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Node-Based Service-Balanced Scheduling
for Provably Guaranteed Throughput
and Evacuation Time Performance
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Abstract—This paper focuses on the design of provably efficient online link scheduling algorithms for multi-hop wireless networks. We
consider single-hop traffic and the one-hop interference model. The objective is twofold: 1) maximizing the throughput when the flow
sources continuously inject packets into the network, and 2) minimizing the evacuation time when there are no future packet arrivals.
The prior work mostly employs the link-based approach, which leads to throughput-efficient algorithms but often does not guarantee
satisfactory evacuation time performance. In this paper, we propose a novel Node-based Service-Balanced (NSB) online scheduling
algorithm. NSB aims to give scheduling opportunities to heavily congested nodes in a balanced manner, by maximizing the total weight
of the scheduled nodes in each scheduling cycle, where the weight of a node is determined by its workload and whether the node was
scheduled in the previous scheduling cycle(s). We rigorously prove that NSB guarantees to achieve an efficiency ratio no worse (or no
smaller) than 2/3 for the throughput and an approximation ratio no worse (or no greater) than 3/2 for the evacuation time. It is
remarkable that NSB is both throughput-optimal and evacuation-time-optimal if the underlying network graph is bipartite. Further, we
develop a lower-complexity NSB algorithm, called LC-NSB, which provides the same performance guarantees as NSB. Finally, we
conduct numerical experiments to elucidate our theoretical results.

Index Terms—Wireless scheduling, node-based approach, service-balanced, throughput, evacuation time, provable performance
guarantees

*
INTRODUCTION

RESOURCE allocation is an important problem in wireless
networks. Various functionalities at different layers
(transport, network, MAC, and PHY) need to be carefully
designed so as to efficiently allocate network resources and
achieve optimal or near-optimal network performance.
Among these critical functionalities, link scheduling at the
MAC layer, which, at each time decides which subset of non-
interfering links can transmit data, is perhaps the most chal-
lenging component and has attracted a great deal of research
effort in the past decades (see [2], [3] and references therein).

In this paper, we focus on the design of provably efficient
online link scheduling algorithms for multi-hop wireless
networks with single-hop traffic under the one-hop interfer-
ence model'. While throughput is widely shared as the
first-order performance metric, which characterizes the

1. The packets of single-hop traffic traverse only one link before
leaving the system. The one-hop interference model is also called the
node-exclusive or the primary interference model, where two links
sharing a common node cannot be active at the same time. This model
can properly represent practical wireless networks based on Bluetooth
or FH-CDMA technologies [3], [4], [5], [6], [7].
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long-term average traffic load that can be supported by the
network, evacuation time is also of critical importance due
to the following reasons. First, draining all existing packets
within a minimum amount of time is a major concern in the
settings without future arrivals. One practical example is
environmental monitoring using wireless sensor networks,
where all measurement data periodically generated by dif-
ferent nodes at the same time, need to be transmitted to one
or multiple sinks for further processing. Second, evacuation
time is also highly correlated with the delay performance in
the settings with arrivals. For example, evacuation-time
optimality is a necessary condition for the strongest delay
notion of sample-path optimality [8]. Third, it is quite rele-
vant to timely transmission of delay-sensitive data traffic
(e.g., deadline-constrained packet delivery) [9], [10].
However, these different metrics may lead to conflicting
scheduling decisions — an algorithm designed for optimiz-
ing one metric may be detrimental to the other metric (see
[8] for such examples). Therefore, it is challenging to design
an efficient scheduling algorithm that can provide provably
guaranteed performance for both metrics at the same time.
While throughput has been extensively studied since the
seminal work by Tassiulas and Ephremides [11] and is now
well understood, evacuation time is much less studied. In
the no-arrival setting, the minimum evacuation time prob-
lem is equivalent to the multigraph® edge coloring problemdue
to the following: each multi-edge corresponds to a packet

2.In a multigraph, more than one edge, called multi-edge, is
allowed between two nodes.
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waiting to be transmitted over the link between the nodes of
the multi-edge; each color corresponds to a feasible sched-
ule (or a matching); finding the chromatic index (i.e., the
minimum number of colors such that, each multi-edge is
assigned a color and two multi-edges sharing a common
node cannot have the same color) is equivalent to minimiz-
ing the time for evacuating all the packets by finding a
matching at a time. Since edge-coloring is a classic NP-hard
problem [12], a rich body of research has focused on devel-
oping approximation algorithms (see [13] for a good sur-
vey). These algorithms employ a popular recoloring
technique that requires computing the colors all at once,
and yield a complexity that depends on the number of
multi-edges. This, however, renders them unsuitable for
application in a network with arrivals. This is because the
complexity would become impractically high when there
are a large number of packets (or multi-edges) in the net-
work. Therefore, it is desirable to have an online schedul-
ing algorithm that at each time quickly computes one
schedule (or color) based on the current network state
(e.g., the queue lengths) and yields a complexity that only
depends on the node count n and/or the link count m.

Most existing online scheduling algorithms either make
scheduling decisions based on the link load (such as Maxi-
mum Weighted Matching (MWM) [11] and Greedy Maxi-
mal Matching (GMM) [6], [7]) or are load agnostic (such as
Maximal Matching (MM) [6], [14]). While these algorithms
are throughput-efficient, none of them can guarantee an
approximation ratio better (or smaller) than 2 for the evacu-
ation time [8]. In contrast, several prior work [8], [15], [16],
[17] proposes algorithms based on the node workload (i.e.,
packets to transmit or receive), such as the Lazy Heaviest
Port First (LHPF) algorithms, which are both throughput-
optimal and evacuation-time-optimal in input-queued
switches (which can be described as bipartite graphs) [8].
The key intuition behind the node-based approach is that the
minimum evacuation time is lower bounded by the largest
workload at the nodes and the odd-size cycles, and this
lower bound is asymptotically tight [18]. Hence, giving a
higher priority to scheduling nodes with heavy workload
leads to better evacuation time performance, while the link-
based approach that fails to respect this crucial fact results
in unsatisfactory evacuation time performance.

While the node-based approach seems quite promising,
the scheduling performance of the node-based algorithms is
not well understood, and the existing studies are mostly
limited to bipartite graphs [8], [15], [16]. Very recent work
of [17] considers general network graphs and shows that
the Maximum Vertex-weighted Matching (MVM) algorithm
can guarantee an approximation ratio no worse (or no
greater) than 3/2 for the evacuation time. However,
throughput performance of MVM remains unknown.

There is several other related work. In [19], the authors
study the connection between throughput and (expected)
minimum evacuation time, but no algorithms with provable
performance guarantees are provided. The work of [9], [20],
[21] considers the minimum evacuation time problem for
multi-hop traffic in some special scenarios (e.g., special net-
work topologies or wireline networks without interference).

In this paper, the goal is to develop efficient online link
scheduling algorithms that can provide provably Quaranteed
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TABLE 1
Performance Comparison of NSB and LC-NSB with Several
Most Relevant Online Algorithms in the Literature

y (Throughput) n (Evacuation time)
Algorithm  Complexity - - - -
General Bipartite General Bipartite
MWM O(mn) 1 1 2 2
GMM O(mlogm) >1/2 >1/2 2 2
MM O(m) >1/2 >1/2 2 2
MVM O(my/nlogn) ? 1 <3/2 1
NSB O(my/nlogn)  >2/3 1 <3/2 1
LC-NSB O(my/n) >2/3 1 <3/2 1

The efficiency ratio y and the approximation ratio 1 are used for comparing the
performance of throughput and evacuation time, respectively. (See formal defi-
nitions of y and n in Section 2.) For both y and n, a value closer to 1 is better.
The complexity provided here is for making a scheduling decision at each time.

performance for both throughput and evacuation time. We sum-
marize our contributions as follows.

First, we propose a Node-based Service-Balanced (NSB)
scheduling algorithm that makes scheduling decisions
based on the node workload and whether the node was
scheduled in the previous time-slot(s). NSB has a complex-
ity of O(m+/nlogn). We rigorously prove that NSB guaran-
tees to achieve an approximation ratio no worse (or no
greater) than 3/2 for the evacuation time and an efficiency
ratio no worse (or no smaller) than 2/3 for the throughput.
It is remarkable that NSB is both throughput-optimal and
evacuation-time-optimal if the underlying network graph is
bipartite. The key novelty of NSB is that it takes a node-based
approach and gives balanced scheduling opportunities to
the bottleneck nodes with heavy workload. A novel applica-
tion of graph-factor theory is adopted to analyze how NSB
schedules the heavy nodes (Lemma 4).

