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Abstract—With the wide deployment of synchrophasor tech-
nology, measurement-based dynamic modeling and studies have
been becoming increasingly useful for real-time grid operations.
This paper considers the problem of estimating the power
system frequency response from ambient synchrophasor mea-
surements. Specifically, we develop the analytical conditions for
establishing the equivalence between the cross-correlation of
ambient generator speed data and the system frequency response
between any two locations. Our conditions, relying on uniformly
damped and equally excited oscillation modes, extend earlier
work on electro-mechanical wave propagation modeling to non-
homogeneous power networks. Numerical results suggest that the
validity of the cross-correlation approach would hold for more
realistic conditions such as non-uniform damping and high-order
generator model. Its practical value is further corroborated by
real data results, which closely match with the actual propagation
time of electromechanical waves recorded during the 2008 Florida
blackout in the Eastern Interconnection system.

I. INTRODUCTION

Power system frequency response to external disturbance is
complex in nature and can often result in the so-termed electro-
mechanical (EM) oscillations over the whole interconnection.
These oscillations can be attributed to fast excitation systems
and to weak tie lines; see e.g., [1, Ch. 1]. If the oscillation
modes are poorly damped, a small disturbance input could
trigger increasing level of oscillations and even wide-area
outages, such as the 1996 US/Canada Western Interconnection
blackout; see e.g., [2].

Traditionally, analyzing the oscillation modes relies on the
detailed system dynamic models. Building these models, typ-
ically nonlinear, requires the full system information on syn-
chronous generators, fast/slow exciters, and network compo-
nents; see e.g., [3], [4]. Small-signal analysis of the linearized
model around the operating point can provide the modal
information and the primary frequency response. Nonetheless,
this model-based framework is increasingly challenged by
issues like outdated system information, bad data in state
estimation, and numerical computation accuracy.
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Measurement-based dynamic studies has become highly
popular in the past decades thanks to the deployment of
high-resolution and synchronized sensors in power systems
such as phasor measurement units (PMUs). At little infor-
mation regarding the underlying models, fast-sampled bus
frequency/angle and voltage data could reveal important char-
acteristics of the system dynamics. There exists a rich literature
on oscillation mode estimation using either ambient data,
ring-down signals, or probing responses; see e.g., [5]–[7]
and references therein. Among these three types of system
responses, ambient synchrophasor data has been increasingly
explored due to its wide availability; see recent advances
on fast subspace-based algorithms in [8], [9]. In addition,
the statistical information in the ambient response has been
exploited to estimate the power flow Jacobian matrix [10]
or dynamic state Jacobian matrix [11], as well as to analyze
sustained oscillations [12].

The present paper aims to develop a data-driven framework
to estimate the grid frequency response from any input to
output locations using ambient synchrophasor measurements.
Different from existing methods focusing on temporal system
responses, our approach explores the analytical conditions for
recovering the spatial oscillation responses. This is related to
the wave propagation effects of wide-area EM oscillations in
interconnections [13]. By simplifying the grid using homoge-
neously placed generation/loads and uniform line parameters,
a continuum modeling of planar EM waves was developed
in [14] to estimate the wave propagation speed. Interestingly,
this continuum EM wave model is analogous to that of
seismic waves during earthquakes. One recent discovery in
the discipline of seismology has related the cross-correlation
of ambient noise fields at two recorded locations to the wave
propagation response, or the so-termed Green’s function from
one location to the other; see e.g., [15], [16]. The cross-
correlation approach has been successfully validated by ex-
perimental data for a variety of seismic waves. This technique
has been suggested in [17] for the study of power system
EM waves. Nonetheless, this earlier work only pointed out the
potential application based on the connection between the EM
and seismic waves, and did not establish the analytical validity
for application to inter-connected power system. To the best
of our knowledge, none of the earlier work has analytically
investigated the problem of inferring the spatial grid frequency
response from ambient synchrophasor data.

