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Abstract—Non-orthogonal multiple access (NOMA) and mo-
bile edge computing (MEC) have been emerging as promising
techniques in narrowband Internet of Things (NB-IoT) systems
to provide ubiquitously connected IoT devices with efficient
transmission and computation. However, the successive inter-
ference cancellation (SIC) ordering of NOMA has become the
bottleneck limiting the performance improvement for the uplink
transmission, which is the dominant traffic flow of NB-IoT com-
munications. Also, in order to guarantee the fairness of task ex-
ecution latency across NB-IoT devices, the computation resource
of MEC units has to be fairly allocated to tasks from IoT devices
according to the task size. For these reasons, we investigate the
joint optimization of SIC ordering and computation resource
allocation in this paper. Specifically, we formulate a combinatorial
optimization problem with the objective to minimize the maxi-
mum task execution latency required per task bit across NB-IoT
devices under the limitation of computation resource. We prove
the NP-hardness of this joint optimization problem. To tackle
this challenging problem, we first propose an optimal algorithm
to obtain the optimal SIC ordering and computation resource
allocation in two stages: the convex computation resource allo-
cation optimization followed by the combinatorial SIC ordering
optimization. To reduce the computational complexity, we design
an efficient heuristic algorithm for the SIC ordering optimization.
As a good feature, the proposed low-complexity algorithm suffers
a negligible performance degradation in comparison with the
optimal algorithm. Simulation results demonstrate the benefits
of NOMA in reducing the task execution latency.

Index Terms—Non-orthogonal multiple access, Mobile edge
computing, successive interference cancellation ordering, com-
putation resource allocation, execution latency minimization

I. INTRODUCTION

With the rapid development of Internet of Things (IoT) tech-
nology, various IoT applications have been emerging in recent
years, including smart metering [1], smart manufacturing [2],
smart home/city [3], automatic driving [4], health monitoring
[5], and many others (see a recent survey in [6]). Driven by the
requirements of these applications on low power consumption,
low latency, and massive connectivity [7]-[9], the narrowband
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Internet of Things (NB-IoT) technology has been proposed
in 3GPP as a promising low power wide area (LPWA) radio
technology for IoT systems [10]. Specifically, NB-IoT systems
operate in the underlying cellular network with very small
bandwidth, and accommodate a massive number of low-data-
rate machine-type connections with low power consumption
in extreme coverage conditions. Along with the ever-growing
popularity of NB-IoT devices, the unprecedent IoT traffic
volumes are delivered to small-cell base stations (BSs) in
the context of Long-Term Evolution (LTE) network. The
critical-IoT traffics further require the reliable and ultra low-
latency data computing. However, due to the limited spectrum-
computation resource, current wireless cellular networks are
becoming incapable to provide the massive connectivity and
intensive computation for IoT traffics [11].

To cope with these challenges, non-orthogonal multiple
access (NOMA) [12] and mobile edge computing (MEC) [13]
are emerging as promising technologies for NB-IoT systems.
Unlike the conventional orthogonal multiple access (OMA)
in which the frequency/time/code resource is orthogonally
allocated to multiple users at the same time, the NOMA
serves multiple users on the same frequency-time resource
simultaneously through the non-orthogonal resource allocation
in the power domain [14] or code domain [15]. Therefore,
the NOMA can meet various demands of NB-IoT systems
on superior spectral-energy efficiency, massive connections,
and ultra low transmission latency. Unlike the conventional
cloud computing operated in the remote cloud that suffers
severe transmission latency via the Internet, MEC offers cloud
computing capabilities at the edge of radio access network
(e.g., at small-cell BSs) in close proximity to NB-IoT devices.
Through bringing intensive computation tasks from NB-IoT
devices to MEC units, the low-latency as well as reliable
computing services can be implemented for NB-IoT devices.
As a result, it is envisioned that integrating NOMA and MEC
into NB-IoT systems can bring enormous potential benefits to
various IoT applications.

In this paper, we apply the power-domain NOMA to MEC-
aware NB-IoT networks. For simplicity, the word “NOMA”
in the rest of the paper means the power-domain NOMA. In
the implementation of NOMA, multiple NB-IoT devices with
distinct channel conditions transmit their data to the small-
cell BS via superposition coding (SC), and the small-cell BS
decodes the data from each NB-IoT device sequentially via
successive interference cancellation (SIC). Despite the superior
benefits of NOMA, the joint radio and computation resource
allocation has to be considered when the NOMA is applied
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to MEC-aware NB-IoT networks. However, for the features
of NB-IoT (or machine-type) communications, such as low
power, latency-sensitivity, and massive connectivity, how to
allocate limited radio-computation resource among NB-IoT
devices becomes a challenging issue.

While existing works such as [16] and [33] have studied the
joint allocation of radio and computation resources, none of
these works consider a joint optimization technique for MEC-
aware NOMA NB-IoT networks with taking into account the
SIC ordering. It is worth noting that exiting works on NOMA
assume that the SIC ordering follows the ascending order
of channel conditions [17]-[21], in which the user with the
worst channel condition will be decoded first. This doing may
result in poor performance/fairness for users with poor channel
conditions, although the radio resource allocation has been
considered. To this end, the current study aims to minimize
the maximum task execution latency' of computing 1-bit
task across NB-IoT devices through a joint optimization of
SIC ordering and computation resource allocation for MEC-
aware NOMA NB-IoT networks. We focus on the uplink
transmission, since it is the dominant traffic flow of NB-
IoT communications. Our contributions in this paper can be
summarized as follows.

