld vertices and the reduced set of vertices. The
full description of the process is given in Algorithm 3.2.

Algorithm 3.2. (BP plus clean-up for exact recovery.) The algorithm comprises four steps.

(i) Input: n ∈ N, K > 0, p > q > 0, adjacency matrix A ∈ {0, 1}n×n, tf ∈ N, and
δ ∈ (0, 1) with 1/δ, nδ ∈ N.
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Recovering a hidden community 331

(ii) Partition: partition [n] into 1/δ subsets Sk of size nδ, uniformly at random.

(iii) Approximate recovery: for each k = 1, . . . , 1/δ, let Ak denote the restriction of A to the
rows and columns with index in [n] \ Sk , run Algorithm 3.1 (BP for weak recovery) with
input (n(1 − δ), �K(1 − δ)�, p, q, Ak, tf ), and let Ĉk denote the output.

(iv) Clean-up: for each k = 1, . . . , 1/δ, compute ri = ∑
j∈Ĉk

Aij for all i ∈ Sk and return C̃,
the set of K indices in [n] with the largest values of ri .

Theorem 3.2. Suppose that Assumption 3.1 holds with λ > 1/e and (np)log∗ ν = no(1).
Consider the planted dense subgraph model (Definition 1.1) with |C∗| ≡ K . Select δ > 0
so small that (1 − δ)λe > 1. Let tf = t̄0 + log∗(ν) + 2, where t̄0 is a constant depending
only on λ(1 − δ). Also, suppose that p is bounded away from 1 and the following condition is
satisfied:

lim inf
n→∞

Kd(τ ∗‖q)

log n
> 1, (3.5)

where

τ ∗ = log((1 − q)/(1 − p)) + (1/K) log(n/K)

log(p(1 − q)/q(1 − p))
(3.6)

and d(p‖q) = p log(p/q)+ (1−p) log((1−p)/(1−q)) denotes the Kullback–Leibler diver-
gence between Bernoulli distributions with mean p and q. Let C̃ be produced by Algorithm 3.2.
Then P{C̃ = C∗} → 1 as n → ∞. The running time is O(|E(G)| log∗ n).

Note that condition (3.5) was shown in [16] to be the necessary (if ‘>’ is replaced by ‘≥’)
and sufficient condition for the success of the clean-up procedure in upgrading weak recovery
to exact recovery.

Next, we provide a lower bound on the error probability achievable by any local algorithm
for estimating the label σu of a given vertex u. Let perr = π0perr,0 + π1perr,1 for prior
probabilities π0 = (n − K)/n and π1 = K/n, where perr,0 = P{σ̂u = 1 | σu = 0} and
perr,1 = P{σ̂u = 0 | σu = 1}.
Theorem 3.3. (Converse for local algorithms.) Suppose that Assumption 3.1 holds with 0 <

λ ≤ 1/e. Let tf ∈ N depend on n such that (2 + np)tf = no(1). Consider the planted dense
subgraph model (Definition 1.1) with C∗ random and uniformly distributed over all subsets
of [n] such that |C∗| ≡ K . Then, for any estimator Ĉ such that for each vertex u in G, σu is
estimated based on G in a neighborhood of radius tf from u. Then

E[|Ĉ
C∗|] ≥ K(n − K)

n
e−λe/4 − no(1) (3.7)

and
perr,0 + perr,1 ≥ 1

2 e−1/4 − n−1+o(1). (3.8)

Furthermore, lim infn→∞ nperr/K ≥ 1 or, equivalently,

lim inf
n→∞

E[|Ĉ
C∗|]
K

≥ 1. (3.9)

The assumption (2 + np)tf = no(1) is needed to ensure that the neighborhood of radius tf
from any given vertex u is a tree with high probability.
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332 B. HAJEK ET AL.

Note that an estimator is said to achieve weak recovery (see [30]) if

lim
n→∞ perr,0 + perr,1 = 0.

From condition (3.8) we see that weak recovery in this sense is not possible. If C∗ is uniformly
distributed over {C ⊂ [n] : |C| = K}, among all estimators that disregard the graph, the one
that minimizes the mean number of classification errors is Ĉ ≡ ∅ (declaring no community),
which achieves E[|Ĉ
C∗|]/K = 1 or, equivalently, perr = K/n. From condition (3.9) we
see that in the asymptotic regime ν → ∞ with λ < 1/e, improving upon random guessing is
impossible.

3.2. Upper and lower bounds for linear message passing

Results are given in this section to show that a particular spectral method—linear message
passing—achieves weak recovery if and only if λ > 1. Spectral algorithms are used to estimate
the communities based on the principal eigenvectors of the adjacency matrix; see, e.g. [2],
[27], and [37] and the references therein. Under the single community model, E[A] = (p −
q)(σσ� − diag{σ }) + q(J − I ), where diag{σ } denotes the diagonal matrix with the diagonal
entries given by σ ; I denotes the identity matrix, and J denotes the matrix of all 1s. By the
Davis–Kahan sin θ theorem (see [8]), the principal eigenvector of A − q(J − I ) is almost
parallel to σ provided that the spectral norm ‖A−E[A]‖ is much smaller than K(p − q); thus,
one can estimate C∗ by thresholding the principal eigenvector entry-wise. Therefore, if we
apply the spectral method, a natural matrix to start with is A−q(J −I ) or A−qJ . Finding the
principal eigenvector of A − qJ according to the power method is carried out by starting with
some vector and repeatedly multiplying by A − qJ sufficiently many times. We will consider
the scaled matrix (A−qJ )/

√
m, where m = (n−K)q. Of course, the scaling does not change

the eigenvectors. This suggests the following linear message-passing update equation:

θ t+1
i = − q√

m

∑
�∈[n]

θ t
� + 1√

m

∑
�∈∂i

θ t
�. (3.10)

The first sum is over all vertices in the graph and does not depend on i. An idea is to appeal to
the law of large numbers and replace the first sum by its expectation. Also, in the sparse graph
regime np = o(log n), there exist vertices of high degrees ω(np), and the spectrum of A is
very sensitive to high-degree vertices; see, e.g. [15, Appendix A] for a proof. To deal with this
issue, as proposed in [6] and [25], we associate the messages in (3.10) with directed edges and
prevent the message transmitted from j to i from being immediately reflected back as a term
in the next message from i to j , resulting in the following linear message-passing algorithm:

θ t+1
i→j = −q((n − K)At + KBt)√

m
+ 1√

m

∑
�∈∂i\{j}

θ t
�→i (3.11)

with initial values θ0
�→i = 1, where At ≈ E[θ t

�→i | σ� = 0] and Bt ≈ E[θ t
�→i | σ� = 1].

Note that when computing θ t+1
i→j , the contribution of θ t

j→i is subtracted out. Since we focus
on the regime np = no(1), the graph is locally tree-like with high probability. In the Poisson
random tree limit of the neighborhood of a vertex, the expectations E[θ t

�→i | σ� = 0] and
E[θ t

�→i | σ� = 1] can be calculated exactly, and as a result we take A0 = 1, At = 0 for t ≥ 1,
and Bt = λt/2 for t ≥ 0.

The update equation (3.11) can be expressed in terms of the nonbacktracking matrix asso-
ciated with graph G. It is the matrix B ∈ {0, 1}2m×2m with Bef = 1{e2=f1}1{e1 	=f2}, where
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e = (e1, e2), f = (f1, f2) are directed edges, and 1{A} is the indicator function on the event A.
Let �t ∈ R2m denote the messages on directed edges with �t

e = θ t
e1→e2

. Then (3.11) in matrix
form reads

�t+1 = −q((n − K)At + KBt)√
m

1 + 1√
m

B��t .

As demonstrated by Borndenave et al. [6], the spectral properties of the nonbacktracking matrix
closely match those of the original adjacency matrix. It is therefore reasonable to take the linear
update equation (3.11) as a form of spectral method for the community recovery problem.
Finally, to estimate C∗, we define the belief at vertex u as

θ t+1
u = −q((n − K)At + KBt)√

m
+ 1√

m

∑
i∈∂u

θ t
i→u, (3.12)

and select the vertices u such that θ t
u exceeds a certain threshold. The full description of the

algorithm is given in Algorithm 3.3.

