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Abstract—An optimal power flow (OPF) problem is formulated
that allows for tap selection of various types of step-voltage
regulators (SVRs) in multi-phase distribution networks. The
goal of the OPF is power-import minimization while satisfying
operational constraints. Variables include nodal power injections,
nodal voltages, and SVR tap ratios. SVRs are modeled according
to their voltage gains and their connecting transmission line
parameters. A set of power flow equations that rely on the nodal
admittance model of SVRs and explicitly account for the tap
ratios are derived. Chordal SDP relaxations of the power flow
equations are pursued for non-SVR edges. For each SVR type,
novel relaxations are proposed to handle the non-convex primary-
to-secondary voltage relationship. Numerical tests on the IEEE
37-bus feeder indicate the success of the proposed formulation
in selecting taps of wye, closed-delta, and open-delta SVRs while
keeping the incurred cost within 1% of its optimal value.

Index Terms—Distribution networks, optimal power flow,
chordal semidefinite relaxation, step-voltage regulators.

I. INTRODUCTION

A fundamental task in distribution systems engineering is
to maintain steady-state voltages within acceptable bounds as
specified by ANSI standards [1]. A key apparatus to this pur-
pose is the step-voltage regulator (SVR). Traditionally, taps of
SVRs are selected based on local voltage measurements from a
load center. This process typically ignores global objectives—
as achieved by optimal power flow (OPF) formulations.

To this end, a tap selection mechanism for SVRs is pre-
sented in this paper within an OPF framework. The goal is
to minimize the power import to the distribution network
while respecting operational constraints—a beneficial setup
for market structures where operation and retail are bundled.
The proposed OPF formulation includes accurate models for
multi-phase distribution network elements, and additionally,
accounts for tap optimization using the newly-developed nodal
admittance models of various SVR types [2].

Recent convex relaxations and approximations of the multi-
phase power flow equations have well-equipped the dis-
tribution sector to tackle the challenging nonconvex OPF
problem [3]–[6], albeit without considering SVRs. Multi-
phase distribution OPF with wye SVRs is considered in [7]
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using mixed-integer nonlinear programming, and in [8] and
[9] respectively leveraging the full and chordal semidefinite
relaxations of the power flow equations. The works in [8] and
[9] eliminate the nonlinear relationship between the currents
on primary and secondary sides of SVRs by imposing a
linear equality constraint on power injection on each side.
The nonconvex primary-to-secondary voltage relationship is
handled in [8] via a linear bound on the tap ratios assuming
individual tap operation, and in [9] via a semidefinite bound
assuming equal taps on every phase of the SVR.

Approaches of [7]–[9] focus solely on wye SVRs for
which the secondary voltage of each phase can be regulated
independently from other phases. In other commonly used
SVRs, such as open-delta or closed-delta, phases are coupled.
The implication is that input and output power injections are
not equal per phase, and the network cannot be decoupled, as
in the methodology of [8] and [9].

This work seeks a multi-phase OPF formulation that en-
compasses accurate models of the three most common SVRs,
including the closed- and open-delta, from [2]. The goal is
to minimize the amount of power import to the distribution
network while satisfying operational constraints. Instead of
decoupling the network, based on the newly-developed ad-
mittance models of SVRs, a set of power flow equations
that explicitly account for the tap ratios are derived. Chordal
semidefinite relaxations of the power flows are then leveraged
for non-SVR edges while novel relaxations are proposed to
handle the nonconvex primary-to-secondary voltage relation-
ship of SVR edges. The resulting formulation is a semidefinite
program (SDP). Numerical tests on the IEEE 37-bus feeder
indicate the success of the proposed OPF in regulating voltages
while keeping the incurred cost within 1% of its optimal value.

This paper is organized as follows. Section II presents the
network model. Section III introduces the nonconvex OPF
with SVR tap-selection. Tractability via relaxations is pursued
in Section IV. Numerical tests of Section V corroborate the
practicality of the proposed formulation. The paper concludes
in Section VI by discussing its limitations and future work.

II. NETWORK MODELING

This section introduces the notations and the models of the
distribution network elements in a three-phase setting. The
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Figure 1. (a) Three-phase transmission line. (b) Step-voltage regulator in
series with a transmission line.

notation (.) is used to denote the conjugate transpose of (.).

