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Abstract:

Osteoporosis most commonly affects postmenopausal women. Although men are also
affected, women over 65 are 6 times more likely to develop osteoporosis than men of the same
age. This is largely due to accelerated bone remodeling after menopause; however, the peak bone
mass attained during young adulthood also plays an important role in osteoporosis risk. Multiple
studies have demonstrated sexual dimorphisms in peak bone mass, and additionally, the female
skeleton is significantly altered during pregnancy/lactation. Although clinical studies suggest that
a reproductive history does not increase the risk of developing postmenopausal osteoporosis,
reproduction has been shown to induce long-lasting alterations in maternal bone structure and
mechanics, and the effects of pregnancy and lactation on maternal peak bone quality are not well
understood. This study compared the structural and mechanical properties of male, virgin female,
and post-reproductive female rat bone at multiple skeletal sites and at three different ages. We
found that virgin females had a larger quantity of trabecular bone with greater trabecular number
and more plate-like morphology, and, relative to their body weight, had a greater cortical bone
size and greater bone strength than males. Post-reproductive females had altered trabecular
microarchitecture relative to virgins, which was highly similar to that of male rats, and showed
similar cortical bone size and bone mechanics to virgin females. This suggests that, to
compensate for future reproductive bone losses, females may start off with more trabecular bone
than is mechanically necessary, which may explain the paradox that reproduction induces long-
lasting changes in maternal bone without increasing postmenopausal fracture risk.

Keywords: Sexual dimorphism, reproduction, lactation, bone microarchitecture, bone

mechanical properties, puberty.
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1.Introduction:

Osteoporosis, a disease of low bone mass and deteriorated microarchitecture, most
commonly occurs in women after menopause. Although approximately 2.8 million men in the
United States have osteoporosis, the prevalence of osteoporosis in women over age 65 is at least
6 times greater than that of men in the same age group (Department of Health and Human
Services, 2004). This is largely due to the increased rate of bone remodeling resulting from the
drop in estrogen levels that occurs during menopause, which leads to rapid bone loss.

However, another important determinant of osteoporosis risk is the peak bone mass that
is attained during young adulthood. Studies have shown that the variance in bone structure
developed early in life is ~10 times greater than the variance in the rate of bone loss occurring in
old age (Hui et al.1990, Wang and Seeman 2008). Furthermore, when longitudinal measurements
are made at multiple ages, the bone mass of an individual relative to an age- and sex-matched
population remains highly consistent (Loro et al.2000, Emaus et al.2006), suggesting that
individuals with a higher bone mass at young adulthood are less likely to develop osteoporosis
later in life. In addition to sex-based differences directly related to menopause, men and women
also attain different peak bone masses, which may play a role in the sexual dimorphism of
osteoporosis risk. Men generally develop larger, more robust bones than women (Gilsanz et
al.1994, Nieves et al.2005). However, when normalized by muscle size, females tend to have
greater bone mass than males (Ferretti et al.1998, Schiessl et al.1998, Wang et al.2003, Ashby et
al.2011).

In addition to postmenopausal bone loss, women undergo substantial skeletal changes
during pregnancy and lactation. Reproduction causes significant maternal bone loss, which

