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Abstract

Countries, research institutions, and scholars are interested in identifying and promoting
high-impact and transformative scientific research. This paper presents a novel set of text-
and citation-based metrics that can be used to identify high-impact and transformative
works. The 11 metrics can be grouped into seven types: Radical-Generative, Radical-
Destructive, Risky, Multidisciplinary, Wide Impact, Growing Impact, and Impact (overall).
The metrics are exemplified, validated, and compared using a set of 10,778,696 MEDLINE
articles matched to the Science Citation Index Expanded™. Articles are grouped into six 5-
year periods (spanning 1983-2012) using publication year and into 6,159 fields constructed
using comparable MeSH terms, with which each article is tagged. The analysis is conducted
at the level of a field-period pair, of which 15,051 have articles and are used in this study. A
factor analysis shows that transformativeness and impact are positively related (o =.402),
but represent distinct phenomena. Looking at the subcomponents of transformativeness,
there is no evidence that transformative work is adopted slowly or that the generation of
important new concepts coincides with the obsolescence of existing concepts. We also find
that the generation of important new concepts and highly cited work is more risky. Finally,
supporting the validity of our metrics, we show that work that draws on a wider range of
research fields is used more widely.

1. Introduction

Countries, research institutions, and scholars have prioritized high-impact and transformative
scientific research. The National Science Board (NSB) argues that while research with the
potential to transform science “is inherently less predictable in its course and eventual out-
comes, it is, nonetheless, absolutely essential for our national advancement and for the
advancement of science as a whole [1]”.
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Recognizing the importance of transformative research, the National Institutes of Health
(NIH) and National Science Foundation (NSF) both instituted initiatives to support transfor-
mative research. However, no standard metrics exist to identify transformative research. Such
metrics are essential if we want to answer even such fundamental questions as: How frequent
is transformative research? How important is transformative research for scientific progress?
Does the prevalence of transformative research vary over time or across fields? To what extent
are impact and transformativeness related? How do the demographics (in terms of gender,
race, age, national origin) of fields, the structure of scientific networks, or the funding environ-
ment affect the production, diffusion, and reception of transformative research?

A National Science Board report from 2007 argues:

Science progresses in two fundamental and equally valuable ways: The vast majority of sci-
entific understanding advances incrementally, with new projects building upon the results
of previous studies or testing long-standing hypotheses and theories. This progress is evolu-
tionary—it extends or shifts prevailing paradigms over time. The vast majority of research
conducted in scientific laboratories around the world fuels this form of innovative scientific
progress. Less frequently, scientific understanding advances dramatically, through the
application of radically different approaches or interpretations that result in the creation of
new paradigms or new scientific fields. This progress is revolutionary, for it transforms sci-
ence by overthrowing entrenched paradigms and generating new ones. The research that
comprises this latter form of scientific progress . .. [is] termed transformative research . ..

[1].

We begin by grounding our work in established conceptualizations of transformative
research from NITH, NSB, and NSF. These conceptualizations identify seven aspects of trans-
formative work. Transformative work is seen to: (1) generate important new ideas (radical
generative) and (2) make existing ideas obsolete or less salient (radical destructive), (3) be
risky, (4) be multidisciplinary, (5) have a broad impact, (6) have an impact that builds over
time, and (7) have a high impact. We then use rich characterizations of citations and text to
develop eleven metrics that operationalize these seven aspects of transformative work (we
develop multiple metrics for some aspects of transformativeness). We next use factor analysis
to identify the combination of our eleven metrics that best characterizes the seven aspects of
transformative work. Finally, we reduce the dimensionality of the metrics (other than impact)
into a single measure of transformativeness. Our goal is to identify the scientific fields and
periods of time in which high-impact work and/or transformative work was done, so our unit
of analysis is “field-period pairs,” although many of these metrics can be computed for individ-
ual articles.

The behavior of our metrics of transformativeness largely correspond to existing conceptu-
alizations but provide quantitative insights. Conventional citation measures of impact (aspect
7) are related to transformativeness, but our metrics show substantial independent variations
in transformativeness (aspects 1-6) for a given level of impact (the partial correlation is .402
across field-period pairs after eliminating all field and period effects). Thus, impact and trans-
formativeness are empirically (as well as conceptually) distinct, each representing a distinctive,
cohesive phenomenon. Looking at the subcomponents of transformativeness, we find that rad-
ical generative and radical destructive work (aspects 1 and 2) only moderately coincide, so that
it is possible to generate large amounts of knowledge without obsolescing large amounts of
existing knowledge. Radical generative work and works that are highly impactful (aspects 1
and 7) are both riskier (aspect 3). Strikingly, we find that transformative work has a shorter
time to utilization (aspect 6, as measured by citations). Supporting the validity of our metrics,
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we show that work that draws on a wider range of research fields (aspect 4) is used across a
wider range of fields. However, we find only a weak relationship between multidisciplinarity
and impact (aspects 4 and 7).

It is worth noting that, while our data span a substantial time, 30 years, both the citation-
and text-based metrics used to operationalize the seven aspects of transformativeness depend
on scientists” opinions of work during this period. Thus, some of what we identify as transfor-
mative may be fads that fail to become truly transformative. Mistaking a fad for transformative
research becomes more likely as the end of our sample period approaches. It is also worth not-
ing that the scientific enterprise is expanding during this period, which may make it possible
for radical generative work to take place without the destructiveness that a more stagnant envi-
ronment might involve.

Three areas of research that perform highly on transformativeness and (in most cases) also
on impact were used to highlight the utility of the proposed metrics. Research on stem cells
and epigenomics both rank highly on transformativeness and impact and, as discussed below,
both are widely viewed as transformative. The Human Genome Project helped layhelp the
foundation for the genomic revolution and advances in biotechnology. Strikingly, it ranks par-
ticularly highly on transformativeness (relative to impact).

When measuring scientific output and creativity, social scientists rarely use measures
beyond publication counts, perhaps weighted by some journal ranking, and citation counts,
which do not adequately distinguish work that is influential within a paradigm from work that
is influential and also path-breaking and therefore do not allow separate analysis of impact and
transformativeness in science. Recent work has sought to address deficiencies of standard cita-
tion methods (e.g., [2, 3]); has used a range of rich characterizations of citations to identify the
most innovative work [4]; has identified novel research from unique combinations of citations
[5]; and has used shifts in citation patterns to identify work that consolidates or destabilizes
existing technologies [6]. An overview of approaches to identifying novelty and develop a uni-
tying simulation approach can be found in [7].

Reviews of a wide range of scholarly metrics that are commonly used in citation and schol-
arly impact analysis but also in academic auditing can be found in [8,9]. While traditional met-
rics use a quantitative analysis of publications, authors, bibliographic references, and related
concepts, novel metrics also consider text, acknowledgments, endorsements, downloads, rec-
ommendations, blog posts, and tweets. They argue that multi-dimensional metrics—also
called mixed indicators—are most valuable as the performance of a person, institution, or
country cannot be adequately measured by any single indicator. This is in line with [10],
which compared 39 existing and proposed metrics of scholarly impact calculated on the basis
of both citation and usage log data. They performed a principal component analysis of the
rankings produced by these metrics to investigate how the different metrics relate to each
other, and how accurately and completely they express scientific impact. They too conclude
that the notion of scientific impact is a multi-dimensional construct and that multiple metrics
are needed to cover impact. Recent work has developed and validated mixed indicators that
help identify emerging research areas [11]. Other work has used the evolution of scientific col-
laboration networks to trace the evolution of fields [12]. The work presented in this paper is
novel as it focuses on the development of metrics that support the identification of high-impact
and transformative science (HITS).

2. Conceptualization of transformative work

Consistent with the National Science Board’s description [1], scientific works vary continu-
ously along two dimensions: 1) the extent to which they are radical (versus incremental) and
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2) their impact, from low to high. These dimensions are illustrated in Fig 1. Most work in sci-
ence is incremental, increasing knowledge and practices within an established paradigm or
theoretical framework. As knowledge, products, and practices accumulate incrementally,
moderate amounts of knowledge and practices become obsolete. High-impact incremental
work naturally has a large impact on a field but lies within an existing paradigm. Consequently,
high-impact, incremental work does not make obsolete a large amount of research (relative to
its impact). Radical work differs from incremental work in that it represents a break from an
existing paradigm. The highest-impact radical work is transformative and game-changing,
fundamentally altering a discipline, making existing theories, paradigms, and knowledge obso-
lete, or at least less salient. It also generates new research opportunities, potentially across
many fields. Of course, not all radical work is impactful. Low-impact radical work neither con-
tributes to an established paradigm nor successfully replaces one. Our distinction between
incremental and radical work parallels the distinction between normal and revolutionary sci-
ence [13]. We hypothesize that this classification applies to non-scientific innovation and
across research motivations (as in [14]).