Algorithm 3.3. (Spectral algorithm for weak recovery.) The algorithm comprises six steps.

(i) Input: n, K ∈ N, p > q > 0, and adjacency matrix A ∈ {0, 1}n×n.

(ii) Set

λ = K2(p − q)2

(n − K)q
and T =

⌈
2α

log((n − K)/K)

log λ

⌉
,

where α = 1
4 (in fact any α < 1 works).

(iii) Initialize: set θ0
i→j = 1 for all i ∈ [n] and j ∈ ∂i.

(iv) Run T − 1 iterations of message passing as in (3.11) to compute θT −1
i→j for all i ∈ [n] and

j ∈ ∂i.

(v) Run one more iteration of message passing to compute θT
i for all i ∈ [n] as per (3.12).

(vi) Return Ĉ, the set of K indices in [n] with largest values of θT
i .

Theorem 3.4. Suppose that Assumption 3.1 holds with λ > 1 and (np)log(n/K) = no(1).
Consider the planted dense subgraph model (Definition 1.1) with

P{||C∗| − K| ≥ √
3K log n} ≤ n−1/2+o(1).

Let Ĉ be the estimator produced by Algorithm 3.3. Then E[|C∗
Ĉ|] = o(K).

One can upgrade the weak recovery result of linear message passing to exact recovery under
condition λ > 1 and condition (3.5) in a similar manner as described in Algorithm 3.2 and the
proof of Theorem 3.2.

The following theorem is the converse and we show that if λ ≤ 1 then improving the estimate
beyond the random guessing by linear message passing is not possible.

Theorem 3.5. (Converse for the linear-message passing algorithm.) Suppose that Assump-
tion 3.1 holds with 0 < λ ≤ 1 and consider the planted dense subgraph model (Definition 1.1)
with C∗ random and uniformly distributed over all subsets of [n] such that |C∗| ≡ K . Assume
that t ∈ N, with t possibly depending on n such that (np)t = no(1) and t = O(log((n−K)/K)).
Let (θ t

u : u ∈ [n]) be computed using the message passing updates (3.11) and (3.12) and
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let Ĉ = {u : θ t
u ≥ γ } for some threshold γ , which may also depend on n. Equivalently, σu is

estimated for each u by σ̂u = 1{θ t
u≥γ }. Then lim infn→∞ perrn/K ≥ 1.

The proofs of Theorems 3.4 and 3.5 are similar to the counterparts for BP and can be found
in the arXiv version of this paper [17].

4. Inference problem on a random tree by BP

In the regime we consider, the graph is locally tree-like with mean degree converging to ∞.
We begin by deriving the exact BP algorithm for an infinite tree network, and then deduce
performance results when using that algorithm on the original graph.

The related inference problem on a Galton–Watson tree with a Poisson number of offspring
is defined as follows. Fix a vertex u and let Tu denote the infinite Galton–Watson undirected
tree rooted at vertex u. The neighbors of vertex u are considered to be the children of vertex u,
and u is the parent of those children. The other neighbors of each child are the children of the
child, and so on. For vertex i in Tu, let T t

i denote the subtree of Tu of height t rooted at vertex i,
induced by the set of vertices consisting of vertex i and its descendants for t generations. Let
τi ∈ {0, 1} denote the label of vertex i in Tu. Assume that τu ∼ Bernoulli(K/n). For any vertex
i ∈ Tu, let Li denote the number of its children j with τj = 1, and Mi denote the number of
its children j with τj = 0. Suppose that Li ∼ Poisson(Kp) if τi = 1, Li ∼ Poisson(Kq) if
τi = 0, and Mi ∼ Poisson((n − K)q) for either value of τi .

We are interested in estimating the label of root u given an observation of the tree T t
u . Note

that the labels of vertices in T t
u are not observed. The probability of error for an estimator

τ̂u(T
t
u) is defined by

pt
err := K

n
P(τ̂u = 0 | τu = 1) + n − K

n
P(τ̂u = 1 | τu = 0).

The estimator that minimizes pt
err is the maximum a posteriori probability (MAP) estimator,

which can be expressed either in terms of the log-belief ratio or log-likelihood ratio:

τ̂MAP = 1{ξ t
u≥0} = 1{�t

u≥ν}, (4.1)

where

ξ t
u := log

P{τu = 1 | T t
u}

P{τu = 0 | T t
u} , �t

u := log
P{T t

u | τu = 1}
P{T t

u | τu = 0} , ν = log
n − K

K
.

From Bayes’ formula, ξ t
u = �t

u − ν and, by definition, �0
u = 0. By a standard result in the

theory of binary hypothesis testing (due to [24], stated without proof in [35], proved in the
special case π0 = π1 = 1

2 in [22], and the same proof easily extends to the general case), the
probability of error for the MAP decision rule is bounded by

π1π0ρ
2
B ≤ pt

err ≤ √
π1π0ρB, (4.2)

where the Bhattacharyya coefficient (or Hellinger integral) ρB is defined by

ρB = E[e�t
u/2 | τu = 0],

and π1 and π0 are the prior probabilities on the hypotheses.
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We comment briefly on the parameters of the model. The distribution of the tree Tu is
determined by the three parameters λ = K2(p − q)2/(n − K)q, ν, and the ratio p/q. Indeed,
vertex u has label τu = 1 with probability K/n = 1/(1+eν), and the mean number of children
of a vertex i is given by

E[Li | τi = 1] = Kp = λ(p/q)eν

(p/q − 1)2 , E[Li | τi = 0] = Kq = λeν

(p/q − 1)2 ,

E[Mi] = (n − K)q = λe2ν

(p/q − 1)2 .

(4.3)

The parameter λ can be interpreted as a signal-to-noise ratio in case K � n and p/q = O(1),
since var Mi � var Li and

λ = (E[Mi + Li | τi = 1] − E[Mi + Li | τi = 0])2

var Mi

.

In this section, the parameters are allowed to vary with n as long as λ > 0 and p/q > 1, although
the focus is on the asymptotic regime: λ fixed, p/q = O(1), and ν → ∞. This entails that the
mean number of children given in (4.3) converges to ∞. Montanari [30] considered the case
of ν fixed with p/q → 1, which also leads to the mean vertex degrees converging to ∞.

Remark 4.1. It turns out that λ = 1 coincides with the Kesten–Stigum threshold [23]. To see
this, let O = (Oab) denote the 2 × 2 matrix with Oab equal to the expected number of children
of type b given a parent of type a for a, b ∈ {0, 1}. Then

O =
[
(n − K)q Kq

(n − K)q Kp

]
.

Let λ+ ≥ λ− denote the two largest eigenvalues of M . The Kesten–Stigum threshold [23] is
defined to be λ2−/λ+ = 1. A direct calculation yields

λ± = 1

2

(
nq + K(p − q) ± |nq − K(p − q)|

√
1 + 4K2(p − q)q

(nq − K(p − q))2

)
.

Since K(p − q) = o(nq) and K = o(n), it follows that λ+ = (1 + o(1))nq and λ− =
(1 + o(1))K(p − q). Hence,

λ = (1 + o(1))
λ2−
λ+

.

Thus, λ = 1 is asymptotically equivalent to the Kesten–Stigum threshold λ2−/λ+ = 1.

It is well known that the likelihoods can be computed via a BP algorithm. Let ∂i denote the
set of children of vertex i in Tu and π(i) denote the parent of i. For every vertex i ∈ Tu other
than u, define

�t
i→π(i) := log

P{T t
i | τi = 1}

P{T t
i | τi = 0} .

In the following lemma we provide a recursive formula to compute �t
u; no approximations are

needed.
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Lemma 4.1. For t ≥ 0,

�t+1
u = −K(p − q) +

∑
�∈∂u

log

(
e�t

�→u−ν(p/q) + 1

e�t
�→u−ν + 1

)
,

�t+1
i→π(i) = −K(p − q) +

∑
�∈∂i

log

(
e�t

�→i−ν(p/q) + 1

e�t
�→i−ν + 1

)
for all i 	= u,

�0
i→π(i) = 0 for all i 	= u.