+ We propose a novel NOMA-based MEC model for NB-
IoT networks that captures the gains of uplink MEC-
aware NOMA in the task execution latency. Specifically,
we present a joint optimization framework that minimizes
the maximum task execution latency required per task bit
across NB-IoT devices through jointly optimizing the SIC
ordering of NB-IoT devices and computation resource
allocation.

o The proposed optimization problem is a combinatorial
optimization problem involving the SIC ordering and
computation resource allocation, and we prove its NP-
hardness. We then propose an optimal algorithm to ob-
tain the optimal SIC ordering and computation resource
allocation in two stages. In the first stage, given the SIC
ordering, we obtain the optimal computation resource
allocation in the closed-form expression in the two-
device case, and by the bisection searching in the multi-
device case. In the second stage, we obtain the optimal
SIC ordering based on the min-max execution latency
obtained for all possible SIC ordering in the first stage
through exhaustive search.

o To reduce the computational complexity, we design an ef-
ficient heuristic algorithm for SIC ordering. Specifically,
we assign the SIC order of each device sequentially one
by one, where the optimal SIC order is determined by the
min-max execution latency across all assigned devices. In
doing so, the computational complexity can be reduced
to O(N?) for SIC ordering, where N is the number of
all NB-IoT devices existing in the network. We compare
the performance of our proposed heuristic algorithm and
optimal algorithm, and the simulation result shows that

In this paper, the task execution latency includes the task transmission
latency from the NB-IoT device to the small-cell BS, and the task computation
delay at MEC units equipped at the small-cell BS.

the heuristic algorithm suffers a negligible degradation
in performance. We also evaluate the performance of our
proposed heuristic algorithm via extensive simulations, in
which we show that benefits of NOMA in reducing the
task execution latency.

The rest of this paper is organized as follows. In Section
II, we review the related studies in the existing literature.
In Section III, we introduce the NOMA-argumented MEC
model and present the problem formulation. In Section IV, we
propose the optimal algorithm and low-complexity heuristic
algorithm to solve the proposed optimization problem. Finally,
Sections V and VI present numerical results and conclude this
paper, respectively.

II. RELATED WORK

In this paper, we introduce two techniques, e.g., NOMA and
MEC, to NB-IoT networks to meet various demands on low
power consumption, low latency, and massive connectivity.
Therefore, we elaborate on the related studies on NOMA and
MEC in this section.

Thanks to the superior benefits of NOMA, researchers have
spent significant amount of research efforts on this topic
recently [20]-[26]. Islam et al. [23] summarized the potentials
and challenges of NOMA applied to the fifth-generation net-
working system. With the goal of interference mitigation, user
pairing (or clustering) algorithms were proposed for NOMA
networks in [20]-[22]. Regarding the communication resource
allocation, the joint optimization of sub-carrier assignment
and power allocation were studied in [24] for maximizing
the sum utility of NOMA network. Qian et al. [25] proposed
a coalitional game based algorithm to maximize the system-
wide utility and minimize the total power consumption through
jointly optimizing the user association and power allocation
for NOMA-enabled small-cell networks. In [26], the joint
optimization problem of power allocation, user pair selection,
and time-frequency resource allocation were studied for multi-
cell NOMA. With the explosive growth of IoT applications, the
studies on NOMA have been extended to IoT networks [27]—
[30]. Ding et al. [27] designed precoding and power allocation
coefficients for the MIMO-NOMA IoT network with two users
categorized by their quality-of-service requirements, not by
their channel conditions. Mostafa et al. [28] proposed a joint
sub-carrier and transmission power allocation algorithm to
maximize the connection density of NB-IoT devices for uplink
NOMA NB-IoT networks. Wu et al. [29] investigated the
spectral efficiency maximization problem for wireless powered
NOMA IoT networks. Zhai et al. [30] proposed a joint
user scheduling and power allocation algorithm to minimize
the long-term power consumption based on the stochastic
optimization theory for NOMA IoT networks.

As a common feature, all previous work in [20]-[30] make
an assumption that all users are decoded by SIC based on
the levels of channel conditions. This assumption is plausible
in the downlink NOMA, since the data signals of users in
the strong channel conditions must be decoded after the data
signals of users in the weak channel conditions are subtracted.
However, in the uplink NOMA where the small-call BS works
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as a common receiver for all served users, all SIC ordering
can be performed for the same sum data rate in the decoding
process. It implies that it is important to improve the quality-
of-service of individual users via a proper SIC ordering in the
uplink NOMA. On the other hand, these existing work mainly
focus on the efficient transmission for NB-IoT networks.