Fig 1 provides examples that illustrate our classification, although we caution that a rigorous
classification requires formal metrics such as those proposed in this paper.

Lower-left quadrant: Most scientific work is incremental and has a comparatively low
impact. For example, in genetics and related fields, the discovery that two genes interact to
produce a particular phenotype often is a publishable result. Dissecting the molecular mecha-
nism controlling gene expression, however, is a more difficult and significant advance; this is
the type of finding that is published in the top journals in molecular biology and genetics, such
as Cell, and that has a higher impact.

Top-right quadrant: Quantum mechanics is a canonical example of transformative work in
the 20th century, as it marked a shift from classical physics, changed physicists’ view of the
world, and impacted other fields, such as chemistry. Examples of transformative research in
biomedicine range from a series of breakthroughs in genetics and inheritance arising from
Mendel’s genetic theory, to the discovery of the link between the DNA and inheritance, to the
identification of the structure of DNA, which paved the way for the mapping of the human
genome and launched the fields of genetics and molecular genetics. While these are among the
greatest scientific transformations, we regard transformativeness as a continuous phenome-
non, with more modestly transformative works transforming a subfield. In research on Alzhei-
mer’s Disease, the first transgenic mouse model with the complex of pathologies found in
humans with Alzheimer’s Disease (i.e. brain degeneration, memory deficits / learning
impairment, and amyloid deposits) was transformative [15,16].

Radicalness A

Radical | Cold fusion Transformative Work
Inheritance & Genetics
Quantum mechanics

High-Impact, Incremental Work
Developing a mouse model combining
Incremental | Most work  multiple Alzheimer’s proteins

»
|

Low High Impact

Fig 1. Classification of scientific work by radicalness and impact, with examples.

https://doi.org/10.1371/journal.pone.0200597.9001
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Lower-right quadrant: Again, in the case of Alzheimer’s Disease, after the first transgenic
mouse model, there were a series of subsequent mouse models with other proteins and that
incorporated multiple proteins in a single mouse model. Many of these developments were
highly impactful, greatly expanding research opportunities, especially for translational
research. At the same time, they were the culmination of ongoing efforts and did not radically
alter a scientific paradigm, making them highly impactful incremental research, rather than
transformative.

Top-left quadrant: Low-impact radical works are works that fail or lead to dead ends (e.g.,
cold fusion; see [12]) and radical works that impact a small area or make a small advance to a
paradigm.

Scientific contributions can be classified as “conceptual” (e.g., discovery of the DNA struc-
ture) or “technical,” involving the development of methods or tools. Our classification of scien-
tific works applies to both. Insofar as a technical contribution incrementally improves existing
techniques and does not radically alter practices or overturn a theoretical framework, para-
digm, or body of knowledge, it will be incremental. A new tool or method that renders existing
tools or methods obsolete or whose application directly changes the theoretical paradigm in
use is transformative. The invention of the tunneling microscope was transformative because
it enabled new inquiries that ultimately resolved longstanding, fundamental questions and cre-
ated new bodies of knowledge and even new fields [17]. Another example of a transformative
scientific discovery of a technical nature is the discovery in 1998 of RNA interference (RNAi),
a natural process by which cells silence the activity of specific genes. Prior to the discovery of
RNAj, nearly the only method available to disable a gene in mammals was by creating knock-
out or transgenic animal models (such as the Alzheimer’s mouse models mentioned above), a
very time-intensive and uncertain process. RNAi-based gene suppression is now the state-of-
the-art method by which scientists can "knock down" specific genes in cells to learn about gene
function [18].

As indicated, we draw on existing conceptualizations of HITS from NIH, NSF, and the NSB
in order to identify aspects of research that are seen as making it transformative. We then
develop metrics to measure each aspect that we identify. These metrics are calculated for each
field-period pair. Here we use the term “aspect” to refer to some characteristic of research that
is seen as making it transformative and “metric” to refer to an empirical measure that we
develop to quantify the extent to which research in a given field- period pair is high in terms of
each aspect of transformative research.

In recent years, the NIH has established programs that specifically target transformative
research. The objective of NIH’s Roadmap Transformative Research Projects Program (R01) is
to support “exceptionally innovative and/or unconventional research projects with the poten-
tial to create or overturn fundamental paradigms. These projects tend to be inherently risky
and may not fare well in conventional NIH review. .. The primary emphasis of the Transfor-
mative Research Award is to support research on bold, paradigm-shifting but untested ideas”
[19]. The Common Fund’s NIH Director’s Transformative Research Award is intended to
"support research on bold, paradigm-shifting but untested ideas” [19]. The NSF defines trans-
formative research as involving “ideas, discoveries, or tools that radically change our under-
standing of an important existing scientific or engineering concept or educational practice or
leads to the creation of a new paradigm or field of science, engineering, or education. Such
research challenges current understanding or provides pathways to new frontiers [20]”. It
describes transformative research as “revolutionizing entire disciplines; creating entirely new
fields; or disrupting accepted theories and perspectives—in other words, those endeavors
which have the potential to change the way we address challenges in science, engineering, and
innovation [21].” Because potentially transformative research challenges the research agendas
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of experts on review panels, it may not receive a fair hearing. Also, as the NSB notes, transfor-
mative research frequently crosses disciplinary lines, adding to the challenge of evaluating the
work. Nonetheless, it views transformative research as being “of critical importance in the fast-
paced, science and technology-intensive world of the 21st Century [1]” and thus should be of
paramount importance in determining how scarce funding is allocated.

These descriptions point to seven aspects of transformative work, many of which appear in
multiple conceptualizations, and are often described using the same vocabulary. We view these
aspects as potentially characterizing transformative work, with the actual features of transfor-
mative work being an empirical question that we seek to address in this work. The aspects, and
how they map back to the conceptualizations, are outlined in Appendix A, Table A.1. We out-
line below the seven aspects of transformative research and eleven metrics we develop to mea-
sure the aspects. Section 4 in Methods provides a more detailed description of the 11 metrics
that support the measurement of the seven aspects. Appendix D, Table D.1 provides formal
definitions. Ultimately, the seven aspects will be grouped into those that measure impact and
those that measure transformativeness (all metrics for the other six aspects) in the Comparison
of Metrics in Section 5. All metrics for transformative work are computed at the level of field-
period pairs as described in Section 3.

Before laying out the seven aspects of transformative work and the metrics we develop to
measure them, we introduce a few conventions. We develop metrics based on the introduction
and use of important new concepts in the literature, which we identify using 1, 2, and 3-word
strings or “n-grams.” We refer to the introduction of these n-grams (the first year they are
used in an article in the MEDLINE corpus) as concepts and occurrences in subsequent years
as mentions, which we abbreviate as “Ment.” We also develop metrics using citations, which
we abbreviate as “Cite.” We use “forward citations” to refer to the citations that a focal article
receives in future works and denote these with “F;” we use “backward citations” to refer to the
past works that a focal work cites and denote these with “B.” We use “T” to identify time win-
dows. We denote metrics for Age using “Age” and metrics for dispersion with “Herf” to indi-
cate Herfindahl indices, a common dispersion measure in economics. The seven aspects of
transformative research and our metrics for them are:

1. Radical-Generative—Transformative research is viewed as critical because it generates rad-
ical new paradigms, theories, perspectives, and fields. We measure the generative aspect of
transformative research using the birth of heavily used new n-grams, measured by a metric
called Concepts, and the utilization of important new n-grams, called BMentT, where T
indicates the number of years (0, 3, 5, 10, co) since the n-gram was first used in an article.

2. Radical-Destructive—In creating radical new paradigms, transformative research is seen
to render large portions of existing knowledge obsolete (or at least less salient). The age of
backward citations (the age of the works referenced in a focal article), captured by a metric
called BCiteAge, indicates the extent to which current research draws on prior work. Back-
ward citation ages have been shown to contract during scientific revolutions [22].

