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Abstract—Non-orthogonal multiple access (NOMA) and mo-
bile edge computing (MEC) have been emerging as promising
techniques in narrowband Internet of Things (NB-IoT) systems
to provide ubiquitously connected IoT devices with efficient
transmission and computation. However, the successive inter-
ference cancellation (SIC) ordering of NOMA has become the
bottleneck limiting the performance improvement for the uplink
transmission, which is the dominant traffic flow of NB-IoT com-
munications. Also, in order to guarantee the fairness of task ex-
ecution latency across NB-IoT devices, the computation resource
of MEC units has to be fairly allocated to tasks from IoT devices
according to the task size. For these reasons, we investigate the
joint optimization of SIC ordering and computation resource
allocation in this paper. Specifically, we formulate a combinatorial
optimization problem with the objective to minimize the maxi-
mum task execution latency required per task bit across NB-IoT
devices under the limitation of computation resource. We prove
the NP-hardness of this joint optimization problem. To tackle
this challenging problem, we first propose an optimal algorithm
to obtain the optimal SIC ordering and computation resource
allocation in two stages: the convex computation resource allo-
cation optimization followed by the combinatorial SIC ordering
optimization. To reduce the computational complexity, we design
an efficient heuristic algorithm for the SIC ordering optimization.
As a good feature, the proposed low-complexity algorithm suffers
a negligible performance degradation in comparison with the
optimal algorithm. Simulation results demonstrate the benefits
of NOMA in reducing the task execution latency.

Index Terms—Non-orthogonal multiple access, Mobile edge
computing, successive interference cancellation ordering, com-
putation resource allocation, execution latency minimization

I. INTRODUCTION

With the rapid development of Internet of Things (IoT) tech-

nology, various IoT applications have been emerging in recent

years, including smart metering [1], smart manufacturing [2],

smart home/city [3], automatic driving [4], health monitoring

[5], and many others (see a recent survey in [6]). Driven by the

requirements of these applications on low power consumption,

low latency, and massive connectivity [7]–[9], the narrowband
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Internet of Things (NB-IoT) technology has been proposed

in 3GPP as a promising low power wide area (LPWA) radio

technology for IoT systems [10]. Specifically, NB-IoT systems

operate in the underlying cellular network with very small

bandwidth, and accommodate a massive number of low-data-

rate machine-type connections with low power consumption

in extreme coverage conditions. Along with the ever-growing

popularity of NB-IoT devices, the unprecedent IoT traffic

volumes are delivered to small-cell base stations (BSs) in

the context of Long-Term Evolution (LTE) network. The

critical-IoT traffics further require the reliable and ultra low-

latency data computing. However, due to the limited spectrum-

computation resource, current wireless cellular networks are

becoming incapable to provide the massive connectivity and

intensive computation for IoT traffics [11].

To cope with these challenges, non-orthogonal multiple

access (NOMA) [12] and mobile edge computing (MEC) [13]

are emerging as promising technologies for NB-IoT systems.

Unlike the conventional orthogonal multiple access (OMA)

in which the frequency/time/code resource is orthogonally

allocated to multiple users at the same time, the NOMA

serves multiple users on the same frequency-time resource

simultaneously through the non-orthogonal resource allocation

in the power domain [14] or code domain [15]. Therefore,

the NOMA can meet various demands of NB-IoT systems

on superior spectral-energy efficiency, massive connections,

and ultra low transmission latency. Unlike the conventional

cloud computing operated in the remote cloud that suffers

severe transmission latency via the Internet, MEC offers cloud

computing capabilities at the edge of radio access network

(e.g., at small-cell BSs) in close proximity to NB-IoT devices.

Through bringing intensive computation tasks from NB-IoT

devices to MEC units, the low-latency as well as reliable

computing services can be implemented for NB-IoT devices.

As a result, it is envisioned that integrating NOMA and MEC

into NB-IoT systems can bring enormous potential benefits to

various IoT applications.

In this paper, we apply the power-domain NOMA to MEC-

aware NB-IoT networks. For simplicity, the word “NOMA”

in the rest of the paper means the power-domain NOMA. In

the implementation of NOMA, multiple NB-IoT devices with

distinct channel conditions transmit their data to the small-

cell BS via superposition coding (SC), and the small-cell BS

decodes the data from each NB-IoT device sequentially via

successive interference cancellation (SIC). Despite the superior

benefits of NOMA, the joint radio and computation resource

allocation has to be considered when the NOMA is applied
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to MEC-aware NB-IoT networks. However, for the features

of NB-IoT (or machine-type) communications, such as low

power, latency-sensitivity, and massive connectivity, how to

allocate limited radio-computation resource among NB-IoT

devices becomes a challenging issue.

While existing works such as [16] and [33] have studied the

joint allocation of radio and computation resources, none of

these works consider a joint optimization technique for MEC-

aware NOMA NB-IoT networks with taking into account the

SIC ordering. It is worth noting that exiting works on NOMA

assume that the SIC ordering follows the ascending order

of channel conditions [17]–[21], in which the user with the

worst channel condition will be decoded first. This doing may

result in poor performance/fairness for users with poor channel

conditions, although the radio resource allocation has been

considered. To this end, the current study aims to minimize

the maximum task execution latency1 of computing 1-bit

task across NB-IoT devices through a joint optimization of

SIC ordering and computation resource allocation for MEC-

aware NOMA NB-IoT networks. We focus on the uplink

transmission, since it is the dominant traffic flow of NB-

IoT communications. Our contributions in this paper can be

summarized as follows.