A. Network and general series element modeling

A multi-phase distribution network is modeled by a di-
rectional graph (N , E), where N is the set of nodes, and
E = {(n,m)} ⊆ N × N is the set of edges. Partition N
as N = N+ ∪ S , where, N+ and S are respectively the sets
of user nodes and slack buses. Partition E as E = ET ∪ ER
where ET collects all edges that represent transmission lines or
transformers while ER collects all edges that represent SVRs.

For a node n ∈ N and edge (n,m) ∈ E , denote respectively
their set of available phases by Ωn ⊆ Ω and Ωnm ⊆ Ω where
Ω = {a, b, c}. For the sake of exposition, we assume a three-
phase network where Ωn = Ωnm = Ω. A multi-phase setting
where some nodes and some edges have missing phases are
easily handed using a modeling approach similar to [2].

Let iφnm and iφmn respectively denote the current flowing
from node n to m and m to n on phase φ ∈ Ω of edge (n,m),
and let inm := {iφnm}φ∈Ω and imn := {iφmn}φ∈Ω. Figure 1a
depicts a transmission line with currents iφnm and iφmn marked.
Further, denote respectively the voltage and injected current
phasors at node n ∈ N and phase φ ∈ Ω by vφn and iφn.
Collect the voltage and current phasors of node n in vn :=
{vφn}φ∈Ω and in := {iφn}φ∈Ω and let v := {vn}n∈N . Denote
the complex power injection at node n and phase φ by sφn,
and let sn := {sφn}φ∈Ωn and s := {sn}n∈N .

For edge (n,m) ∈ ET, voltages and currents satisfy

inm = Y(n)
nmvn −Y(m)

nm vm, (n,m) ∈ ET (1a)
imn = Y(m)

mn vm −Y(n)
mnvn, (n,m) ∈ ET (1b)

where matrices Y
(n)
nm, Y

(m)
nm , Y

(m)
mn , and Y

(n)
mn (in C3×3)

for transmission lines are given in [1]. In case of various
transformer connections, see e.g. [10].

B. Modeling of SVRs

A three-phase SVR consists of three single-phase autotrans-
formers, typically connected in wye, closed-delta, or open-
delta configuration, and is followed by a transmission line.
Fig. 1b provides a schematic where overall SVR connection
is modeled as a series element between nodes n and m. The
secondary of the autotransformer bank is denoted by n′, and
is by convention not included in the set N . The transmission
line is connected between n′ and m.

The relationship between the voltages across the SVR
(n,m) ∈ ER is vn = Anmvn′ where Anm is the voltage

gain matrix and depends on the tap position. The tap position
determines the effective turns ratios of the autotransformer
bank. For (n,m) ∈ ER, the vector of effective turns ratios
for wye, closed-delta, and open-delta SVRs is respectively
denoted by rnm := {ra, rb, rc}, rnm := {rab, rbc, rca}, and
rnm := {rab, 1, rcb}. The relationship between the effective
turns ratio and the taps for the SVR is rφnm = 1∓0.00625tφnm
where tφnm is an integer, ranging in 33 levels from −16 to
+16. The plus sign is used for type-A SVRs while the minus
sign is used for type-B SVRs [1]. When the tap varies between
−16 to +16, the effective turns ratio ranges from rmin = 0.9
to rmax = 1.1 and assumes 33 levels. A good approximation
is to consider rφnm as continuous variable constrained as

rmin ≤ rnm ≤ rmax, (n,m) ∈ ER. (2)

The SVR gain matrices Anm for three main configurations
have been derived in [2] and are provided in Table I, where
the explicit dependence on the vector of effective turns ratios
rnm is given. For edge (n,m) ∈ ER , the relationship between
voltages and currents is as follows [2]:

inm = A−>nmY(n)
nmA−1

nmvn −A−>nmY(m)
nm vm, (n,m) ∈ ER (3a)

imn = Y(m)
mn vm −Y(n)

mnA−1
nmvn, (n,m) ∈ ER (3b)

where matrices Y correspond to the transmission line con-
necting n′ to m. The relationship between Anm and rnm is

Anm = diag(rnm)Dnm + Fnm, (n,m) ∈ ER (4)

where for wye SVRs, Dnm = I and Fnm = O, for closed-
delta SVRs Dnm =

[
1 −1 0
0 1 −1
−1 0 1

]
and Fnm =

[
0 1 0
0 0 1
1 0 0

]
, and for

open-delta SVRs Dnm =
[

1 −1 0
0 1 0
0 −1 1

]
and Fnm =

[
0 1 0
0 0 0
0 1 0

]
.