Second, from the performance analysis for NSB, we learn
that in order to achieve the same performance guarantees,
what really matters is the priority or the ranking of the
nodes, rather than the exact weight of the nodes. Using this
insight, we develop the Lower-Complexity NSB (LC-NSB)
algorithm. We show that LC-NSB can provide the same per-
formance guarantees as NSB, while enjoying a lower com-
plexity of O(m+/n).

In Table 1, we summarize the guaranteed performance of
NSB and LC-NSB as well as several most relevant online
algorithms in the literature. As can be seen, none of the existing
algorithms strike a more balanced performance guarantees than
NSB and LC-NSB in both dimensions of throughput and evacua-
tion time. Finally, we conduct numerical experiments to vali-
date our theoretical results and compare the empirical
performance of various algorithms.

The remainder of this paper is organized as follows. First,
we describe the system model and the performance metrics
in Section 2. Then, we propose the NSB algorithm and ana-
lyze its performance in Section 3. A lower-complexity NSB
algorithm with the same performance guarantees is devel-
oped in Section 4. Finally, we conduct numerical experi-
ments in Section 5 and make concluding remarks in
Section 6. Some detailed proofs are provided in Section 7.

2 SyYSTEM MODEL

We consider a multi-hop wireless network described as an
undirected graph G = (V, E), where V' denotes the set of
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nodes and £ denotes the set of links. The node count and the
link count are denoted by n = |V| and m = |E|, respectively.
Nodes are wireless transmitters/receivers and links are
wireless channels between two nodes. The set of links touch-
ing node i€V is defined as L(i)2{l € E|iis an end
node of link/}. We assume a time-slotted system with a sin-
gle frequency channel. We also assume unit link capacities,
i.e., a link can transmit at most one packet in each time-slot
when active. However, our analysis can be extended to
the general scenario with heterogeneous link capacities by
considering the workload defined as [number of packets/
link capacity]. We consider the one-hop interference model,
under which a feasible schedule corresponds to a matching
(i.e., a subset of links, L, that satisfies that no two links in L
share a common node). A matching is called maximal, if no
more links can be added to the matching without violating
the interference constraint. We let M denote the set of all
matchings over G.

As in several previous work (e.g., [6], [22], [23], [24], [25]),
we focus on link scheduling at the MAC layer, and thus we
only consider single-hop traffic. We let A;(k) denote the
cumulative amount of workload (or packet) arrivals at link
l € E up to time-slot k (including time-slot k). By slightly
abusing the notations, we let 4;(k) £ >°,c; ;) Ai(k) denote the
cumulative amount of workload arrivals at node i € V up to
time-slot & (including time-slot k). (Indices [ and ¢ correspond
to links and nodes, respectively; similar for other notations.)
We assume that the arrival process { 4;(k), k > 0} satisfies the
strong law of large numbers (SLLN): with probability one,

]}im Ai(k)Jk= N (1

for all links [ € E, where ), is the mean arrival rate of link [.
Let A2[); : | € E] denote the arrival rate vector. We assume
that the arrival processes are independent across links. Note
that the process {A;(k),k >0} also satisfies SLLN: with
probability one, lim;_.., A;(k)/k=\; for all nodes i€V,
where \; & Zle L) )\ is the mean arrival rate for node i.

Let Qi(k) be the queue length of link  in time-slot %, and
let D;(k) be the cumulative number of packet departures at
link [ up to time-slot k. We assume that there are a finite
number of initial packets in the network at the beginning of
time-slot 0. Let Qi (k) £ >,/ ;) Qi(k) be the amount of work-
load at node i € V' (i.e., the number of packets waiting to be
transmitted to or from node ) in time-slot %k, and let
Di(k) 2>, (i) Di(k) be the amount of cumulative workload
served at node i € V up to time-slot k. We also call Q;(k)
and D;(k) as the queue length and the cumulative depar-
tures at node 7 in time-slot k, respectively.

Without loss of generality, we assume that only links
with a non-zero queue length can be activated. Let M/; = 1 if
matching M € M contains link [, and M; = 0 otherwise. Let
H (k) be the number of time-slots in which M is selected as
a schedule up to time-slot k. We set by convention that
A;(k) =0 and D;(k) =0 for all i € V and for all k£ < 0. The
queueing equations of the system are as follows:

Qi(k) = Qi(0) + A;(k) — Di(k — 1), (2)

k
Di(k)=>_ >3 M- (Hy(tr)— Hyu(r—1)), Q)

MeM =1 IeL(i)
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Z Hy (k) = k. (4)

MeM
Next, we define system stability as follows.

Definition 1. The network is rate stable if with probability one,

forall | € E and for any arrival processes satisfying Eq. (1).

Note that we consider rate stability for ease of presenting
our main ideas. Strong stability can similarly be derived if
we make stronger assumptions on the arrival processes [26].

We define the throughput region of a scheduling algorithm
as the set of arrival rate vectors for which the network
remains rate stable under this algorithm. Further, we define
the optimal throughput region, denoted by A*, as the union of
the throughput regions of all possible scheduling algo-
rithms. A scheduling algorithm is said to have an efficiency
ratio y if it can support any arrival rate vector X strictly
inside yA”". Clearly, we have y € [0, 1]. In particular, a sched-
uling algorithm with an efficiency ratio y = 1 is throughput-
optimal, i.e., it can stabilize the network under any feasible
load. We also define another important region ¥ by consid-
ering bottlenecks formed by the nodes:

WALIN|N <1forallieV}. (6)

Clearly, we have A" C ¥ because at most one packet can be
transmitted from or to a node in each time-slot. Similarly,
any odd-size cycle Z could also be a bottleneck because at
most (|Z] — 1)/2 out of the | Z] links of the odd-size cycle can
be scheduled at the same time. For example, the total arrival
rate summed over all edges of a triangle must not exceed
1/3 because at most one out of the three links of the triangle
can be scheduled in each time-slot. For the theoretical analy-
ses, we consider bottlenecks formed only by the nodes,
which is sufficient for deriving our analytical results.
We provide more discussions about odd-size cycles in Sec-
tions 3.4 and 5.1.

As we mentioned earlier, in the settings without future
packet arrivals, the performance metric of interest is the
evacuation time, defined as the time interval needed for
draining all the initial packets. Let 7" denote the evacuation
time of scheduling algorithm P, and let X’ denote the mini-
mum evacuation time over all possible algorithms. A sched-
uling algorithm is said to have an approximation ratio n if it
has an evacuation time no greater than nX” in any network
graph with any finite number of initial packets. Clearly, we
have n > 1. In particular, a scheduling algorithm with an
approximation ratio n = 1 is evacuation-time-optimal.

In this paper, the goal is to develop efficient online link
scheduling algorithms that can simultaneously provide
provably good performance in both dimensions of through-
put and evacuation time, measured through the efficiency
ratio (i.e., the larger the value of y, the better) and the approx-
imation ratio (i.e., the smaller the value of 5, the better),
respectively. Note that the throughput performance has
been extensively studied under quite general models in the
literature (see [2], [3] and references therein), where multi-
hop traffic, general interference models, and time-varying
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TABLE 2
Summary of Notations
Symbol Meaning
G Network topology as an undirected graph
\4 Set of nodes
E Set of links
n Number of nodes
m Number of links
L(1) Set of links touching node i € V'
M A matching over G
M Set of all the matchings over G
N Mean arrival rate of link [
i Mean arrival rate of node 7
A” Optimal throughput region
N2 An outer bound of A*; see Eq. (6)
y Efficiency ratio (for throughput performance)
" Evacuation time of scheduling algorithm P
X' Minimum evacuation time
n Approximation ratio (for evacuation time performance)
Ai(k) Cumulative arrivals at link [ up to time-slot &
A;(k) Cumulative arrivals at node 7 up to time-slot &
Dy(k) Cumulative departures at link / up to time-slot &
D, (k) Cumulative departures at node i up to time-slot &
Qu(k) Queue length at link [ in time-slot &
Qi(k) Workload at node i in time-slot &
Hy (k) Number of time-slots in which matching M is selected as a
schedule up to time-slot k&
A(k) Largest node workload in time-slot &
C(k) Set of critical nodes in time-slot &
H(k) Set of heavy nodes in time-slot &
R;(k) Whether node i is matched in time-slot & or not
U; (k) See Eq. (7)
w; (k) Weight of node i in time-slot &
w(M) Weight of matching M

channels (which can model mobility and fading) have been
considered. However, the evacuation time performance is
much less understood. As we have mentioned earlier, even
in the setting we consider (assuming single-hop traffic, the
one-hop interference model, and fixed link capacities), the
minimum evacuation time problem is already very challeng-
ing (i.e.,, NP-hard). Considering multi-hop traffic adds
another layer of difficulty. This is mainly because of the
dependence between the upstream and downstream queues,
since the arrival process to an intermediate queue is no lon-
ger exogenous, but instead, it is the departure process of its
previous-hop queue. In addition to link scheduling, we also
need to decide which flow’s packets will be transmitted
when a link is activated. This further complicates the mini-
mum evacuation time problem.