• We propose a novel NOMA-based MEC model for NB-

IoT networks that captures the gains of uplink MEC-

aware NOMA in the task execution latency. Specifically,

we present a joint optimization framework that minimizes

the maximum task execution latency required per task bit

across NB-IoT devices through jointly optimizing the SIC

ordering of NB-IoT devices and computation resource

allocation.

• The proposed optimization problem is a combinatorial

optimization problem involving the SIC ordering and

computation resource allocation, and we prove its NP-

hardness. We then propose an optimal algorithm to ob-

tain the optimal SIC ordering and computation resource

allocation in two stages. In the first stage, given the SIC

ordering, we obtain the optimal computation resource

allocation in the closed-form expression in the two-

device case, and by the bisection searching in the multi-

device case. In the second stage, we obtain the optimal

SIC ordering based on the min-max execution latency

obtained for all possible SIC ordering in the first stage

through exhaustive search.

• To reduce the computational complexity, we design an ef-

ficient heuristic algorithm for SIC ordering. Specifically,

we assign the SIC order of each device sequentially one

by one, where the optimal SIC order is determined by the

min-max execution latency across all assigned devices. In

doing so, the computational complexity can be reduced

to O(N2) for SIC ordering, where N is the number of

all NB-IoT devices existing in the network. We compare

the performance of our proposed heuristic algorithm and

optimal algorithm, and the simulation result shows that

1In this paper, the task execution latency includes the task transmission
latency from the NB-IoT device to the small-cell BS, and the task computation
delay at MEC units equipped at the small-cell BS.

the heuristic algorithm suffers a negligible degradation

in performance. We also evaluate the performance of our

proposed heuristic algorithm via extensive simulations, in

which we show that benefits of NOMA in reducing the

task execution latency.

The rest of this paper is organized as follows. In Section

II, we review the related studies in the existing literature.

In Section III, we introduce the NOMA-argumented MEC

model and present the problem formulation. In Section IV, we

propose the optimal algorithm and low-complexity heuristic

algorithm to solve the proposed optimization problem. Finally,

Sections V and VI present numerical results and conclude this

paper, respectively.

II. RELATED WORK

In this paper, we introduce two techniques, e.g., NOMA and

MEC, to NB-IoT networks to meet various demands on low

power consumption, low latency, and massive connectivity.

Therefore, we elaborate on the related studies on NOMA and

MEC in this section.

Thanks to the superior benefits of NOMA, researchers have

spent significant amount of research efforts on this topic

recently [20]–[26]. Islam et al. [23] summarized the potentials

and challenges of NOMA applied to the fifth-generation net-

working system. With the goal of interference mitigation, user

pairing (or clustering) algorithms were proposed for NOMA

networks in [20]–[22]. Regarding the communication resource

allocation, the joint optimization of sub-carrier assignment

and power allocation were studied in [24] for maximizing

the sum utility of NOMA network. Qian et al. [25] proposed

a coalitional game based algorithm to maximize the system-

wide utility and minimize the total power consumption through

jointly optimizing the user association and power allocation

for NOMA-enabled small-cell networks. In [26], the joint

optimization problem of power allocation, user pair selection,

and time-frequency resource allocation were studied for multi-

cell NOMA. With the explosive growth of IoT applications, the

studies on NOMA have been extended to IoT networks [27]–

[30]. Ding et al. [27] designed precoding and power allocation

coefficients for the MIMO-NOMA IoT network with two users

categorized by their quality-of-service requirements, not by

their channel conditions. Mostafa et al. [28] proposed a joint

sub-carrier and transmission power allocation algorithm to

maximize the connection density of NB-IoT devices for uplink

NOMA NB-IoT networks. Wu et al. [29] investigated the

spectral efficiency maximization problem for wireless powered

NOMA IoT networks. Zhai et al. [30] proposed a joint

user scheduling and power allocation algorithm to minimize

the long-term power consumption based on the stochastic

optimization theory for NOMA IoT networks.

As a common feature, all previous work in [20]–[30] make

an assumption that all users are decoded by SIC based on

the levels of channel conditions. This assumption is plausible

in the downlink NOMA, since the data signals of users in

the strong channel conditions must be decoded after the data

signals of users in the weak channel conditions are subtracted.

However, in the uplink NOMA where the small-call BS works
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as a common receiver for all served users, all SIC ordering

can be performed for the same sum data rate in the decoding

process. It implies that it is important to improve the quality-

of-service of individual users via a proper SIC ordering in the

uplink NOMA. On the other hand, these existing work mainly

focus on the efficient transmission for NB-IoT networks.

As discussed earlier, NB-IoT networks are expected to

provide the efficient transmission and computation for ubiqui-

tously connected IoT devices. Therefore, MEC has also attract-

ed great attentions of academia and industry recently in the

networking context of IoT [31]–[37]. Chiang et al. [31] sum-

marized the opportunities and challenges of edge computing in

IoT applications. Sun et al. [32] proposed a hierarchical mobile

edge computing architecture to provide flexible and scalable

computation resource provisioning for IoT networks. Kiani et

al. [33] proposed an NOMA-based optimization framework

for 5G networks, which aims at minimizing the energy con-

sumption of MEC users through optimizing the user cluster-

ing, computation and communication resource allocation, and

transmit power. Lyu et al. [34] proposed an asymptotically

optimal scheduling scheme for MEC-aware IoT networks, in

which the transmission time, energy intake, and data admission

of all IoT devices were optimized in each time slot for

maximizing a time-average network utility. Amjad et al. [35]

proposed a cognitive edge-computing based framework for the

efficient utilization of computation resource in IoT networks.