The contributions of the present paper lie in characterizing
the analytical conditions and developing the practical imple-
mentations of the cross-correlation approach under the power
system dynamic model. The linear swing dynamics based on
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the classical generator model is considered, where the ambient
condition is given by modeling the input power perturbation as
a white-noise process. Based the system and data models, we
have established a set of conditions under which the cross-
correlation of ambient speed responses is equivalent to the
input-output system response between the two generators, up
to a scaling difference. Specifically, the equivalence result
requires the oscillation modes to be uniformly damped, as well
as to be uncorrelated and equally excited by the noise inputs.
At a high level, the analytical conditions developed here can
be thought as the generalization of the homogeneous grid
model in continuum medium of [14] to the network of discrete
generator nodes. By allowing the modes to be of different
oscillation frequencies, the resultant model better represents
realistic power systems than the planar wave one. While the
modes of actual grids are not necessarily uniformly damped,
our analysis suggests that these conditions can be relaxed such
that only the main oscillation modes are sufficiently decoupled
and uncorrelated. We suspect the latter would hold well
for large-scale interconnections as validated by the real data
collected for the Eastern Interconnection (EI) grid. Meanwhile,
our synthetic data results generated using the Western System
Coordinating Council (WSCC) 3-generator test case have also
corroborated the validity of the cross-correlation approach with
non-uniformly damped modes or even higher-order generator
model.

The rest of this paper is organized as follows: Sec. II
introduces the modeling of system dynamics and ambient
data. Sec. III establishes the main equivalence results between
the frequency response and the output cross-correlation, and
presents the detailed algorithm for practical implementation as
well as potential practical applications. Numerical validation
results are presented in Sec. IV, using both synthetic data from
WSCC 3-generator case and real frequency data of the EI grid.
The paper is concluded in Sec. V.
Notation: Boldface letters denote column vectors or matrices.
Vectors 0, e` denote respectively the all-zero vector, the `-th
canonical vector of all zeros except for the `-th entry being
one. I denotes the identity matrix of suitable dimensions.
Superscript T stands for transpose, while diag{·} for diagonal
matrix. Symbols δ̇ and δ̈ denote the first- and second-order
time derivative of δ, respectively. E is the expectation operator.

II. SYSTEM MODELING

Dynamics of a power system can be modeled by a set
of differential and algebraic equations (DAEs). Consider the
following one for a general non-linear dynamical system:{

ẋ = f(x,y,u)

0 = g(x,y),
(1)

with time derivative of the state vector x also depending on the
algebraic variables in y and input variables in u. In the context
of power system dynamics, x contains the internal angle and
speed of generators and status of related equipment such as
exciters and governors. In addition, y consists of the voltage
magnitudes and angles at all buses to establish the power flow
equations as algebraic equations, while the input u typically

includes the mechanical power injected to all generators. The
set of DAEs in (1) can be linearized around an operating point,
i.e., a solution to the steady-state power flow equations, in
order to perform the small-signal stability analysis that focus
on small ambient oscillations. Furthermore, vector y can be
eliminated from the resultant linearized model to obtain a set
of ordinary differential equations (ODEs) for the state vector
x.

We adopt the classical model for synchronous generators
[3, Sec. 6.6] to specify the dynamic model (1) for ambi-
ent oscillations. Under this simplified generator model, the
system states involve only the angle and speed of all the
synchronous generators. For a system of n generators at an
operating point, one can partition x into the angle deviation
vector δ = [δ1, · · · , δn]T and the speed deviation vector
ω = [ω1, · · · , ωn]T, from their respective synchronous values.
Meanwhile, vector u = [u1, · · · , un]T stands for mechanical-
electrical power imbalance at all the generators. By linearizing
the model and eliminating the algebraic variables, the system
dynamical model can be written as so-called swing equation
[3, Sec. 6.6]: {

δ̇ = ω

Mω̇ = −Kδ −Dω + u
(2)

where M = diag{M1, · · · ,Mn} and D = diag{D1, · · · , Dn}
are the positive diagonal matrices containing the generator
moment of inertia and damping coefficients, respectively.
Also, the power flow Jacobian matrix K := ∂Pe

∂δ
is the

partial derivative for the generator electrical power output
Pe = [P e1 , · · · , P en]T based on the power flow equations. With
all generator parameters and network information given, one
can construct the linearized model (2) using numerical tools
such as the Power System Toolbox [18] or Power System
Analysis Toolbox (PSAT) [19].