3. Risky—Because it represents a substantial departure from prior work, the existing concep-
tualizations view transformative work as risky. The risky nature is one reason why transfor-
mative work might not receive the support that it merits in funding reviews and why it is
especially important to be able to identify and support it. One natural measure of risk is the
variance in forward citations received by the articles published in a field-period pair, here
called FCiteVar. In addition to the riskiness of research in a field-period pair, this measure
reflects differences in the importance of work done in a field stemming from other sources.
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4. Multidisciplinary—Transformative work is viewed as more likely to draw on knowledge
from many fields. We use Herfindahl indices to measure the breadth of fields that are cited
in articles and call this metric BHerfCite. In addition, we generate metrics for the breadth of
important new n-grams that the articles in a field-period pair draw on. Specifically, we
define BHerfMentT, where T indicates the number of years (0, 3, 5, 10, 0o) since the n-gram
was first used in the MEDLINE corpus that we analyze here.

5. Wide Impact—Just as transformative work is viewed as more likely to draw on a wide
range of knowledge, it is seen to be more likely to have a wide impact. We measure the
breadth of impact using Herfindahl indices of the range of fields that cite articles using a
metric we call FHerfCite and the range of fields that use the n-grams introduced by articles
using a metric called FHerfMent.

6. Growing Impact—Because it is radical, the impact of transformative work is seen to take a
while to accumulate. We measure the time path of utilization of transformative work using
the mean time elapsed between when an article is published and the forward citations it
receives. We note that the mean forward citation ages can be high for articles whose cita-
tions decline over time, so long as they decline relatively slowly. We call this metric
FCiteAge.

7. Impact—In order for a radical work to be transformative, it must be impactful, so we view
this aspect of transformative work as somewhat definitional. Put differently, works that are
as radical as transformative work, but that do not have the same impact will not transform
fields. We define the metric FCiteMean as the mean forward citation count; the percentiles
of the distribution of forward citation counts we define as FCiteN, where N indicates the
percentile of the citation distribution (25, 50, 75, 90, 95, 99, 99.9, 99.99).

3. Data acquisition and preparation

Two datasets are used to construct and exemplify the eleven metrics: 1) MEDLINE®) 2014
baseline files distributed by the National Library of Medicine (NLM) containing 22,376,811
articles published between 1809 and 2014 [23] and 2) 15,085,762 articles from the Clarivate
Analytics’ Science Citation Index Expanded™ (SCIE) published between 1950 and May 20,
2014, the day our data were acquired. After taking the intersection of the two data sources, we
are left with 13,737,835 articles published between 1950 and 2014. See Table 1 for details.

We are interested in generating two sets of metrics—one based on text analysis and another
based on citations patterns. Since article abstracts are important for generating our text-based
metrics, and MEDLINE’s coverage of abstracts is poor before 1980, we limit our sample to arti-
cles published in 1983 or later. Since citations take time to accumulate and our data ends in
2014, we limit our sample to articles published in 2012 or earlier. As seen in Table 1, restricting
our sample to articles published between 1983 and 2012 leaves us with 10,778,696 articles with
which to compute our metrics.

Field identification

The 10,778,696 articles in our analysis sample are tagged with Medical Subject Headings
(MeSH) by reviewers at the National Library of Medicine that describe the content of the arti-
cles. We assign articles to particular fields on the basis of these independently-assigned MeSH
terms (the average article is tagged with 11.92 terms). There are 27,149 raw terms in the 2014
MeSH vocabulary and they vary widely in their descriptive detail. For instance, some articles
are tagged with general terms such as "Body Regions" and some are tagged with more detailed

PLOS ONE | https://doi.org/10.1371/journal.pone.0200597  July 19, 2018 7/23


https://doi.org/10.1371/journal.pone.0200597

@' PLOS | ONE

High-impact and transformative science (HITS) metrics

Table 1. Article counts.

Data Source Articles With Restrictions
MEDLINE 2014 Baseline 22,376,811 20,667,693
Published 1809-2014
SCIE 15,085,762 15,080,131**
Published 1950-May 20, 2014
Intersection 13,737,835
Published 1983-2012 10,778,696

*There are three restrictions on articles in the MEDLINE data: 1) the article must be the first version of an article, 2)
the article must have “MEDLINE” status, and 3) the article must be tagged with at least one 4-digit MeSH term. For
details on the version and status of MEDLINE articles see NLM, 2016. For details on 4-digit MeSH terms see the
description below and Appendix C.

**There is one restriction on articles in the SCIE data: A small number of our SCIE records map to a PMID to which
other SCIE records map. We retain the earliest SCIE ID that maps to each PMID, reducing our SCIE articles by 5,631
or .037% of our 15,085,762 SCIE records.

https://doi.org/10.1371/journal.pone.0200597.t001

terms such as "Peritoneal Stomata". In order to construct comparable fields, we aggregate all
MeSH terms to a similar level of descriptive detail. This process—described in detail below
and in Appendix C—leaves us with 6,159 aggregated MeSH terms.

To understand our aggregation method, first note that MeSH terms have a hierarchical
structure. At the top of the hierarchy (1-digit terms) are 16 very general terms such as "Anat-
omy", "Organisms", and "Diseases". Beneath each of these categories, which we refer to as
“1-digit MeSH terms”, is a group of more detailed “2-digit MeSH terms”. For instance, "Body
Regions" is a 2-digit MeSH term beneath the 1-digit term "Anatomy". Beneath each 2-digit
MeSH term is a group of even more detailed “3-digit MeSH terms”. This structure continues
through 12 layers. To reduce the amount of variation in the breadth of fields, we aggregate all
MeSH terms to the “4-digit level,” which we refer to as the “MESH4” level. Aggregation is
complicated by the fact that some more detailed (lower level) MeSH terms are associated with
more than one higher-level 4-digit MeSH term. In these cases, we distribute (prorate) the
weight of each more detailed (lower-level) MeSH term evenly across all of the 4-digit MeSH
terms that are above it.

Once we have finished this aggregation process, we are able to transform each article’s raw
MeSH terms, which vary dramatically in terms of degree of aggregation, into 4-digit MeSH
terms, which are considerably more uniform in terms of degree of aggregation. We then char-
acterize the fields to which an article belongs by prorating the article equally across its 4-digit
MeSH terms. Thus, each article is fractionally assigned to one or more 4-digit MeSH fields.
Appendix C, Fig C.2 and C.3 show the distribution of the number of MeSH4 terms per article
by publication year.

Field-period pairs

All metrics for high-impact and transformative science (HITS) are defined for field-period
pairs, i.e., a combination of a specific 5-year period and a specific MeSH field. Since there are
six consecutive 5-year periods (starting with 1983-1987 and ending with 2008-2012) and
6,159 MeSH fields, there are 36,945 potential field-period pairs. Some potential pairs are
dropped because the field did not yet exist in the given period or because it did not contain
any articles in our MEDLINE-SCIE matched sample, causing some metrics to be undefined.
Overall, we are able to analyze 15,051 actual field-period pairs.
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Table 2. Exemplary depiction of field-period pairs.

1983-1987 1988-1992 1993-1997 1998-2002 2003-2007 2008-2012
Field
BMentAll (Number of Mentions of Top (.01%) Concepts in Titles and Abstracts)
DNA Methylation 0.00 0.01 10.13 92.28 276.07 564.49
Embryonic Stem Cells 0.36 2.77 3.90 3.16 450.15 2641.27
Human Genome Project 4.85 6.66 17.78 11.17 11.79
Nuclear Reprogramming 0.00 9.88 313.47
Pluripotent Stem Cells 7.71 185.06 1301.76
FCiteMean (Mean Forward Citation Count)
DNA Methylation 32.60 4.00 57.64 73.94 46.11 18.72
Embryonic Stem Cells 34.62 37.47 36.30 25.27 32.45 19.45
Human Genome Project 7.03 18.37 26.63 14.21 10.43
Nuclear Reprogramming 96.28 34.52
Pluripotent Stem Cells 3.00 58.16 67.37 26.14

All six time periods are shown, but only five of the 6,159 fields and two of 11 metrics. Take the case of DNA Methylation: the numbers for the 2008-2012 period indicate
that the (prorated) articles on DNA Methylation in this period used 564.49 top .01% concepts and were cited 18.72 times on average in the subsequent years.

https://doi.org/10.1371/journal.pone.0200597.t1002

Table 2 illustrates the use (mentions) of highly used n-grams (BMentAll) and the mean of
forward citations (FCiteMean) for five relatively highly ranked fields, which are detailed above
and below. As noted, not all fields exist in all years. For instance, a MeSH code for the Human
Genome Project was first introduced in 1989, so data are available only from the 1988-1992
period onward. Pluripotent Stem Cells and Nuclear Reprogramming come into use even later.
It is noteworthy that BMentAll increases over time because the number of n-grams increases,
while FCiteMean declines in the latest years because the length of time over which citations
can accrue is shorter, a factor we control below.