C. Power flow equations with SVRs

The power flow equations with explicit account of SVR turn
ratios are presented in this section. For φ ∈ Ω, define the 3×1
real-valued vector eφ as eφ({φ}) = 1 and eφ(Ω \ {φ}) = 0;
further define Eφ = eφeφ and Eφφ′ = eφeφ

′
. For a set A,

denote by nm ∈ A and mn ∈ A, the sets {m ∈ N|(n,m) ∈
A} and {m ∈ N|(m,n) ∈ A}. Compute the power injection
sφn at node n ∈ N and φ ∈ Ω by

sφn = ēφvn īneφ = īnEφvn. (5)

Based on KCL, the current injection in at node n ∈ N+ equals

in =
∑
nm∈E

inm +
∑
mn∈E

inm (6)

The appropriate terms in (1) and (3) substitute inm in (6) to
obtain the following for n ∈ N :

in =
∑

nm,mn∈ET

Y(n)
nmvn −Y(m)

nm vm

+
∑

nm∈ER

A−>nmY(n)
nmA−1

nmvn −A−>nmY(m)
nm vm

+
∑

mn∈ER

Y(n)
nmvn −Y(m)

nmA−1
mnvm. (7)



TABLE I
SVR-RELATED MATRICES

Matrices Wye Closed-delta Open-delta

Anm

 r
a
nm 0 0

0 rbnm 0

0 0 rcnm




rabnm 1−rabnm 0

0 rbcnm 1−rbcnm
1−rcanm 0 rcanm


 rabnm 1−rabnm 0

0 1 0

0 1−rcbnm rcbnm



A
−1
nm


1

ranm
0 0

0 1
rbnm

0

0 0 1
rcnm


1

|Anm|


rbcnmr

ca
nm −(1−rabnm)rcanm (1−rabnm)(1−rcanm)

(1−rbcnm)(1−rcanm) rabnmr
ca
nm −rabnm(1−rbcnm)

−rbcnm(1−rcanm) (1−rabnm)(1−rcanm) rabnmr
bc
nm




1
rabnm

1− 1
rabnm

0

0 1 0

0 1− 1
rcbnm

1
rcbnm



Substituting (7) for īn in (5) yields the power flow equations

sφn =
∑

nm,mn∈ET

[
vnY

(n)

nm − vmY
(m)

nm

]
Eφvn

+
∑

nm∈ER

[
vnA−>nmY

(n)

nmA−1
nm − vmY

(m)

nmA−1
nm

]
Eφvn

−
∑

mn∈ER

[
vnY

(n)

nm − vmA−>mnY
(m)

nm

]
Eφvn,

n ∈ N , φ ∈ Ω. (8)

III. OPF WITH SVR TAP SELECTION

This section presents the OPF problem with SVR tap
selection. The objective is to minimize the total power import
to the distribution network, given as follows:

c(v) =
∑
n∈S

∑
φ∈Ω

Re
[
sφn
]

(9)

Other cost functions that account for e.g., thermal losses, may
also be included. The OPF problem is stated next.

OPF: minimize
s,r,v

(9) subject to (2), (4), (8), and

vmin ≤ |v| ≤ vmax (10a)
vn = vs

n, n ∈ S (10b)
sn ∈ Gn, n ∈ N . (10c)

Constraint (10a) enforces lower and upper voltage mag-
nitude bounds. Constraint (10b) specifies the voltage at the
slack bus. The set Gn in (10c) is the feasible region of net
complex power injection at bus n. In case of known distributed
generation injections or loads, Gn is a singleton for n ∈ N+.
Problem (10) is nonconvex because a) (8) is quadratic in
voltages v and inverse quadratic in effective ratios r, and b) the
left constraint in (10a) yields a nonconvex feasible set.