We are interested in obtaining the frequency response from
the `-th input to the k-th speed, as denoted by

T`k(τ) = ωk(τ)
∣∣
u(t)=δ(t)e`

(3)

where δ(t) is the Dirac delta function. Our goal is to estimate
T`k(τ) directly from ambient synchrophasor data without
requiring any knowledge of system model. Ambient operating
conditions can be typically modeled by random load variations
around nominal level; see e.g., [8], [11], [12]. The mechanical
power mismatch input is modeled by a white noise process
ν(t) with the following properties:

E[ν(t)] = 0,

E[ν(t)νT(t− τ)] = Σδ(τ), (4)

which is zero-mean and uncorrelated across time. The corre-
sponding ambient response of generator rotor speed is denoted
by ζ(τ) = ω(τ)

∣∣
u(t)=ν(t)

. The cross-correlation of the pair
ζk and ζ` is given by

C`k(τ) := lim
T→∞

1

2T

∫ T

−T
ζk(t)ζ`(t− τ)dt

=E[ζk(t)ζ`(t− τ)], (5)

where the second equality is due to the ergodicity of ζ(t).
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III. MAIN RESULTS

To establish the equivalence between C`k and T`k, we
will first perform linear system analysis for (2). To this end,
consider its second-order equivalent form

Mδ̈ + Dδ̇ + Kδ = u, (6)

and a few assumptions will be introduced to efficiently diag-
onalize (6) into decoupled scalar systems.

(as1) Matrix M is positive definite (symmetric with positive
eigenvalues), while K is a symmetric Laplacian matrix
of rank (n− 1).

Since each Mi is always positive, the diagonal M is positive
definite. Recall that matrix K is actually the power flow
Jacobian for the reduced network consisting of only generator
nodes; see e.g., [3, ch. 6]. If all the transmission lines are
purely inductive, K would be a perfectly symmetric Laplacian
matrix. As long as the network is fully connected, the rank of
K equals to (n − 1). Hence, for high-voltage transmission
systems with minimal resistive losses, K would be nearly
symmetric and Laplacian and (as1) would hold. As for (as2),
it has been introduced to simplify the diagonalization process
for (6). Nonetheless, larger generators would typically provide
higher damping to the system, (as2) would hold approximately.

Consider the following generalized eigenvalue problem for
the two matrices M and K:

KV = MVΛ (7)

where matrix V = [v1 · · · vn] consists of the generalized
eigenvectors, while Λ = diag{λ1, · · · , λn} has the generalized
eigenvalues. The following lemma can be established for V
and Λ; see e.g., [20, Ch. 15].

Lemma 1. Under (as1), the generalized eigenvalues are all
non-negative such that λn ≥ · · · ≥ λ2 > 0 = λ1. Moreover,
the generalized eigenvectors are M-orthogonal; i.e.,

VTMV = I. (8)

Clearly, matrix V would simultaneously diagonalize M and
K. To decouple (6) into scalar systems, the following assump-
tion is needed for D:

(as2) The damping matrix D can be diagonalized by V; that
is, VTDV = Γ, where Γ = diag{γ1, . . . , γn}.

Since M and D are both diagonal, under Lemma 1 the
condition in (as2) is equivalent to having γi = γ for any
i = 1, . . . , n. Thus, (as2) boils down to a uniform damping
condition among all generators. Under (as1) and (as2), one can
decouple the dynamic system (6) using the transformation

z = V−1δ. (9)

Substituting (9) into (6) and using Lemma 1 and (as2) gives
rise to

z̈ + Γż + Λz = VTu (10)

where each element zi of z is an oscillation mode. The second-
order dynamics is decoupled into each mode as

z̈i + γiżi + λizi = vT
i u. (11)

Under zero initial condition at τ = −∞, the trajectory zi(τ)
can be solved analytically. By converting (11) into a first-
order vector system, standard technique from linear system
theory is readily applicable using the eigen-decomposition of
the resultant state matrix. As generator speed is directly related
to the grid electrical frequency, we focus on time derivative
of each mode, as given by

żi(τ) =

∫ ∞
0

(
aie

cit + bie
dit
)
vT
i u(τ − t)dt (12)

where the following four parameters arise from the modal
analysis:

ai = 2λi√
γ2
i−4λi(−γi−

√
γ2
i−4λi)

,

bi = −2λi√
γ2
i−4λi(−γi+

√
γ2
i−4λi)

,

ci =
−γi+
√
γ2
i−4λi

2 ,

di =
−γi−
√
γ2
i−4λi

2 .