As discussed earlier, NB-IoT networks are expected to
provide the efficient transmission and computation for ubiqui-
tously connected IoT devices. Therefore, MEC has also attract-
ed great attentions of academia and industry recently in the
networking context of 10T [31]-[37]. Chiang et al. [31] sum-
marized the opportunities and challenges of edge computing in
IoT applications. Sun et al. [32] proposed a hierarchical mobile
edge computing architecture to provide flexible and scalable
computation resource provisioning for IoT networks. Kiani et
al. [33] proposed an NOMA-based optimization framework
for 5G networks, which aims at minimizing the energy con-
sumption of MEC users through optimizing the user cluster-
ing, computation and communication resource allocation, and
transmit power. Lyu et al. [34] proposed an asymptotically
optimal scheduling scheme for MEC-aware IoT networks, in
which the transmission time, energy intake, and data admission
of all IoT devices were optimized in each time slot for
maximizing a time-average network utility. Amjad et al. [35]
proposed a cognitive edge-computing based framework for the
efficient utilization of computation resource in IoT networks.
Rodrigues et al. [36] proposed a technique for minimizing
service delay in edge cloud computing through virtual machine
migration and transmission power control. Wu et al. [37]
proposed a secrecy-based resource management framework for
computation offloading. Although the works in [32]-[37] have
studied the joint communication and computation resource
allocation problem for MEC-aware IoT networks, they usually
consider the conventional multiple access techniques, such as
NOMA with fixed SIC ordering [33] and TDMA [34]. Also,
these work mainly focus on energy consumption minimization
and system-utility maximization, and thus the task execution
latency of all users cannot be strictly guaranteed, although it
is a rigorous requirement on NB-IoT systems. To minimize
the maximum task execution latency of computing 1-bit task
across IoT devices, the joint SIC ordering and computation
resource allocation should be carefully considered for MEC-
aware NOMA NB-IoT networks, which motivates the work of
this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a uplink MEC-aware NOMA NB-IoT network
with a set N = {1,---,N} of NB-IoT devices and a
small-cell BS equipped with MEC units to execute the data
computing for NB-IoT devices, as illustrated in Fig. 1. NB-
IoT device n transmits a B,,-bit task data to the small-cell
BS?, where NOMA is exploited as the multiple access scheme.
We define one time slot as the duration in which the set of

2In the calculation of task transmission latency, we do not take into account
the packet header size of network protocols, and assume that the transmission
data size is equal to the task data size.

MEC-enabled small-cell BS

NB-IoT device 1

NB-IoT device n

Fig. 1. A uplink MEC-aware NOMA NB-IoT network with N NB-IoT
devices and a small-cell BS equipped with MEC units .

NB-IoT devices transmitting task data to the small-cell BS
keeps constant. We use JF; to indicate the SIC ordering used
at the small-cell BS in the first time slot. Specifically, we have
F1=dy — -+ — dyn, where d,, means the index of the nth
device in the SIC ordering. Assume that a subset A;_; of
NB-IoT devices finish the task data transmission until time
slot ¢ — 1, and the SIC ordering in the time slot ¢ satisfies
Fi = F1\Ne—1.

We use AB; 4, to indicate the backlog of task data that
the NB-IoT device d,, have not transmitted up to time slot t.
Obviously, if the NB-IoT device d,, has sent the whole task
data to the small-cell BS (i.e., AB; 4, = 0), it will terminate
the task data transmission in time slot ¢, and thus its data rate
is equal to zero. Let hy, denote the channel gain between
the NB-IoT device d,, and the small-cell BS. Considering the
NOMA scheme, the data rate of device d,, in time slot ¢ can
be expressed as

0,if AB;q, =0

Ria,(F1) = ha
Jdn nP ;
Wilog | 1+ S hapto , otherwise.
Viln+1<j<N
and ABtyd],;éO
(D

Here, Ny denotes the power of additive Gaussian noise at
the small-cell BS, p denotes the transmit power used by each
device, and W denotes the bandwidth occupied by IV devices.
By the definition of time slot, a new time slot begins when one
NB-IoT completes its task data transmission at least. Thus, the
length of time slot ¢ can be expressed as

) AB; 4
Lo (F) — 2Ptdn 2
+(F1) VnlAB g, £0 Ri.a, ?
and we have
ABit1,4, = ABra, — Li(F1)Rid, - 3)

Since the NB-IoT device d,, completes the task data transmis-
sion when AB; 4, = 0, its transmission latency, denoted by
Ttq, (F1), is expressed as

argmin{t|ABy 4,, =0}
t
k=1

After the small-cell BS receives the whole task data of NB-
IoT device d,,, its equipped MEC units will compute this task.

Ttq, (F1) = Li(F1) 4)
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Let Cy, (F1) denote the computation resource allocated to execution latency per task bit is a minimum. The device set
computing the task from NB-IoT device d,, when the SIC and the ordering site set can be reducible to the job set and
ordering is Fj. Thus, the time that the MEC units spend in machine set in the job-shop scheduling problem, respectively.

computing the task from device d,, is expressed as The maximum task execution latency per task bit corresponds
By, to the cost function in the job-shop scheduling problem. Since
Tca, (F1) = Co D) ]__1) ,Vn e N. (5) that job-shop scheduling problem is to find an assignment of

) ) ) jobs to machines such that the cost function is minimized,
We consider a practical constraint that the MEC units have the  the SIC ordering optimization problem is equivalent to the

computational capacity of C' Mbps, i.e., job-shop scheduling problem. Together with the convexity of
N obtaining the maximum task execution latency per task bit, it
Z Cy,(F1) <C. (6) follows that the optimization problem in (7) is NP-hard. W

Note that the computational capacity is evaluated as the ratio
between the computational frequency (i.e., the number of CPU

IV. ALGORITHM DESIGN

cycles per second) and the computational efficiency (i.e., the In this section, we first focus on obtaining the optimal
number of CPU cycles required for computing 1-bit task) of ~ solution to (7). To reduce the computational complexity, we
MEC units [38]. then design an efficient heuristic algorithm for SIC ordering.