4. Methods

Eleven metrics grouped by seven different aspects of impact and transformativeness were
introduced in Section 2; they are defined and operationalized here.

We develop citation- and text-based metrics to identify the impact and transformativeness
of the articles published in a given field-period pair. It is important to note that, when con-
structing a metric for a particular field-period, we typically use both articles that belong and do
not belong to that field-period. For instance, consider an article published in 1990 in the field
“Pluripotent Stem Cells (PSC)”. This article belongs to the “PSC-1988-1992” field-period.
However, when we count forward citations to that article, we use citations occurring in articles
belonging to any field published from 1990-2014. We can think of the field-period for which
we are constructing the metric as the “target” field-period and the field-period from which we
draw articles to construct the metric as the “measurement” field-period. In the example above,
“PSC-1998-1992” is the “target” field-period and “any field-1990-2014” is the “measurement”
field-period.

To compute the text-based metrics, we begin with the full MEDLINE 2014 baseline files
containing 22,376,811 articles published between 1809 and 2014. We index all words, word-
pairs, and word-triplets (generically referred to as “n-grams”) that appear in the title or
abstract of a MEDLINE article. Next, we extensively process these n-grams by eliminating stop
words, stemming and lemmatizing each word, and applying a variety of other operations.
Note that the n-grams overlap with MeSH terms but, because they are extracted from titles
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and abstracts, they are not generally MeSH terms (and they vastly outnumber MeSH terms).
See Appendix B for details.

After processing the MEDLINE corpus, we take the intersection of the MEDLINE and
SCIE database, obtaining the 13,737,835 articles in Table 1. This set of articles contains
109,912,224 unique n-grams. Next, we use article publication dates to identify the first year
each n-gram is mentioned, that is, appeared in an abstract or title of an article. We call this an
n-gram’s “vintage year”. Further restricting our sample to the 10,778,696 articles published
between 1983 and 2012, we obtain 95,393,331 n-grams with vintage years between 1982 and
2012. Next, we count the number of times an n-gram is mentioned subsequent to its vintage
year. To focus on the most important n-grams, we identify the top 0.01 percent of n-grams
from each vintage (including all tied n-grams in the case of ties at the threshold)—a total of
10,229 top n-grams (including 589 due to ties) with vintages between 1983 and 2012. We use
these top n-grams to construct our text-based metrics.

Next, we verbally define each of the eleven metrics we have developed to capture impact
and transformativeness. The full name of each metric and its variable name (in parentheses
and italics) as well as formal definitions are given in Appendix D, Table D1. Summary statistics
for all metrics and all field-period pairs are presented in Table 3. This table also provides details
on the number of field-period pairs for which each metric can be computed and information
on which measurement periods and fields are associated with each of the metrics.

Radical-generative

Top concept births (Concepts). To measure the generation of important new ideas, we
measure how many of the top 10,229 n-grams identified in the previous section are produced
by a MeSH4 field in a particular period. To construct this metric, we first assign each n-gram
to a period on the basis of its vintage. For instance, all n-grams with a vintage between 2003
and 2007 are assigned to the 2003-2007 period. Second, we assign each n-gram to MeSH4
fields. To do this, we identify all articles that use a particular n-gram in the first year it was
introduced (its vintage year) and then identify the MeSH4 fields of these articles. We then pro-
rate the n-gram equally across these fields. Finally, we sum the number of top n-grams
assigned to each MeSH4 field-period pair. Concepts are expected to be increasing with the radi-
calness of work.

Top concept mentions (BMentT). To measure the utilization of important new n-grams,
we identify how many times one of the top 10,229 n-grams identified in the previous section
are used within T (T =0, 3, 5, 10, and all prior years) years of the n-grams’s vintage. To con-
struct this metric, we first identify all articles that use a top n-gram from any vintage. Second,
we assign each article to a period on the basis of its publication year. For instance, all articles
published between 1993 and 1997 are assigned to the 1993-1997 period. Third, we assign each
article to MeSH4 fields by equally prorating the article across the fields with which the article
is tagged. Fourth, we count the number of top n-grams introduced within the last T years used
by each article. Finally, we sum across all articles assigned to each MeSH4 field-period pair.
BMentT are expected to be increasing with the radicalness of work.

Radical-destructive

Backward Citation Age (BCiteAge). This measure reflects the age of the works cited in
articles. Radical changes in paradigms can be associated with reductions in backward citation
ages. Intuitively, radical changes make older work less relevant, reducing citations to it [22].
The age of a backward citation is the difference between the publication year of the citing arti-
cle and the publication year of the cited article (backward citation). For each citing article, a
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Table 3. Summary statistics for all metrics for time periods 1983-1987, .. ., 2008-2012 and all MESH4 fields in MEDLINE.

Metric

Mean

Citation-Based Metrics

FCiteMean

FCite25
FCite50
FCite75
FCite90
FCite95
FCite99
FCite99.9
FCite99.99
FHerfCite

FCiteAge
BHerfCite

BCiteAge

FCiteVar

22.311

3.489
9.838
23.768
50.266
78.93
192.539
586.448
1626.674
0.979

5.229
0.979

9.642

4802.822

Text-Based Metrics

Concepts

BMent0
BMent3
BMent5
BMent10
BMentAll
FHerfMentions

BHerfMent0
BHerfMent3
BHerfMent5
BHerfMent10
BHerfMentAll

32.281

0.003
0.037
0.085
0.294
1.028
0.996

0.911
0.969
0.976
0.981
0.983

S.D.

12.658

2.654
6.075
13.331
27.708
44.035
111.834
393.070
1623.510
0.005

2.555
0.006

2.603

14513.130

72.141

0.006
0.033
0.078
0.258
0.930
0.008

0.183
0.066
0.053
0.465
0.046

Metric Description, Measurement Period and Fields

Mean citations received across articles indexed in both MEDLINE and SCIE in a field-period pair during all subsequent years
(including later years in the target period) through 2014.

Quantiles of the distribution of citations received across all articles indexed in both MEDLINE and SCIE in a field-period pair
across during all subsequent years (including later years in the target period) through 2014.

A Herfindahl index of the disciplinary diversity of the citations that the articles indexed in both MEDLINE and SCIE in a field-
period pair received during all subsequent years (including later years in the target period) through 2014.

The mean time to citation across all of the articles indexed in both MEDLINE and SCIE in a field-period pair.

A Herfindahl index of the disciplinary diversity of the articles referenced by the articles indexed in both MEDLINE and SCIE
in a field-period pair. Data on references cover all previous years (including earlier years in the target period).

The mean of the mean age of the works referenced across all articles in a field-period pair. The mean reference age of an article
is calculated over all references by the article to all articles that are published in all previous years (including earlier years in the
target period) without limitations, which include all MEDLINE and non-MEDLINE indexed articles in the SCIE.

The variance in citations received across all articles in a field-period pair. Citations to an article are the sum of citations
received from all articles published in all subsequent years (including later years in the target period) through 2014 that are
indexed in both MEDLINE and SCIE.

The number of top .01% n-grams introduced by a field-period pair. These are measured by identifying the year and field(s) in
which each n-gram is born (i.e., the n-gram’s vintage year and field(s)). Only includes articles indexed in both MEDLINE and
SCIE.

The number of articles belonging to a field-period pair that mention a top .01% n-gram with in the first T (T=0, 1, 3, 5, 10, all)
years since the n-gram was first used. Only includes articles indexed in both MEDLINE and SCIE.

A Herfindahl index of the disciplinary diversity of the use of the n-grams introduced by the articles in a field-period pair. The
metric is constructed from all mentions in all articles published across all years subsequent to the vintage year (including later
years in the target period) through 2012. Only includes articles indexed in both MEDLINE and SCIE.

A Herfindahl index of the diversity of n-grams used by the articles in a field-period pair in the first T (T=0, 1, 3, 5, 10, all) years
since the n-gram was first used. Only includes articles indexed in both MEDLINE and SCIE.

Note: There are 15,051 field-period pairs. In all cases, articles are prorated across fields according to MeSH terms.

https://doi.org/10.1371/journal.pone.0200597.t003

mean backward citation age is constructed by averaging the ages of its backward citations. BCi-
teAge for a target MESH4 field and 5-year period is the average of the average backward cita-
tion age across all articles published in the target field-period pair. BCiteAge decreases with
destructive radicalness.