For quick reference, we summarize the key notations of
this paper in Table 2.

3 NODE-BASED SERVICE-BALANCED ALGORITHM

In this section, we propose a novel Node-based Service-Bal-
anced (NSB) scheduling algorithm and analyze its perfor-
mance. Specifically, we prove that NSB guarantees an
approximation ratio no worse (or no greater) than 3/2 for the
evacuation time (Section 3.2) and an efficiency ratio no worse
(or no smaller) than 2/3 for the throughput (Section 3.3). Fur-
ther, we show that NSB is both throughput-optimal and
evacuation-time-optimal in bipartite graphs (Section 3.4).

1941

To the best of our knowledge, none of the existing algorithms
strike a more balanced performance guarantees than NSB in
both dimensions of throughput and evacuation time.

3.1 Algorithm

We start by introducing Maximum Vertex-weighted Match-
ing (MVM) [8], [27], which will be a key component of the
NSB algorithm. Let w; denote the weight of node i. We will
later describe how to assign the node weights. Also, let
w(M) £ 37, vinr)20 Wi denote the weight of matching M, i.e.,
the sum of the weight of the nodes matched by . A match-
ing M* is called an MVM if it has the maximum weight
among all the matchings, i.e., M* € argmaxy;c w(M). In
[27], a very useful property of MVM is proven. We restate it
in Lemma 1, which will be frequently used in the proofs of
our main results.

Algorithm 1. Node-Based Service-Balanced (NSB)

1: In each time-slot k:
2: for eachnodei € V do
3:  Assign node weight w;(k) based on Eq. (8)
4: end for
5:  Excludelinks [ € E with Q;(k) =0
6:  Find an MVM M* over G with node weight w;(k)’s, i.e.,
M* € argmaxw(M) £ Z w; (k)
MeM i:MNL(i)#0

7: foreachlink ! € E'do
8: if M} =1then

9: Transmit one packet over link [
10:  else
11: No transmission over link [
12:  endif
13: end for

Lemma 1 (Lemma 6 of [27]). For any positive integer s <n,
suppose that there exists a matching that matches the s heaviest
nodes. Then, an MVM matches all of these s nodes too.

Now, we consider frames each consisting of three conse-
cutive time-slots and describe the operations of the NSB
algorithm. We first give some additional definitions and
notations. Recall that Q;(k) denotes the workload of node 4
in time-slot k. Let A(k)2£max;cyQ;(k) denote the largest
node queue length in time-slot k. A node 1 is called critical
in time-slot k if it has the largest queue length, i.e,
Qi(k) = A(k); a node i is called heavy in time-slot k if its
queue length is no smaller than (n—1)/n-A(k). (Our
results also hold if we replace (n—1)/n with any
« € [(n—1)/n,1).) It will later become clearer why such a
threshold is chosen. We use C(k) and H (k) to denote the set
of critical nodes and the set of heavy nodes in time-slot k,
respectively. Let R;(k) £ D;(k) — D;(k — 1) denote whether
node i is matched in time-slot & or not, and define

if k= 3K + 2;

otherwise,

Ri(k—1)Ri(k—2)

Ri(k—1) (7

Ui(k) £ {
where ¥ is the frame index. Note that U;(k) is either 1 or 0
and will be used in Eq. (8) to determine whether a node
needs to get a higher scheduling priority in time-slot k or
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(a) Time-slot 0 (b) Time-slot 1

(c) Time-slot 2 (d) Time-slot 3

Fig. 1. An illustration of the operations of NSB in four time-slots. The network setting is presented in Fig. 1a, where there are seven nodes {a, b, , g}. In
each subfigure, the number above each link denotes the number of packets waiting to be transmitted over that link at the beginning of each time-slot.
For simplicity, we assume no future packet arrivals in this example. The node degree (i.e., the sum of queue lengths over all the links touching the node)
and the node weight (in the parenthese) are both labeled after the node name; however, the node weight is not labeled if it is equal to the node degree.
The heavy nodes are highlighted in blue. Take Fig. 1b for example: the heavy nodes are q, b, d, and f; node a has a degree of 3 and has a weight of 6;
node b has a degree and a weight both equal to 3. Note that although both nodes a and b are heavy nodes in time-slot 1, the weight of « equals twice the
node degree because it was not scheduled in time-slot 1 (i.e., U,(2) = 0). The thick red lines denote the links activated in each time-slot.

(a) Time-slot 0

(b) Time-slot 1

(c) Time-slot 2 (d) Time-slot 3

Fig. 2. Anillustration of the operations of MWM in four time-slots. The labels are similar to that in Fig. 1. The node degree and the node weight are not

labeled because they are irrelevant under MWM.

not. Specifically, the weight of a heavy node i is doubled if
U;(k) = 0 (i.e., this heavy node 7 did not receive enough ser-
vice in the previous time-slot(s)) such that node ¢ has a
higher priority of being scheduled in time-slot k.

Then, in time-slot k, we assign a weight to node i as

Qi(k)(2 = Ui(k))
Qi(k)

The NSB algorithm finds an MVM [27] based on the
assigned node weight w;(k)’s in each time-slot. Note that
links with a zero queue length will not be considered when
MVM is computed. According to Eq. (8), the nodes are
divided into two groups: the heavy nodes that were not
scheduled in the previous time-slot(s) have a weight twice
their workload, and all the other nodes have a weight equal
to their workload. Within each group, a node with a larger
workload has a larger weight. To help illustrate the opera-
tions of the NSB algorithm, we provide its pseudo code in
Algorithm 1.

In addition, to help the reader better understand the
operations of the NSB algorithm, we also present a simple
example in Fig. 1, which demonstrates the system evolution
within four time-slots. Note that a certain tie-breaking rule
is applied in this example. Using a different tie-breaking
rule, different schedules could be selected. For instance, in
time-slot 0 we may activate link (a,b) instead of link (b, c)
along with links (d,e) and (f,g). However, tie-breaking
rules do not affect our analysis. As can be seen from Fig. 1,
NSB drains all initial packets by the end of time-slot 3. For
comparison, using the same example, in Fig. 2 we also dem-
onstrate the system evolution under the MWM algorithm.
Similarly, we observe that after time-slot 3, MWM needs
two more time-slots to completely drain all initial packets.
In the next section, we will use a similar example to show

if ¢ € H(k);

otherwise.

w;(k) & { ®)

that a link-based algorithm like MWM needs about twice as
much time as that of a node-based algorithm like NSB to
evacuate all initial packets in the network.

3.2 Evacuation Time Performance

In this section, we analyze the evacuation time performance
of NSB in the settings without arrivals. The main result is
presented in Theorem 1.

Theorem 1. The NSB algorithm has an approximation ratio no
greater than 3/2 for the evacuation time performance.

Proof. Recall that for a given network with initial packets
waiting to be transmitted, X’ denotes the minimum evac-
uation time, and T™B denotes the evacuation time of
NSB. We want to show TV8 < 3/2. X". Recall that A(0)
denotes the maximum node queue length in time-slot 0. If
A(0) = 1, this is trivial as TV°P = &’ = 1. Now, suppose
A(0) > 2. Then, the result follows immediately from 1)
Proposition 1 (stated after this proof): under NSB, the
maximum node queue length decreases by at least two
within each frame, i.e., TN® < 3/2- A(0), and 2) an obvi-
ous fact: it takes at least A(0) time-slots to drain all the
packets over the links incident to a node with maximum
queue length, i.e., A(0) < X'. O

Next, we state a key proposition (Proposition 1) used for
proving Theorem 1.

Proposition 1. Consider any frame. Suppose the maximum node
queue length is no smaller than two at the beginning of a frame.
Under the NSB algorithm, the maximum node queue length
decreases by at least two by the end of the frame.