Using the inverse transformation of (9), one can obtain

ωk(τ) =
∑n
i=1 vkiżi(τ)

=
∑n
i=1 vki

∫∞
0

(
aie

cit + bie
dit
)
vT
i u(τ − t)dt. (13)

where vki is the k-th element of vector vi. Thus, by setting
the input u(t) = δ(t)e`, we find the frequency response

T`k(τ) =
∑n
i=1 vkiv`i

(
aie

ciτ + bie
diτ
)
. (14)

This completes the analysis of system response for (2). Clearly,
assumptions (as1)-(as2) are key for achieving the simplified
second-order oscillation mode transformation, instead of a
general eigen-analysis approach for the full system (2).

To proceed with the equivalence results, we need to further
specify the ambient noise conditions as follows:

(as3) The input noise covariance is proportional to the damping
matrix Σ = αD with α to be a positive constant.

This assumption would ensure that all mode zi-s are equally
excited. As (as2) leads to D = γM, the proportional noise
condition in (as3) is equivalent to Σ = µM with α = µ/γ.
Hence, this assumes that the noise variance is proportional
to the locational inertia. This is justified as higher level of
inertia would have been allocated to areas with higher level
of disturbance through power system planning studies.

Proposition 1. For the system (2), under assumptions (as1)-
(as3), the cross-correlation between ambient responses ζk and
ζ` is equivalent to the corresponding frequency response from
u` to ωk, up to a scaling difference, as given by

C`k(τ) = α
2 T`k(τ).

Proof: Based on the analytical result in (13), one can
write the ambient response ζ(t) with the noise input given
by ν. Thus, the cross-correlation defined in (5) contains the
components between any pair of modes, as given by

C`k(τ) =
n∑
i=1

n∑
j=1

vkiv`j

∫ ∞
0

dt1

∫ ∞
0

dt2
(
aie

cit1 + bie
dit1
)

(
aje

cjt2 + bje
djt2
)
vT
i Σvjδ(τ + t2 − t1) (15)
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where the uncorrelated property in (4) is used. Under (as3),
the coefficient vT

i Σvj = αvT
i Dvj , which is zero for any

pair of modes with i 6= j according to (as2). Thus, this
leads to uncorrelated responses between any two different
modes. Accordingly, the ambient cross-correlation response
would only involve the auto-correlation components of every
mode, as

C`k(τ) =α
n∑
i=1

γivkiv`i

∫ ∞
0

dt1

∫ ∞
0

dt2
(
aie

cit1 + bie
dit1
)

(
aie

cit2 + bie
dit2
)
δ(τ + t2 − t1). (16)

For stable systems, the integral evaluated at time ∞ is zero,
giving rise to

C`k(τ) = α
n∑
i=1

γivkiv`i

[
− aieciτ

(
ai
2ci

+
bi

ci + di

)
− biediτ

(
bi

2di
+

ai
ci + di

)]
. (17)

Through algebraic calculations, we find that for every mode i
the four parameters satisfy

ai
2ci

+ bi
ci+di

= − 1
2γi
, and bi

2di
+ ai

ci+di
= − 1

2γi
. (18)

Substituting (18) into (17) leads to

C`k(τ) =
α

2

n∑
i=1

vkiv`i
(
aie

ciτ + bie
diτ
)
, (19)

which completes the proof for Proposition 1.
Remark 1: (Fluctuation-Dissipation Theorem.) There exist
an interesting connection between our analysis and that of
thermally driven equilibrium systems in statistical physics,
known at the Fluctuation-Dissipation Theorem (FDT); see
e.g. [21], [22]. The latter is based on a continuum medium
model with the classical derivation on one-dimensional field
in [22]. The scaling between D and Σ in (as3) is exactly
related to the proportional relation between dissipation and
noise covariance. Similar to FDT, the analytical conditions
in (as2) could hold for more general damping scenarios.
Nonetheless, the diagonal structure of both M and D under
the power system dynamics leads to equivalently uniform
damping condition and accordingly proportional ratio between
inertia and noise level. Therefore, our analysis is connected
to the general FDT conditions, while tackling the networked
structure and dynamics in power grids.