occurs through both elevated osteoblast/osteoclast-based bone remodeling, as well as direct
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removal of mineral from the perilacunar spaces by osteocytes (Kent et al.1990, Sowers et
al.1993, Zeni et al.1999, VanHouten and Wysolmerski 2003, Liu et al.2012, Qing et al.2012,
Kaya et al.2017). Both types of reproductive bone loss substantially alter skeletal mechanical
properties. After weaning, the maternal bone undergoes a period of recovery (Bowman et
al.2002, Miller and Bowman 2004, Qing et al.2012, de Bakker et al.2017, Kaya et al.2017).
However, the extent of post-weaning recovery remains debated: although reproductive history
has no adverse effects on future osteoporosis/fracture risk (Kovacs 2016), multiple studies also
demonstrate that, even after a lengthy post-weaning period, deficits in maternal bone structure
and/or mechanics remain (Affinito et al.1996, Bowman and Miller 1999, More et al.2001,
Bowman et al.2002, Ardeshirpour et al.2007, Liu et al.2012, Bornstein et al.2014, Bjornerem et
al.2016, de Bakker et al.2017), indicating that pregnancy and lactation can permanently alter the
maternal skeleton. However, despite the substantial impact of reproduction on maternal bone, the
effect of reproductive bone loss and recovery on the peak bone mass that is attained, and its
impact on skeletal sexual dimorphisms, remain incompletely understood. Furthermore,
reproduction may alter the relationship between bone structure and mechanical properties. For
instance, previous studies have demonstrated that, in individuals with different bone properties,
structural and material properties can compensate for each other to maintain the skeleton's
mechanical function (Tommasini et al.2009, Epelboym et al.2012). However, the effects of
reproductive history and sex on the skeleton’s structure-function relationships are not known.

The rat is a commonly used preclinical model in the investigation of skeletal physiology,
and its skeletal response to pregnancy/lactation has been well characterized (Bowman and Miller
1999, Zeni et al. 1999, Vajda et al.2001, de Bakker et al.2017). However, the impacts of

reproduction on sexual dimorphisms in the rat skeleton are unclear. Therefore, the objective of
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this study was to investigate the impacts of sex and reproductive history on rat bone structure and
mechanics at multiple skeletal sites and three different ages. By establishing the age- and site-
specific effects of sex and reproduction on bone microarchitecture and mechanics, we aim to
gain insight into the mechanisms that protect maternal bone against long-term risk of
postmenopausal fracture/osteoporosis.

2.Methods:

2.1Animal Protocol:

All animal experiments were approved by the University of Pennsylvania’s Institutional
Animal Care and Use Committee. Experiments were performed for three age groups of Sprague
Dawley rats (Charles River, Wilmington, MA): pre-pubertal rats at age 1 month, and two adult
groups at ages 6 and 15 months.

For the pre-pubertal groups, 12 1-month-old rats were used: males (n=6) and females
(n=6). One month of age in a rat corresponds to the human pre-pubertal phase (Sengupta 2013).

For the adult groups at age 6 months, 21 rats were assigned to three groups: reproductive
female (n=06), virgin female (n=6), and male (n=9). Reproductive females were mated at age 3.5
months, became pregnant, lactated for 3 weeks, recovered for 6 weeks post-weaning. All rats
were euthanized at age 6 months.

For the adult groups at an average age of 15 months, 33 rats were assigned to 3 groups:
reproductive female (n=12), virgin female (n=12), and male (n=9). Starting at age 4-5 months,
reproductive female rats underwent 3 repeated reproductive cycles, each consisting of a 3-week
pregnancy, 3-week lactation, and 3-6 weeks of post-weaning recovery. 2 reproductive rats failed
to become pregnant, 3 rats died prior to the end of the experiment, and 2 rats developed

mammary tumors, resulting in a final sample size of n=7 reproductive females (age 17+2
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months), n=10 virgin females (age 17+2 months), and n=9 males(age 14+0 months). All rats
were euthanized 6+3 months after the end of the last reproductive cycle for the reproductive
females. The right tibiae, L2 and L4 vertebrae, and right femurs were dissected immediately after
sacrifice. The tibiae and L4 were stored in 70% ethanol, while the femurs and L2 were wrapped
in PBS-soaked gauze and frozen at -20°C.