Proof. The last equation follows by definition. We prove the first equation; the second
one follows similarly. A key point is to use the independent splitting property of the Poisson
distribution to obtain an equivalent description of the number of children with each label for any
vertex in the tree. Instead of separately generating the number of children of with each label,
we can first generate the total number of children and then independently and randomly label
each child. Specifically, for every vertex i in Tu, let Ni denote the total number of its children.
Let d1 = Kp + (n − K)q and d2 = Kq + (n − K)q = nq. If τi = 1 then Ni ∼ Poisson(d1),
and for each child j ∈ ∂i, independently of everything else, τj = 1 with probability Kp/d1
and τj = 0 with probability (n − K)q/d1. If τi = 0 then Ni ∼ Poisson(d0), and for each
child j ∈ ∂i, independently of everything else, τj = 1 with probability K/n and τj = 0 with
probability (n − K)/n. With this view, the observation of the total number of children Nu

of vertex u gives some information on the label of u, and then the conditionally independent
messages from those children yield additional information. To be precise, we have

�t+1
u = log

P{T t+1
u | τu = 1}

P{T t+1
u | τu = 0}

(a)= log
P{Nu | τu = 1}
P{Nu | τu = 0} +

∑
i∈∂u

log
P{T t

i | τu = 1}
P{T t

i | τu = 0}
(b)= −K(p − q) + Nu log

d1

d0
+

∑
i∈∂u

log

∑
x∈{0,1} P{τi = x | τu = 1}P{T t

i | τi = x}∑
τi∈{0,1} P{τi = x | τu = 0}P{T t

i | τi = x}
(c)= −K(p − q) +

∑
i∈∂u

log
KpP{T t

i | τi = 1} + (n − K)qP{T t
i | τi = 0}

KqP{T t
i | τi = 1} + (n − K)qP{T t

i | τi = 0}
(d)= −K(p − q) +

∑
i∈∂u

log
e�t

i→u−ν(p/q) + 1

e�t
i→u−ν + 1

,

where (a) holds since Nu and T t
i for i ∈ ∂u are independent conditional on τu; (b) follows

since Nu ∼ Poisson(d1) if τu = 1 and Nu ∼ Poisson(d0) if τu = 0, and T t
i is independent

of τu conditional on τi ; (c) follows from the fact τi ∼ Bernoulli(Kp/d1) given τu = 1, and
τi ∼ Bernoulli(Kq/d0) given τu = 0; (d) follows from the definition of �t

i→u. �
Note that �t

u is a function of T t
u alone; and it is statistically correlated with the vertex

labels. Also, since the construction of a subtree T t
i and its vertex labels are the same as the

construction of T t
u and its vertex labels, the conditional distribution of T t

i given τi is the same
as the conditional distribution of T t

u given τu. Therefore, for any i ∈ ∂u, the conditional
distribution of �t

i→u given τi is the same as the conditional distribution of �t
u given τu. For

i = 0 or 1, let Zt
i denote a random variable that has the same distribution as �t

u given τu = i.
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The above update rules can be viewed as an infinite-dimensional recursion that determines the
probability distribution of Zt+1

0 in terms of that of Zt
0.

The remainder of this section is devoted to the analysis of BP on the Poisson tree model,
and is organized into two main parts. In Section 4.1 we provide expressions for exponential
moments of the log-likelihood messages, which are applied in Section 4.2 to yield an upper
bound, in Lemma 4.8 on the error probability for the problem of classifying the root vertex of
the tree. That bound, together with a standard coupling result between the Poisson tree and the
local neighborhood of G (stated in Appendix C), is enough to establish weak recovery for the
BP algorithm run on graph G, given in Theorem 3.1. In Section 4.3 we focus on lower bounds
on the probability of correct classification. Those bounds, together with the coupling lemmas,
are used to establish the converse results for local algorithms.

4.1. Exponential moments of log-likelihood messages for the Poisson tree

In the following lemma we provide formulas for some exponential moments of Zt
0 and Zt

1,
based on Lemma 4.1. Although the formulas are not recursions, they are close enough to permit
useful analysis.

Lemma 4.2. For t ≥ 0 and any integer h ≥ 2,

E[ehZt+1
0 ] = E[e(h−1)Zt+1

1 ]

= exp

(
K(p − q)

h∑
j=2

(
h

j

)(
λ

K(p − q)

)j−1

E

[(
eZt

1

1 + eZt
1−ν

)j−1])
. (4.4)

Proof. We first illustrate the proof for h = 2. By the definition of �t
u and a change of

measure, we have E[g(�t
u) | τu = 0] = E[g(�t

u)e
−�t

u | τu = 1], where g is any measurable
function such that the expectations above are well defined. It follows that

E[g(Zt
0)] = E[g(Zt

1)e
−Zt

1 ]. (4.5)

Substituting in for g(z) = ez and g(z) = e2z, we have E[eZt
0 ] = 1 and E[e2Zt

0 ] = E[eZt
1 ].

Moreover,
eνE[g(Zt

0)] + E[g(Zt
1)] = E[g(Zt

1)(e
−Zt

1+ν + 1)].
Substituting g(z) = (1 + e−z+ν)−1 and g(z) = (1 + e−z+ν)−2 into the last displayed equation,
we have

eνE

[
1

1 + e−Zt
0+ν

]
+ E

[
1

1 + e−Zt
1+ν

]
= 1, (4.6)

eνE

[
1

(1 + e−Zt
0+ν)2

]
+ E

[
1

(1 + e−Zt
1+ν)2

]
= E

[
1

1 + e−Zt
1+ν

]
. (4.7)

In view of Lemma 4.1, by defining f (x) = (x(p/q) + 1)/(x + 1), we have

e2�t+1
u = e−2K(p−q)

∏
�∈∂u

f 2(e�t
�→u−ν).

Since the distribution of �t
�→u conditional on τu = 0 and τu = 1 is the same as the distribution

of Zt
0 and Zt

1, respectively, it follows that

E[e2Zt+1
0 ] = e−2K(p−q)E[(E[f 2(eZt+1

1 −ν)])Lu ]E[(E[f 2(eZt+1
0 −ν)])Mu ].

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.22
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana - Champaign Library, on 29 Mar 2019 at 06:40:17, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.22
https://www.cambridge.org/core


338 B. HAJEK ET AL.

Using the fact that E[cX] = eλ(c−1) for X ∼ Poisson(λ) and c > 0, we have

E[e2Zt+1
0 ] = exp(−2K(p − q) + Kq(E[f 2(eZt+1

1 −ν)] − 1)

+ (n − K)q(E[f 2(eZt+1
0 −ν)] − 1)).

Note that

f 2(x) =
(

1 + p/q − 1

1 + x−1

)2

= 1 + 2(p/q − 1)

1 + x−1 + (p/q − 1)2

(1 + x−1)2 .

It follows that

Kq(E[f 2(eZt+1
1 −ν)] − 1) + (n − K)q(E[f 2(eZt+1

0 −ν)] − 1)

= 2Kq

(
p

q
− 1

)(
E

[
1

1 + e−Zt
1+ν

]
+ eνE

[
1

1 + e−Zt
0+ν

])

+ Kq

(
p

q
− 1

)2(
E

[
1

(1 + e−Zt
1+ν)2

]
+ eνE

[
1

(1 + e−Zt
0+ν)2

])
(a)= 2K(p − q) + Kq

(
p

q
− 1

)2

E

[
1

1 + e−Zt
1+ν

]

= 2K(p − q) + λE

[
eZt

1

1 + eZt
1−ν

]
,

where (a) follows by applying (4.6) and (4.7). Combining the above proves (4.4) with h = 2.
For general h ≥ 2, we expand f h(x) = (1+(p/q −1)/(1+x−1))h using binomial coefficients
as already illustrated for h = 2. �

Using the notation

at = E[eZt
1 ], bt = E

[
eZt

1

1 + eZt
1−ν

]
, (4.8)

(4.4) with h = 2 becomes
at+1 = eλbt . (4.9)

In the following lemma we provide upper bounds on some exponential moments in terms
of bt .