Due to the min-max objective function, given JFj, the

B. Problem Formulation optimal solution (C}; (F1))vd, en to (7) is the root satisfying

Since the size of task data that N NB-IoT devices transmit Ttay(F1) | 1 _ .. _ Tta,(F1) i .
to the small-cell BS is different, we adopt the maximum task %b 1) Cay Bay, Cdn
execution latency required for computing 1-bit task data across = éVT ﬁ
these NB-IoT devices to evaluate the computational efficiency ®)
of MEC-aware NOMA NB-IoT network. In this paper, we aim nZ=:1 Ca, (F1) = C,
to minimize this latency through jointly optimizing the SIC Cy, (F1)>0,YneN.

ordering and computation resource allocation. Mathematically,

we formulate the optimization problem in the following form  po; the notational brevity, we let Ttrgb(fl) = ag.. By
’ dn n*
. . . _ 1
P1: min  max Ttq, (F1) + Teq, (F1) introducing a new variable 3 such that g = aa, + e
F1,Ca,, (F1)'s n Bg, we can obtain the root of (8) through solving
N
N
s.t. Ca,(F1) <C, @) L_—¢C
; P )
Cq,(F1) 20,Vne N Bme}xadn.
Fi1EP,

The inequality in (9) implies that the computation resource
where P is the set of permutations of the set {1,--- , N}.Itis allocation Cy (F;) is non-negative for all n’s. Note that
worth noting that due to the fact that the computational time although (9) is a polynomial equation of f, it is difficult
Tcq, (F1) decreases with Cy, (F7), the first constraint in (7) to obtain the solution § in the closed-form expression when

is active when the optimal solution is obtained. N > 2. Therefore, in the following, we obtain the optimal
The following theorem shows the hardness of the optimiza-  solution of (8) through solving (9) in the two-device case (i.e.,
tion problem (7). N = 2) and multi-device case (i.e., N > 2), respectively.

Theorem 1. The optimization problem in (7) is NP-hard.

Proof: The optimization problem in (7) involves the SIC A. Two-Device Case
ordering and computation resource allocation. Given the SIC By calculating (9) and Cy (F;) = ,8%’ we have
ordering, the optimization of computation resource allocation "

is reduced to finding the root of polynomial equations, and c_ 1 1

.. . .. ) . 5 I + Az , if A F > 0
thus it is convex in obtaining the corresponding maximum task C; (Fr) = c 1f1 z 1
execution latency per task bit. It implies that the optimization 2T As 4 + Az otherwise
problem in (7) is NP-hard, if the optimization of SIC ordering c 1 o . 4
is NP-hard. We next prove that the optimization of SIC C (1) = 2t Ar, \ 4 + %:1’ if Ar, >0
ordering is reduced to the job-shop scheduling problem, for 2\ L) % 4 A; + /%2 + A% , otherwise
which the NP-hardness is proved in [39]. We consider an ! 71 (10)
NB-IoT network with N NB-IOT de.vi<.:es.. The mathema}tical where A, is equal to
statement of the SIC ordering optimization problem is to
find an assignment of the device set {1,2,---,N} to the A — Tta,(F1)  Tta,(F1) (11
ordering site set {dy, da, - -+ ,dx} such that the maximum task F1 = 7R 4 By,
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Since there are two NB-IoT devices, the number of time slots
is two at most. Thus, we have

Tt (]:) Ll(‘F]-) Bd1 - RLdl (]:1)[/1(]:1)

S Ba, R4, (F1)Bq, (12)
Tt (]: ) :L1<]:1) de - RLdz(]:l)Ll(]:l)

S Ba, Ry, 4, (F1)Ba,

Together with the fact that the SIC ordering F is any one
permutation of {1, 2}, it follows that the optimal SIC ordering
F1 is obtained by

T argminLl(]:l) Bg, — Ry,4,(F1)L1(F1) 1
! 7 Ba Ry 4, (F1)Bua, Cs (Fr)
(13)

Accordingly, the optimal computation resource allocation is
C; (Ff) and Cj, (F;) by (10).

Next, we focus on analyzing the property of the optimal
solution to (7) in the two-device case.

Theorem 2. When the size of task data that two NB-IoT
devices transmit to the small-cell BS is equal, the optimal
SIC ordering in (7) follows the descending order of channel
gains.

Proof: Without loss of generality, we assume that hy > ho,
and By = By =B. Weset F11=1—2and Fi2 =2 — 1.
Given Fii, if the NB-IoT device 2 completes the task data
transmission before the NB-IoT device 1 (i.e., h—; < %—f +1),
then the worst-case end-to-end delay can be expressed as

1 n 1
Wlog(l + &2)  C5(Fu1)
1 1
= 4+ Ar, +
phe 1 *
Wlog(1 + 52) Ci (Fn)

Dr, =
(14)

by (8), where Ar,, satisfies

1 B log(1 + phz;erO )

W log(1 + %) Wlog(1 + pThol) log(1 + %)2()15

Afu =

When we adopt F12 as the SIC ordering, the worst-case end-
to-end delay can be expressed as

1 1

D7, = +
72 Wlog(1 + phiy — Cf(Fi2)
1 ’ 1 (16)
= A
Wlog(1 + %) 72T Cy(F2)
where Ar,, satisfies
A _ 1 log(l + php’fN )
T2 T Wiog(1 + 22y W phuy phay’
og(1+ No) Wlog(1+ No) og(1+ N0>
(17
Thus, we have
2D-7:11 - 2D-7:12
1, 1 1
C3(Fi1)  Ci(Fu)  Ci(Fiz) C5(Fi2)  (U8)
C
T Ci(Fu)C3(Fi1) O (Fi2)C3(Fr2)

Due to the fact that 0 < Ax,, < Ar,,, we have
C1(F11)C3(F11) > CF (F12)C5 (Fi2) (19)

by (10). It follows that 2D z,, —2Dx,, <0, and thus Dr,, <
Dy, . It implies that F7; is the optimal SIC ordering when
1< h1 < ;Dh2 +1.