2.2 uCT Scans and Bone Microstructural Analyses:

The right proximal tibia, right femur midshaft, and 4™ lumbar vertebra (L4) were scanned
by uCT (Scanco vivaCT40, Scanco Medical AG, Briittisellen, Switzerland) at 10.5 um isotropic
resolution, with 145 pA current, 55 kVp energy, and 200 ms integration time. At the proximal
tibia, a 150-slice-thick volume of interest (VOI) was identified in the trabecular compartment,
2.5 mm distal to the growth plate. At the L4 vertebra, a trabecular VOI, which occupied the
center 1/3 of the vertebral body, was identified, resulting in a 130-slice-thick VOI for pre-
pubertal rats and a 200-slice-thick VOI for adults. Within each trabecular VOI, the pCT images
were Gaussian filtered (sigma=1.2, support=2) and bone was identified by applying a global
threshold (544 mg HA/cm® for adult and 350 mg HA/cm® for pre-pubertal rats), determined
using an adaptive threshold function. Bone volume fraction (BV/TV), trabecular number (Tb.N),
thickness (Tb.Th), and separation (Tb.Sp), structure model index (SMI), and connectivity density
(Conn.D) were quantified (Bouxsein et al.2010). A 50-slice-thick cortical VOI at the femur
midshaft was thresholded (772 mg HA/cm® for adult and 540 mg HA/cm® for pre-pubertal rats).
Cortical area (Ct.Area), cortical thickness (Ct.Th), polar moment of inertia (pMOI), tissue
mineral density (TMD), periosteal perimeter (P.Perim), and endosteal perimeter (E.Perim) were
quantified.

2.3Mechanical Testing of the Femur and L2 Vertebra:
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A three-point-bending test was applied to the right femur (Instron 5542, Norwood, MA)
at a displacement rate of 1.8 mm/minute. The resulting load-displacement curves were used to
determine the peak load, whole-bone stiffness, and energy to failure (defined as area under the
load-displacement curve up to the failure point). Estimated intrinsic mechanical properties,
including ultimate stress, elastic modulus, and toughness, were determined by combining the
mechanical testing data and nCT-derived structural parameters (Schriefer et al.2005).

The vertebral body L2 was imaged by uCT at 20 um resolution to estimate the total
cross-sectional area (CSA; including both bone tissue and marrow). The vertebral processes were
removed and parallel cuts were made at the cranial and caudal ends of the vertebral body using a
low-speed diamond saw (Isomet, Buehler, Lake Bluff, IL), to isolate a section of the center 60%
of the vertebral body. Samples were compressed to failure through uniaxial compression at a
displacement rate of 1.8 mm/minute (Instron 5542), and the peak load, stiffness, and energy to
failure were measured. The extrinsic properties were normalized by specimen height and CSA to
derive apparent-level properties(Hogan et al.2000).

2.4 Statistics:

All results are presented as mean + standard deviation (SD). For adult rats, comparisons
among groups were made using 1-way ANOVA, with Bonferroni post hoc corrections.
Comparisons between male and female pre-pubertal rats were made using Student's t-tests. In the
presence of significant differences (p<0.05), the degree of variation between groups is reported
as the percent difference, for all parameters except SMI. SMI ranges from -3 to 3; therefore,
inter-group differences in SMI are reported as the absolute difference.
3.Results:

3.1 Trabecular bone microstructure
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At age 1 month, males had 27% lower BV/TV, 18% greater Tb.Sp, and 40% lower
Conn.D than females at the proximal tibia (Figure 1). The vertebra showed minimal sex-based
differences in 1-month-old rats, with the exception of 6% lower Tb.N and 8% greater Tb.Sp in
males than females (Figure 2).

By age 6 months, male and reproductive female rats had 56% and 40% lower BV/TV,
respectively, than virgin females at the tibia. Additionally, males had dramatically 52% lower
Tb.N, 126% greater Tb.Sp, 1.03 greater SMI, and 74% lower Conn.D than virgin females, and
reproductive females had 32% lower Tb.N, 0.86 greater SMI, and 57% lower Conn.D than
virgins. Tibial trabecular structure was highly similar between males and reproductive females,
except that reproductive females had 43% greater Tb.N and 30% lower Tb.Sp than males (Figure
1). Similarly, at the L4 vertebra, males and reproductive females had 29% and 21% lower
BV/TV, respectively, than virgin females. Furthermore, males had 19% lower Tb.N, 31% greater
Tb.Sp, and 0.91 greater SMI than virgin females, while reproductive females had 0.73 greater
SMI than virgins. There were no differences between 6-month-old male and reproductive female
rats in any microstructural parameters at L4 (Figure 2).