We provide the detailed proof of Proposition 1 in
Section 7.1 and give a sketch of the proof below. Note that in
any time-slot, the network together with the present packets
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Fig. 3. A network with 2V + 1 nodes, where N is a positive integer. The
number above each link denotes the number of initial packets waiting to
be transmitted over that link.

can be represented as a loopless multigraph, where each
multi-edge corresponds to a packet waiting to be transmitted
over the link connecting the end nodes of the multi-edge. We
use G(k) to denote the multigraph at the beginning of time-
slot k, and use M (k) to denote the matching found by the
NSB algorithm in time-slot k. Hence, the degree of node ¢ in
G(k) is equivalent to the node queue length Q);(k), and the
maximum node degree of G(k) is equal to A(k). Now, con-
sider any frame %’ consisting of three consecutive time-slots
{p,p+1,p + 2}, where p = 3. Suppose that the maximum
node queue length is no smaller than two at the beginning of
frame &/, i.e., A(p) > 2 at the beginning of time-slot p. Then,
we want to show that under the NSB algorithm, the maxi-
mum degree will be at most A(p) — 2 at the end of time-slot
p + 2. We proceed the proof in two steps: 1) we first show
that the maximum degree will decrease by at least one in the
first two time-slots p and p + 1 (i.e., the maximum degree
will be at most A(p) — 1 at the end of time-slot p + 1), and
then, 2) show that if the maximum degree decreases by
exactly one in the first two time-slots (i.e., the maximum
degreeis A(p) — 1 at the end of time-slot p + 1), then the max-
imum degree must decrease by one in time-slot p + 2, and
becomes A(p) — 2 at the end of time-slot p + 2.

Remark. The key intuition that the NSB algorithm can pro-
vide provable evacuation time performance is that all the
critical nodes are ensured to be scheduled at least twice
within each frame (Proposition 1). This comes from the
following properties of NSB: 1) it results in the desired
priority or ranking of the nodes by assigning the node
weights according to Eq. (8); 2) it finds an MVM based on
the assigned node weights, and if a critical node was not
scheduled in the first time-slot of the frame, then in the
second time-slot of the frame, MVM guarantees to match
all such critical nodes (Lemma 1); 3) similarly, if a critical
node was not scheduled in both of the first two time-slots
of the frame, then MVM guarantees to match all such crit-
ical nodes in the third time-slot of the frame.

In addition, we use an example to illustrate why a link-
based algorithm like MWM could result in a bad evacuation
time performance. Consider the network topology pre-
sented in Fig. 3. Since MWM aims to maximize the total
weight summed over all scheduled links in each time-slot, it
will choose the matching consisting of all the edges with N
packets. This pattern repeats until all links have one packet
(after N — 1 time-slots). Then, it takes additional N or N + 1
time-slots to drain all the remaining packets, depending on
the tie-breaking rule. This results in inefficient schedules
that consist of one link only about half the time, and thus,
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requires a total of 2N — 1 or 2N time-slots. Another link-
based algorithm GMM performs similarly. On the other
hand, as we will show in Section 3.4, NSB is evacuation-
time-optimal in this example and needs only A= N +1
time-slots since the graph is bipartite. The system evolution
under NSB and MWM for a special case of N =3 can be
found in Figs. 1 and 2, respectively.

3.3 Throughput Performance

Next, we analyze the throughput performance of NSB in the
settings with arrivals. The main result is presented in
Theorem 2.

Theorem 2. The NSB algorithm has an efficiency ratio no
smaller than 2/3 for the throughput performance.

We will employ fluid limit techniques [26], [28], [29] to
prove Theorem 2. Fluid limit techniques are useful for two
main reasons: (i) it removes irrelevant randomness in the
original stochastic system such that the considered system
becomes deterministic and thus, the analysis can be simpli-
fied; (ii) the algorithm exhibits some special properties in
the fluid limit (e.g., Lemma 3), which do not exist in the
original stochastic system.

Before proving Theorem 2, we construct the fluid model
and state some definitions and a lemma that will be used in
the proof. First, we extend the process Y = A,Q,D, H to
continuous time ¢ > 0 by setting Y'(¢) = Y'(|¢]). Hence, A(t),
Q(t), D(t), and H(t) are right continuous with left limits.
Then, using the techniques of [29], we can show that for
almost all sample paths and for all positive sequences
x, — 00, there exists a subsequence z,, with z,. — oo as
J — oo such that the following convergence holds uniformly
over compact (1.0.c.) intervals of time ¢:

w — M\t for alli € V 9)
)
Qéij’t) — q;(t), for alli €V (10
M — d;(t), for alli € V, a1
7
w — ha(t), for all M € M. (12)
iy,

Since the proof of the above convergence is standard, we
provide the proof in the appendix for completeness.
Next, we present the fluid model equations as follows:

qz-(t) = q,(O) + N\t — dj(t), for alli € 'V (13)
Ldi(t)= > > M- ghy(t), forallie V,  (14)
MeMIeL(i)
> hu(t) =t (15)
MeM

Any such limit (g, d,h) is called a fluid limit. Note that
¢i(+),d;(-) and h;(-) are absolutely continuous functions and
are differentiable at almost all times ¢ > 0 (called regular
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times). Taking the derivative of both sides of (13) and substi-
tuting (14) into it, we obtain
aqi(t); = A — Fdi(t)

=XN— > > M- gha(t).

MeM IeL(i)

(16)

Borrowing the results of [29], we give the definition of
weak stability and state Lemma 2, which establishes the con-
nection between rate stability of the original system and
weak stability of the fluid model.

Definition 2. The fluid model of a network is weakly stable if for
every fluid model solution (g,d,h) with g(0) =0, one has
q(t) = 0 for all regular times ¢t > 0.

Lemma 2 (Theorem 3 of [29]). A network is rate stable if the
associated fluid model is weakly stable.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We want to show that given any
arrival rate vector A strictly inside 2/3 - A*, the system is
rate stable under the NSB algorithm. Note that A is also
strictly inside 2/3 -V (i.e.,, A; < 2/3 for all i € V) since
A" CW. We define € £min;cy (2/3 — ;). Clearly, we must
havee > 0.

To show rate stability of the original system, it suffices
to show weak stability of the fluid model due to
Lemma 2. We start by defining the following Lyapunov
function:

V(q(t)) = an

mepeai(t).
For any regular time ¢ > 0, we define the drift of V' (¢q(t)) as
its derivative, denoted by £V (q(t)).Since V(q(t)) is a non-
negative function, given ¢(0) =0, in order to show
V(q(t)) = 0 and thus ¢(t) = 0 for all regular times ¢ > 0, it
suffices to show thatif V(q(t)) > 0fort > 0, then V(q(t))
has a negative drift. This is due to a simple result in
Lemma 1 of [29].Therefore, we want to show that for all
regular timest > 0,if V(q(t)) > 0,then4V(q(t)) < —e.

We first fix time ¢ and let gu.(t) =V(q(t)) =
max;eyq;(t). Define the set of critical nodes in the fluid
limits at time ¢ as

Cé{l cV ‘ Qi(t) = Qmax(t)}'

Also, let ¢max(t) be the largest queue length in the fluid
limits among the remaining nodes, i.e., fmax(t) = max;ey
Cq;(t). Since the number of nodes is finite, we have
Gmax(t) < Gmax(t). Choose B small enough such that

(18)

(}max(t) < (Imax(t) - 3/3 and ,8 < qmdx(t)/(Zn— 1) Our
choice of g implies the following:
n—1
qmax(t) - (Qmax(t) + /3) (19)

Recall that ¢(t) is absolutely continuous. Hence, there
exists a small § such that the queue lengths in the fluid
limits satisfy the following condition for all times
7 € (t,t 4 §)and for all nodes i € V:

ai(7) € (a:(t) — B/2,4i(t) + B/2).
This further implies that the following conditions hold:

(20)
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(CD) ¢i(7) € (Gumax(t) — B/2, qumax(t) + B/2) foralli € C;

(C2) ¢i(1) < Gmax(t) —5B/2foralli ¢ C,

where (C2) is from Eq. (20) and ¢;(t) < gmax(t) <
(max(t) — 3B forall i ¢ C.