Rodrigues et al. [36] proposed a technique for minimizing

service delay in edge cloud computing through virtual machine

migration and transmission power control. Wu et al. [37]

proposed a secrecy-based resource management framework for

computation offloading. Although the works in [32]–[37] have

studied the joint communication and computation resource

allocation problem for MEC-aware IoT networks, they usually

consider the conventional multiple access techniques, such as

NOMA with fixed SIC ordering [33] and TDMA [34]. Also,

these work mainly focus on energy consumption minimization

and system-utility maximization, and thus the task execution

latency of all users cannot be strictly guaranteed, although it

is a rigorous requirement on NB-IoT systems. To minimize

the maximum task execution latency of computing 1-bit task

across IoT devices, the joint SIC ordering and computation

resource allocation should be carefully considered for MEC-

aware NOMA NB-IoT networks, which motivates the work of

this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a uplink MEC-aware NOMA NB-IoT network

with a set N = {1, · · · , N} of NB-IoT devices and a

small-cell BS equipped with MEC units to execute the data

computing for NB-IoT devices, as illustrated in Fig. 1. NB-

IoT device n transmits a Bn-bit task data to the small-cell

BS2, where NOMA is exploited as the multiple access scheme.

We define one time slot as the duration in which the set of

2In the calculation of task transmission latency, we do not take into account
the packet header size of network protocols, and assume that the transmission
data size is equal to the task data size.

Fig. 1. A uplink MEC-aware NOMA NB-IoT network with N NB-IoT
devices and a small-cell BS equipped with MEC units .

NB-IoT devices transmitting task data to the small-cell BS

keeps constant. We use F1 to indicate the SIC ordering used

at the small-cell BS in the first time slot. Specifically, we have

F1 = d1 → · · · → dN , where dn means the index of the nth

device in the SIC ordering. Assume that a subset Nt−1 of

NB-IoT devices finish the task data transmission until time

slot t − 1, and the SIC ordering in the time slot t satisfies

Ft = F1\Nt−1.

We use ∆Bt,dn
to indicate the backlog of task data that

the NB-IoT device dn have not transmitted up to time slot t.

Obviously, if the NB-IoT device dn has sent the whole task

data to the small-cell BS (i.e., ∆Bt,dn
= 0), it will terminate

the task data transmission in time slot t, and thus its data rate

is equal to zero. Let hdn
denote the channel gain between

the NB-IoT device dn and the small-cell BS. Considering the

NOMA scheme, the data rate of device dn in time slot t can

be expressed as

Rt,dn
(F1) =







0, if ∆Bt,dn
= 0

W log






1 +

hdnp∑

∀j|n+1<j≤N
and ∆Bt,dj

̸=0

hdj
p+N0







, otherwise.

(1)

Here, N0 denotes the power of additive Gaussian noise at

the small-cell BS, p denotes the transmit power used by each

device, and W denotes the bandwidth occupied by N devices.

By the definition of time slot, a new time slot begins when one

NB-IoT completes its task data transmission at least. Thus, the

length of time slot t can be expressed as

Lt(F1) = min
∀n|∆Bt,dn ̸=0

∆Bt,dn

Rt,dn

, (2)

and we have

∆Bt+1,dn
= ∆Bt,dn

− Lt(F1)Rt,dn
. (3)

Since the NB-IoT device dn completes the task data transmis-

sion when ∆Bt,dn
= 0, its transmission latency, denoted by

Ttdn
(F1), is expressed as

Ttdn
(F1) =

argmin
t

{t|∆Bt,dn=0}
∑

k=1

Lk(F1) (4)

After the small-cell BS receives the whole task data of NB-

IoT device dn, its equipped MEC units will compute this task.
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Let Cdn
(F1) denote the computation resource allocated to

computing the task from NB-IoT device dn when the SIC

ordering is F1. Thus, the time that the MEC units spend in

computing the task from device dn is expressed as

Tcdn
(F1) =

Bdn

Cdn
(F1)

, ∀n ∈ N . (5)

We consider a practical constraint that the MEC units have the

computational capacity of C Mbps, i.e.,

N∑

n=1

Cdn
(F1) ≤ C. (6)

Note that the computational capacity is evaluated as the ratio

between the computational frequency (i.e., the number of CPU

cycles per second) and the computational efficiency (i.e., the

number of CPU cycles required for computing 1-bit task) of

MEC units [38].

B. Problem Formulation

Since the size of task data that N NB-IoT devices transmit

to the small-cell BS is different, we adopt the maximum task

execution latency required for computing 1-bit task data across

these NB-IoT devices to evaluate the computational efficiency

of MEC-aware NOMA NB-IoT network. In this paper, we aim

to minimize this latency through jointly optimizing the SIC

ordering and computation resource allocation. Mathematically,

we formulate the optimization problem in the following form

P1: min
F1,Cdn (F1)′s

max
n

Ttdn
(F1) + Tcdn

(F1)

Bdn

s.t.

N∑

n=1

Cdn
(F1) ≤ C,

Cdn
(F1) ≥ 0,∀n ∈ N

F1 ∈ P ,

(7)

where P is the set of permutations of the set {1, · · · , N}. It is

worth noting that due to the fact that the computational time

Tcdn
(F1) decreases with Cdn

(F1), the first constraint in (7)

is active when the optimal solution is obtained.

The following theorem shows the hardness of the optimiza-

tion problem (7).

Theorem 1. The optimization problem in (7) is NP-hard.