At age 15 months, sex- and reproductive history-based differences in trabecular
microstructure followed similar patterns to those found at age 6 months (Figures 1 and 2). At
both sites, male and reproductive female rats had lower BV/TV, Tb.N, and Conn.D, and greater
Tb.Sp, than virgin females. However, in contrast to younger rats, which showed no differences
among groups in Tb.Th, 15-month-old males and reproductive females both had 17-18% greater
Tb.Th at the tibia than virgin females. There were no differences in trabecular microstructure
between 15-month-old male and reproductive female rats.

3.2 Vertebral body mechanics
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No differences were seen between 1-month-old male and female rats in any vertebral
mechanical properties (Figure 3). 6-month-old rats also showed no differences among groups in
any whole-bone mechanical properties (Figure 3 A-C). However, apparent-level ultimate stress,
elastic modulus, and toughness were 25%, 13%, and 29% lower, respectively, in male rats than
virgin females (Figure 3 F-H). Moreover, ultimate stress and elastic modulus were 22% and 14%
lower, respectively, in male rats than reproductive females. No differences were seen between
the two female groups in apparent-level properties.

By age 15 months, males showed 47-68% greater energy to failure than both groups of
females. In addition, the advantages in apparent-level mechanical properties of both virgin and
reproductive female rats over male rats in the 6-month age group disappeared by age 15 months.
However, 15-month-old virgin female rats had 3% greater TMD at the lumbar vertebra than
males (Figure 3D).

3.3 Cortical bone structure and mechanics

At age 1 month, males had 11%, 5%, and 7% greater pMOI, P.Perim and E.Perim,
respectively, than females at the femur midshaft (Figure 4). Surprisingly, 3-point bending
indicated that males had 15% and 23% lower peak load and stiffness, respectively, in addition to
23% and 35% lower ultimate stress and elastic modulus, than females (Figure 4).

6-month-old male rats had 72-136% greater pMOI and 26-44% greater Ct.Area than
virgin and reproductive females, in addition to 10-13%, 15-26%, and 17-35% greater Ct.Th,
P.Perim, and E.Perim (Figure 4 A-F). Meanwhile, males had 2-3% lower TMD than virgin and
reproductive females. Furthermore, males had 20% greater whole-bone stiffness, but 25% and
27% lower ultimate stress and elastic modulus, than virgin females (Figure 4G-L). Effects of

reproductive history on cortical bone microstructure were mild compared to sex differences: 6-
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month-old reproductive females had a 13% lower Ct.Area, and 8% lower P.Perim than virgin
females, with no other reproductive history-based differences. However, reproductive females
had 21% greater whole-bone stiffness and 61% elevated elastic modulus, than virgins.

At age 15 months, cortical bone structure at the femur midshaft was highly similar to that
of 6-month-old rats. 15-month-old males showed more robust cortical bone structure, with a
lower TMD, as compared to both virgin and reproductive females (p<0.05 for all parameters;
Figure 4 A-F). Reproductive history continued to minimally affect cortical microstructure at age
15 months.

Sex-based differences in femur mechanics were more pronounced in 15-month-old rats
than younger animals (Figure 4 G-L), as 15-month-old males had 35% greater peak load and
227% greater energy to failure than virgin females. Additionally, males had 35% and 62% lower
ultimate stress and elastic modulus, respectively, but 102% greater toughness, than virgin
females. The advantages in femur mechanical properties of reproductive rats over virgins
observed at age 6 months disappeared in the 15-month age group, with reproductive females
showing 19% lower ultimate stress than virgins.

3.4 Bone mechanics normalized by body weight

At all ages, male rats showed significantly greater body weight than females (Table 1).
Differences were minimal (14%) at age 1 month, while 6-month-old male rats weighed 63-77%
more than females and 15-month-old male rats weighed 83-87% more than females. No
differences in weight were found based on reproductive history.