A. The Proposed Algorithm

Proposition 1 has established the theoretical relation be-
tween the cross-correlation of ambient responses and the
frequency response of interest. For practical implementations,
one needs to select the measurement locations and estimate
the frequency deviations. Typically PMUs are installed at
almost all substations that generators are connected to, or at
least one for each control area. To estimate the frequency
response between any two generators in an interconnected
system, we propose an algorithm, as summarized in Fig. 1,
of the following four steps:

Selecting frequency 
data locations

Detrending the data 
using bandpass lter

Cross-correlating the
detrended data

Scaling the 
outputs

[S1]

[S2]

[S3]

[S4]

Algorithm ow Graphical illustration

Fig. 1: The proposed 4-step algorithm to recover the frequency
response between from ambient synchrophasor data.

[S1] For each generator, select the frequency measurement
from the closest PMU in electrical distance (e.g., [23]).
This could be at the substation that the generation is di-
rectly connected to, or a neighboring substation connected
through very short transmission line.

[S2] Bandpass filtering is used to detrend the raw frequency
data for the ambient response. As inter-area oscillation
modes are of higher interest, the passband can be selected
accordingly as [0.1, 0.7] Hz; see e.g., [4, ch.12]. This
way, the slowly-varying mean component (close to 0 Hz)
is filtered out, ensuring a zero-mean ambient response.

[S3] With the detrended outputs at sampling period ∆, one can
compute the discrete-time counterpart of (5) to estimate
the cross-correlation as

C`k[τ ] =
1

bT/∆e

bT/∆e∑
m=1

ζk[m]ζ`[m− τ ]

where bT/∆e is the rounded number of samples.
[S4] To recover Tk`, the estimated cross-correlation will be

scaled to match the system frequency nadir point. This
scaling step will be discussed in detail soon.

B. Practical Applications

Our proposed algorithm can be directly used to recover the
spatial frequency response from any location to another in
an interconnected grid. To this end, [S4] needs to resolve the
magnitude ambiguity of the cross-correlation as in Proposition
1. The scaling factor can be obtained with the knowledge
of frequency nadir value under a specific disturbance event
through off-line transient stability studies. For example, the
ratio between frequency nadir and power imbalance is avail-
able for the major interconnections [24]. Upon recovering
the magnitude, the proposed algorithm can provide a fully
measurement-based alternative to find the generator frequency
response to any input disturbance.

Even if the magnitude information is unavailable, the pro-
posed algorithm can still be used for applications that need the
timing of EM wave propagation. As demonstrated through nu-
merical tests, the cross-correlation output can accurately main-
tain the shape and thus the peak time of generator frequency
response. This information is indispensable for locating the
source of disturbance in a wide-area system; see e.g., [25].
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Challenged by the same issues with model-based methods, the
approach in [25] adopts the nominal propagation speed given
by [13], [14]. Nonetheless, the latter was developed based on
the homogeneous continuum model and would not be able
to capture the characteristics of each individual system. Our
data-driven approach can provide improved estimates of the
propagation time to better locate the disturbance.

IV. CASE STUDIES

This section validates the proposed algorithm using syn-
thetic data generated by the WSCC test case and real syn-
chrophasor data collected at the Eastern Interconnection (EI)
system. The synthetic data tests demonstrate the validity of our
approach even if (as1)-(as3) fail to hold in practice, including
non-symmetric K, non-uniform damped modes, and higher-
order generator dynamic model. Real data tests can verify the
proposed method’s capability in estimating the propagation
time of frequency disturbance across the EI system. Since the
scaling factor in [S4] requires the knowledge of actual system
frequency nadir, the validations will not account for this step.
Instead, the following normalized dissimilarity score is used:

S`k =
‖T̄`k − C̄`k‖2
‖T̄`k‖2

(20)

where T̄`k (C̄`k) stands for the model-based (estimated) re-
sponse normalized by its maximum absolute value, while ‖·‖2
stands for the L2 norm of a function. The normalized metric
is effective for comparing the shape of the two time series.
An almost zero S`k implies that the cross-correlation can
accurately recover a scaled version of T`k, while a higher value
of S`k indicates a larger mismatch.

A. WSCC Case with Classical Generator Model

We use the WSCC 3-generator test case under the classical
generator model with the parameters given by [19]. A one-line
diagram of this system is shown in Fig. 2. Generators at buses
1, 2 and 3 are indexed by the associated bus number. First

G

1 2

G

12

PVPV

G

1

2

Bus 1

Bus 4

Bus 5

Bus 2 Bus 7

Bus 8

Bus 9 Bus 3

Bus 6

Fig. 2: One-line diagram of the WSCC test case [19].