Risky
Variance of forward citations (FCiteVar). In economics, the variance of the returns to
an investment or asset are used as a proxy for the investment or asset’s risk. Here the riskiness
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of articles published in a field-period pair is measured by the variance in forward citations
they receive. This metric uses all subsequent years (including later years in the target vin-
tage) without limitations. For example, suppose a target field-period contains three articles,
each assigned exclusively to the target field. Now consider one case in which each article
receives 30 citations, and a second case in which two articles receive no citations and one
receives 90 citations. The field-period forward citation mean is the same in both cases (it is

30) but in the first case FCiteVar is 0 (= 1(3 x (30 — 30)2)) and in the second case FCite
Var is 1800 (=1 (2 x (0 — 30)” + (90 — 30)*)). ECiteVar ranges between 0 and infinity and
increases with riskiness.

Multidisciplinarity

Herfindahl of backward citations (BHerfCite). BHerfCite for a target MeSH4 field and
5-year period is an index of field dispersion of the articles cited by the articles published in that
target field and period. BHerfCite is computed by squaring the total number of backward cita-
tions from each field, summing over the squares, and subtracting the result from 1. For exam-
ple, if the articles published in a target field-period cited 1500 articles, 500 in each of three
fields, the field-period’s BHerfCite would be .667 (=1 — (%2 + %2 + %2)) BHerfCite ranges
between 0 and 1 and increases with multidisciplinarity—the breadth of fields from which the arti-
cle draws.

Herfindahl Index of the Breadth of Existing Concepts Used (BHerfMentT). To measure
the breadth of ideas that a field is drawing on, we use a Herfindahl index of the dispersion of
the top n-grams used by the articles published in that target field and vintage period. For a set
of n-grams from a given field and vintage period, we square each n-gram’s share of total men-
tions. We then sum over the squares and subtract them from 1. We do this separately by the
number of years (T =0, 3, 5, 10, and all prior years) since each n-gram was first used. BHerf-
MentT ranges between 0 and 1 and increases with the breadth of ideas from which the field
draws.

Wide impact

Herfindahl Index of Forward Citations (FHerfCite). FHerfCite for a target MESH4 field
and 5-year period is an index of field dispersion of the articles citing the articles published in
that target field and vintage. FHerfCite is computed by squaring the share of forward citations
from each field, summing over the squares, and subtracting the result from 1. For example, if
the articles published in a target field-period were cited by 1500 articles, 500 from each of three
fields, the field-period’s FHerfCite would be .667 (= 1 — (%2 + %Q + 1}2)) FHerfCite ranges
between 0 and 1 and increases with breadth of impact.

Herfindahl Index of the Breadth of the Future Use of Concepts Introduced (FHerf-
Ment). To measure the breadth of use of the top n-grams generated in a field, we use a Her-
findahl index of the dispersion across fields in the future use of the top n-grams introduced in
a field-period pair. For a set of n-grams from a given field and vintage period, we take the
share of mentions in subsequent periods across all fields, square each field’s share of total men-
tions. We then sum over the squares and subtract them from 1. FHerfMent ranges between 0
and 1 and increases with breadth of use of the n-grams generated in a field.

Growing impact

Forward Citation Age (FCiteAge). This measure captures the typical length of time
between when works are published and citations to that work occur. The age of a forward
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citation to a cited article is the difference between the publication year of the citing article (for-
ward citation) and the publication year of the cited article. One limitation of this metric is that
forward citation ages can be high even if citations to a work decline, so long as the rate of
decline is slow. For each cited article, a mean forward citation age is constructed by averaging
the ages of its forward citations. FCiteAge for a target MeSH4 field and 5-year period is a
weighted average of the article averages of forward citation age across all cited articles pub-
lished in the target field-period. FCiteAge increases with growth of impact.

Impact

Mean Forward Citation Count (FCiteMean). FCiteMean for a target MESH4 field and
5-year period is the average forward citation counts across all articles (including those that
receive no citations) published in the target field and period. FCiteMean increases with impact.

Forward Citation Percentile (FCiteN). This series of metrics captures the impact as
measured by forward citation counts at various percentiles of the distribution of forward
citations. Formally, we rank articles in a target field-period pair by their forward citation
counts (including those that receive no citations). FCiteN is the forward citation count
below which N percent of articles in a target field-period pair are found. For example,
FCite75 is the forward citation count at which 75 percent of the articles in the target field
and period have fewer forward citations. FCiteN is constructed for N = 25, 50, 75, 90, 95, 99,
99.9 and 99.99. FCiteN captures the impact of the most cited articles in a target field-period
and increases with impact.

As indicated, articles may be assigned to more than one MeSH category. In calculating each
metric for each MeSH category, we weight articles by the share of the article falling into that
MeSH category.

5. Results: Comparison of metrics

Our analysis proceeds in three steps. The first step is to collapse the many metrics that we have
developed into indices for the seven aspects of transformative research. The second step is to
aggregate the metrics for transformativeness into a single metric. The last step is to analyze the
interrelations between the metrics.

Generation of metrics for each aspect of transformative work

The eleven general metrics were analyzed and compared using a factor analysis to identify
different aspects of transformativeness. Because the forward citation rates are the conven-
tional measure of impact or influence, we perform a factor analysis on the impact metrics as
a group.

When conducting the factor analysis, we first compute the natural logarithm of one plus all
metrics and then take deviations from field and period means. We eliminate all variation
across fields to account for the fact that some fields are larger than others. We also want to
eliminate the common time trends to account for the fact that our metrics trend over time due
to their construction (i.e. citation rates rise over time, but articles in the latest periods have less
time to be cited). We do this by regressing the natural logarithm of one plus each variable on a
set of dummy variables for 4-digit MESH field and a set of dummy variables for 5-year period.

Formally, let Mg, denote the value of a metric for field fin period p; lg denote a vector of field

dummy variables (or fixed effects) equal to one for field fand zero for the other fields; and lTﬁ,

denote a vector of period dummy variables (fixed effects) equal to one for period p and zero
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otherwise. We estimate
In(M, +1)=F, ' B+P, 'y +¢,.

We analyze the residuals from this equation, €4, Taking the natural logarithm of the metrics
reduces weight on variations in the right tail of the metrics, which tend to be highly right-
skewed (adding one is a commonly used approach to address values of zeros). The period
dummy variables address the end of our outcomes data in 2014, with the various vintages
being different lengths of time from being truncated. Eliminating such cross-period variation
when estimating factor loadings means that changes in the overall level of the metrics from
period to period do not influence the factor loadings. We run the same comparison dropping
the 2008-2012 period and found similar results. The field dummy variables address differences
across fields in characteristics such as size. Thus, large fields are likely to generate more cita-
tions and the concepts they originate are likely to be more heavily mentioned. Eliminating
cross-field variation before estimating the factor loadings means that the metrics are not influ-
enced by overall differences across fields.

For all subsequent analyses, the dataset comprises all 15,051 field-period pairs, and observa-
tions are weighted by the number of articles in that field-period pair.

Fig 2 reports results from the factor analysis for the three composite metrics—Radical Gen-
erative work, which combines Concepts and BMentT; Multidisciplinarity, which combines
BHerfCite and BHerfMentT; and Impact, which combines FCiteMean and FCiteN. Note that
the metrics for Radical Destructive work (FCiteAge), Risky work (FCiteVar), and Increasing
Impact (FCiteAge) are all generated from a single metric, so that no factor analysis was per-
formed. The metric for Breadth of Impact is based on only two metrics (FHerfCite and FHerf-
Ment), and the factor analysis is not plotted. In all cases, the first factor accounts for the vast
majority of the variation (74%-88%) and is the focal point here.

The figure indicates the extent to which the metrics for radical generative research, mutli-
disciplinary research, and impact load on each of the sub-metrics (i.e. the factor loadings from
the factor analysis). The share of variation explained by first factor is .741 for Radical-Genera-
tive work, .877 for Multidisciplinarity, and .830 for Impact.