When normalized for body weight, male rats had 8-35% lower vertebral cross-sectional
area than virgin females at all ages. At age 1 month, there were no significant differences

between male and female rats in vertebral whole-bone mechanical properties normalized by body

10
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weight. However, adult rats showed substantial sex-based differences in vertebral mechanics
after normalizing for weight, with males having 37-44% lower normalized peak load and 43-
47% lower normalized stiffness than virgin females at both 6 and 15 months of age.

At the femur, the sex-based differences in Ct.Area, peak load, and stiffness observed in
adult rats were reversed when normalized for body weight, with males showing 14% and 22%
lower normalized Ct.Area at ages 1 and 6 months, and 26-33% lower peak load and 26-45%
lower normalized stiffness at all ages than virgin females. The only parameter that remained
significantly greater for male rats after normalizing for body weight was energy to failure, as 15-
month-old males had 71% greater normalized energy to failure than virgin females.

Reproductive females had similar normalized parameters of bone mechanics as virgin
females at both the vertebra and femur, except that reproductive females showed 32% greater
normalized femoral stiffness than virgins at age 6 months.
4.Discussion:

This study indicates substantial differences in rat trabecular and cortical bone structure
and mechanics based on sex and reproductive history. Overall, male and reproductive female rats
showed lower trabecular bone volume with reduced number and connectivity, and more rod-like
morphology, relative to virgin females. At the femur mid-diaphysis, male rats had greater
cortical bone size and strength than both groups of females. However, when normalized for body
weight, female rats had greater bone strength than males at both the lumbar vertebra and femur
midshaft.

At both trabecular sites that were investigated, male rats had a lower bone volume, with
reduced connectivity, than virgin females. Sexual dimorphisms appeared earlier and were of

greater magnitude at the tibia than the vertebra. Previous studies in rats found similar variations
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between male and female trabecular bone (Hefferan et al.2003, David et al.2006). In contrast, the
effects of sex on mouse trabecular bone appear to be highly strain-dependent, as BV/TV and
Tb.N were reported to be higher in male C57BL/6 mice than females (Glatt et al.2007), while the
opposite was found in BALBc mice (Willinghamm et al.2010). Clinical studies of the effect of
sex on trabecular bone showed variable findings: some suggested site-specific effects, with
young women (age 18-29) showing greater bone density at the spine while men of the same age
had more robust trabecular microarchitecture in the peripheral skeleton (Riggs et al.2004, Nieves
et al.2005, Sode et al.2010, Macdonald et al.2011), while others indicated no sex-based
differences in vertebral bone density in young adults (Gilsanz et al.1994). However, the
reproductive history of women included in these studies was not reported, complicating the
interpretation of the results relative to the current evaluation.

In addition to sexual dimorphisms, we also saw substantial effects of reproductive history
on trabecular microstructure. At both sites assessed, female reproductive rats had a lower BV/TV
with an altered microarchitecture relative to virgin females. It is well established that lactation
induces substantial skeletal deterioration, as the maternal skeleton forms an important source of
calcium for infant growth (Kent et al.1990, Sowers et al.1993, Zeni et al.1999, VanHouten and
Wysolmerski 2003, Liu et al.2012). However, multiple clinical studies have indicated that
reproduction does not increase the risk of postmenopausal osteoporosis or fracture (Kovacs
2016), leading many to conclude that reproductive bone losses are fully recovered after weaning.
Conversely, several rodent and clinical studies have indicated that, although the trabecular bone
does undergo a period of recovery post-weaning, the total extent of the recovery is incomplete,
resulting in long-term alterations (Affinito et al.1996, Bowman and Miller 1999, More et

al.2001, Bowman et al.2002, Ardeshirpour et al.2007, Liu et al.2012, Bornstein et al.2014,
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Bjornerem et al.2016, de Bakker et al.2017), consistent with the current study.