Let z,, be a positive subsequence for which the conver-
gence to the fluid limit holds. Consider a large enough j
such that |Q;(z,;7)/zr; — ¢i(7)| < B/2forall T € (¢, +4).
Considering the interval (t,t + &) around time ¢, we define
a set of consecutive time-slots in the original system as
T&{[z,;t], [z, t] +1,, [2,,(t +8)]}, which corresponds
to the scaled time interval (t t + 8) in the fluid limits.

Lemma 3 states that NSB, all the critical nodes at
scaled time ¢ in the fluid limits will be scheduled at least
twice within each frame of interval 7. O

Lemma 3. Under the NSB algorithm, all the nodes in C will be
scheduled at least twice within each frame of interval T

We provide the proof of Lemma 3 in Section 7.2. For now,
we assume that Lemma 3 holds. Note that interval T
contains at least (| (t+3)| — [z,t] —3)/3 complete
frames. Then, from Lemma 3, we have that forall: € C,

S > M- (Haglar, (t 498)) — Hua(ar, )
MeM IEL(i)

> 2/3 (|, (t +8)] -

(21)
[xrjt—‘ - 3)7

and therefore, we have

Z Z M; - Sha(t

MeM IEL(i)
§) — hyy

= lim Z MZ.hM(H' ) — hu(t)

8§—0 ! )

MeM IEL(i)

. M - (Har(2 (t +8)) — Ha(z t
(:)lim,lim Z - (Huler(t+9)) u@t) (22)

80700 T IEL () 7,8

(b) 2/3-(|lz,,(t+08)| — |z t| —3
O 23 (Lot 8)) = [, =3

8—0 j—o0 xer
=2/3,

where (a) is from the convergence in Eq. (12) and (b) is from
Eq. (21). Then, it follows from Eq. (16) that for all ¢ € C, we
have 4¢;(t) < A —2/3 < —e.

Also, from conditions (C1) and (C2), every node ¢ ¢ C has
a queue length strictly smaller than that of a critical node in
C for the entire duration (¢,t+8). Thus, we have
4V (q(t)) < —e, which implies that the fluid model is weakly
stable. Then, we complete the proof by applying Lemma 2.

Remark. The key intuition that the NSB algorithm can pro-
vide provable throughput performance is that all the criti-
cal nodes in the fluid limit are ensured to be scheduled at
least twice within each frame of interval 7' (Lemma 3).
Similar to the provable evacuation time performance, this
comes from the desired weight assignment (Eq. (8)) and
an important property of MVM (Lemma 1).

As we mentioned earlier, the proof of Lemma 3 is pro-
vided in Section 7.2. However, we want to emphasize that
the proof relies on a novel application of graph-factor the-
ory, which is stated in Lemma 4. Lemma 4 is of critical
importance in proving the guaranteed throughput
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Fig. 4. An illustration for the relationship of the sets in the proof of
Lemma 4.

performance of the NSB algorithm in general graphs. More-
over, it will play a key role in establishing both throughput
optimality and evacuation time optimality for NSB in bipar-
tite graphs (see Section 3.4).

Next, we give some additional notations that are needed
to state Lemma 4. By slightly abusing the notations, we also
use G = (V,E) to denote a multigraph, which is possibly
not loopless. Let d(v) be the degree of node v in G, where a
loop associated with node v counts 2 towards the degree of
v. Also, let Gz denote the subgraph of G induced by a subset
of nodes Z C V.

Lemma 4. Let G = (V,E) be a multigraph with maximum
degree A. Consider a subset of nodes Z C V. Suppose that the
following conditions are satisfied: (i) all the nodes of Z are
heavy nodes, ie., Z C {veV|dg(v) > (n—1)/n-A}, and
(ii) Gy is bipartite. Then, there exists a matching of G that
matches every node of Z.

Proof. We first introduce some additional notations. Let

g=lg:veV]and f=[f,:v € V] be vectors of positive
integers satisfying

0<g, < f, <dg(v), for allv € V. (23)
A (g, f)-factor is a subgraph F of G with

g < dp(v) < f,, for allv € V. (24)

Note that if vectors g, f satisfy g,, f, € {0,1} forallv e V,
then the edges of a (g, f)-factor form a matching of G. Let
G-y denote the subgraph of G induced by nodes v for
which ¢, = f,, and let [ac]+ 2 max{z,0}. We restate a
result of [30] in Lemma 5, which will be used in the
proof. ]

Lemma 5 (Theorem 1.3 of [30], Property I). Let multigraph
G and vectors g, f be given. Suppose that G ,— s is bipartite. Then,
G has a (g, f)-factor if and only if for all node subsets S C V,

PIEDDI

ves vg S

—dg_s( (25)

We are now ready to prove Lemma 4. Suppose that (i) all
the nodes of Z are heavy nodes and (ii) G is bipartite. We
construct vectors g, f by setting g, = f, = 1 for node v € Z
and g, =0, f, = 1 otherwise. With our constructed vectors g
and f, not only a (g, f)-factor forms a matching of graph G,
but this matching also matches every node of Z. Therefore,
it suffices to show that G has a (g, f)-factor.

Next, we apply Lemma 5 to show that G has a (g, f)-factor.
Note that Gy—y = Gz and G is bipartite. Then, it remains to
show that Eq. (25) is satisfied for any subset of nodes S C V.
Let S = V\ S be the complementary set of S. Let Zg = Z N S,
and let Z; = {v € Zg| all the neighboring nodes of v are
in S}. The relationship of these sets is illustrated in Fig. 4.
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Clearly, wehave ) .o f, =|S|as f, = 1forallv e V. Also, a
little thought gives > glg, — dg—s(v)]” = [Z}|. This is
because any node v ¢ S must belong to one of the following
three cases:

(1) Ifv¢ Z, then g, =0, and thus, [g, — ol(;,s(v)}+ =0;

2 If ve Z:\Z,, then g,=1 and dg_g(v) > 1, which
implies [g, — dg_s()]" =0;

3 Ifve Zg, then g, = 1 and dg_g(v) = 0, which implies
90 — dg-s(v)]" = 1.

Hence, in order to show Eq. (25), it remains to show |S| >
|Z5|. We prove it by contradiction. Suppose [S| < |Z§].
Since S and Zj are disjoint, we have [S|+ |Z5| <n, and
thus, |S| < n. We let dq(2) =3 .., da(i) denote the total
degree of a subset of nodes Z C V in G. Then, we state three
obvious facts:

(F1) dg(Z5) > (n—1)/n- A ZL);
(F2) de:(S )SA\Sl
(F3) da(Z5) < da(9).

Note that (F1) is from the fact that every node of Z has a
degree no smaller than (n — 1)/n - A, (F2) is trivial, and (F3)
is from the definition of Z7 that all of its neighboring nodes
belong to S. Then, by combining the above facts, we obtain

n—1 |9
<

no Tzl

(26)

This further implies [Z5| — S| < [S]/(n —1) < 1,as S| < n.
Hence, we must have |Z%| = [S|+1, because [S| < |Z§].
Substituting this back into Eq. (26) gives (n—1)/n <
|S|/(|S| +1). This implies S| > n — 1, and thus |S| + |Z] >
2n — 1, which contradicts the fact that S|+ |Z] < n. (We
assume n > 1 to avoid trivial discussions.)

Therefore, we have |S| > |Z§|, and thus, Eq. (25) is satis-
fied. Then, Lemma 5 implies that graph G has a (g, f)-factor,
which forms a matching of graph G that matches every
node of Z. This completes the proof.

3.4 Optimality in Bipartite Graphs

As we have explained in the introduction, the minimum
evacuation time is lower bounded by the largest workload
at the nodes and the odd-size cycles. Hence, both the nodes
and the odd-size cycles could be bottlenecks. Ideally, it
would be best to consider the workload of both the nodes
and the odd-size cycles when making scheduling decisions.
However, this may render the algorithm very complex
because it is much more difficult to explicitly consider all
the odd-size cycles in a graph. Hence, we have focused on
designing the node-based algorithms (such as the NSB algo-
rithm) that do not explicitly handle the odd-size cycles.
Without considering all the bottlenecks, these algorithms
may not be able to achieve the best achievable performance
in general. However, the theoretical results of Theorems 1
and 2 are quite remarkable in the sense that even without
considering the odd-size cycles (which could also be bottle-
necks), the NSB algorithm can guarantee an approximation
ratio no greater than 3/2 for the evacuation time and an effi-
ciency ratio no smaller than 2/3 for the throughput. We
believe that NSB will perform better if odd-size cycles do
not form bottlenecks. This is also observed from our simula-
tion results in Section 5.
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(a) Triangular Mesh
Fig. 5. Simulation topologies.