Proof : The optimization problem in (7) involves the SIC

ordering and computation resource allocation. Given the SIC

ordering, the optimization of computation resource allocation

is reduced to finding the root of polynomial equations, and

thus it is convex in obtaining the corresponding maximum task

execution latency per task bit. It implies that the optimization

problem in (7) is NP-hard, if the optimization of SIC ordering

is NP-hard. We next prove that the optimization of SIC

ordering is reduced to the job-shop scheduling problem, for

which the NP-hardness is proved in [39]. We consider an

NB-IoT network with N NB-IoT devices. The mathematical

statement of the SIC ordering optimization problem is to

find an assignment of the device set {1, 2, · · · , N} to the

ordering site set {d1, d2, · · · , dN} such that the maximum task

execution latency per task bit is a minimum. The device set

and the ordering site set can be reducible to the job set and

machine set in the job-shop scheduling problem, respectively.

The maximum task execution latency per task bit corresponds

to the cost function in the job-shop scheduling problem. Since

that job-shop scheduling problem is to find an assignment of

jobs to machines such that the cost function is minimized,

the SIC ordering optimization problem is equivalent to the

job-shop scheduling problem. Together with the convexity of

obtaining the maximum task execution latency per task bit, it

follows that the optimization problem in (7) is NP-hard. �

IV. ALGORITHM DESIGN

In this section, we first focus on obtaining the optimal

solution to (7). To reduce the computational complexity, we

then design an efficient heuristic algorithm for SIC ordering.

Due to the min-max objective function, given F1, the

optimal solution (C∗
dn
(F1))∀dn∈N to (7) is the root satisfying







Ttd1 (F1)

Bd1

+ 1
Cd1

= · · · =
Ttdn (F1)

Bdn
+ 1

Cdn
= · · ·

=
TtdN (F1)

BdN

+ 1
CdN

N∑

n=1
Cdn

(F1) = C,

Cdn
(F1) ≥ 0, ∀n ∈ N .

(8)

For the notational brevity, we let
Ttdn (F1)

Bdn
= αdn

. By

introducing a new variable β such that β = αdn
+ 1

Cdn (F1)
,

we can obtain the root of (8) through solving







N∑

n=1

1
β−αdn

= C

β ≥ max
n

αdn
.

(9)

The inequality in (9) implies that the computation resource

allocation Cdn
(F1) is non-negative for all n’s. Note that

although (9) is a polynomial equation of β, it is difficult

to obtain the solution β in the closed-form expression when

N > 2. Therefore, in the following, we obtain the optimal

solution of (8) through solving (9) in the two-device case (i.e.,

N = 2) and multi-device case (i.e., N > 2), respectively.

A. Two-Device Case

By calculating (9) and Cdn
(F1) =

1
β−αdn

, we have

C∗
d1
(F1) =







C
2 − 1

AF1

+
√

C2

4 + 1
A2

F1

, if AF1
> 0

C
2 − 1

AF1

−
√

C2

4 + 1
A2

F1

, otherwise

C∗
d2
(F1) =







C
2 + 1

AF1

−
√

C2

4 + 1
A2

F1

, if AF1
> 0

C
2 + 1

AF1

+
√

C2

4 + 1
A2

F1

, otherwise

(10)

where AF1
is equal to

AF1
=

Ttd1
(F1)

Bd1

−
Ttd2

(F1)

Bd2

. (11)
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Since there are two NB-IoT devices, the number of time slots

is two at most. Thus, we have

Ttd1
(F1) =

L1(F1)

Bd1

+
Bd1

−R1,d1
(F1)L1(F1)

R2,d1
(F1)Bd1

Ttd2
(F1) =

L1(F1)

Bd2

+
Bd2

−R1,d2
(F1)L1(F1)

R2,d2
(F1)Bd2

.

(12)

Together with the fact that the SIC ordering F1 is any one

permutation of {1, 2}, it follows that the optimal SIC ordering

F∗
1 is obtained by

F∗
1 = argmin

F1

L1(F1)

Bd1

+
Bd1

−R1,d1
(F1)L1(F1)

R2,d1
(F1)Bd1

+
1

C∗
d1
(F1)

.

(13)

Accordingly, the optimal computation resource allocation is

C∗
d1
(F∗

1 ) and C∗
d2
(F∗

1 ) by (10).

Next, we focus on analyzing the property of the optimal

solution to (7) in the two-device case.

Theorem 2. When the size of task data that two NB-IoT

devices transmit to the small-cell BS is equal, the optimal

SIC ordering in (7) follows the descending order of channel

gains.

Proof : Without loss of generality, we assume that h1 ≥ h2,

and B1 = B2 = B. We set F11 = 1 → 2 and F12 = 2 → 1.

Given F11, if the NB-IoT device 2 completes the task data

transmission before the NB-IoT device 1 (i.e., h1

h2
≤ ph2

N0
+1),

then the worst-case end-to-end delay can be expressed as

DF11
=

1

W log(1 + ph2

N0
)
+

1

C∗
2 (F11)

=
1

W log(1 + ph2

N0
)
+AF11

+
1

C∗
1 (F11)

(14)

by (8), where AF11
satisfies

AF11
=

1

W log(1 + ph1

N0
)
−

log(1 + ph1

ph2+N0
)

W log(1 + ph1

N0
) log(1 + ph2

N0
)
.

(15)

When we adopt F12 as the SIC ordering, the worst-case end-

to-end delay can be expressed as

DF12
=

1

W log(1 + ph1

N0
)
+

1

C∗
1 (F12)

=
1

W log(1 + ph1

N0
)
+AF12

+
1

C∗
2 (F12)

,

(16)

where AF12
satisfies

AF12
=

1

W log(1 + ph2

N0
)
−

log(1 + ph2

ph1+No
)

W log(1 + ph1

N0
) log(1 + ph2

N0
)
.

(17)

Thus, we have

2DF11
− 2DF12

=
1

C∗
2 (F11)

+
1

C∗
1 (F11)

−
1

C∗
1 (F12)

−
1

C∗
2 (F12)

=
C

C∗
1 (F11)C∗

2 (F11)
−

C

C∗
1 (F12)C∗

2 (F12)
.