Lemma 4.3. Let C := λ(2+p/q) and C′ := λ(3+2(p/q)+(p/q)2). Then E[exp(2Zt+1
1 )] ≤

exp(Cbt ) and E[exp(3Zt+1
1 )] ≤ exp(C′bt ). More generally, for any integer h ≥ 2,

E[exp(hZt+1
0 )] = E[exp((h − 1)Zt+1

1 )] ≤ exp

(
λbt

h∑
j=2

(
h

j

)(
p

q
− 1

)j−2)
. (4.10)

Proof. Note that ez/(1 + ez−ν) ≤ eν for all z. Therefore, for any j ≥ 2,(
ez

1 + ez−ν

)j−1

≤ e(j−2)ν

(
ez

1 + ez−ν

)
.

Applying this inequality to (4.4) yields (4.10). �
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4.2. Upper bound on the classification error via exponential moments

Note that bt ≈ at if ν � 0, in which case (4.9) is approximately a recursion for {bt }. In the
following two lemmas we use this intuition to show that if λ > 1/e and ν is large enough, the bt

eventually grow large. In turn, that fact will be used to show that the Bhattacharyya coefficient
mentioned in (4.2), which can be expressed as ρB = E[eZt

0/2] = E[e−Zt
1/2], becomes small,

culminating in Lemma 4.8, yielding an upper bound on the classification error for the root
vertex.

Lemma 4.4. Let C := λ(2 + p/q). Then

bt+1 ≥ eλbt (1 − e−ν/2) if bt ≤ ν

2(C − λ)
. (4.11)

Proof. Note that C − λ > 0. If bt ≤ ν/2(C − λ), we have

bt+1
(a)≥ at+1 − E[e−ν+2Zt+1

1 ] (b)≥ eλbt − e−ν+Cbt = eλbt (1 − e−ν+(C−λ)bt )
(c)≥ eλbt (1 − e−ν/2),

where (a) follows by the definitions in (4.8) and the fact 1/(1+x) ≥ 1−x for x ≥ 0; (b) follows
from Lemma 4.3; (c) follows from the condition bt ≤ ν/2(C − λ). �

Lemma 4.5. The variables at and bt are nondecreasing in t and E[eZt
0/2] is nonincreasing

in t over all t ≥ 0. More generally, E[ϒ(eZt
0)] is nondecreasing (nonincreasing) in t for any

convex (concave) function ϒ with domain (0, ∞).

Proof. Note that, in view of (4.5), E[ϒ(eZt
0)] becomes at for the convex function ϒ(x) = x2,

bt for the convex function ϒ(x) = x2/(1 + xe−ν), and E[eZt
0/2] for the concave function

ϒ(x) = √
x. It thus suffices to prove the last statement of the lemma.

It is well known that for a nonsingular binary hypothesis testing problem with a growing
amount of information indexed by some parameter s (that is, an increasing family of σ -algebras
as usual in martingale theory), the likelihood ratio dP/dQ is a martingale under measure Q.
Therefore, the likelihood ratios {e�t

u : t ≥ 0} (where �s denotes the log-likelihood ratio) at the
root vertex u for the infinite tree, conditioned on τu = 0, form a martingale. Thus, the random
variables {eZt

0 : t ≥ 0} can be constructed on a single probability space to be a martingale. The
lemma therefore follows from Jensen’s inequality. �

Recall that log∗(ν) denotes the number of times the logarithm function must be iteratively
applied to ν to obtain a result less than or equal to 1.

Lemma 4.6. Suppose that λ > 1/e. There are constants t̄0 and νo > 0 depending only on λ

such that

bt̄0+log∗(ν)+2 ≥ exp

(
λν

2(C − λ)

)(
1 − exp

(
−ν

2

))
,

where C = λ(p/q + 2), whenever ν ≥ νo and ν ≥ 2(C − λ).

Proof. Given λ with λ > 1/e, select the following constants, depending only on λ:

• D and ν0 so large that λeλD(1 − e−νo/2) > 1 and λe(1 − e−νo/2) ≥ √
λe;

• w0 > 0 so large that w0λeλD(1 − e−νo/2) − λD ≥ w0;

• a positive integer t̄0 so large that λ((λe)t̄0/2−1 − D) ≥ w0.
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Throughout the remainder of the proof we assume without further comment that ν ≥ νo and
ν ≥ 2(C −λ). The latter condition and the fact b0 = 1/(1+e−ν) ensure that b0 < ν/2(C −λ).
Let t∗ = max{t ≥ 0 : bt < ν/2(C − λ)} and let t̄1 = log∗(ν). The first step of the proof is to
show that t∗ ≤ t̄0 + t̄1. For that purpose we will show that the bt increase at least geometrically
to reach a certain large constant (specifically, so that (4.12) below holds), and then they increase
as fast as a sequence produced by iterated exponentiation.

Since b0 ≥ 0, it follows from (4.11) and the choice of ν0 that b1 ≥ (1− e−νo/2) ≥ (λe)−1/2.
Note that eu ≥ eu for all u > 0, since eu/u is minimized at u = 1. Thus, eλbt ≥ λebt , which
combined with the choice of ν0 and (4.11) shows that if bt ≤ ν/2(C − λ) then bt+1 ≥ √

λebt .
It follows that bt ≥ (λe)t/2−1 for 1 ≤ t ≤ t∗ + 1.

If bt̄0−1 ≥ ν/2(C − λ) then t∗ ≤ t̄0 − 2 and the claim t∗ ≤ t̄0 + t̄1 is proved (that is,
the geometric growth phase alone was enough), so to cover the other possibility, suppose that
bt̄0−1 < ν/2(C − λ). Then t̄0 ≤ t∗ + 1 and, therefore, bt̄0 ≥ (λe)t̄0/2−1. Let t0 = min{t : bt ≥
(λe)t̄0/2−1}. It follows that t0 ≤ t̄0 and, by the choice of t̄0 and the definition of t0,

λ(bt0 − D) ≥ w0. (4.12)

Define the sequence (wt : t ≥ 0) beginning with w0 already chosen, and satisfying the
recursion wt+1 = ewt . It follows by induction that

λ(bt0+t − D) ≥ wt for t ≥ 0, t0 + t ≤ t∗ + 1. (4.13)

Indeed, the base case is (4.12), and if (4.13) holds for some t with t0 + t ≤ t∗, then bt0+t ≥
wt/λ + D, so that

λ(bt0+t+1 − D) ≥ λ(eλbt0+t (1 − e−ν/2) − D) ≥ wt+1λeλD(1 − e−ν/2) − λD ≥ wt+1,

where the last inequality follows from the choice of w0 and the fact wt+1 ≥ w0. The proof of
(4.13) by induction is complete.

Let t̄1 = log∗(ν). Since w1 ≥ 1, it follows that wt̄1+1 ≥ ν (verify by applying the log
function t̄1 times to each side). Therefore, wt̄1+1 ≥ λν/2(C − λ) − λD, where we use the fact
that C − λ ≥ 2λ. If t0 + t̄1 < t∗, from (4.13) with t = t0 + t̄1 + 1 we would have

bt0+t̄1+1 ≥ wt̄+1

λ
+ D ≥ ν

2(C − λ)
,

which would imply t∗ ≤ t0 + t̄1, which would be a contradiction. Therefore, t∗ ≤ t0 + t̄1 ≤
t̄0 + t̄1, as required.

Since t∗ is the last iteration index t such that bt < ν/2(C − λ), either bt∗+1 = ν/2(C − λ),
and we say the threshold ν/2(C−λ) is exactly reached at iteration t∗+1, or bt∗+1 > ν/2(C−λ),
in which case we say there was overshoot at iteration t∗ + 1. First, consider the case that the
threshold is exactly reached at iteration t∗ + 1. Then, bt∗+1 = ν/2(C − λ), and (4.11) can be
applied with t = t∗ + 1, yielding

bt∗+2 ≥ exp(λbt∗+1)

(
1 − exp

(
−ν

2

))
= exp

(
λν

2(C − λ)

)(
1 − exp

(
−ν

2

))
.