A. Radical-Generative  B. Multidisciplinarity C. Impact

Concepts [N BHerfCite [l FCiteMean INEEG_————
BMentN BHerfMentN, FCiteN, by percentile
by years of vintage by years of vintage 99.99th I
1st Year HEEEEEEN 1st Year [l 99.9th|
99thll
0-3 Years I 0-3 Years I
9s5th i
0-5 Years [N 0-5 Years NN 90th I
0-10 vears I 0-10 Years )
50thl
All Years
o All Years I 25thd

Fig 2. Factor loadings from a factor analysis results for three of the seven aspects.

https://doi.org/10.1371/journal.pone.0200597.9002
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Radical-Generative science (Fig 2A) loads positively on the birth of new n-grams (Concepts)
and the mentions of important n-grams of various ages (BMentT), with the highest loading on
n-grams that are 0-5 years old. Thus, n-grams that are older receive less weight than those that
are 0-5 years old. N-grams that are younger receive more weight because they appear in multi-
ple groups (i.e. a new n-gram appears in the 1* year and years 0-3, 05, 0~10, and all). Thus,
radical generative work draws on very young, very important concepts.

Multidisciplinary science (Fig 2B) loads positively on the dispersion of citations (BHerfCite)
and the dispersion in the use of top n-grams (BHerfMentT), both measured using Herfindahl
indices. The loading on n-grams that are 0-10 years old is the highest, but the weight on n-
grams in their first year since origin is the highest because these n-grams are included in the
other age categories, so the dispersion of the use of the newest n-grams is particularly related
to multidisciplinarity.

Our metric for Impact (Fig 2C) is generated from the mean of forward citations (FCite-
Mean) and quantiles of the distribution of forward citations FCiteN (here constructed for
N =25, 50, 75, 90, 95, 99, 99.9 and 99.99), which tend to be closely related. The first factor of
impact accounts for 83% of the variation. Mean Citations (FCiteMean) has the highest factor
loading. Interestingly, the factor loadings on the quantiles of the forward citation distribution
increase from the 25™ percentile of the citation distribution through the 90 percentile and
then decline, so that the lowest factor loadings are for the 99" and the 99.99" percentile of the
citation distribution, which are slightly negative (the 99.9" is positive but small, .00656). We
show below that citations to the most highly cited papers are most likely to indicate transfor-
mative work, but impact in a field-period pair is more closely linked to the impact of highly
impactful, but not works in the tail of the citation distribution.

Table 4 reports correlations between the various aspects of impact and transformativeness.
The results show that many aspects of transformativeness are positively correlated, indicating
some cohesion of these metrics of transformativeness. The Radical-Generative and Risky met-
rics are comparatively highly correlated (p = .272), suggesting that they are capturing inter-
related phenomena. Both metrics are strongly positively correlated with Impact (p = .384 and
.556, respectively). Multidisciplinarity and Wide Impact research are also comparatively highly
correlated (p = .245). It is intuitive and reassuring that work that draws on a wide range of
work is itself drawn on by a wide range of work.

Other aspects of transformativeness appear to be only weakly related or unrelated. Radical-
Generative is essentially uncorrelated with Wide Impact across disciplines (p = .068). Radical-
Destructive is only weakly correlated with Radical-Generative (p = .105), suggesting strikingly
that the generation of important new concepts in a field frequently occurs without rendering

Table 4. Interrelations between the metrics for aspects of impact and transformativeness.

Radical—Generative

Radical-Generative 1

Radical—Destructive 0.1045
Risky 0.2718
Multidisciplinary -0.0752
Wide Impact 0.0676
Growing Impact -0.2948
Impact 0.3835

Radical—Destructive Risky Multidis-ciplinary Wide Impact Growing Impact Impact
1

0.0501 1

-0.0963 0.0762 1

-0.0167 0.0841 0.2472 1

-0.3529 -0.2322 -0.0344 -0.2428 1

0.0272 0.5558 0.1002 0.0343 -0.2000 1

Note: The table reports partial correlations between aspects of Impact and Transformativeness (the other six metrics) across field-period pairs after eliminating variation

across field and time (that is, time and field fixed effects).

https://doi.org/10.1371/journal.pone.0200597.t1004
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old science obsolete. Radical-Destructive is essentially uncorrelated with Risky (p = .050) and
Wide Impact (p = -.017), but weakly negatively correlated with Multidisciplinarity (p = -.096).
Interestingly, Multidisciplinarity is also not strongly correlated with Impact (p = .100) or Radi-
cal-Generative (p = -.075). These correlations contrast with the perspective that work that
brings together differing scientific approaches or viewpoints generates more influential and
radical scientific output.

The strongest correlation observed in Table 4 is between Impact and Risky (p = .556). We
see a strong correlation between the variance in forward citation counts and citations at all
quantiles of the citation distribution, including the 25%h
(not reported). This suggests the possibility of a trade-off between risk and return in scientific
research.

As indicated, growth of impact over time, measured by the average time to citations, is neg-
atively correlated with all the other metrics, which contrasts with the view that transformative
work takes a long time to have an impact. We have broken forward citations to the work in
each field-period pair into those arising in the first five years since publication and those aris-
ing six or more years since publication. Both metrics are positively related to each aspect of
impact and transformativeness, but citations in the first five years are more strongly correlated
with the other metrics for transformativeness (and impact) than are citations six or more years
out: the correlation between transformativeness and citations in the first five years is .674,
while that between transformativeness and citations six or more years after publication is only
.247. Put differently, transformative work is heavily cited in the long run, but it is even more
heavily cited in the short run. A limitation of the study is that we cannot measure impact over
very long time periods; thus, we cannot rule out the possibility that the most transformative
work grows in impact over much longer time horizons, e.g. over many decades.

percentile and the median, for example

Aggregation of metrics into a single metric for transformativeness

Our next step is to aggregate the transformative metrics into a single metric. Fig 3 shows the
first factor from a factor analysis of the six metrics of transformativeness (which accounts for

Transformativeness

Radical - Generative I
Radical - Destructive NN
Risky NN
Multidisciplinary [l
wWide Impact NN
I rowing Impact

Fig 3. Results from a factor analysis of six aspects of HITS. The figure reports factor loadings on each aspect of
transformative research from a factor analysis. The factor loadings indicate the extent to which the transformativeness
metric loads on the (first) factor for each aspect of transformative research (excluding impact, which is treated
separately).

https://doi.org/10.1371/journal.pone.0200597.g003
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63% of the variation). Our metrics for Impact were excluded so that we can separately assess
how impact and transformativeness are related. Transformativeness loads positively on all of
the metrics except Growing Impact, suggesting that transformativeness represents a cohesive
construct.

Analysis of interrelationships between metrics

Fig 4 relates the seven HITS metrics to our metrics for impact and transformativeness. Aside
from Growing Impact, all the metrics of transformativeness are positively related to both impact
and transformativeness. Looking across field-period pairs (and eliminating all time-invariant
differences across fields and common changes over time), the metric for Impact has a partial
correlation with itself of 1 (by construction) and a partial correlation with transformativeness of
.402. Thus, while impact and transformativeness are positively related, they also seem to consti-
tute distinct phenomena. The Risky metric is most strongly correlated with Impact. Radical-
Destructive and Wide Impact are both strongly related to transformativeness but essentially
unrelated to impact. Multidisciplinarity is weakly related to both impact and transformative-
ness. Lastly, Growing Impact is strongly negatively related to transformativeness and somewhat
negatively related to impact. Interestingly, the correlation between impact and citations in the
first five years is .881, falling slightly to .762 for citations six or more years after publication.

Fig 5 shows how the various forward citation metrics (FCiteMean and FCiteN) relate to
impact and transformativeness. As indicated in Fig 5, impact loads most heavily on mean
citations and citations at the 90" percentile with weight declining (or going negative) at the

0.8

Transformativeness
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0o Impact
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Fig 4. All seven aspects of HITS related to impact and transformativeness. The figure shows the partial correlations between the metrics for
the aspects of transformative research and the overall metrics for transformativeness and impact across field-period pairs after eliminating
variation across field and time (that is, time and field fixed effects).

https://doi.org/10.1371/journal.pone.0200597.9004
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Fig 5. FCiteN related to impact and transformativeness. The figure shows the partial correlation between the individual metrics for impact and
the overall metrics for transformativeness and impact across field-period pairs after eliminating variation across field and time (that is, time and
field fixed effects).

https://doi.org/10.1371/journal.pone.0200597.9005

highest and lowest percentiles of the citation distribution. (The correlations between the
impact measure and the highest percentiles of the citation distribution are positive even
though the factor loadings are negative because all of the citation metrics are positively corre-
lated.) It is intuitive that transformative works should be exceptionally highly cited. Indeed,
the strength of the relationship between the percentiles of the citation distribution and trans-
formativeness increases monotonically up to the 99 percentile of the citation distribution
(compared to the 90" percentile for citations) and then declines moderately to the 99.99" per-
centile. Strikingly, the 99.99™ quantile of the citation distribution is almost as strongly related
to transformativeness as it is to impact. These results suggest that the most cited impactful
works reflect a phenomenon distinct from other highly impactful works and that they are the
most likely to be transformative.