(18)

Due to the fact that 0 < AF11
≤ AF12

, we have

C∗
1 (F11)C

∗
2 (F11) ≥ C∗

1 (F12)C
∗
2 (F12) (19)

by (10). It follows that 2DF11
−2DF12

≤ 0, and thus DF11
≤

DF12
. It implies that F11 is the optimal SIC ordering when

1 ≤ h1

h2
≤ ph2

N0
+ 1.

On the other hand, given F11, if the NB-IoT device 1

completes the task data transmission before the NB-IoT device

2 (i.e., h1

h2
> ph2

N0
+ 1), we have

2DF11
− 2DF12

=
C

C∗
1 (F11)C∗

2 (F11)
−

C

C∗
1 (F12)C∗

2 (F12)

+
log(ph1+N0

N0

ph2+N0

ph1+ph2+N0
)

W log(1 + ph1

N0
)

× (
1

log(1 + ph1

ph2+N0
)
−

1

log(1 + ph2

N0
)
)

︸ ︷︷ ︸

<0

.

(20)

Because of h1

h2
> ph2

N0
+ 1, we further have

AF11
=

1

W log(1 + ph1

ph2+N0
)
−

1

W log(1 + ph2

N0
)
≤ 0. (21)

Since we have 0 ≤ |AF11
| ≤ AF12

, we have

C

C∗
1 (F11)C∗

2 (F11)
−

C

C∗
1 (F12)C∗

2 (F12)
< 0. (22)

by (10). Together with (20), we have DF11
< DF12

when
h1

h2
> ph2

N0
+ 1.

Until now, we have proved that DF11
< DF12

when h1 ≥
h2. Therefore, Theorem 2 follows. �

Based on the basic operations in (10)-(13) and Theorem 2,

we present the procedure of obtaining the optimal solution to

(7) in Algorithm 1 for two-device case.

It is worth noting that by Theorem 2, the optimal SIC

ordering is determined according to the channel gains when

two NB-IoT devices transmit equal-size task data to the small-

cell BS. However, this conclusion cannot be extended to the

multi-device case due to the NP-hardness of the min-max

task execution latency optimization. In this regard, we need

to resort to the numerical algorithm to obtain the optimal SIC

ordering, which will be introduced latter.

Algorithm 1 The procedure of obtaining the optimal solution

to (7) in the two-device case

1: if B1 = B2 then

2: F∗
1 = {argmax

i=1,2
hi, argmin

i=1,2
hi}.

3: else

4: for all F1 ∈ {1 → 2, 2 → 1} do

5: Obtain C∗
d1
(F1) and C∗

d2
(F1) by (10).

6: end for

7: Obtain the optimal SIC ordering F∗
1 by (13).

8: end if

9: Obtain the optimal computation resource allocation

C∗
d1
(F∗

1 ) and C∗
d2
(F∗

1 ) by (10).



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2875046, IEEE Internet of

Things Journal

6

B. Multi-Device Case

A close look at (9) finds that the number of fractional

terms is equal to the number of NB-IoT devices. Thus, it

is impossible to obtain the root of (9) in the closed-form

expression. It implies that it is of practical importance to

design an efficient numerical algorithm to obtain the root

of (9), and thus the optimal solution to (7) in the multi-

device case. In what follows, we focus on deriving the optimal

solution. Furthermore, to reduce the computational complexity,

a sub-optimal solution is proposed.

1) Optimal Solution

For the notational simplicity, we let f(β) =
N∑

n=1

1
β−αdn

.

We have the first-order derivative of f(β), denoted by f ′(β),
satisfying

f ′(β) = −
N∑

n=1

(β − αdn
)−2. (23)

Due to the fact that f ′(β) < 0, the function f(β) is decreasing

with β. Therefore, we can obtain the root of (9) based on the

idea of bisection searching. The following Lemma 1 shows

the range of the root of (9), which can be used to decide the

initial upper bound and lower bound of β when running the

bisection searching.

Lemma 1. The root of (9) resides in the rang of[

max
{

max
n

αdn
, N
C

+min
n

αdn

}

, N
C

+max
n

αdn

]

.

Proof: From the equation in (9), the set N can be divided

into two disjoint subsets N1 and N2, which satisfy

1

β(F1)− αdn

{

≥ N
C
, if n ∈ N1,

≤ N
C
, if n ∈ N2.

(24)

It follows that

β(F1) ≥
N

C
+ max

n∈N1

αdn
≥

N

C
+max

n∈N
αdn

β(F1) ≤
N

C
+ min

n∈N2

αdn
≤

N

C
+ min

n∈N
αdn

.

(25)

Together with the fact that β(F1) ≥ max
n∈N

αdn
in (9), we can

get

β(F1) ∈

[

max

{

max
n

αdn
,
N

C
+min

n
αdn

}

,
N

C
+max

n
αdn

]

,

(26)

and Lemma 1 follows. �

In particular, the optimal computation resource allocation

and SIC ordering algorithm works as follows. First, by Lemma

1, we can set the initial upper bound and lower bound of β.

Second, we obtain the optimal computation resource allocation

and worst-case end-to-end computational delay (i.e., the root

of (9)) based on the idea of bisection search for any given SIC

ordering. Finally, based on the root of (9) (say β(F1)), we can

obtain the optimal SIC ordering F∗
1 of (7) by the following

formula.

F∗
1 = argmin

F1∈P

1

β(F1) + αd1

. (27)

Algorithm 2 The optimal computation resource allocation and

SIC ordering algorithm in the multi-device case

1: for all F1 ∈ P do

2: Initialization: Set the lower bound βL =

max
{

max
n

αdn
, N
C

+min
n

αdn

}

, the upper bound

βU = N
C

+max
n

αdn
, and the stopping tolerance ϵ.