Interestingly, our results demonstrate minimal differences in trabecular bone structure
between male rats and post-reproductive females. This suggests that, while reproductive bone
losses in the trabecular compartment may not be fully recoverable post-weaning, reproduction
does not appear to put female trabecular bone at a disadvantage as compared to that of males.
This remained true both after a single reproductive cycle (in 6-month-old rats), and after 3 cycles
(in 15-month-old rats). Furthermore, this finding also suggests that, prior to reproduction, the
female rat skeleton may contain excess trabecular bone in order to ensure that a sufficient
quantity of bone remains after reproduction to serve the skeleton's mechanical functions. This
idea is consistent with studies by the Miller group, which suggested that virgin females may start
off with more bone than is mechanically necessary, to compensate for reproductive bone losses
(Bowman and Miller 1999, Bowman et al.2002). However, the relevance of these findings to the
clinical setting remains to be determined, as no clinical studies have yet been performed to
investigate the effects of reproductive history on sexual skeletal dimorphisms.

Reproductive history and sex both appeared to minimally affect whole-bone mechanical
properties at the vertebra, despite substantial differences among groups in vertebral body size
and trabecular microarchitecture. This is consistent with previous studies investigating the effects
of reproduction on rat vertebral mechanics, which showed complete recovery of vertebral body
strength and stiffness by 8 weeks post-weaning (Vajda et al., 2001), but contrasts with clinical
findings that females had lower vertebral peak load than males (Ebbesen et al.1999). In the
current study, the highly uniform whole-bone mechanical properties at the vertebra, combined
with substantial differences among groups in trabecular microarchitecture, suggest the existence

of compensatory mechanisms that allow the bone to maintain a constant load-bearing capacity
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despite microstructural variations. It is likely that vertebral body size, microarchitecture, and
material properties are coordinated to allow whole-bone strength to be maintained. Indeed, when
evaluating the effects of sex on trabecular bone tissue-level properties, we found that female, 6-
month-old rats had greater apparent-level vertebral body ultimate stress, elastic modulus, and
toughness than males, while 15-month-old virgin females had greater TMD than males. These
results are similar to previous findings that, among individuals with different bone properties,
structural and material properties may covary, allowing different attributes to compensate for
each other (Tommasini et al.2009, Epelboym et al.2012). Similarly, it is possible that
reproduction may induce localized changes in bone tissue composition, which could compensate
for reductions in bone mass. However, the current study found no reproductive history-based
differences in the apparent-level mechanical properties or TMD of the vertebral trabecular bone.
Thus, further studies to directly measure the effects of reproduction on trabecular bone material
properties are required.

At the femur midshaft, adult male rats had larger, stronger bones than both virgin and
reproductive females. Multiple studies have demonstrated that males, who tend to have larger
body size and muscle mass, also have larger bones compared to females (Gilsanz et al.1994,
Ebbesen et al.1999, Hefferan et al.2003, Nieves et al.2005, David et al.2006). Reproductive
history also affected cortical bone mechanics, as 6-month-old reproductive females had greater
whole-bone stiffness and derived elastic modulus than virgins. The mechanism behind this
reproductive effect remains unclear. However, a recent microindentation-based evaluation of
material properties of the mouse femur demonstrated complete recovery of lactation-induced
reductions in elastic modulus after weaning, which was hypothesized to be associated with

lactation-induced remodeling of the perilacunar and peri-canalicular spaces by osteocytes (Kaya
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et al.2016). Thus, it is possible that the elevated elastic modulus found in post-reproductive, 6-
month-old rat femurs in the current study resulted from osteocyte activities during reproduction.
However, future investigations to directly evaluate material properties of reproductive bone
through micro- or nano-indentation, and track osteocyte activities during reproduction, will be
required to further explain this finding.

When normalized for body weight, comparisons between male and female rats indicate
that females may build stronger bones relative to their size than males. In addition, adult female
rats had greater cortical TMD than males. Similarly, clinical studies indicate that pre-menopausal
women have greater bone mineral content relative to lean mass than men of the same age group
(Ferretti et al.1998, Schiessl et al.1998, Ashby et al.2011). In the current study, the greater bone
size, stiffness, and strength in female rats when normalized for body weight appear to provide a
margin of safety to protect from possible reproduction-associated reductions in bone properties.