Since t∗ + 2 ≤ t̄0 + t̄1 + 2 = t̄0 + log∗(ν) + 2, it follows from Lemma 4.5 that bt̄0+log∗(ν)+2 ≥
bt∗+2, which completes the proof of the lemma in the case when the threshold is exactly reached
at iteration t∗ + 1.
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To complete the proof, we explain how the information available for estimation can be
reduced through a thinning method, leading to a reduction in the value of bt∗+1, so that we
can assume without loss of generality that the threshold is always exactly reached at iteration
t∗ + 1. Let φ be a parameter with 0 ≤ φ ≤ 1. As before, we will be considering a total of
t∗ + 2 iterations, so consider a random tree with labels (T t∗+2

u , τ
T t∗+2

u
), with root vertex u, and

maximum depth t∗ + 2. For the original model, each vertex of depth t∗ + 1 or less with label 0
or 1 has a Poisson number of children with labels 0 and 1, respectively, with means specified in
the construction. For the thinning method, for each � ∈ ∂u and each child i of ∂� (that is, for
each grandchild of u), we generate a random variable U�,i that is uniformly distributed on the
interval [0, 1]. Then we retain i if U�,i ≤ φ, and we delete i, and all its decedents, if U�,i > φ.
That is, the grandchildren of the root vertex u are each deleted with probability 1 − φ. It is
equivalent to reducing p and q to φp and φq, respectively, for that one generation. Consider
the calculation of the likelihood ratio at the root vertex for the thinned tree. The log-likelihood
ratio messages begin at the leaf vertices at depth t∗ + 2.

For any vertex � 	= u, let ��→π(�),φ denote the log-likelihood message passed from vertex �

to its parent, π(�). Also, let �u,φ denote the log-likelihood computed at the root vertex. For
brevity, we remove the superscript t on the log-likelihood ratios, though t on the message
��→π(�),φ would be t∗ + 2 minus the depth of �. The messages of the form ��→π(�),φ do not
actually depend on φ unless � ∈ ∂u. For a vertex � ∈ ∂u, the message ��→u,φ has the nearly
the same representation as in Lemma 4.1; namely,

��→u,φ = −φK(p − q) +
∑

i∈∂� : U�,i≤φ

log

(
e�i→�, φ−ν(p/q) + 1

e�i→�, φ−ν + 1

)
. (4.14)

The representation of �u,φ is the same as the representation of �t+1
u in Lemma 4.1, except with

�t
�→u replaced in both places on the right-hand side by ��→u,φ .
Let Zt

0,φ and Zt
1,φ denote random variables for analyzing the message-passing algorithm for

this depth t∗ + 2 tree. Their laws are as follows. For 0 ≤ t ≤ t∗ + 1, L(Zt
0,φ) is the law of

��→π(�),φ given τ� = 0 for a vertex � of depth t∗ + 2 − t . And L(Zt∗+2
0,φ ) is the law of �u,φ

given τu = 0. Note that Z0
0,φ ≡ 0. The laws L(Zt

1,φ) are determined similarly, conditioning
on the labels of the vertices to be 1. For t fixed, L(Zt

0,φ) and L(Zt
1,φ) each determine the

other because they represent distributions of the log-likelihood for a binary hypothesis testing
problem.

The message-passing equations for the log-likelihood ratios translate into recursions for the
laws L(Zt

0,φ) and L(Zt
1,φ). We have not focused directly on the full recursions of the laws, but

rather looked at equations for exponential moments. The basic recursions under consideration
for L(Zt

0,φ) are exactly as before for 0 ≤ t ≤ t∗ −1 and for t = t∗ +1. For t = t∗, the thinning
needs to be taken into account, resulting, for example, in the following updates for t = t∗:

E[eZt∗+1
1 ] = E[e2Zt∗+1

0 ] = exp

(
λφE

[
eZt∗

1

1 + eZt∗
1 −ν

])
,

E[e2Zt∗+1
1 ] = exp

(
3λφE

[
eZt∗

1

1 + eZt∗
1 −ν

]
+ λ2φ

K(p − q)
E

[(
eZt∗

1

1 + eZt∗
1 −ν

)2])
.

Let

at,φ = E[eZt
1,φ ], bt,φ = E

[
eZt

1,φ

1 + eZt
1,φ−ν

]
for 0 ≤ t ≤ t∗ + 2.
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Note that at,φ and bt,φ do not depend on φ for 0 ≤ t ≤ t∗. We have

at+1,φ =
{

exp(λbt,φ), t 	= t∗,
exp(λφbt,φ), t = t∗.

(4.15)

We will not need (4.15) for t = t∗ but we will use it for t = t∗ + 1.
On the one hand, if φ = 0 then ��→u,φ ≡ 0 for all � ∈ ∂u, so that

Zt∗+1
0,φ=0 = Zt∗+1

1,φ=0 ≡ 0 and bt∗+1, φ=0 = 1

1 + e−ν
= n − K

n
≤ 1 <

ν

2(C − λ)
.

On the other hand, by the definition of t∗, we know that bt∗+1, φ=1 ≥ ν/2(C−λ). We will show
that there exists a value of φ ∈ [0, 1] so that bt∗+1,φ = ν/2(C − λ). To do this we next prove
that bt∗+1,φ is a continuous and, in fact, nondecreasing function of φ using a variation of the
proof of Lemma 4.5. Let � denote a fixed neighbor of the root node u. Note that exp(��→u,φ)

is the likelihood ratio for detection of τ� based on the thinned subtree of depth t∗ +1 with root �.
As φ increases from 0 to 1, the amount of thinning decreases, so larger values of φ correspond to
larger amounts of information. Therefore, conditioned on τu = 0, (exp(��,φ) : 0 ≤ φ ≤ 1) is a
martingale. Moreover, the independent splitting property of Poisson random variables implies
that, given τ� = 0, the random process

φ �→ |{i ∈ ∂� : U�,i ≤ φ}|
is a Poisson process with intensity nq and, therefore, the sum in (4.14), as a function of φ

over the interval [0, 1], is a compound Poisson process. Compound Poisson processes, just
like Poisson processes, are almost surely continuous at any fixed value of φ and, therefore, the
random process φ �→ ��→u,φ is continuous in distribution. Therefore, the random variables
exp(Zt∗+1

0,φ ) can be constructed on a single probability space for 0 ≤ φ ≤ 1 to form a martingale
which is continuous in distribution. Since bt∗+1,φ is the expectation of a bounded, continuous,
convex function of exp(Zt∗+1

0,φ ), it follows that bt∗+1,φ is continuous and nondecreasing in φ.
Therefore, we can conclude that there exists a value of φ so that bt∗+1,φ = ν/2(C − λ), as
claimed.

Since there is no overshoot, we obtain, as before (by using (4.15) for t = t∗ + 1 to modify
Lemma 4.4 to handle (bt+1, bt ) replaced by (bt∗+2,φ, bt∗+1,φ)),

bt∗+2,φ ≥ exp(λbt∗+1,φ)(1 − e−ν/2) = exp

(
λν

2(C − λ)

)
(1 − e−ν/2).

The same martingale argument used in the previous paragraph can be used to show that bt∗+2,φ

is nondecreasing in φ and, in particular, bt∗+2 = bt∗+2,1 ≥ bt∗+2,φ for 0 ≤ φ ≤ 1. Hence, by
Lemma 4.5 and the fact t∗ + 2 ≤ t̄0 + log∗(ν) + 2, we have bt̄0+log∗(ν)+2 ≥ bt∗+2 ≥ bt∗+2,φ ,
completing the proof of the lemma. �
Lemma 4.7. Let B = (p/q)3/2. Then

exp

(
−λ

8
bt

)
≤ E[exp

(
Zt+1

0

2

)
] ≤ exp

(
− λ

8B
bt

)
.

Proof. We prove the upper bound first. In view of Lemma 4.1, by defining

f (x) = x(p/q) + 1

x + 1
,
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we obtain
exp

( 1
2�t+1

u

) = exp
(− 1

2K(p − q)
) ∏

�∈∂u

f 1/2(exp(�t
�→u − ν)).

Thus,

E
[
exp

( 1
2Zt+1

0

)]
= exp

(− 1
2K(p − q)

)
E[(E[f 1/2(exp(Zt

1 − ν))])Lu ]E[(E[f 1/2(exp(Zt
0 − ν))])Mu ].