On the other hand, given Fi1, if the NB-IoT device 1
completes the task data transmission before the NB-IoT device
2 (ie., hl > ph2 + 1), we have

2DF, —2DF,
- C - C
Cy(F11)C3(Fu1)  CF(F12)C5 (Fiz)

ph1+No _ pha+No
log( No phi+pha+No )

W log(1 + B2)
1 1

h B h
phainy)  los(1+752)

(20)

log(1 + )

<0
Because of Z—; > % + 1, we further have

1
Wlog(1 +

Ar, = oy <0. 1)

ph2+No

Wlog(1 + %)
Since we have 0 < |Ax,,| < Ar,,, we have

C C
CT(F1)C3(Fi1)  C7(F12)C5 (F12)
by (10). Together with (20), we have Dr,, < Dz, when
b phe
s > N T L

Until now, we have proved that Dr,, < Dz, when h; >
ha. Therefore, Theorem 2 follows. [ |

Based on the basic operations in (10)-(13) and Theorem 2,
we present the procedure of obtaining the optimal solution to
(7) in Algorithm 1 for two-device case.

It is worth noting that by Theorem 2, the optimal SIC
ordering is determined according to the channel gains when
two NB-IoT devices transmit equal-size task data to the small-
cell BS. However, this conclusion cannot be extended to the
multi-device case due to the NP-hardness of the min-max
task execution latency optimization. In this regard, we need
to resort to the numerical algorithm to obtain the optimal SIC
ordering, which will be introduced latter.

< 0.

(22)

Algorithm 1 The procedure of obtaining the optimal solution
to (7) in the two-device case
1: if By = By then
Fy = {argmax h;,argmin h;}.
i=1,2 i=1,2

»

else

for all 71 € {1 — 2,2 — 1} do

Obtain C}; (F1) and Cj (F1) by (10).

end for

Obtain the optimal SIC ordering F7 by (13).
end if
Obtain the optimal computation resource allocation
C;, (Ff) and C3, (Ff) by (10).

R A A
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B. Multi-Device Case

A close look at (9) finds that the number of fractional
terms is equal to the number of NB-IoT devices. Thus, it
is impossible to obtain the root of (9) in the closed-form
expression. It implies that it is of practical importance to
design an efficient numerical algorithm to obtain the root
of (9), and thus the optimal solution to (7) in the multi-
device case. In what follows, we focus on deriving the optimal
solution. Furthermore, to reduce the computational complexity,
a sub-optimal solution is proposed.

1) Optimal Solution
N

For the notational simplicity, we let f(8) = > —L

B—aa,
n=1

We have the first-order derivative of f(3), denoted by f/(8),
satisfying

N
Z —ag, (23)
Due to the fact that f/(3) < 0, the function f(/3) is decreasing
with 3. Therefore, we can obtain the root of (9) based on the
idea of bisection searching. The following Lemma 1 shows
the range of the root of (9), which can be used to decide the
initial upper bound and lower bound of 5 when running the
bisection searching.

Lemma 1. The root of (9) resides in the rang of

[max {max Qg % + min Oédn} R % + max g,
n n n

Proof: From the equation in (9), the set N can be divided
into two disjoint subsets A7 and N>, which satisfy

1 >N if
_C,l n € N, (24)
B(F1) — aq, X, ifn e No.
It follows that
N N
B(F1) > = + max ag, > — +maxad
C neNy " C
N N (25)
PR =G 0 = o e
Together with the fact that §(F;) > max g, in (9), we can
ne
get
N N
B(F1) € [max {maxadn, vl + min ozdn} el + maxadﬂ} ,
(26)
and Lemma 1 follows. |

In particular, the optimal computation resource allocation
and SIC ordering algorithm works as follows. First, by Lemma
1, we can set the initial upper bound and lower bound of 3.
Second, we obtain the optimal computation resource allocation
and worst-case end-to-end computational delay (i.e., the root
of (9)) based on the idea of bisection search for any given SIC
ordering. Finally, based on the root of (9) (say 5(F1)), we can
obtain the optimal SIC ordering F; of (7) by the following
formula.

1
F} = argmin (27)

Fep B(Fi)+aq,

Algorithm 2 The optimal computation resource allocation and
SIC ordering algorithm in the multi-device case
1: for all 71 € P do

2. Initialization: Set the lower bound A% =
max | max ag, ,% + min od, the upper bound
pY = g + max ag,, and the stopping tolerance e.

3 if | f(B%- 1) C| > € then

4 Set 5 = B +5

5 if f(B%+-1 ) C'> 0 then

6: Set ﬁL B.

7 else

8 Set gV = g.

9 end if

10:  else

11: Terminate the calculation and obtain the root of (9)

(say B(F1)) as B.

12:  end if

13: end for

14: Obtain the optimal SIC ordering F; by (27).
15: Obtain the optimal computation resource allocation, i.e.,
C; (Ff) = m for all n € N.

In details, the optimal computation resource allocation and SIC
ordering (i.e., the optimal solution to (7)) can be obtained by
Algorithm 2 in the multi-device case.

It is worth noting from Algorithm 2 that although the
optimal computation resource allocation can be efficiently
obtained with the SIC ordering 7, the optimal SIC ordering
is obtained based on the emulation over P. Due to the NP-
hardness, the computational complexity of seeking the optimal
SIC ordering is exponentially increasing with the number of
NB-IoT devices. In the practical implementation, we want to
obtain a sub-optimal SIC ordering with the low computational
complexity. Therefore, we next focus on the derivation of sub-
optimal SIC ordering.