In this section, we will show that NSB is both throughput-
optimal and evacuation-time-optimal in bipartite graphs,
where there are no odd-size cycles. This result is stated in
Theorem 3, whose proof needs to apply Lemmas 4 and 1 and
follows a similar line of analysis to that of Theorems 1 and 2
for general graphs. The detailed proof is provided in the
appendix for completeness.

Theorem 3. The NSB algorithm is both throughput-optimal and
evacuation-time-optimal in bipartite graphs.

Remark. The NSB algorithm has a complexity of
O(my/n logn), as the complexity of finding an MVM is
O(my/n logn) [27]. One important question is whether
we can develop lower-complexity algorithms that pro-
vide the same performance guarantees. We answer this
question in the next section.

4 A LOWER-COMPLEXITY NSB ALGORITHM

Through the analysis for the NSB algorithm, we obtain the
following important insights: In order to achieve the same
performance guarantees as NSB, what really matters is the
priority or the ranking of the nodes, rather than the exact
weight of the nodes. This insight comes from the following;:
Note that under the NSB algorithm, the weight of each node
is only used in the MVM component (line 6 of Algorithm 1).
In the performance analysis of NSB (i.e., Theorems 1, 2, and
3), the only property of MVM we use is Lemma 1, which is
concerned about the s heaviest nodes (i.e., the s highest rank-
ing nodes) rather than about the exact weight of the nodes.
Hence, if we assign the node weights in a way such that,
the weights are bounded integers and the nodes still have
the desired priority or ranking as in the NSB algorithm, then
we can develop a new algorithm with a lower complexity.
Thanks to the results of [31], [32], an O(m+/n)-complexity
implementation® of MVM can be derived if the maximum
node weight is a bounded integer independent of n and m.

Next, we propose such an algorithm, called the Lower-
Complexity NSB (LC-NSB). Similarly as in NSB, we con-
sider frames each consisting of three consecutive time-slots.
Recall that U;(k) indicates whether node ¢ was matched in
the previous time-slot (or in both of the previous two time-
slots), as defined in Eq. (7). Also, recall that C(k) and H(k)
denote the set of critical nodes and the set of heavy nodes in
time-slot k, respectively. In time-slot k, we assign a weight
tonode i as

3. This can be done by setting the weight of an edge to the sum of the
weight of its two end nodes and finding an MWM based on the new
edge weights using the techniques developed in [31], [32].

(b) 4x4 grid

(c) Random topology

5—2U;(k) ifi € C(k);
wi(k) &< 4 —=2U;(k) ifi € H(k)\C(k); 27
1 otherwise.

Then, the LC-NSB algorithm finds an MVM based on the
assigned node weight w;(k)’s in every time-slot. Note that
LC-NSB has a very similar way of assigning the node
weights as NSB. However, the key difference is that we now
divide all the nodes into five priority groups by assigning
the node weights only based on whether it is a heavy (or
critical) node and whether it was scheduled in the previous
time-slot(s), while in the NSB algorithm, the actual work-
load is used in the weight assignments. This slight yet cru-
cial change leads to a lower-complexity algorithm with the
same performance guarantees. Note that in Eq. (27), we give
a higher priority to the critical nodes in order to guarantee
the evacuation time performance. The proof follows a simi-
lar line of analysis to that for the NSB algorithm and is pro-
vided in the appendix for completeness.

Theorem 4. The LC-NSB algorithm has an approximation ratio
no greater than 3/2 for the evacuation time and has an effi-
ciency ratio no smaller than 2/3 for the throughput. Moreover,
the LC-NSB algorithm is both throughput-optimal and evacua-
tion-time-optimal in bipartite graphs.

Remark. Although the LC-NSB algorithm can provide the
same performance guarantees as NSB, we would expect
that LC-NSB may have (slightly) worse empirical perfor-
mance compared to NSB, since NSB has a more fine-
grained priority differentiation among all the nodes. We
indeed make such observations in our simulation results
in Section 5. In order to improve the empirical perfor-
mance, we can introduce more priority groups for the
non-heavy nodes under LC-NSB rather than all being in
the same priority group (of weight 1 as in Eq. (27)). As
long as the number of priority groups is a bounded integer
independent of n and m, the complexity remains O(m+/n).

5 NUMERICAL RESULTS

In this section, we conduct numerical experiments to eluci-
date our theoretical results. We also compare the empirical
performance of our proposed NSB and LC-NSB algorithms
with several most relevant algorithms as listed in Table 1.

5.1 Throughput Performance

To evaluate the throughput performance, we run the simu-
lations on three different network topologies as shown in
Fig. 5. We first focus on a randomly generated triangular
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Fig. 7. Simulation results for file arrivals, where the file arrival probability is p = 0.1 and the file size follows Poisson distribution with mean \/p.

mesh topology with 30 nodes and 79 links as shown in
Fig. 5a. The simulations are implemented using C++. We
assume that the arrivals are i.i.d. over all the links with unit
capacity. The mean arrival rate of each link is A, and the
instantaneous arrivals to each link follow a Poisson distribu-
tion in each time-slot. In Fig. 6a, we plot the average total
queue length in the system against the arrival rate A. We
consider several values of X as indicated in Fig. 6a. For each
value of ), the average total queue length is an average of 10
independent simulations. Each individual simulation runs
for a period of 10° time-slots. We compute the average total
queue length by excluding the first 5 x 10 time-slots in
order to remove the impact of the initial transient state.
Note that this network topology contains odd-size cycles.
Hence, our proposed NSB and LC-NSB only guarantee to
achieve 2/3 of the optimal throughput. However, the simu-
lation results in Fig. 6a show that NSB and LC-NSB algo-
rithms both empirically achieve the optimal throughput
performance. This is because the odd-size cycles (i.e., all the
triangles in this case) do not form the bottlenecks in this set-
ting. For example, a triangle requires A < 1/3 because at
most one of its three links can be scheduled in each time-
slot. However, in Fig. 5a there exists a node touched by
seven links, which requires A < 1/7. As the load A increases,
such a node will become congested sooner than any triangle
and thus forms a scheduling bottleneck.

We also conduct simulations for a 4 x 4 grid topology
with 16 nodes and 24 links (Fig. 5b) and a randomly gener-
ated dense topology with 100 nodes and 248 links (Fig. 5c).
All the other simulation settings are the same as that for the
triangular mesh topology. The simulation results are pre-
sented in Fig. 6. The observations we make are similar to that

for the triangular mesh topology, except that in the grid
topology, LC-NSB has higher delays when the mean arrival
rate approaches the boundary of the optimal throughput
region. This is due to the following two reasons: 1) Under
LC-NSB, all the non-heavy nodes are in the same priority
group of weight 1, so a non-heavy node with a large work-
load would have a similar chance of getting scheduled as a
non-heavy node with a small workload; 2) In the grid topol-
ogy, the bottleneck nodes (i.e., the four nodes in the center)
are all adjacent. Note that in most cases, at least one of the
bottleneck nodes is the critical node and will have the highest
priority. If another bottleneck node is adjacent to the critical
node but is not a heavy node, this bottleneck node will get a
lower chance of being scheduled, since the critical node
could be matched with other node. This inefficiency does not
occur under NSB, since the node weights of the non-heavy
nodes are their workload and are more fine-grained. Hence,
a non-heavy node with a large workload will have a higher
priority than a non-heavy node with a small workload.