Using the fact that E[cX] = eλ(c−1) for X ∼ Poisson(λ) and c > 0, we have

E
[
exp

( 1
2Zt+1

0

)] = exp
(− 1

2K(p − q) + Kq(E[f 1/2(exp(Zt
1 − ν))] − 1)

+ (n − K)q(E[f 1/2(exp(Zt
0 − ν))] − 1)

)
(4.16)

By the intermediate value form of Taylor’s theorem, for any x ≥ 0, there exists y with 1 ≤ y ≤ x

such that
√

1 + x = 1 + x/2 − x2/8(1 + y)3/2. Therefore,

√
1 + x ≤ 1 + x

2
− x2

8(1 + A)3/2 for all 0 ≤ x ≤ A. (4.17)

Letting A := p/q − 1 and noting that B = (1 + A)3/2, we have(
ez−ν(p/q) + 1

1 + ez−ν

)1/2

=
(

1 + p/q − 1

1 + e−z+ν

)1/2

≤ 1 + 1

2

(p/q − 1)

(1 + e−z+ν)
− 1

8B

(p/q − 1)2

(1 + e−z+ν)2 .

It follows that

Kq(E[f 1/2(eZt
1−ν)] − 1) + (n − K)q(E[f 1/2(eZt

0−ν)] − 1)

≤ 1

2
Kq

(
p

q
− 1

)(
E

[
1

1 + e−Zt
1+ν

]
+ eνE

[
1

1 + e−Zt
0+ν

])

− 1

8B
Kq

(
p

q
− 1

)2(
E

[
1

(1 + e−Zt
1+ν)2

]
+ eνE

[
1

(1 + e−Zt
0+ν)2

])

= K(p − q)

2
− 1

8B
Kq

(
p

q
− 1

)2

E

[
1

1 + e−Zt
1+ν

]

= K(p − q)

2
− λ

8B
E

[
eZt

1

1 + eZt
1−ν

]
︸ ︷︷ ︸

bt

,

where the first equality follows from (4.6) and (4.7), and the last equality holds as a result of
Kq(p/q − 1)2eν = λ. Combining the last displayed equation with (4.16) yields the desired
upper bound.

The proof for the lower bound is similar. Instead of (4.17), we use
√

1 + x ≥ 1+x/2− 1
8x2

for all x ≥ 0, and the lower bound readily follows by the same argument as above. �
Lemma 4.8. (Upper bound on the classification error for the random tree model.) Consider
the random tree model with parameters λ, ν, and p/q. Let λ be fixed with λ > 1/e. There
are constants t̄0 and νo depending only on λ such that if ν ≥ νo and ν ≥ 2(C − λ), then
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after t̄0 + log∗(ν)+2 iterations of the BP algorithm, the average error probability for the MAP
estimator τ̂u of τu satisfies

pt
err ≤

(
K(n − K)

n2

)1/2

exp

(
− λ

8B
eνλ/2(C−λ)(1 − e−ν/2)

)
, (4.18)

where B = (p/q)3/2 and C = λ(p/q + 2). In particular, if p/q = O(1), and r is any positive
constant, then if ν is sufficiently large,

pt
err ≤ Ke−rν

n
= K

n

(
K

n − K

)r

. (4.19)

Proof. We use the Bhattacharyya upper bound in (4.2) with π1 = K/n and π0 = (n−K)/n,
and the fact that ρ = E[eZt

0/2]. Substituting in the lower bound on bt̄0+log∗(ν)+2 from Lemma 4.6
into the upper bound on E[eZt

0/2] from Lemma 4.7 yields (4.18). If p/q = O(1) and r > 0
then, for large enough ν,

λ

8B
eνλ/2(C−λ)(1 − e−ν/2) ≥ ν

(
r + 1

2

)
,

which, together with (4.18), implies (4.19). �

4.3. Lower bounds on the classification error for the Poisson tree

The bounds in this section will be combined with the coupling lemmas of Appendix C to
yield converse results for recovering a community by local algorithms.

Lemma 4.9. (Lower bounds for the Poisson tree model.) Fix λ with 0 < λ ≤ 1/e. For any
estimator τ̂u of τu based on the observation of the tree up to any depth t , the average error
probability satisfies

pt
err ≥ K(n − K)

n2 e−λe/4, (4.20)

and the sum of type I and type II error probabilities satisfies

pt
err,0 + pt

err,1 ≥ 1
2 e−λe/4. (4.21)

Furthermore, if p/q = O(1) and ν → ∞ then

lim inf
n→∞

n

K
pt

err ≥ 1. (4.22)

Proof. From Lemma 4.7 we see that the Bhattacharyya coefficient ρB = E[eZt+1
0 /2] satisfies

ρB ≥ e−λbt /8. Note that bt+1 ≤ at+1 = eλbt for t ≥ 0 and b0 = 1/(1 + e−ν). It follows
from induction and the assumption λe ≤ 1 that bt ≤ e for all t ≥ 0. Therefore, ρB ≥ e−λe/8.
Applying the Bhattacharyya lower bound on pt

err in (4.2) (which holds for any estimator)
with (π0, π1) = ((n − K)/n, K/n) yields (4.20) and with (π0, π1) = ( 1

2 , 1
2 ) yields (4.21),

respectively.
It remains to prove (4.22), so suppose that p/q = O(1) and ν → ∞. It suffices to prove

(4.22) for the MAP estimator, τ̂u = 1{�t
u≥ν}, since the MAP estimator minimizes the average

error probability.
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In the arXiv version of this paper [17] we show that the distribution of �t+1
u is well approx-

imated by the N ( 1
2λbt , λbt ) distribution if σu = 1 and by the N (− 1

2λbt , λbt ) distribution if
σu = 0. It follows that as n → ∞, the type I and type II error probabilities satisfy

pt
e,1 − Q

(
λbt−1/2 − ν√

λbt−1

)
→ 0 and pt

e,0 − Q

(
λbt−1/2 + ν√

λbt−1

)
→ 0,

where Q is the complementary cumulative distribution function of the standard normal dis-
tribution. Recall that bt ≤ e for all t ≥ 0. Also, bt is bounded away from 0, since
bt ≥ b0 = 1/(1 + e−ν). Since ν → ∞, we have pt

e,1 → 1. By definition, (n/K)pt
err ≥ pt

err,1
and, consequently, lim infn→∞(n/K)pt

err ≥ 1. �

5. Proofs of the main results of BP

Proof of Theorem 3.1. The proof basically consists of combining Lemma 4.8 and the Lemma
C.1. Lemma 4.8 holds by the assumptions K2(p − q)2/(n − K)q ≡ λ for a constant λ with
λ > 1/e, ν → ∞, and p/q = O(1). From Lemma 4.8 we can also determine the given
expression for tf . In turn, the assumptions (np)log∗ ν = no(1) and elog∗ ν ≤ ν = no(1) ensure
that (2 + np)tf = no(1), so that Lemma C.1 holds.

A subtle point is that the performance bound of Lemma 4.8 is for the MAP rule (4.1) for
detecting the label of the root vertex. The same rule could be implemented at each vertex of
the graph G which has a locally tree-like neighborhood of radius t0 + log∗(ν) + 2 by using
the estimator Ĉo = {i : R

tf
i ≥ ν}. We first bound the performance for Ĉo and then do the same

for Ĉ produced by Algorithm 3.1. (We could have taken Ĉo to be the output of Algorithm 3.1,
but returning a constant size estimator leads to simpler analysis of the algorithm for exact
recovery.)

The average probability of misclassification of any given vertex u in G by Ĉo (for prior
distribution (K/n, (n − K)/n)) is less than or equal to the sum of the two terms. The first
term is n−1+o(1) in the |C∗| ≡ K case or n−1/2+o(1) in the other case (due to failure of the
tree coupling of radius tf neighborhood; see Lemma C.1). The second term is (K/n)e−νr

(bound on average error probability for the detection problem associated with a single vertex u

in the tree model; see Lemma 4.8.) Multiplying by n bounds the expected total number of
misclassification errors, E[|C∗
Ĉo|]; dividing by K gives the bounds stated in the lemma
with Ĉ replaced by Ĉo and the factor 2 dropped in the bounds.