To provide some summary of our analysis, we take the factor loadings from our factor anal-
ysis and use them to generate the impact and transformativeness metrics for each 4-digit
MESH field, see Fig 6. In doing so, we average across all the periods from 1982-2012. While
there are differences across fields, we do not eliminate field differences for this analysis. The
figure shows a strong positive relationship between impact and transformativeness, but also
differences. Here we highlight three examples. Research on stem cells is highlighted in red in
Fig 6. It is widely viewed as potentially revolutionary because abnormal cell differentiation can
be responsible for birth defects and cancer, because stem cells can assist in drug testing, and
because of the potential for stem cells to generate new organs [24]. Epigenomics is critical for
explaining differences in diseases and traits in the absence of differences in DNA sequences.
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Fig 6. Ranking of fields in terms of impact and transformativeness across all periods (1982-2012). Field size determined by the number of
(weighted) articles across all periods. Research on stem cells is shown in red.

https://doi.org/10.1371/journal.pone.0200597.9006

Accordingly, work on cellular reprogramming and DNA methylation, both related to the accu-
mulation and removal of epigenetic material that affects the functioning of genetic material
without affecting the genome itself, ranks highly on transformativeness and impact [25]. This
work has been recognized by Science as a Breakthrough of the Year repeatedly and has been
supported by the NIH’s Common Fund, which seeks to support transformative research. The
differences between impact and transformativeness can also be seen in the case of the Human
Genome Project. As is well known, the Human Genome Project mapped the human genome
and laid the foundation for the genomic revolution and advances in biotechnology. Strikingly,
it ranks particularly highly on transformativeness (relative to impact).

Just as we preserve the cross-field variation in estimating the field rankings, we have rerun
the factor analysis preserving the cross-field variation. The results are broadly similar to those
reported above, with all the components of transformativeness entering in the same way as
above. One clear difference is that the correlation between transformativeness and impact is
higher when cross-field variation is preserved (p = .696 versus .402 when the cross-field varia-
tion is eliminated). This result is intuitive, in that it indicates that differences in transformative-
ness across fields are more strongly related to impact than are changes in transformativeness
within fields over time. Put somewhat differently, fields that are transformative tend to be more
impactful, while fields that are temporarily more transformative experience smaller increases in
impact.
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6. Discussion

The science policy community is increasingly focusing on transformative research, yet there
are few metrics to identify transformative work even in retrospect and, ironically, the related
concept of revolutionary science is falling out of favor. Drawing on existing conceptualizations
of transformative research, this paper presented eleven metrics of transformative research.
Specifically, transformative research is viewed as being radical, both generating important new
ideas and destroying existing ideas; multidisciplinary and impacting a wide range of disci-
plines; risky; having a wide and growing impact over time; and being highly impactful.

Metrics for each of these aspects of high impact and transformative work were exemplarily
applied to 15,051 fields of biomedical research over six five-year periods from 1983-1987 to
1988-2012. Many of the results from our analysis are intuitive, but some are unexpected. Our
primary finding is that across fields and periods, impact and transformativeness are positively
correlated but clearly represent distinct phenomena. This finding supports federal funding
agencies’ separate emphasis on transformative research. The interrelations between specific
metrics of transformativeness are often positively related but some are only weakly related or
unrelated, suggesting that the seven aspects agencies conceive as integral to transformativeness
are divisible and some appear to counter one another. Metrics of the use of wide-ranging ideas
or multidisciplinarity are closely related to the breadth of impact. A notable exception we find
is that the growth of citations is negatively related to transformativeness—while citations six or
more years after publication are increasing in transformativeness, citations within the first five
years increase even more. Whether this represents the limitations of the timespan of our data
or a fundamental fact of transformative research, we leave to future research. In addition, we
find that the displacement of old science coincides with the generation of radical new science
only moderately, and that neither correlates strongly with multidisciplinarity, which is striking
given the emphasis placed on multidisciplinary research. Interestingly, we find a strong posi-
tive association between impact and riskiness, which suggests the possibility of a trade-off
between risk and return in scientific research.

Analysts have a number of choices when selecting metrics, with individual choices depend-
ing on data access and preferences, but also expertise and computational resources. All metrics
for MEDLINE articles introduced in this paper are freely available for scholarly research sub-
ject to licensing restrictions (in the case of proprietary citation data). For those interested in
generating our metrics over their own data or corpa, the titles and abstracts necessary to gener-
ate text-based metrics are openly available. The metrics of new concept births and mentions of
concepts are relatively easy to compute, making it possible for anyone to compute metrics of
radical generative work. The backward and forward Herfindahl indices of the breadth of men-
tions of new concepts have the same data requirements but are computationally more
demanding. Thus, our text-based metrics of radical generative research, breadth of impact,
and multidisciplinarity should be accessible to most practitioners. Generating citation metrics
requires a different type of data access, e.g., to Clarivate Analytics’ Science Citation Index used
here, or to one of the other citation databases. Calculating the mean citations to the works in a
field-period pair, the quantiles of the citation distribution, and the variance of citations across
the works in a field-period pair requires total citation counts to articles exclusively and is not
computationally demanding. These provide good measures of impact and riskiness. As indi-
cated, the extreme right tail of citations (e.g., the 99.99'" percentile of the citation distribution)
is relatively strongly related to transformativeness and is not computationally burdensome
either. The other citation metrics require data that go beyond raw forward citation counts,
namely data on citing-cited article pairs. Backward citation ages and forward citation ages are
both straightforward computationally, providing metrics of radical destructiveness and growth
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of impact. As with the text variables, the forward and backward citation Herfindahl indices are
more computationally burdensome. Thus, while users must generate the metrics that suit their
data access and computational environment, the tradeoffs they face when implementing our
methods are obvious.

There are a number of limitations related to the data used and the metrics defined in this
study. First, all of our analyses are limited in topical focus to articles published in MEDLINE
and are limited temporally to the period 1983-2012. In terms of citation data from the Web of
Science corpus, we used all backward citations of articles published in 1983-2012, yet we did
not have access to forward citations beyond May 20, 2014. We used MEDLINE’s titles and
abstracts for the text-based metrics exclusively. We used the MeSH hierarchy to measure the
breadth of knowledge used in our target articles and the breadth of utilization of the ideas gen-
erated by our target articles and hence our definition of fields and our text-based metrics are
restricted to the MeSH classification of the MEDLINE corpus. MEDLINE mostly covers bio-
medical research, a study of other research disciplines with different publication norms,
researcher team sizes, and funding opportunities might provide different results. Given that
our last period ends in 2012 and citation data ends in 2014, it is highly probable that the impact
of some articles is still materializing. However, the results of our analysis seem robust, as omit-
ting the 2008-2012 period does not change values dramatically.

There are a number of directions for future work. First, we look to validate our metrics in a
variety of ways by soliciting feedback from subject matter experts in person and through sur-
veys. We are also implementing an online interactive interface that users can visit to identify
highly transformative research by selecting any of the eleven metrics and a time frame. A first
version of the interactive interface can be found at http://cns.iu.edu/econ/hexmap.html (opti-
mized to work with the Chrome web browser). Formal user studies have been run to examine
what science map layout best supports memorization, search, and retrieval tasks [26]. User
studies with domain experts will be run next to solicit feedback on the accuracy, representa-
tiveness, and usefulness of the HITS metrics. We are also interested in understanding how
experts use the metrics and interactive visualizations to zoom in on subfields or make compar-
isons within and across fields, and over time. Ultimately, we would like to understand how
experts would use the new metrics to improve their decision-making process.

Beyond validation, there are a number of other important avenues for future research. First,
we are interested in identifying the factors—from the funding mechanisms, to the demograph-
ics of the researchers in fields, to the networks of researchers—that lead to the production of
transformative science. Second, we seek to attach analogous metrics to individual articles, not
just to entire research fields in a given period as we have done here. Such estimates would
allow us to identify specific transformative works retrospectively. They would also allow us to
identify features of research teams that have been associated with transformative work and
that may facilitate its production in the future.