2) Sub-optimal Solution

To reduce the complexity of seeking the optimal SIC
ordering, we propose to sort the SIC order of all NB-IoT
devices one device by one device based on the greedy meta-
scheduling idea [40]. The rationale that serves as motivation
for this proposal is that the SIC ordering is processed in arrival
order of all NB-IoT devices, and each newly arriving NB-IoT
device is assigned to the SIC order with the optimal min-max
execution latency. The key idea is as follows. Assume that
we have set the SIC ordering of NB-IoT devices 1,--- ,n,
say F1(n). We then decide the SIC order of NB-IoT device
n + 1 through comparing the optimal 3 over all n + 1 SIC
orderings of NB-IoT devices 1, ,n + 1, where each SIC
ordering is obtained by inserting NB-IoT device n + 1 in
the SIC ordering F7(n). Specifically, the SIC ordering with
the minimum optimal /3 is set as the optimal SIC ordering
of NB-IoT devices 1,---,n + 1, i.e., Fi(n + 1). In doing
this, we can obtain the sub-optimal SIC ordering of N NB-
IoT devices as F1(NN). For example of a 5-device network,
the procedure of obtaining Fi(5) is illustrated in Fig. 2.
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The details of low-complexity computation resource allocation
and SIC ordering algorithm is presented in Algorithm 3. In
the practical implementation, every newly arriving NB-IoT
device first informs its channel state and task data size to the
small-cell BS. Second, the small-cell BS determines the SIC
order of this newly arriving NB-IoT device by inserting it in
the SIC ordering of all existing NB-IoT devices. Third, the
small-cell BS updates the optimal SIC ordering to all NB-
IoT devices, and predicts the transmission data rate and the
optimal computation resource allocation of all NB-IoT devices
accordingly. Finally, the small-cell informs the transmission
data rate to each NB-IoT device, and all NB-IoT devices
transmits their task data simultaneously to the small-cell BS
for the computation in MEC units.

Chil—= 1 B2 O— 103024 — 1030206 40
%@ A(3) AM) F(5)

Fig. 2. An illustration of obtaining F1(5) in a 5-device network. Here,
all squares mean the possible ordering positions of decoding NB-IoT device
n—+1 and the red square means the best ordering position of decoding NB-IoT
device n+1. At the nth step, the best ordering of NB-IoT devices 1, - - - ,n+1
(i.e., F1(n + 1)) is obtained through comparing the optimal worst-case end-
to-end computational delay over n 4 1 possible ordering positions.

Algorithm 3 The low-complexity computation resource allo-
cation and SIC ordering algorithm in the multi-device case
1: for all NB-IoT device n=1,---, N do
2:  if n ==1 then
3 Set F1(1) =dy = 1.
4:  else
5
6

for all Inserting site ¢ = 1,--- ,n do
Setg(z) :d1 —)"'—)dl‘,l —>n—>dz—>—>
dnfl
7: Obtain the optimal 3 over G(i) by running Steps
1-11 in Algorithm 2, say S3(i).
8: end for

Obtain the best site of inserting NB-IoT device n,
i* = argmaxf(i), and set Fi(n) = G(3*).

10:  end if

11: end for

12: Set F1(N) as the sub-optimal SIC ordering, and set 3(i*)
as the sub-optimal worst-case end-to-end computational
delay.

13: Obtain the optimal computation resource allocation, i.e.,
Ca, (F1(N)) = m for all n € N.

The following Theorem 3 shows the computational com-
plexity of Algorithm 3.

Theorem 3. The computational complexity of the proposed
low-complexity computation resource allocation and SIC or-
dering algorithm (i.e., Algorithm 3) is of O(—N?log(e))
iterations.

Proof: When we decide the optimal SIC order of NB-IoT

device n in Algorithm 3, we need to run the bisection search-
ing n times. Thus, we run the bisection searching w

TABLE I
SIMULATION PARAMETERS

Value settings
2000 MHz
(38 + 30log((d)) dB

(d in meters)

Simulation parameters

Carrier frequency

Path loss model

Bandwidth W 15 kHz
Noise power spectral density -174 dBm/Hz
Transmit power of NB-IoT devices 23 dBm
The task data size of NB-IoT device n Uniformly distributed
in [0,1] Mb
Stopping tolerance e 10—4

times in total, when we obtain F7 (V). Since the computational
complexity of bisection searching is of O(— log(e)) iterations,
it follows that the computational complexity of Algorithm 3 is
of O(—N?log(e)) iterations. Therefore, Theorem 3 follows.
]

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the
proposed algorithms. According to the NB-IoT parameters
in [7], we set the simulation parameters in Table I. In the
following simulations, we consider a set of uplink MEC-aware
NB-IoT networks as shown in Fig. 3, where the MEC-enabled
small-cell BS is placed in (200m, 200m), and N NB-IoT
devices are uniformly deployed in a circle area with the radius
of 200m and center of (200m, 200m).

400
(o]
o
0© o
L (@) i
300 o o0
o
~ o o
g (o]
z o
5 o] o % % o ]
) ° o o o
o © o o
100F o o o 4
(o]
‘ * MEC-enabled small-cell BS O NB-IoT device
% 100 200 300 400
X~-Axis (m)
Fig. 3. The network topology used for simulations.