3: if |f(β(k−1))− C| ≥ ϵ then

4: Set β = βL+βU

2 .

5: if f(β(k−1))− C > 0 then

6: Set βL = β.

7: else

8: Set βU = β.

9: end if

10: else

11: Terminate the calculation and obtain the root of (9)

(say β(F1)) as β.

12: end if

13: end for

14: Obtain the optimal SIC ordering F∗
1 by (27).

15: Obtain the optimal computation resource allocation, i.e.,

C∗
dn
(F∗

1 ) =
1

β(F∗
1 )−αdn

for all n ∈ N .

In details, the optimal computation resource allocation and SIC

ordering (i.e., the optimal solution to (7)) can be obtained by

Algorithm 2 in the multi-device case.

It is worth noting from Algorithm 2 that although the

optimal computation resource allocation can be efficiently

obtained with the SIC ordering F1, the optimal SIC ordering

is obtained based on the emulation over P . Due to the NP-

hardness, the computational complexity of seeking the optimal

SIC ordering is exponentially increasing with the number of

NB-IoT devices. In the practical implementation, we want to

obtain a sub-optimal SIC ordering with the low computational

complexity. Therefore, we next focus on the derivation of sub-

optimal SIC ordering.

2) Sub-optimal Solution

To reduce the complexity of seeking the optimal SIC

ordering, we propose to sort the SIC order of all NB-IoT

devices one device by one device based on the greedy meta-

scheduling idea [40]. The rationale that serves as motivation

for this proposal is that the SIC ordering is processed in arrival

order of all NB-IoT devices, and each newly arriving NB-IoT

device is assigned to the SIC order with the optimal min-max

execution latency. The key idea is as follows. Assume that

we have set the SIC ordering of NB-IoT devices 1, · · · , n,

say F1(n). We then decide the SIC order of NB-IoT device

n + 1 through comparing the optimal β over all n + 1 SIC

orderings of NB-IoT devices 1, · · · , n + 1, where each SIC

ordering is obtained by inserting NB-IoT device n + 1 in

the SIC ordering F1(n). Specifically, the SIC ordering with

the minimum optimal β is set as the optimal SIC ordering

of NB-IoT devices 1, · · · , n + 1, i.e., F1(n + 1). In doing

this, we can obtain the sub-optimal SIC ordering of N NB-

IoT devices as F1(N). For example of a 5-device network,

the procedure of obtaining F1(5) is illustrated in Fig. 2.
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The details of low-complexity computation resource allocation

and SIC ordering algorithm is presented in Algorithm 3. In

the practical implementation, every newly arriving NB-IoT

device first informs its channel state and task data size to the

small-cell BS. Second, the small-cell BS determines the SIC

order of this newly arriving NB-IoT device by inserting it in

the SIC ordering of all existing NB-IoT devices. Third, the

small-cell BS updates the optimal SIC ordering to all NB-

IoT devices, and predicts the transmission data rate and the

optimal computation resource allocation of all NB-IoT devices

accordingly. Finally, the small-cell informs the transmission

data rate to each NB-IoT device, and all NB-IoT devices

transmits their task data simultaneously to the small-cell BS

for the computation in MEC units.

Fig. 2. An illustration of obtaining F1(5) in a 5-device network. Here,
all squares mean the possible ordering positions of decoding NB-IoT device
n+1 and the red square means the best ordering position of decoding NB-IoT
device n+1. At the nth step, the best ordering of NB-IoT devices 1, · · · , n+1
(i.e., F1(n+ 1)) is obtained through comparing the optimal worst-case end-
to-end computational delay over n+ 1 possible ordering positions.

Algorithm 3 The low-complexity computation resource allo-

cation and SIC ordering algorithm in the multi-device case

1: for all NB-IoT device n = 1, · · · , N do

2: if n == 1 then

3: Set F1(1) = d1 = 1.

4: else

5: for all Inserting site i = 1, · · · , n do

6: Set G(i) = d1 → · · · → di−1 → n → di → · · · →
dn−1

7: Obtain the optimal β over G(i) by running Steps

1-11 in Algorithm 2, say β(i).
8: end for

9: Obtain the best site of inserting NB-IoT device n,

i∗ = argmax
i

β(i), and set F1(n) = G(i∗).

10: end if

11: end for

12: Set F1(N) as the sub-optimal SIC ordering, and set β(i∗)
as the sub-optimal worst-case end-to-end computational

delay.

13: Obtain the optimal computation resource allocation, i.e.,

Cdn
(F1(N)) = 1

β(i∗)−αdn
for all n ∈ N .

The following Theorem 3 shows the computational com-

plexity of Algorithm 3.

Theorem 3. The computational complexity of the proposed

low-complexity computation resource allocation and SIC or-

dering algorithm (i.e., Algorithm 3) is of O(−N2 log(ϵ))
iterations.

Proof: When we decide the optimal SIC order of NB-IoT

device n in Algorithm 3, we need to run the bisection search-

ing n times. Thus, we run the bisection searching
N(N+1)

2

TABLE I
SIMULATION PARAMETERS

Simulation parameters Value settings

Carrier frequency 2000 MHz

Path loss model (38 + 30 log10(d)) dB

(d in meters)

Bandwidth W 15 kHz

Noise power spectral density -174 dBm/Hz

Transmit power of NB-IoT devices 23 dBm

The task data size of NB-IoT device n Uniformly distributed

in [0, 1] Mb

Stopping tolerance ϵ 10−4

times in total, when we obtain F1(N). Since the computational

complexity of bisection searching is of O(− log(ϵ)) iterations,

it follows that the computational complexity of Algorithm 3 is

of O(−N2 log(ϵ)) iterations. Therefore, Theorem 3 follows.