The set Ĉo is defined by a threshold condition whereas Ĉ similarly corresponds to using a data
dependent threshold and tie breaking rule to arrive at |Ĉ| ≡ K . Therefore, with probability 1,
either Ĉo ⊂ Ĉ or Ĉ ⊂ Ĉo. Together with the fact that |Ĉ| ≡ K , we have

|C∗
Ĉ| ≤ |C∗
Ĉo| + |Ĉo
Ĉ| = |C∗
Ĉo| + ||Ĉo| − K|
and, furthermore,

||Ĉo| − K| ≤ ||Ĉo| − |C∗|| + ||C∗| − K| ≤ |C∗
Ĉo| + ||C∗| − K|.
So

|C∗
Ĉ| ≤ 2|C∗
Ĉo| + ||C∗| − K|.
If |C∗| ≡ K then |C∗
Ĉ| ≤ 2|C∗
Ĉo| and (3.3) follows from what was proved for Ĉo. In the
other case, E[‖C∗| − K|] ≤ n1/2+o(1) and (3.4) follows from what was proved for Ĉo.
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As for the computational complexity guarantee, note that in each BP iteration, each vertex i

needs to transmit the outgoing message Rt+1
i→j to its neighbor j according to (3.1). To do so,

vertex i can first compute Rt+1
i and then subtract neighbor j ’s contribution from it to obtain the

desired message Rt+1
i→j . In this way, each vertex i needs O(|∂i|) basic operations and the total

time complexity of one BP iteration is O(|E(G)|), where |E(G)| is the total number of edges.
Since ν ≤ n, at most O(log∗ n) iterations are needed and, hence, the algorithm terminates in
O(|E(G)| log∗ n) time. �

Proof of Theorem 3.2. The theorem follows from the fact that the BP algorithm achieves
weak recovery, even if the cardinality |C∗| is random and is only known to satisfy P{||C∗|−K| ≥√

3K log n} ≤ n−1/2+o(1) and the results of [16]. We include the proof for completeness. Let
C∗

k = C∗∩([n]\Sk) for 1 ≤ k ≤ 1/δ. As explained in Remark C.2, C∗
k is obtained by sampling

the vertices in [n] without replacement and, thus, the distribution of C∗
k is hypergeometric with

E[|C∗
k |] = K(1 − δ). A result of Hoeffding [18] implies that the Chernoff bounds for the

binom(n(1 − δ), K/n) distribution also hold for |C∗
k |, so (C.2) with np = K(1 − δ) and

ε = √
3 log n/[K(1 − δ)] imply that

P{||C∗
k | − K(1 − δ)| ≥ √

3K(1 − δ) log n} ≤ 2n−1 ≤ n−1/2+o(1).

Hence, it follows from Theorem 3.1 and the condition λ > 1/e that

P

{
|Ĉk�C∗

k | ≤ δK for 1 ≤ k ≤ 1

δ

}
→ 1 as n → ∞,

where Ĉk is the output of the BP algorithm in step (iii) of Algorithm 3.2. Applying [16,
Theorem 3] together with assumption (3.5), it follows that P{C̃ = C∗} → 1 as n → ∞. �

Proof of Theorem 3.3. The average error probability perr for classifying the label of a ver-
tex in the graph G is greater than or equal to the lower bound (4.20) on the average error
probability for the tree model, minus the upper bound n−1+o(1) on the coupling error provided
by Lemma C.1. Multiplying the lower bound on the average error probability per vertex
by n yields (3.7). Similarly, perr,0 and perr,1 for the community recovery problem can be
approximated by the respective conditional error probabilities for the random tree model by the
last part of the coupling lemma (Lemma C.1) so (3.8) follows from (4.21).

By Lemma 4.9, assuming that p/q = O(1) and ν → ∞, lim infn→∞(n/K)p̃t
err ≥ 1,

where p̃t
err is the average error probability for any estimator for the corresponding random tree

network. By the Lemma C.1, |p̃t
err −pt

err| ≤ n−1+o(1). From the assumption that n/K = no(1),
|(n/K)p̃t

err −(n/K)pt
err| ≤ n−1+o(1). The conclusion lim infn→∞(n/K)perr ≥ 1 follows from

the triangle inequality. �

Appendix A. Degree thresholding when K � n

A simple algorithm for recovering C∗ is degree thresholding. Specifically, let di denote
the degree of vertex i. Then di is distributed as the sum of two independent random vari-
ables, with distributions binom(K − 1, p) and binom(n − K, q), respectively, if i ∈ C∗,
while di ∼ binom(n − 1, q) if i /∈ C∗. The mean-degree difference between these two
distributions is (K − 1)(p − q), and the degree variance is O(nq). By assuming that p/q

is bounded, it follows from the Bernstein’s inequality that |di − E[di]| ≥ 1
2 (K − 1)(p − q)

with probability at most e−�((K−1)2(p−q)2/(nq)). Let Ĉ be the set of vertices with degrees
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larger than nq + 1
2 (K − 1)(p − q) and, thus, E[|Ĉ
C∗|] = ne−�((K−1)2(p−q)2/(nq)). Hence,

if (K − 1)2(p − q)2/(nq) = ω(log(n/K)) then E[|Ĉ
C∗|] = o(K), that is, weak recovery
is achieved. In the regime K � n − K � n and p is bounded away from 1, the nec-
essary and sufficient condition for the existence of estimators providing weak recovery is
K2(p − q)2/(nq) → ∞ as shown in [16]. Thus, degree thresholding provides weak recov-
ery in this regime whenever it is information-theoretically possible. Under the additional
condition (3.5), an algorithm attaining exact recovery can be built using degree thresholding
for weak recovery followed by a linear-time voting procedure, as in Algorithm 3.2; see [16,
Theorem 3] and its proof. In the regime (n/K) log(n/K) = o(log n) or, equivalently, K =
ω(n log log n/ log n), the information-theoretic necessary condition for exact recovery given
by (B.3) and (B.4) imply that K2(p − q)2/(nq) = ω(log(n/K)) and, hence, in this regime the
degree thresholding attains exact recovery whenever it is information-theoretically possible.

Appendix B. Comparison with information-theoretic limits

As noted in the introduction, in the K = �(n) regime, degree thresholding achieves weak
recovery and, if a voting procedure is also used, exact recovery whenever it is information-
theoretically possible. In this section we compare the recovery thresholds by BP to the informa-
tion-theoretic thresholds established in [16], in the regime of

K = o(n), np = no(1),
p

q
= O(1), (B.1)

which is the main focus of this paper.
The information-theoretic threshold for weak recovery was established in [16, Corollary 1],

which, in the regime of (B.1), reduces to the following. If

lim inf
n→∞

Kd(p‖q)

2 log(n/K)
> 1, (B.2)

then weak recovery is possible. On the other hand, if weak recovery is possible then

lim inf
n→∞

Kd(p‖q)

2 log(n/K)
≥ 1. (B.3)

To compare with BP, we rephrase the above sharp threshold in terms of the signal-to-noise
ratio λ defined in (1.1). Note that d(p‖q) = (p log(p/q) + q − p)(1 + o(1)) provided that
p/q = O(1) and p → 0. Therefore, the information-theoretic weak recovery threshold is
given by

λ >

(
C

(
p

q

)
+ ε

)
K

n
log

n

K
for any ε > 0,

where C(α) := 2(α − 1)2/(1 − α + α log α). In other words, in principle weak recovery
only demands a vanishing signal-to-noise ratio λ = �((K/n) log(n/K)), while, in contrast,
BP requires λ > 1/e to achieve weak recovery. No polynomial-time algorithm is known to
succeed for λ ≤ 1/e, suggesting that computational complexity constraints might incur a severe
penalty on the statistical optimality in the sublinear regime of K = o(n).

Next we turn to exact recovery. The information-theoretic optimal threshold was established
by Hajek et al. [16, Corollary 3]. In the regime of interest (B.1), exact recovery is possible
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via the maximum likelihood estimator provided that (B.2) and (3.5) hold. Conversely, if exact
recovery is possible then (B.3) and

lim inf
n→∞

Kd(τ ∗‖q)

log n
≥ 1 (B.4)

must hold. Note that the information-theoretic sufficient condition for exact recovery has two
parts: one is the information-theoretic sufficient condition (B.2) for weak recovery; the other
is the sufficient condition (3.5) for the success of the linear-time voting procedure. Similarly,
recall that the sufficient condition for exact recovery by BP also has two parts: one is the
sufficient condition λ > 1/e for weak recovery, and the other is again (3.5).