A. Performance Evaluation

Example 1: We start with verifying the optimality of
Algorithm 1 in the two-device case. We place NB-IoT device
1 at the location of (100m, 200m), and move NB-IoT device
2 from (250m, 200m) to (300m, 200m) along the line. The
computational capacity of MEC units is set to be 1 Mbps. For
the verification target, we use Algorithm 2 as the benchmark.
Table II shows the optimal SIC ordering and computation
resource allocation obtained by Algorithm 1 and Algorithm 2.
We can see that the optimal computation resource allocation in
two-device case can be obtained in the closed-form expression
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TABLE I
THE OPTIMALITY VERIFICATION IN THE TWO-DEVICE CASE

Location of Algorithm 1 Algorithm 2
NB-IoT device 2 | 77 | {Ci(F1).CsD} | Fi | {Ci(F1).C3(F1))
(50m, 200m) {2, 1} | {0.2583, 0.7417} Mbps | {2, 1} | {0.2583, 0.7417} Mbps
(70m, 200m) {2, 1} | {0.2371, 0.7629} Mbps | {2, 1} | {0.2371, 0.7629} Mbps
(90m, 200m) {2, 1} | {0.2229, 0.7771} Mbps | {2, 1} | {0.2229, 0.7771} Mbps
(110m, 200m) {1, 2} | {0.7806, 0.2194} Mbps | {1, 2} | {0.7806, 0.2194} Mbps
(130m, 200m) {1,2} | {0.7712, 0.2288} Mbps | {1,2} | {0.7712, 0.2288} Mbps
(150m, 200m) {1, 2} | {0.7712, 0.2288} Mbps | {1,2} | {0.7712, 0.2288} Mbps

given in Algorithm 1. Also, we can see that the optimal SIC
ordering of two NB-IoT devices follows the descending order
of channel gains when the task data size of these two NB-IoT
devices is equal, which coincides with Theorem 2.

Example 2: In this simulation, we want to evaluate the
performance of the proposed low-complexity algorithm (i.e.,
Algorithm 3). For the comparison target, we adopt the opti-
mal algorithm (i.e., Algorithm 2) as the benchmark. In Fig.
4, each point is obtained by averaging over 100 different
topologies of the same device density. From Fig. 4(a), we
can see that Algorithm 3 can perform very close to the
optimal min-max task execution latency, which is obtained
by the optimal algorithm (i.e., Algorithm 2). For example,
the largest performance degradation of Algorithm 3 is 0.24%,
which is obtained when the number of NB-IoT devices is 8.
However, Fig. 4(b) shows that the computational complexity
of Algorithm 2 and Algorithm 3 is increasing exponentially
and increasing quadratically with the increase of the number
of NB-IoT devices, respectively. Due to the negligible perfor-
mance degradation and low complexity, Algorithm 3 can be
considered as the optimal computation resource allocation and
SIC ordering algorithm in the practical implementation.

(a) (b)

5000
—o— Algorithm 2
= © - Algorithm 3

23

—&— Algorithm 2 ! 4
= © - Algorithm 3

)
S

4000

3000

2000

The min—max execution latency
per task bit ( ps/bit)
The number of iterations

1000

O = 0= =

8 \g N4

2 4 6 8 2 6
The number of NB-IoT devices The number of NB-IoT devices

8

Fig. 4. The performance and computational complexity of Algorithm 2 and
Algorithm 3.

B. Performance Comparison

To the best of our knowledge, there is no algorithm proposed
for the same target through jointly optimizing SIC ordering
and computation resource allocation in the literature. For the
comparison with our proposed computation resource allocation
and SIC ordering algorithm (i.e., Algorithm 3), we therefore

—e— Algorithm 3
—e— Scheme 1: descending order of channel gains
—A— Scheme 2: ascending order of channel gains

—v— Scheme 3: ascending order of file size

The min-max execution latency
per task bit (s/bit
_O“
Yy

| |
20 30 40 50 60 70

The number of NB-loT devices
Fig. 5. The min-max execution latency per task bit obtained by four

algorithms at different densities of NB-IoT devices.

introduce three baseline schemes, i.e., Scheme 1, Scheme 2,
and Scheme 3. In these schemes, the SIC ordering follows
the descending order of channel gains, the ascending order of
channel gains, and the ascending order of task size, respec-
tively, and then the optimal computation resource allocation
is performed by the bisection searching. In the following
simulations, we compare the min-max task execution latency
obtained by these four algorithms.

Example 3 (Performance comparison at different densities
of NB-IoT devices): We consider a set of uplink MEC-aware
NB-IoT networks, as illustrated in Fig. 3. We vary the number
of NB-IoT devices from 20 to 70. The computational capacity
of MEC units is set to be 10 Mbps. Each point in Fig. 5 is
obtained by averaging over 100 different topologies with the
same density of NB-IoT devices.

Fig. 5 shows that as the number of NB-IoT devices increas-
es, the obtained min-max task execution latency increases for
all four algorithms. It can also be seen that compared with
Algorithm 3, Scheme 1, Scheme 2, and Scheme 3 increase the
min-max task execution latency by 5 times, 50 times, and 100
times on average, respectively. This observation implies that
the SIC ordering would have a measurable impact on the min-
max task execution latency, when we adopt the power-domain
NOMA in uplink MEC-aware NB-IoT networks. Therefore, it
is of practical meaning to optimize the SIC ordering, instead
of following the order of channel gains or task size.