�

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the

proposed algorithms. According to the NB-IoT parameters

in [7], we set the simulation parameters in Table I. In the

following simulations, we consider a set of uplink MEC-aware

NB-IoT networks as shown in Fig. 3, where the MEC-enabled

small-cell BS is placed in (200m, 200m), and N NB-IoT

devices are uniformly deployed in a circle area with the radius

of 200m and center of (200m, 200m).

0 100 200 300 400
0

100

200

300

400

X−Axis (m)

Y
−

A
x
is

 (
m

)

 

 

MEC−enabled small−cell BS NB−IoT device

Fig. 3. The network topology used for simulations.

A. Performance Evaluation

Example 1: We start with verifying the optimality of

Algorithm 1 in the two-device case. We place NB-IoT device

1 at the location of (100m, 200m), and move NB-IoT device

2 from (250m, 200m) to (300m, 200m) along the line. The

computational capacity of MEC units is set to be 1 Mbps. For

the verification target, we use Algorithm 2 as the benchmark.

Table II shows the optimal SIC ordering and computation

resource allocation obtained by Algorithm 1 and Algorithm 2.

We can see that the optimal computation resource allocation in

two-device case can be obtained in the closed-form expression
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TABLE II
THE OPTIMALITY VERIFICATION IN THE TWO-DEVICE CASE

Location of Algorithm 1 Algorithm 2

NB-IoT device 2 F∗

1
{C∗

1
(F∗

1
), C∗

2
(F∗

1
)} F∗

1
{C∗

1
(F∗

1
), C∗

2
(F∗

1
)}

(50m, 200m) {2, 1} {0.2583, 0.7417} Mbps {2, 1} {0.2583, 0.7417} Mbps

(70m, 200m) {2, 1} {0.2371, 0.7629} Mbps {2, 1} {0.2371, 0.7629} Mbps

(90m, 200m) {2, 1} {0.2229, 0.7771} Mbps {2, 1} {0.2229, 0.7771} Mbps

(110m, 200m) {1, 2} {0.7806, 0.2194} Mbps {1, 2} {0.7806, 0.2194} Mbps

(130m, 200m) {1, 2} {0.7712, 0.2288} Mbps {1, 2} {0.7712, 0.2288} Mbps

(150m, 200m) {1, 2} {0.7712, 0.2288} Mbps {1, 2} {0.7712, 0.2288} Mbps

given in Algorithm 1. Also, we can see that the optimal SIC

ordering of two NB-IoT devices follows the descending order

of channel gains when the task data size of these two NB-IoT

devices is equal, which coincides with Theorem 2.

Example 2: In this simulation, we want to evaluate the

performance of the proposed low-complexity algorithm (i.e.,

Algorithm 3). For the comparison target, we adopt the opti-

mal algorithm (i.e., Algorithm 2) as the benchmark. In Fig.

4, each point is obtained by averaging over 100 different

topologies of the same device density. From Fig. 4(a), we

can see that Algorithm 3 can perform very close to the

optimal min-max task execution latency, which is obtained

by the optimal algorithm (i.e., Algorithm 2). For example,

the largest performance degradation of Algorithm 3 is 0.24%,

which is obtained when the number of NB-IoT devices is 8.

However, Fig. 4(b) shows that the computational complexity

of Algorithm 2 and Algorithm 3 is increasing exponentially

and increasing quadratically with the increase of the number

of NB-IoT devices, respectively. Due to the negligible perfor-

mance degradation and low complexity, Algorithm 3 can be

considered as the optimal computation resource allocation and

SIC ordering algorithm in the practical implementation.
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Fig. 4. The performance and computational complexity of Algorithm 2 and
Algorithm 3.

B. Performance Comparison

To the best of our knowledge, there is no algorithm proposed

for the same target through jointly optimizing SIC ordering

and computation resource allocation in the literature. For the

comparison with our proposed computation resource allocation

and SIC ordering algorithm (i.e., Algorithm 3), we therefore
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Algorithm 3

Scheme 1: descending order of channel gains

Scheme 2: ascending order of channel gains

Scheme 3: ascending order of file size

Fig. 5. The min-max execution latency per task bit obtained by four
algorithms at different densities of NB-IoT devices.

introduce three baseline schemes, i.e., Scheme 1, Scheme 2,

and Scheme 3. In these schemes, the SIC ordering follows

the descending order of channel gains, the ascending order of

channel gains, and the ascending order of task size, respec-

tively, and then the optimal computation resource allocation

is performed by the bisection searching. In the following

simulations, we compare the min-max task execution latency

obtained by these four algorithms.

Example 3 (Performance comparison at different densities

of NB-IoT devices): We consider a set of uplink MEC-aware

NB-IoT networks, as illustrated in Fig. 3. We vary the number

of NB-IoT devices from 20 to 70. The computational capacity

of MEC units is set to be 10 Mbps. Each point in Fig. 5 is

obtained by averaging over 100 different topologies with the

same density of NB-IoT devices.

Fig. 5 shows that as the number of NB-IoT devices increas-

es, the obtained min-max task execution latency increases for

all four algorithms. It can also be seen that compared with

Algorithm 3, Scheme 1, Scheme 2, and Scheme 3 increase the

min-max task execution latency by 5 times, 50 times, and 100

times on average, respectively. This observation implies that

the SIC ordering would have a measurable impact on the min-

max task execution latency, when we adopt the power-domain

NOMA in uplink MEC-aware NB-IoT networks. Therefore, it

is of practical meaning to optimize the SIC ordering, instead

of following the order of channel gains or task size.