TABLE I: Dissimilar scores for the WSCC test case under
uniform damping condition

Linearized model Time-domain simulation
u1 u2 u3 u1 u2 u3

ω1 0.035 0.059 0.039 ω1 0.113 0.259 0.183
ω2 0.053 0.036 0.030 ω2 0.249 0.332 0.226
ω3 0.047 0.033 0.017 ω3 0.180 0.229 0.158

TABLE II: Dissimilar scores for the WSCC test case under
non-uniform damping condition

u1 u2 u3

ω1 0.095 0.182 0.191
ω2 0.177 0.172 0.311
ω3 0.197 0.315 0.208

consider a uniformly-damped system satisfying (as2) with
γ = 0.2; i.e., Di = 0.2Mi for i = 1, 2, 3. Synthetic ambient
frequency data are generated using two methods: i) linearized
model based on the system (2), and ii) time-domain simulation
for the non-linear DAEs in (1). All the data computations are
performed in the Matlabr environment.

For the linearized model method, matrices M, K and D
in (2) are first computed by the PSAT software [19]. Accord-
ingly, the system state-space form can be easily constructed
while ambient frequency deviation samples can be formed by
simulating the system (using the lsim command) in response
to the random input u generated by the randn function. Note
that the resultant K is not perfectly symmetric as asserted in
(as1) because the transmission lines are not purely inductive.
Nonetheless, the line resistance-to-reactance (R/X) ratio is
very small almost everywhere, and thus K is nearly symmetric.
The highest R/X ratio has been observed to be around 20% for
the lines connecting buses (5,7), and (4,6). The R/X ratio for
the other lines is around 12%. As both lines (5,7) and (4,6) are
connecting the generator at bus 1 to other buses, it has been
observed that the asymmetry of K is slightly more evident at
entries corresponding to bus 1.

Despite of an asymmetric K violating (as1), we observe that
the estimated C̄`k matches very well with the model-based
result. Based on the linearized model, the actual frequency
response can be calculated using the impulse command, while
the discrete-time C̄`k is obtained based on (5) of [S3]. Fig.
3 plots the comparisons between the model-based frequency
response (in solid red lines) and the estimated one (in dashed
blue lines), both normalized by the respective maximum
absolute value, for each input-output pair. It has illustrated
the high accuracy of the proposed algorithm in recovering the
actual time series. This observation has also been corroborated
by Table I, which lists the corresponding dissimilarity scores
as defined by (20). The score values are all very close to
zero, with slightly higher values related to the generator at
bus 1; e.g., between the pairs (u1, ω2), (u1, ω3), (u2, ω1) and
(u3, ω1). These relatively higher mismatches could be related
to the earlier observation that the asymmetry of K is more
significantly affected at entries corresponding to generator 1.
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Fig. 3: Comparison of model-based and estimated frequency response for the WSCC test case with classical generator model
and under uniform damping condition.
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Fig. 4: Comparison of model-based and estimated frequency response for the WSCC test case with classical generator model
and under non-uniform damping condition.

B. WSCC Case with Higher-order Generator Model

Moreover, we have used time-domain simulation based
on the original non-linear model (1) to generate ambient
frequency samples. This data generation method can more
accurately represent real system responses by accounting for
the non-linearity of power flow equations. However, it is
also much more time consuming compared to the earlier
method because of the numerical integration computations.
We have slightly modified the integration module routine
pert.m in PSAT [19] to incorporate white-noise perturbation
as the generator power input. The noise covariance matrix

is set to be Σ = 0.001M. Note that this method does not
produce the generator speed deviation in the synchronous
reference frame, but instead the actual values at around 60Hz.
Hence, the output speed data need to be detrended to obtain
the ambient deviation from nominal value. Subtracting the
output from its time-averaged value serves this purpose well,
because the system is slightly perturbed at a single operating
point. By cross-correlating the detrended outputs, we plot the
estimated frequency response in Fig. 3 using dash-dot green
lines, along with the updated dissimilar scores included in
Table I. In general, the effectiveness of the cross-correlation
approach has been validated by the time-domain simulation
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Fig. 5: Comparison of model-based and estimated frequency response for the WSCC test case with sixth-order generator model
and under uniform damping condition.

output, with slightly increased dissimilarity scores compared
to those obtained by the linearized model outputs. But still, the
estimated frequency response can well approximate the model-
based one, especially at the first few seconds when higher
level of amplitude would occur as shown by Fig. 3. Similar to
the validation results using linearized model outputs, relatively
higher level of dissimilarity has been observed for the input-
output pairs associated with generator 1, particularly for the
pairs (u1, ω2) and (u2, ω1). This observation can be again
attributed to the transmission line (5, 7) at high R/X ratio.
Since the time-domain simulation method has shown similar
estimation/validation results as the linearized model one, we
would only use the latter method which allows to very quickly
generate ambient speed data.