This study provides a thorough evaluation of the impact of sex and reproductive history
on bone microarchitecture and mechanical properties in a rat model. In addition, the combination
of mechanical and morphometric data allows a unique insight into the effects of reproduction on
skeletal structure-function relationships. However, this study was not without limitations.
Although the rat is a commonly used preclinical model, important differences exist between rat
and human physiology, notably in patterns of longitudinal growth, and in the number of
offspring. Thus, clinical studies to directly evaluate the effects of reproductive history on sexual
dimorphisms in bone structure and mechanics in humans are required. In addition, the precise
mechanisms behind the reproductive history- and sex-based differences in skeletal morphology
and mechanics reported here remain to be elucidated. Future studies would include direct,

material-level characterization of bone tissue composition and mechanics, as well as
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measurement of bone cell activities and remodeling rates to evaluate the cellular mechanisms
responsible for reproduction- and sex-based differences.

In summary, this study demonstrates that virgin female rats have greater trabecular bone
mass and microarchitecture and, relative to their body weight, have a greater cortical size and
greater bone strength than males. Reproduction induced long-lasting deterioration of the
trabecular microarchitecture, with minimal effects on cortical bone size and minimal impact on
bone mechanics. Trabecular bone structure in post-reproductive females was highly similar to
that of male rats, and, when normalized for their body size, the mechanical properties of post-
reproductive female bone remained greater than those of males. Thus, despite persistently altered
trabecular microstructure relative to virgin females, reproductive females appear to have no
skeletal deficits compared to their male counterparts, which suggests that virgin females may
start off with more trabecular bone than is mechanically necessary to compensate for possible
future reproductive bone losses. This may help to explain the paradox that reproduction induces
long-lasting changes in maternal bone without increasing postmenopausal fracture risk.
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Figure Captions:

Figure 1. (A) Representative renderings of tibial trabecular bone of 6-month-old rats. (B-G)
Comparisons among virgin female, reproductive female, and male rats in (B) BV/TV, (C) Tb.N,
(D) Tb.Th, (E) Tb.Sp, (F) SMI, and (G) Conn.D at the proximal tibia. * indicate significant
differences among groups at a given age (p<0.05).

Figure 2. (A) Representative renderings of trabecular bone at the 4th lumbar vertebra (L4) of 6-
month-old rats. (B-G) Comparisons among virgin female, reproductive female, and male rats in
(B) BV/TV, (C) Tb.N, (D) Tb.Th, (E) Tb.Sp, (F) SMI, and (G) Conn.D at L4. * indicate
significant differences among groups at a given age (p<0.05).

Figure 3. Differences among virgin female, reproductive female, and male rats in vertebra
mechanics as measured through uniaxial compression testing. (A-C) Extrinsic mechanical
properties, including (A) peak load, (B) stiffness, and (C) energy to failure; (D) Tissue Mineral
Density; (E-H) Vertebral body apparent-level properties, derived by normalizing extrinsic
properties by (E) total cross-sectional area, including: apparent (F) ultimate stress, (G) elastic
modulus, and (H) toughness. * indicate significant differences among groups at a given age
(p<0.05).

Figure 4. Comparisons among virgin female, reproductive female, and male rats in (A-F)
cortical bone structure at the femur midshaft, including: (A) pMOI, (B) Ct.Area, (C) Ct.Th, (D)
TMD, (E) P.Perim, and (F) E.Perim; (G-I) whole bone mechanical properties, including: (G)
peak load, (H) stiffness, and (I) energy to failure. (J-L) Intrinsic mechanical properties were
derived based on 3-point bending results and pCT-based cortical structure: (J) ultimate stress,
(K) elastic modulus, and (L) toughness. * indicate significant differences among groups at a

given age (p<0.05).
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Table 1. Vertebral and femoral mechanical properties normalized by body weight. All measurements shown as mean + standard
deviation *: significantly different from virgin female (p<0.05), b, significantly different from reproductive female (p<0.05), ©:
significantly different from male (p<0.05).