Example 4 (Performance comparison at different compu-

tational capacity): We consider a set of uplink MEC-aware

NB-IoT networks with 50 NB-IoT devices, as illustrated in
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Algorithm 3

Scheme 1: descending order of channel gains

Scheme 2: ascending order of channel gains

Scheme 3: ascending order of file size

Fig. 6. The min-max execution latency per task bit obtained by four
algorithms under different computational capacity.

Fig. 3. We vary the setting of computational capacity of MEC

units from 1 Mbps to 128 Mbps. Each point in Fig. 6 is

obtained by averaging over 100 different topologies with the

same computational capacity.

Fig. 6(a) shows that with the increase of computational

capacity of MEC units, the obtained min-max task execution

latency slowly decreases only for the proposed Algorithm

3. On the contrary, the obtained min-max task execution

latency almost keeps constant for all other three algorithms.

It can be seen from Fig. 6(b) that the min-max task execution

latency (i.e., max
n

αdn
) is the main bottleneck of decreasing

the min-max task execution latency due to the low data rate

in the NB-IoT network. Therefore, it is difficult to decrease

the min-max task execution latency through increasing the

computational capacity of MEC units for the MEC-aware

NB-IoT network. Nevertheless, we see from Fig. 6 that we

can effectively decrease the min-max task execution latency

through decreasing the min-max task execution latency with

the optimal SIC ordering. In particular, compared with Scheme

1, Scheme 2, and Scheme 3, Algorithm 3 can reduce the

min-max task execution latency by 10 times, 50 times, and

100 times, respectively. This observation implies that the SIC

ordering of NB-IoT devices should be optimized to minimize

the min-max task execution latency according to their channel

gains and task size in the MEC-aware NB-IoT network.

Example 5 (Performance comparison with other multiple

access techniques): In the following simulations, we want

to compare the min-max task execution latency obtained by

NOMA, FDMA and TDMA. Specifically, the min-max task

execution latency is obtained by Algorithm 3 for NOMA,

the min-max task execution latency is obtained by equal

bandwidth allocation among NB-IoT devices for FDMA, and

the min-max task execution latency is obtained by equal time

allocation among NB-IoT devices for TDMA.

We set the computational capacity of MEC units to be

10 Mbps. Fig. 7 shows the min-max task execution latency

obtained under the different densities of NB-IoT devices from

20 to 65, when NOMA, FDMA and TDMA are applied

to the network topology in Fig. 3. Each point in Fig. 7

is an average over 100 different topologies with the same

density of NB-IoT devices. From Fig. 7, we see that the min-
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Fig. 7. The min-max execution latency per task bit obtained by NOMA,
FDMA, and TDMA at different densities of NB-IoT devices.

max task execution latency almost linearly increases with the

increase of the number of NB-IoT devices for all three multiple

access techniques. This is because that given the transmission

resource (e.g., the bandwidth for FDMA, the transmission

time for TDMA, and the SINR for NOMA) allocation and

the computation resource allocation of MEC units, the task

transmission latency and task computation latency of each

NB-IoT device almost linearly increases with the increase of

the number of NB-IoT devices. Together with the fact that

the task execution latency is the sum of the task transmission

latency and task computation latency, we have the observation

in Fig. 7. Also, we can see that the NOMA always outperforms

the FDMA and TDMA in terms of min-max task execution

latency. Compared with FDMA and TDMA, the NOMA can

reduce the task execution latency by 58.8% and 69.2% on

average, respectively.

We vary the computational capacity of MEC units from 1

Mbps to 128 Mbps, and set the number of NB-IoT devices

to be 50. Fig. 8 shows the min-max task execution latency

obtained by NOMA, FDMA and TDMA for the network

topology in Fig. 3 under different computational capacity. Each

point in Fig. 8 is an average over 100 different topologies with

the same computational capacity. We see that the min-max task

execution latency decreases with the increase of computational

capacity for all three multiple access technologies. This is

because that the increase of computational capacity can reduce

the task execution latency at MEC units. Also, we can see

that the NOMA always outperforms the FDMA and TDMA

in terms of min-max task execution latency. Compared with

FDMA and TDMA, the NOMA can reduce the task execution

latency by 58.2% and 68.5% on average, respectively. The

observations from Figs. 7 and 8 reveal that considering the

limited bandwidth in NB-IoT networks, the NOMA can be

exploited as a promising multiple access technology for NB-

IoT networks.

VI. CONCLUSIONS

In this paper, we have investigated the minimization of

maximum task execution latency per task bit across devices

for uplink MEC-aware NOMA NB-IoT networks by jointly

considering SIC ordering and computation resource allocation.
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Fig. 8. The min-max execution latency per task bit obtained by NOMA,
FDMA, and TDMA under different computational capacity.

Particularly, the problem has been proved to be reducible

to the job-shop scheduling problem, and it is NP-hard. To

obtain the optimal solution, we have exploited the decom-

position optimization technique to solve the computation

resource allocation and SIC ordering sequentially. Further,

we have exploited the greedy meta-scheduling technique to

devise a low-complexity and easy-implemented SIC ordering

algorithm. Only according to the SIC ordering of existing

NB-IoT devices, the SIC order of a newly arriving device

can be determined with a negligible performance degradation.

Finally, simulation results have verified the effectiveness of

the proposed algorithm by comparing it with other multiple

access schemes. In the future work, we will study the dynamic

optimization of device scheduling in which all NB-IoT devices

should decide which devices to transmit together, and how

long to transmit together. To this end, the device scheduling

can be optimized through solving the user grouping and time

allocation sequentially.
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