We further test the applicability of the proposed approach
by relaxing the uniform damping assumption in (as2). All
the models and parameters stay the same, except that the
damping coefficient for each generator is changed as follows:
D1 = 0.1M1, D2 = 0.2M2 and D3 = 0.3M3; see [3, pp. 165].
Under this setting, the damping coefficient for each oscillation
mode is 0.279, 0.186, or 0.269, respectively, compared to the
0.2 value for all modes in the uniformly damped case. Fig.
4 updates the comparison of frequency response, while the
corresponding dissimilarity scores are listed in Table II. Com-
pared to the uniformly damped results using linearized model
outputs, the dissimilarity score has increased, especially for the
pairs (u2, ω3) and (ω3, u2). A closer look at the corresponding
curves in Fig. 4 shows a scaling difference in peak values.
Under non-uniform damping, the M-orthogonality condition
in (8) no longer holds, and thus the cross-correlation in (15)
would involve inter-mode components and the coefficients
would not match with the model-based analysis. Accordingly,
the peak scaling cannot be accurately recovered. Nonetheless,
Fig. 4 still shows that the peak locations are well aligned

between the estimated and actual ones. This observation sheds
light on the applicability of the proposed approach in estimat-
ing disturbance propagation time under non-uniform damping
scenarios.

To make the validation more realistic, we modify the WSCC
case using the sixth-order generator model that includes con-
trollers like exciter, governor, and power system stabilizer.
This modified system is tested under similar settings as in
Sec. IV-A. The updated plots for uniform and non-uniform
damping conditions are shown in Figs. 5 and 6, respectively.
The mismatch of the cross-correlation estimates has become
further noticeable, especially in the peak scaling. This is again
due to the violation of the ideal (as1)-(as2), in particular the
orthogonality condition. It is also observed that the modes are
better damped with the additional controllers. Interestingly, the
estimated response has correctly reflected this improvement in
damping as the match in the curvature shape is very perfect. As
a result, the estimated response has an accurate peak timing
alignment, which confirms the applicability of the proposed
approach in estimating disturbance propagation time from real
power system frequency measurements.

C. Real Data Test

We apply the cross-correlation method to real ambient
frequency measurements at the Eastern Interconnection (EI)
system to estimate its frequency response behavior. The data
was collected by the frequency monitoring network (FNET)
devices for 15min on January 20, 2017, at a 10Hz sampling
rate. Measurement locations include places in the Midwest,
South, and Northeast regions. The proposed cross-correlation
result is compared with the recorded response during the 2008
Florida blackout. This event is among the most recent wide-
area disturbances affecting an interconnected system, and thus
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Fig. 6: Comparison of model-based and estimated frequency response for the WSCC test case with sixth-order generator model
and under non-uniform damping condition.

can serve as a good reference for validating the effectiveness
of our proposed data-driven approach.

The 2008 Florida blackout was caused by a load switching
disturbance propagated across the whole EI footprint in the
afternoon of February 26, 2008 [26]. This event can be
approximated by an impulse input to a Florida substation
at 18:09:8.2 UTC. Replay of the frequency response and
its contour map using the recorded FNET data is available
on Youtube1. We have recovered the propagation time by
observing how long after the impulse start time the frequency
overshoot with the highest red color has arrived at each
location equipped with FNET devices. For example, in 1.7
seconds, the frequency overshoot reached an intersected area
among Arkansas, Tennessee, Kentucky and Missouri. In 2.7
seconds, the EM wave front reached the regions of North
Dakota, Upstate New York and Massachusetts. Note that these
recorded values may not be the ground-truth because of the
observation error in the recovery process.