Clearly, the information-theoretic sufficient conditions for exact recovery and λ > 1/e,
which is needed for weak recovery by local algorithms, are both at least as strong as the
information-theoretic necessary conditions (B.3) for weak recovery. It is thus of interest to
compare them by assuming that (B.3) holds. If p/q is bounded, p is bounded away from 1, and
(B.3) holds, then d(τ ∗‖q) � d(p‖q) � (p − q)2/q as shown by Hajek et al. [16]. So under
those conditions on p, q, and (B.3), and if K/n is bounded away from 1,

Kd(τ ∗‖q)

log n
� K(p − q)2

q log n
�

(
n

K log n

)
λ.

Hence, the information-theoretic sufficient condition for exact recovery (3.5) demands a signal-
to-noise ratio

λ = �

(
K log n

n

)
. (B.5)

Therefore, on the one hand, if K = ω(n/ log n) then condition (3.5) is stronger than λ > 1/e
and, thus, condition (3.5) alone is sufficient for local algorithms to attain exact recovery. On the
other hand, if K = o(n/ log n) then λ > 1/e is stronger than condition (B.4) and, thus, for local
algorithms to achieve exact recovery it requires λ > 1/e, which far exceeds the information-
theoretic optimal level (B.5). The critical value of K for this crossover is K = �(n/ log n).
To determine the precise crossover point, we solve for K∗ which satisfies

Kd(τ ∗‖q)

log n
= 1, (B.6)

λ = K2(p − q)2

nq
= 1

e
. (B.7)

Let c = p/q = O(1). From (B.7), it follows that

q = n

K2(c − 1)2e
. (B.8)

Substituting (B.8) into the definition of τ ∗ in (3.6), we obtain

τ ∗ = (1 + o(1))q
c − 1

log c
.

It follows that

d(τ ∗‖q) = (1 + o(1))q

(
1 − c − 1

log c
log

e log c

c − 1

)
.
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ρBP ρ

λ

e
1

eρBP

ρ
Exact recovery threshold

BP threshold

I
II
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Figure 1: Phase diagram with K = ρn/ log n and p/q = c for fixed constants c ≥ 1, ρ, and λ as n → ∞.
In region I, exact recovery is provided by the BP algorithm plus voting procedure. In region II, weak
recovery is provided by the BP algorithm, but exact recovery is not information-theoretically possible.
In region III exact recovery is information-theoretically possible, but no polynomial-time algorithm is
known for even weak recovery. In region IV, with λ > 0 and ρ > 0, weak recovery, but not exact recovery,

is information-theoretically possible and no polynomial-time algorithm is known for weak recovery.

Combining the last displayed equation with (B.6) and (B.8) yields the crossover point K∗ given
by

K∗ = n

log n
(ρBP(c) + o(1)),

where

ρBP(c) = 1

e(c − 1)2

(
1 − c − 1

log c
log

e log c

c − 1

)
.

In Figure 1 we present the phase diagram with K = ρn/ log n for a fixed constant ρ. The line
{(ρ, λ) : λ = 1/e} corresponds to the weak recovery, while the line {(ρ, λ) : λ = ρ/(eρBP)}
corresponds to the information-theoretic exact recovery threshold. Therefore, BP plus voting
(Algorithm 3.2) achieves optimal exact recovery whenever the former line lies below the latter
or, equivalently, ρ > ρBP(c).

Appendix C. Coupling lemma

Consider a sequence of planted dense subgraph models G = (E, V ) as described in the
introduction. For each i ∈ V , σi denotes the indicator of i ∈ C∗. For u ∈ V , let Gt

u denote
the subgraph of G induced by the vertices whose distance from u is at most t . Recall from
Section 4 that T t

u is defined similarly for the random tree graph, and τi denotes the label of
a vertex i in the tree graph. In the following lemma we show there is a coupling such that
(G

tf
u , σ

G
tf
u

) = (T
tf
u , τ

T
tf
u

) with probability converging to 1, where tf is growing slowly with n.
A version of the lemma for fixed t , assuming p, q = �(1/n), was proved by Mossel et al. [33,
Proposition 4.2], and the argument used there extends to the proof of this version; see [17] for
the proof.

Lemma C.1. (Coupling lemma.) Let d = np. Suppose that p, q, K , and tf depend on n such
that tf is positive integer-valued, and (2 + d)tf = no(1). Consider an instance of the planted
dense subgraph model. Suppose that C∗ is random and all

(
n

|C∗|
)

choices of C∗ are equally
likely to give its cardinality |C∗|. (If this is not true, this lemma still applies to the random graph
obtained by randomly, uniformly permuting the vertices of G.) If the planted dense subgraph
model (Definition 1.1) is such that |C∗| ≡ K then, for any fixed u ∈ [n], there exists a coupling
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between (G, σ) and (Tu, τTu) such that

P
{
(G

tf
u , σ

G
tf
u

) = (T
tf
u , τ

T
tf
u

)
} ≥ 1 − n−1+o(1).

If the planted dense subgraph model is such that |C∗| ∼ binom(n, K/n) then, for any fixed
u ∈ [n], there exists a coupling between (G, σ) and (Tu, τTu) such that

P
{
(G

tf
u , σ

G
tf
u

) = (T
tf
u , τ

T
tf
u

)
} ≥ 1 − n−1/2+o(1). (C.1)

If the planted dense subgraph model is such that K ≥ 3 log n and |C∗| is random such that
P{||C∗| − K| ≥ √

3K log n} ≤ n−1/2+o(1), then there exists a coupling between (G, σ) and
(Tu, τTu) such that (C.1) holds.

Furthermore, the bounds stated remain true if the label σu of the vertex u in the planted
community graph, and the label τu of the root vertex in the tree graph, are both conditioned to
be 0 or are both conditioned to be 1.

Remark C.1. The condition (2 + d)tf = no(1) of Lemma C.1 is satisfied, for example, if
tf = O(log∗ n) and d ≤ no(1/ log∗ n), or if tf = O(log log n) and d = O((log n)s) for some
constant s > 0. In particular, the condition is satisfied if tf = O(log∗ n) and d = O((log n)s)

for some constant s > 0.

Remark C.2. The part of Lemma C.1 involving ||C∗|−K| ≥ √
3K log n is included to handle

the case that |C∗| has a certain hypergeometric distribution. In particular, if we begin with the
planted dense subgraph model (Definition 1.1) with n vertices and a planted dense community
with |C∗| ≡ K , for a clean-up procedure we will use for exact recovery (See Algorithm 3.2),
we need to withhold a small fraction δ of vertices and run the BP algorithm on the subgraph
induced by the set of n(1 − δ) retained vertices. Let C∗∗ denote the intersection of C∗ with
the set of n(1 − δ) retained vertices. Then |C∗∗| is obtained by sampling the vertices of the
original graph without replacement. Thus, the distribution of |C∗∗| is hypergeometric, and
E[|C∗∗|] = K(1 − δ). Therefore, by a result of Hoeffding [18], the distribution of |C∗∗| is
convex order dominated by the distribution that would result by sampling with replacement,
namely, by binom(n(1 − δ), K/n). That is, for any convex function �,

E[�(|C∗∗|)] ≤ E

[
�

(
binom

(
n(1 − δ),

K

n

))]
.

Therefore, Chernoff bounds for binom(n(1 − δ), K/n)) also hold for |C∗∗|. We use the
following Chernoff bounds for binomial distributions [29, Theorems 4.4 and 4.5]. For X ∼
binom(n, p),

P{X ≥ (1 + ε)np} ≤ e−ε2np/3

P{X ≤ (1 − ε)np} ≤ e−ε2np/2
for all 0 ≤ ε ≤ 1. (C.2)

Thus, if K(1 − δ) ≥ 3 log n then (C.2) with ε = √
3 log n/[K(1 − δ)] imply that

P{||C∗∗| − K(1 − δ)| ≥ √
3K(1 − δ) log n} ≤ n−1.

Thus, Lemma C.1 can be applied with K replaced by K(1 − δ).
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