1-Month-Old Rats 6-Month-0Old Rats 15-Month-Old Rats
Virgin Virgin | Reproductive Virgin | Reproductive
Female Male Female Female Male Female Female Male
Body
! 0.11+ | 013+ | 036+ o | 059+ | 041 o 077+
“g{‘gg)ht 001 | 0.01° | o004c | O33E0025 T go4a0 | go7e | 04200771 §hgab
CSA | 43.0= | 396+ | 176+ C | 130% | 162+ . | 106+
(mmike) | 13° | 16° | 16c | 182*12 16% | 40c | DDOE247 1 4 gab
Peak Load | 555+ | 559+ | 945+ o | 532% | 653z 411 =
Normalized | (N/Kg) 104 121 jo7¢ | o121 130% | 172¢ | OPEIE 0
Vertebral | Stiffness | 4911+ | 4541+ | 3297+ o | 1877= | 2654 = c | 1417+
+ +
Mechanics | (N/mm/kg) | 1350 | 635 | 361¢ | SP0E3B | sqab | y5qc | 29235687 1 g a0
Energy to
! 588+ | 69.6+ | 167+ . | 100+ | 103z 79.9 +
Failure | *2 | OO N 164 +27 4055 o 8924322 | 7
(mJ/kg)
CtArea | 204+ | 176+ | 184+ C | 143% | 169+ 141+
(mmikg) | 20°¢ | 13° | 16c | 17908 17% | 34 16.0+2.7 1.6
Peak Load | 239+ 177 + 582 + c 390 + 555+ 392 +
Normalized | (N/kg) 39°¢ 10° 74° >84£50 66 | 119° 45571 50°
Femur | Stiffness | 535+ | 361+ | 805+ e | 595+ | 902+ C | 492+
Mechanics | (Ni/mm/kg) | 110¢ | 34° | 4pbe | 1063101 450 | 1g0c | 18107 3 b
Energy to
! 01+ | 246+ | 367+ 269+ | 262+ . | 449+
Failure 63 59 70 282+ 35 105 66 ° 276 £79 120
(mJ/kg)
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Figure 1. (A) Representative renderings of tibial trabecular bone of 6-month-old rats. (B-G) Comparisons among virgin female,
reproductive female, and male rats in (B) BV/TV, (C) Tb.N, (D) Tb.Th, (E) Tb.Sp, (F) SMI, and (G) Conn.D at the proximal tibia. *
indicate significant differences among groups at a given age (p<0.05).
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Figure 2. (A) Representative renderings of trabecular bone at the 4th lumbar vertebra (L4) of 6-month-old rats. (B-G) Comparisons
among virgin female, reproductive female, and male rats in (B) BV/TV, (C) Tb.N, (D) Tb.Th, (E) Tb.Sp, (F) SMI, and (G) Conn.D at
L4. * indicate significant differences among groups at a given age (p<0.05).
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Figure 3. Differences among virgin female, reproductive female, and male rats in vertebra mechanics as measured through uniaxial
compression testing. (A-C) Extrinsic mechanical properties, including (A) peak load, (B) stiffness, and (C) energy to failure; (D)
Tissue Mineral Density; (E-H) Vertebral body apparent-level properties, derived by normalizing extrinsic properties by (E) total cross-
sectional area, including: apparent (F) ultimate stress, (G) elastic modulus, and (H) toughness. * indicate significant differences among
groups at a given age (p<0.05).
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Femur Midshaft Cortical Bone Microstructure
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Figure 4. Comparisons among virgin female, reproductive female, and male rats in (A-F)
cortical bone structure at the femur midshaft, including: (A) pMOI, (B) Ct.Area, (C) Ct.Th, (D)
TMD, (E) P.Perim, and (F) E.Perim; (G-I) whole bone mechanical properties, including: (G)
peak load, (H) stiffness, and (I) energy to failure. (J-L) Intrinsic mechanical properties were
derived based on 3-point bending results and pCT-based cortical structure: (J) ultimate stress,
(K) elastic modulus, and (L) toughness. * indicate significant differences among groups at a

given age (p<0.05).
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