A sample of the ambient frequency data with its detrended
output at a selected location is shown in Fig. 7. The bandpass
filter in [S2] was implemented using the function fir1 of
Matlabr at an order of 300 samples with the lower and upper
cutoff frequency at 0.075Hz and 1Hz, respectively. This high
filter order can yield very low filter gain at low frequency
regime and thus efficiently detrend the input data.

We cross-correlate the detrended frequency data at the
Florida location with every other location to determine the cor-
responding frequency response. Fig. 8 plots selected response
from the FNET meter 623, at Florida, to meters 726, 781 and
823, at North Dakota, Missouri and Arkansas, respectively.
The peak of each response is located at 2.4, 2.0 and 1.6
seconds, respectively. This is used to estimate the arrival time
of EM oscillations and compared with the recorded values,

1https://youtu.be/awvS4TtN77E
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Fig. 7: A sample of the raw ambient frequency measurement
(top) and its corresponding detrended component (down).

as listed in Table III for all locations. The recorded value
is obtained from the replay video of this event. For the
aforementioned three locations, the recorded value is 2.5, 2.1,
and 1.5 seconds, respectively. Clearly, the cross-correlation
approach has successfully estimated the propagation time from
the source of disturbance to other location, with the average
error around 0.2 second.

Various factors can attribute to the mismatch error be-
tween the recorded and estimated propagation time. First, the
recorded values themselves may be different from the ground-
truth propagation time. They have been recovered from the
Youtube video showing frequency contour map and would
suffer from some observation error. Second, the location of
disturbance input is slightly different between the 2008 black-
out and the 2017 ambient data. Due to limited deployment of
FNET devices, the only frequency measurement available in
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Fig. 8: Cross-correlation of ambient frequency deviation for
the pairs 623–726 (Florida – North Dakota), 623–781 (Florida
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TABLE III: Recorded versus estimated propagation time

Location Meter Recorded Estimated
Virginia 601 1.5 1.1
Alabama 671 0.7 0.4

Massachussets 682 2.6 2.3
North Dakota 726 2.5 2.4

Missouri 756 1.6 1.9
Illinois 767 1.5 1.7

Missouri 781 2.1 2.0
Tennessee 787 1.6 1.5
Arkansas 823 1.5 1.6

Florida is located at Lakeland, about 250 miles north of the
actual source of 2008 blackout, Turkey Point. Third, there is
a fundamental limit in the estimated time resolution of 0.1
second as the ambient FNET data has a sampling frequency
at 10 Hz. Last but not least, the blackout happened in 2008
while the ambient data was collected in 2017. Over the past
decade, significant changes have taken place in the EI grid.
Nonetheless, extensive real data based studies in [27] have
demonstrated that the statistics of inter-area oscillation modes
and EM waves has stayed almost the same for the EI grid.
Hence, we believe that the 2008 Florida blackout event can
still serve as a good reference for validating our real data test.
Meanwhile, the mismatch error at 0.2 second is consistent
with the time resolution of 0.1 second, which has verified the
effectiveness of our proposed approach.

V. CONCLUDING REMARKS

This paper has presented the analytical conditions and
numerical tests for a data-driven approach to estimate the dy-
namic frequency response from ambient synchrophasor data.
To recovery the effects of EM oscillations propagated from
any location to any other, it is advocated to cross-correlate the
ambient frequency responses measured at the two locations
during normal grid operations. We have explored a set of
exact recovery conditions for the classical swing dynamics,
including lossless systems and equally excited oscillation
modes. Extensive numerical tests on the WSCC 3-generator
case have demonstrated the cross-correlation technique can
approximately recover the shape of frequency response for
uniform damping conditions or even under higher-order gen-
erator dynamics. Moreover, the cross-correlation results of
the EI grid frequency data have been shown to well match

with the actual disturbance propagation time during the 2008
Florida blackout, with the mismatch error consistent with the
sampling resolution. Hence, it is true that the assumptions
for exact recovery do not hold perfectly for all real power
systems, nonetheless, the cross-correlation based algorithm
is a powerful model-free tool to investigate the EM wave
propagation effects in a wide-area interconnected grid.

Currently, we are exploring the possibility of relaxing the
analytical conditions by going beyond pair-wise correlation
to high-dimensional structure, as well as performing more
real data based validations. Future research directions also
include the development of data-driven instability monitoring
or system design tools using ambient synchrophasor data.
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