In order to evaluate the throughput performance under
different arrival patterns, we also run simulations for file
arrivals. Specifically, the arrivals have the following pattern:
in each time-slot, there is a file arrival with probability p,
and no file arrival otherwise; the file size follows Poisson
distribution with mean A/p. The simulation results for
p = 0.1 are presented in Fig. 7. Similar observations to that
for Poisson arrivals can be made, except that all the algo-
rithms have larger delays due to a more bursty arrival pat-
tern. In addition, we also consider more realistic arrival
patterns where the arrivals in each time-slot follow the Zipf
law, which is commonly used to model the Internet traffic
[33]. We assume a support of [0,1,...,999] for the Zipf



1948

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.17, NO.8, AUGUST 2018

1600
MM

-»-GMM
1200f o MWM
-+LC-NSB
8001"-MVM

—-—NSB

400

Average total queue Length

£ = 300

8)300 = MM 2 -=MM

2 250f-»-GMM 2 250(-»-GMM
-MWM o) -+MWM

32001 . | c-NSB 2001 | c-NsB

g 150>|-0-MVM ‘_g 150f-e-MVM

2100 NSB 2100

2 >

& 50 & 50

2 . 2 L

< 002 006 01 o014 <

Mean arrival rate A
(a) Triangular Mesh

Fig. 8. Simulation results for Zipf arrivals with a support of [0, 1, ...,999].

distribution. The power exponent of the Zipf distribution is
determined based on the mean arrival rate A. The simula-
tion results are presented in Fig. 8. The overall observations
are again similar to that for the previous arrival patterns.
Finally, it is remarkable that in all simulation settings we
consider, our proposed node-based algorithm NSB empiri-
cally achieves the best delay performance. When the traffic
load is high, NSB even results in a significant reduction
(10-30 percent) in the average delay performance compared
to the link-based algorithms such as MWM (e.g., in Fig. 8c
for arandom topology with Zipf arrivals, the delay reduction
is about 30 percent when A = 0.18). Although NSB ties with
another node-based algorithm MVM for the empirical delay
performance, as we discussed in the introduction, the
throughput performance of MVM is not well understood yet.

5.2 Evacuation Time Performance

In this section, we evaluate the evacuation time perfor-
mance of our proposed algorithms. As we discussed in the
introduction, the minimum evacuation time problem is
equivalent to the classic multigraph edge coloring problem,
for which there are common benchmarks. Therefore, we
run simulations for six DIMACS benchmark instances [34]
for the graph coloring problem. In addition, we also run

TABLE 3
Evacuation Time Performance for Six DIMACS Benchmark
Graphs [34], Three Regular Multigraphs, and One Special
Graph (Fig. 3 with N = 100)

Graph MWM GMM MVM NSB LC-NSB A
dsjc125.1 23 23 23 23 23 23
dsjc125.5 76 75 75 75 75 75
dsjc125.9 140 120 120 120 120 120
dsjc250.1 38 40 38 38 38 38
dsjc250.5 147 153 147 147 147 147
dsjc250.9 234 234 234 234 234 234
regm50.20 20 25 20 20 20 20
regm50.50 50 55 51 51 51 50
regm50.80 80 84 80 80 80 80
rand100.50 366 366 366 366 366 366
rand100.100 813 813 813 813 813 813
rand100.250 2161 2161 2161 2161 2161 2161
Fig. 3 199 199 101 101 101 101

In the table, A denotes the maximum node degree, dsjcX.Y denotes the label of
the DIMACS benchmark graphs, regmX.Y denotes a reqular mutigraph with
X nodes and node degree Y, and randX.Y denotes a random topology in Fig. 5c
with X nodes and the number of multi-edges at each link being uniformly dis-
tributed over the interval [0,Y].

0.02 0.06 0.1 0.140.18 0.22
Mean arrival rate A
(b) 4x4 grid

0.02 0.06 0.1 0.14 0.18
Mean arrival rate A
(c) Random topology

simulations for three regular multigraphs, three random
multigraphs, and one special graph (Fig. 3 with N = 100).

The evacuation time performance for each of the consid-
ered algorithms under each graph is presented in Table 3.
The simulation results show that all the algorithms have
very similar evacuation time performance for the consid-
ered benchmark graphs and regular multigraphs, although
they have different theoretical guarantees. For the special
graph in Fig. 3, we can observe that the node-based algo-
rithms exhibit a much better evacuation time performance
compared to the link-based algorithms (e.g.,, MWM and
GMM). Specifically, the link-based algorithms require about
twice as much time as that of the node-based algorithms to
evacuate all initial packets in the network.

6 CONCLUSION

In this paper, we studied the link scheduling problem for
multi-hop wireless networks and focused on designing effi-
cient online algorithms with provably guaranteed through-
put and evacuation time performance. We developed two
node-based service-balanced algorithms and showed that
none of the existing algorithms strike a more balanced per-
formance guarantees than our proposed algorithms in both
dimensions of throughput and evacuation time. An impor-
tant future direction is to consider more general models
(which, e.g., allow for multi-hop traffic, general interference
models, and time-varying channels). In such scenarios, it
becomes much more challenging to provide provably good
evacuation time performance.

7 PROOFS

7.1 Proof of Proposition 1

We first restate a useful result of [35] in Lemma 6, which
will be used in the proof of Proposition 1. Throughout the
paper, we assume that the multigraph is loopless (i.e., there
is no edge connecting a node to itself) unless explicitly
mentioned.

Lemma 6 (Theorem 1 of [35]). Let G be a loopless multigraph
with maximum degree A. Let Gy denote the subgraph of G
induced* by all the nodes having maximum degree. If Gy is
bipartite, then there exists a matching over G that matches
every node of maximum degree.

4. An induced subgraph of a graph is formed from a subset of the
nodes of the graph and all of the edges whose endpoints are both in
this subset.



Now, we are ready to prove Proposition 1.

Proof of Proposition 1. First, note that in any time-slot, the
network together with the present packets can be repre-
sented as a loopless multigraph. Recall that G(k) denotes
the multigraph at the beginning of time-slot £ and M (k)
denotes the matching found by the NSB algorithm in
time-slot k. Also, recall that the degree of node i in G(k) is
equivalent to the node queue length Q;(k), and the maxi-
mum node degree of G(k) is equal to A(k). Now, consider
any frame k' consisting of three consecutive time-slots
{p,p+1, p+2}, where p=3k". Suppose that the maxi-
mum node queue length is no smaller than two at the
beginning of frame #/, i.e., A(p) > 2 at the beginning of
time-slot p. Then, we want to show that under the NSB
algorithm, the maximum degree will be at most A(p) — 2
at the end of time-slot p + 2. We proceed the proof in two
steps: 1) we first show that the maximum degree will
decrease by at least one in the first two time-slots p and
p+1 (i.e., the maximum degree will be at most A(p) — 1
at the end of time-slot p + 1), and then, 2) show that if the
maximum degree decreases by exactly one in the first two
time-slots (i.e., the maximum degree is A(p) — 1 at the
end of time-slot p + 1), then the maximum degree must
decrease by one in time-slot p + 2, and becomes A(p) — 2
at the end of time-slot p + 2.

We start with step 1). It is a trivial case if the maximum
degree decreases by one in time-slot p. Therefore, suppose
the maximum degree does not decrease in time-slot p.
Then, it suffices to show that all the nodes having maxi-
mum degree A(p) in G(p + 1) must be scheduled in time-
slot p + 1 under the NSB algorithm. Note that matching
M (k) must be a maximal matching over G(k) for every
time-slot k. Since M (p) is a maximal matching, the nodes
having maximum degree must form an independent set
over G(p+1) at the beginning of time-slot p+ 1. We
prove this by contradiction. Note that if there is only one
node having maximum degree at the beginning of time-
slot p + 1, then it is trivial that the subgraph induced by
this single node must consist of this node itself only and
thus forms an independent set. So we consider the case
where there are at least two nodes having maximum
degree at the beginning of time-slot p 4 1. Suppose node i
and node j are two adjacent nodes having maximum
degree A(p) at the beginning of time-slot p+ 1. Then,
none of the edges incident to either ¢ or j was in matching
M (p). This implies that the edge between i and j can be
added to matching M(p) in time-slot p, which, however,
contradicts the fact that M(p) is a maximal matching.
Therefore, the nodes having maximum degree must form
an independent set at the beginning of time-slot p + 1.
Clearly, the subgraph induced by all the nodes having
maximum degree forms an independent set and thus has
no edges. In this case, it is trivial that this induced sub-
graph is bipartite. Then, by Lemma 6, there exists a match-
ing over G(p+1) that matches all the nodes having
maximum degree in time-slot p + 1. Note that M (p + 1) is
an MVM over G(p + 1) with the assigned node weights
(as in Eq. (8)) under the NSB algorithm. It is also easy to
see that all the nodes with maximum degree A(p) are
among the ones with the heaviest weight, as they have a
weight of 2A(p) and the weight of all the other nodes is
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less than 2A(p). Hence, it implies from Lemma 1 that
matching M (p+ 1) also matches all the nodes having
maximum degree, i.e., the maximum degree decreases by
one in time-slot p 4 1. This completes the proof of step 1).