Supporting information

S1 Appendix.
(DOCX)

Acknowledgments

We thank Mikko Packalen, Rebecca Rosen, and Betsy Wilder for helpful input. We are grateful
for access to Clarivate Analytics’ Science Citation Index Expanded. Sara Bouchard provided
design expertise for optimizing the figures. Any opinions, findings, and conclusions or

PLOS ONE | https://doi.org/10.1371/journal.pone.0200597  July 19, 2018 21/23


http://cns.iu.edu/econ/hexmap.html
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200597.s001
https://doi.org/10.1371/journal.pone.0200597

@° PLOS | ONE

High-impact and transformative science (HITS) metrics

recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or National Institutes of Health.

Author Contributions

Conceptualization: Joseph Staudt, Huifeng Yu, Robert P. Light, Gerald Marschke, Katy Bor-
ner, Bruce A. Weinberg.

Data curation: Joseph Staudt, Huifeng Yu, Robert P. Light.
Formal analysis: Joseph Staudt, Huifeng Yu, Robert P. Light, Bruce A. Weinberg.
Funding acquisition: Gerald Marschke, Katy Borner.

Investigation: Joseph Staudt, Huifeng Yu, Robert P. Light, Gerald Marschke, Bruce A.
Weinberg.

Methodology: Joseph Staudt, Huifeng Yu, Robert P. Light, Gerald Marschke, Bruce A.
Weinberg.

Project administration: Gerald Marschke, Katy Borner, Bruce A. Weinberg.
Software: Joseph Staudt, Huifeng Yu, Robert P. Light.

Supervision: Gerald Marschke, Katy Bérner, Bruce A. Weinberg.
Validation: Joseph Staudt, Huifeng Yu, Robert P. Light.

Visualization: Katy Bérner, Bruce A. Weinberg.

Writing - original draft: Joseph Staudt, Huifeng Yu, Robert P. Light, Gerald Marschke, Katy
Borner.

Writing - review & editing: Joseph Staudt, Huifeng Yu, Robert P. Light, Gerald Marschke,
Katy Borner, Bruce A. Weinberg.

References

1. National Science Board (NSB). Enhancing Support of Transformative Research at the National Science
Foundation. 2007. Available from: https://www.nsf.gov/nsb/documents/2007/tr_report.pdf.

2. WangD, Song C, Barabasi A-L. Quantifying Long-Term Scientific Impact. Science. 2013; 342
(6154):127-32. https://doi.org/10.1126/science.1237825 PMID: 24092745

3. Hutchins BI, Yuan X, Anderson JM, Santangelo GM. Relative Citation Ratio (RCR): A new metric that
uses citation rates to measure influence at the article level. PLoS Biol. 2016; 14(9):e1002541. https://
doi.org/10.1371/journal.pbio.1002541 PMID: 27599104

4. Acemoglu D, Akcigit U, Celik MA. Young, restless and creative: Openness to disruption and creative
innovations. National Bureau of Economic Research. 2014. Available from: http://www.nber.org/
papers/w19894.

5. WangJ, Veugelers R, Stephan P. Bias against novelty in science: A cautionary tale for users of biblio-
metric indicators. Res Policy. 2017. https://doi.org/10.1016/j.respol.2017.01.002 PMID: 29058845

6. Funk RJ, Owen-Smith J. A dynamic network measure of technological change. Manage Sci. 2016; 63
(3):791-817.
Evans James and Foster Jacob G. “Measuring Novelty by Simulating Discovery.” Working Paper. 2016.

8. Cronin B, Sugimoto CR. Beyond bibliometrics: Harnessing multidimensional indicators of scholarly
impact: MIT Press; 2014.

9. Cronin B, Sugimoto CR. Scholarly metrics under the microscope: from citation analysis to academic
auditing: Association for Information Science and Technology by Information Today, Incorporated;
2015.

10. BollenJ, Van de Sompel H, Hagberg A, Chute R. A principal component analysis of 39 scientific impact
measures. PLoS One. 2009; 4(6):e6022. https://doi.org/10.1371/journal.pone.0006022 PMID:
19562078

PLOS ONE | https://doi.org/10.1371/journal.pone.0200597  July 19, 2018 22/23


https://www.nsf.gov/nsb/documents/2007/tr_report.pdf
https://doi.org/10.1126/science.1237825
http://www.ncbi.nlm.nih.gov/pubmed/24092745
https://doi.org/10.1371/journal.pbio.1002541
https://doi.org/10.1371/journal.pbio.1002541
http://www.ncbi.nlm.nih.gov/pubmed/27599104
http://www.nber.org/papers/w19894
http://www.nber.org/papers/w19894
https://doi.org/10.1016/j.respol.2017.01.002
http://www.ncbi.nlm.nih.gov/pubmed/29058845
https://doi.org/10.1371/journal.pone.0006022
http://www.ncbi.nlm.nih.gov/pubmed/19562078
https://doi.org/10.1371/journal.pone.0200597

@° PLOS | ONE

High-impact and transformative science (HITS) metrics

11.

12

13.
14.

15.

16.

17.

18.
19.

20.

21.

22,

23.

24,

25.

26.

Guo H, Weingart S, Bérner K. Mixed-indicators model for identifying emerging research areas. Sciento-
metrics. 2011; 89(1):421-35.

Bettencourt LM, Kaiser DI, Kaur J. Scientific discovery and topological transitions in collaboration net-
works. Journal of Informetrics. 2009; 3(3):210-21.

Kuhn TS. The Structure of Scientific Revolutions: University of Chicago Press; 1947.

Stokes DE. Pasteur’s Quadrant: Basic Science and Technological Innovation: Brookings Institution
Press; 1997.

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits,
Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996; 274(5284):99-103. PMID:
8810256

Marx J. New ’'Alzheimer’'s Mouse’ Produced. Science. 1996; 274(5285):177-8. PMID: 8927978
Chen CJ. Introduction to scanning tunneling microscopy: Oxford University Press on Demand; 1993.
Gao X, Zhang P. Transgenic RNA interference in mice. Physiology. 2007; 22(3):161-66.

National Institutes of Health. Transformative Research Award Program. 2015. Available from: https://
commonfund.nih.gov/tra/description.

National Science Foundation. Definition of Transformative Research. 2015. Available from: http://www.
nsf.gov/about/transformative_research/definition.jsp.

National Science Foundation, Office of the Directorate. Notice No. 130. 2007. Available from: https://
www.nsf.gov/pubs/issuances/in130.pdf.

Jones BF, Weinberg BA. Age dynamics in scientific creativity. Proc Natl Acad Sci U S A. 2011; 108
(47):18910—4. https://doi.org/10.1073/pnas.1102895108 PMID: 22065777

National Library of Medicine. MEDLINE®PubMed® XML Element Descriptions and their Attributes.
2016. Available from: https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html.

National Institutes of Health. Stem Cell Information. 2016. Available from: https://stemcells.nih.gov/info.
htm.

Perkel JM. A Guide to the Epigenome: Making Sense of the Data Deluge. The Scientist. 1 Nov 2012.
Available from: http://www.the-scientist.com/?articles.view/articleNo/32983/title/A-Guide-to-the-
Epigenome/. Cited 14 Feb 2017.

Boérner K, Simpson A, Bueckle A, Goldstone R. Science Map Metaphors: A Comparison of Network Ver-

sus Hexmap-Based Visualizations. Scientometrics. 2018; 114(2): 409-426. https://doi.org/10.1007/
511192-017-2596-3 PMID: 29780188

PLOS ONE | https://doi.org/10.1371/journal.pone.0200597  July 19, 2018 23/23


http://www.ncbi.nlm.nih.gov/pubmed/8810256
http://www.ncbi.nlm.nih.gov/pubmed/8927978
https://commonfund.nih.gov/tra/description
https://commonfund.nih.gov/tra/description
http://www.nsf.gov/about/transformative_research/definition.jsp
http://www.nsf.gov/about/transformative_research/definition.jsp
https://www.nsf.gov/pubs/issuances/in130.pdf
https://www.nsf.gov/pubs/issuances/in130.pdf
https://doi.org/10.1073/pnas.1102895108
http://www.ncbi.nlm.nih.gov/pubmed/22065777
https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
https://stemcells.nih.gov/info.htm
https://stemcells.nih.gov/info.htm
http://www.the-scientist.com/?articles.view/articleNo/32983/title/A-Guide-to-the-Epigenome/
http://www.the-scientist.com/?articles.view/articleNo/32983/title/A-Guide-to-the-Epigenome/
https://doi.org/10.1007/s11192-017-2596-3
https://doi.org/10.1007/s11192-017-2596-3
http://www.ncbi.nlm.nih.gov/pubmed/29780188
https://doi.org/10.1371/journal.pone.0200597