Example 4 (Performance comparison at different compu-
tational capacity): We consider a set of uplink MEC-aware
NB-IoT networks with 50 NB-IoT devices, as illustrated in
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Fig. 6. The min-max execution latency per task bit obtained by four
algorithms under different computational capacity.

Fig. 3. We vary the setting of computational capacity of MEC
units from 1 Mbps to 128 Mbps. Each point in Fig. 6 is
obtained by averaging over 100 different topologies with the
same computational capacity.

Fig. 6(a) shows that with the increase of computational
capacity of MEC units, the obtained min-max task execution
latency slowly decreases only for the proposed Algorithm
3. On the contrary, the obtained min-max task execution
latency almost keeps constant for all other three algorithms.
It can be seen from Fig. 6(b) that the min-max task execution
latency (i.e., max g, ) is the main bottleneck of decreasing

the min-max task execution latency due to the low data rate
in the NB-IoT network. Therefore, it is difficult to decrease
the min-max task execution latency through increasing the
computational capacity of MEC units for the MEC-aware
NB-IoT network. Nevertheless, we see from Fig. 6 that we
can effectively decrease the min-max task execution latency
through decreasing the min-max task execution latency with
the optimal SIC ordering. In particular, compared with Scheme
1, Scheme 2, and Scheme 3, Algorithm 3 can reduce the
min-max task execution latency by 10 times, 50 times, and
100 times, respectively. This observation implies that the SIC
ordering of NB-IoT devices should be optimized to minimize
the min-max task execution latency according to their channel
gains and task size in the MEC-aware NB-IoT network.

Example 5 (Performance comparison with other multiple
access techniques): In the following simulations, we want
to compare the min-max task execution latency obtained by
NOMA, FDMA and TDMA. Specifically, the min-max task
execution latency is obtained by Algorithm 3 for NOMA,
the min-max task execution latency is obtained by equal
bandwidth allocation among NB-IoT devices for FDMA, and
the min-max task execution latency is obtained by equal time
allocation among NB-IoT devices for TDMA.

We set the computational capacity of MEC units to be
10 Mbps. Fig. 7 shows the min-max task execution latency
obtained under the different densities of NB-IoT devices from
20 to 65, when NOMA, FDMA and TDMA are applied
to the network topology in Fig. 3. Each point in Fig. 7
is an average over 100 different topologies with the same
density of NB-IoT devices. From Fig. 7, we see that the min-

x10”

w

The min—max execution latency
per task bit (s/bit)
N

| | | |
20 25 30 35 40 45 50 55 60 65
The number of NB-IoT devices

Fig. 7. The min-max execution latency per task bit obtained by NOMA,
FDMA, and TDMA at different densities of NB-IoT devices.

max task execution latency almost linearly increases with the
increase of the number of NB-IoT devices for all three multiple
access techniques. This is because that given the transmission
resource (e.g., the bandwidth for FDMA, the transmission
time for TDMA, and the SINR for NOMA) allocation and
the computation resource allocation of MEC units, the task
transmission latency and task computation latency of each
NB-IoT device almost linearly increases with the increase of
the number of NB-IoT devices. Together with the fact that
the task execution latency is the sum of the task transmission
latency and task computation latency, we have the observation
in Fig. 7. Also, we can see that the NOMA always outperforms
the FDMA and TDMA in terms of min-max task execution
latency. Compared with FDMA and TDMA, the NOMA can
reduce the task execution latency by 58.8% and 69.2% on
average, respectively.

We vary the computational capacity of MEC units from 1
Mbps to 128 Mbps, and set the number of NB-IoT devices
to be 50. Fig. 8 shows the min-max task execution latency
obtained by NOMA, FDMA and TDMA for the network
topology in Fig. 3 under different computational capacity. Each
point in Fig. 8 is an average over 100 different topologies with
the same computational capacity. We see that the min-max task
execution latency decreases with the increase of computational
capacity for all three multiple access technologies. This is
because that the increase of computational capacity can reduce
the task execution latency at MEC units. Also, we can see
that the NOMA always outperforms the FDMA and TDMA
in terms of min-max task execution latency. Compared with
FDMA and TDMA, the NOMA can reduce the task execution
latency by 58.2% and 68.5% on average, respectively. The
observations from Figs. 7 and 8 reveal that considering the
limited bandwidth in NB-IoT networks, the NOMA can be
exploited as a promising multiple access technology for NB-
IoT networks.

VI. CONCLUSIONS

In this paper, we have investigated the minimization of
maximum task execution latency per task bit across devices
for uplink MEC-aware NOMA NB-IoT networks by jointly
considering SIC ordering and computation resource allocation.
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Fig. 8. The min-max execution latency per task bit obtained by NOMA,

FDMA, and TDMA under different computational capacity.

Particularly, the problem has been proved to be reducible
to the job-shop scheduling problem, and it is NP-hard. To
obtain the optimal solution, we have exploited the decom-
position optimization technique to solve the computation
resource allocation and SIC ordering sequentially. Further,
we have exploited the greedy meta-scheduling technique to
devise a low-complexity and easy-implemented SIC ordering
algorithm. Only according to the SIC ordering of existing
NB-IoT devices, the SIC order of a newly arriving device
can be determined with a negligible performance degradation.
Finally, simulation results have verified the effectiveness of
the proposed algorithm by comparing it with other multiple
access schemes. In the future work, we will study the dynamic
optimization of device scheduling in which all NB-IoT devices
should decide which devices to transmit together, and how
long to transmit together. To this end, the device scheduling
can be optimized through solving the user grouping and time
allocation sequentially.
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