Now, we prove step 2). Clearly, the maximum degree
becomes A(p) —1 at the beginning of time-slot p+ 2.
Recall that C(p + 2) denotes the set of critical nodes. We
want to show that all the nodes in C(p+2) will be
matched in time-slot p 4+ 2. We first show that all the
nodes in C(p + 2) are among the ones with the heaviest
weights at the beginning of time-slot p + 2. This is true
due to the following. It is easy to see that for any node
i € C(p+ 2), it was matched at most once in time-slots p
and p + 1. Hence, according to the weight assignments in
Eq. (8), node i has a weight of 2(A(p) — 1), while all the
nodes in V\C(p+2) must have a degree less than
A(p) — 1 and thus have a weight less than 2(A(p) — 1).
Therefore, all the nodes in C(p + 2) are among the ones
with the heaviest weights.

Let G¢(,+2) denote the subgraph of G(p 4 2) induced by
all the nodes in C(p + 2). If G¢(,,9) is bipartite, then again
by Lemmas 1 and 6, following the same argument as in
step 1), we can show that matching M (p + 2) matches all
the nodes in Gg¢(y9 in time-slot p+ 2. Therefore, it
remains to show that G¢(,9) is bipartite. We prove this by
contradiction. Suppose G2y contains an odd cycle, say
C. Then, no two adjacent nodes of C' were matched by
M(p + 1) in time-slot p + 1. This is true due to the follow-
ing. Suppose there exist two adjacent nodes of C, say
and j, matched by M(p + 1). Since 7 and j are in C(p + 2)
(i.e., their degree is A(p) — 1 in time-slot p + 2), then they
both have maximum degree A(p) at the beginning of time-
slot p + 1. However, given that ¢ and j are adjacent in
G(p +2) (and are thus adjacent in G(p + 1) as well), this
contradicts what we have shown earlier — the nodes of
degree A(p) in G(p + 1) form an independent set. There-
fore, no two adjacent nodes of C' were matched by
M(p + 1) in time-slot p + 1. This, along with the fact that
cycle C'is of odd size, implies that cycle C' must contain
two adjacent nodes that were not matched by M(p + 1) in
time-slot p + 1. This further implies that the edge between
these two adjacent nodes can be added to M(p + 1), which
contradicts the fact that M (p + 1) is a maximal matching
over G(p + 1). Therefore, the induced subgraph G2
must be bipartite. This completes the proof of step 2), as
well as the proof of Proposition 1. 0

7.2 Proof of Lemma3
Proof. Recall that C is the set of critical nodes in the fluid

limits at scaled time ¢ (Eq. (18)). We want to show that
under the NSB algorithm, all the nodes in C will be sched-
uled at least twice within each frame of interval 7.

First, recall that j is large enough such that
|Qi(zr,7) /2, — qi(T)| < B/2 for all times 7€ (¢,¢+9).
Hence, from condition (C1) and (C2), the queue lengths
in the original system satisfy the following conditions for
all time-slots k € T

(C1% Qz(k) S Lr; (Qmax(t) - B, Qmax(t) + /3) foralli € C;

(C2%) Qi(k) < zr;(qmax(t) — 2B) foralli ¢ C.

On account of condition (C1*) and Eq. (19), all the
nodes in C are heavy nodes in all the time-slots of 7', i.e.,
Qi(k) > (n—1)/n-A(k) foralli € Cand forall k € T.
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Note that in any time-slot, the network together with
the present packets can be mapped to a multigraph,
where each multi-edge corresponds to a packet. Recall
that we use G(k) to denote the multigraph at the begin-
ning of time-slot k. Note that if there are no packets wait-
ing to be transmitted over a link, no multi-edge
connecting the end nodes of this link will appear in G(k).
Also, recall that M (k) denotes the matching found by the
NSB algorithm in time-slot k. Now, consider any frame &’
of interval 7" consisting of three consecutive time-slots
{p,p+1,p+ 2}, where p = 3k. We want to show that
under the NSB algorithm, every node in C will get sched-
uled in at least two time-slots of {p,p + 1, p + 2}. We pro-
ceed the proof in two steps: 1) we first show that all the
nodes in C will be scheduled at least once in the first two
time-slots p and p + 1, and 2) then show that all the nodes
in C that were scheduled exactly once in the first two
time-slots, will get scheduled in time-slot p + 2.

We start with step 1). Let C’ denote the set of nodes in
C that were not scheduled in time-slot p. It is a trivial case
if C' = (). Therefore, suppose C' # (), i.e., there exists at
least one node in C that was not scheduled in time-slot p.
Then, it suffices to show that all the nodes in ¢’ must be
scheduled in time-slot p 4+ 1 under the NSB algorithm.
Note that matching M (k) must be a maximal matching
over G(k) for every time-slot k. Since M(p) is a maximal
matching, the nodes in ¢’ must form an independent set
at the beginning of time-slot p + 1, excluding the multi-
edges corresponding to the new packet arrivals at the
beginning of time-slot p + 1.

Note thatitis a trivial case if |C'| = 1. So we consider the
case of |C'| > 2 and prove it by contradiction. Suppose
there exist two adjacent nodes 7, j € C'. Then, none of the
edges incident to either ¢ or j was in matching M (p). This
implies that the multi-edge between ¢ and j could be
added to matching M(p) in time-slot p, which, however,
contradicts the fact that M(p) is a maximal matching.
Therefore, the nodes in C’ must form an independent set at
the beginning of time-slot p + 1. Clearly, the subgraph
induced by all the nodes in ' forms an independent set
and thus has no edges. In this case, it is trivial that this
induced subgraph is bipartite. Note that conditions (C1*)
and (C2*) still hold even without accounting for the new
packet arrivals. Then, by Lemma 4, there exists a matching
that matches all the nodes in C’ at the beginning of time-
slot p+ 1 before new packet arrivals. Clearly, such a
matching still exists even if the multi-edges corresponding
to the newly arrived packets in time-slot p + 1 are added
to the grpah. Note that M (p + 1) isan MVM over G(p + 1)
with the assigned weights (as in Eq. (8)). Now, if all the
nodes in ' are among the ones with the heaviest weights,
then it implies from Lemma 1 that matching M (p + 1) also
matches all the nodes in C'. This is indeed true due to con-
ditions (C1*) and (C2*), as well as the weight assignments
in Eq. (8): every node in C’ was not scheduled in time-slot
p, and thus has a weight larger than 2z, (qmax(t) — B),
while any node in V\C' cannot have a weight larger than
max{erj (Qma.x(t) - 2,8)1 -Trj (qmax(t) + :8)}

Now, we prove step 2). Let C” denote the set of nodes in
C that were scheduled exactly once in time-slots p and
p + 1. We want to show that all the nodes in C” will get
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scheduled in time-slot p + 2. Note that all the nodes in C”
are among the ones with the heaviest weights. This is true
due to conditions (C1*) and (C2*), as well as the weight
assignments in Eq. (8): every node in C" was scheduled
exactly once in time-slots p and p+ 1, and thus has a
weight larger than Qx,vj(qu(t) — B), while any node in
V\C" cannot have a weight larger than max {2z, (quax(t)—
2B), r;(gmax(t) + B)}. Further, let Gor denote the sub-
graph induced by all the nodes in C" at the beginning of
time-slot p + 2, excluding all the multi-edges correspond-
ing to the packets that arrived in time-slot p + 1 and p + 2.
If G is bipartite, then again by Lemmas 4 and 1, follow-
ing the same argument as in step 1), we can show that all
the nodes in C” are matched by M(p+2) in time-slot
p + 2. Therefore, it remains to show that G is bipartite.
Next, we prove that G is bipartite by contradiction.
Suppose G contains an odd cycle, say C. Then, no two
adjacent nodes of C' were matched by M(p + 1) in time-
slot p + 1. This is true due to the following. Suppose there
exist two adjacent nodes of C, say i and j, matched by
M(p+1). Since i and j are in C”, both of them were
matched exactly once in time-slots p and p + 1 from the
definition of C”. This implies that both i and j were not
matched in time-slot p, i.e., we have i, j € C'. However,
given that ¢ and j are adjacent, this contradicts what we
have shown earlier — the nodes in C’ form an independent
set. Therefore, no two adjacent nodes of C' were matched
by M(p+ 1) in time-slot p + 1. This, along with the fact
that cycle C'is of odd size, implies that cycle C' must con-
tain two adjacent nodes that were not matched by
M(p+1) in time-slot p + 1. This further implies that the
multi-edge between these two adjacent nodes can be
added to M(p+1), which contradicts the fact that
M(p+1) is a maximal matching over G(p + 1). There-
fore, the induced subgraph G must be bipartite. This
completes the proof of step 2) and that of Lemma 3. O
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