IV. SEMIDEFINITE RELAXATION OF OPF WITH SVRS

This section develops a relaxation of (10). To this end,
Section IV-A presents a formulation equivalent to (10), and
Section IV-B develops convex relaxations. The proposed for-
mulation is given in Section IV-C, and Section IV-D provides
a method to recover a feasible solution to (10).

A. Equivalent OPF formulation

Using the identity
∑
φ∈Ω Eφ = I, we have that

A−1
nm = A−1

nm

∑
φ′∈Ω

Eφ′ . (11)

Consider the change of variables of the following form:

uφnm = A−1
nmEφvn, (n,m) ∈ ER, φ ∈ Ω, (12)

and collect all such variables in the vector u. By incorporating
(11) in (8) and using the cyclic permutation property of
the trace operator and subsequently substituting in (12), the
OPF (10) is equivalently written as

EOPF: minimize
s,r,v,u

(9)

subject to (2), (4), (10a), (10b), (10c), (12)

sφn =
∑

nm,mn∈ET

Tr
[
Y

(n)

nmEφvnvn −Y
(m)

nmEφvnvm

]
+

∑
nm∈ER

∑
φ′∈Ω

Tr
[
Y

(n)

nmuφnmuφ
′

nm

]
−

∑
nm∈ER

Tr
[
Y

(m)

nmuφnmvm

]
+

∑
mn∈ER

Tr
[
Y

(n)

nmEφvnvn

]
−

∑
mn∈ER

∑
φ′∈Ω

Tr
[
Y

(m)

nmEφvnuφ
′

mn

]
,

n ∈ N , φ ∈ Ω. (13a)

The following new variables are introduced:

Wnn = vnvn, n ∈ N ,Wnm = vnvm, (n,m) ∈ ET (14)

Uφφ′

nm = uφnmuφ
′

nm, (n,m) ∈ ER, φ, φ′ ∈ Ω (15a)
Ψφ
nm = uφnmvm, (n,m) ∈ ER, φ ∈ Ω (15b)

Unm = [{Uφ,φ′

nm }φ′∈Ω]φ∈Ω, (n,m) ∈ ER (16a)
Ψnm = {Ψφ

nm}φ∈Ω, (n,m) ∈ ER. (16b)

In (16), the notation [.] is a horizontal concatenation of matri-
ces. Collect Unm and Ψnm for (n,m) ∈ ER respectively in U



Algorithm 1 Retrieve v,u from (W,U,Ψ)

1: Initialize Nvisit ← {S} and vS = vs
S.

2: while Nvisit 6= N do
3: Find (n,m) ∈ E such that n ∈ Nvisit and m /∈ Nvisit.
4: if m : (n,m) ∈ ER then
5: uφnm ← A−1

nmEφvn, φ ∈ Ωn unm ← {uφnm}φ∈Ωn

6: vm ← Ψnmunm/Tr [Unm]
7: else
8: vm ←Wnmvn/Tr [Wnn]
9: end if

10: Update Nvisit ← Nvisit ∪ {m}.
11: end while

and Ψ; and likewise collect Wnn and Wnm for (n,m) ∈ ET
in W. We introduce the following rank-constrained OPF:

ROPF: minimize
s,r,W,
U,Ψ

∑
n∈S

∑
φ∈Ωn

Re
[
sφn
]

(17a)

subject to (2), (4), (10c), (16)
(vmin)2 ≤ diag(W) ≤ (vmax)2 (17b)
Wnn = vs

nvs
n, n ∈ S (17c)

sφn =
∑

nm,mn∈ET

Tr
[
Y

(n)

nmEφWnn −Y
(m)

nmEφWnm

]
+

∑
nm∈ER

∑
φ′∈Ω

Tr
[
Y

(n)

nmUφφ′

nm

]
−

∑
nm∈ER

Tr
[
Y

(m)

nmΨφ
nm

]
+

∑
mn∈ER

Tr
[
Y

(n)

nmEφ
nWnn

]
−

∑
mn∈ER

∑
φ′∈Ω

Tr
[
Y

(m)

nmEφ
nΨ

φ′

mn

]
, n ∈ N , φ ∈ Ω (17d)[

Wnn Wnm

Wnm Wmm

]
� O, (n,m) ∈ ET (17e)[

Unm Ψnm

Ψnm Wmm

]
� O, (n,m) ∈ ER (17f)

Rank

[
Wnn Wnm

Wnm Wmm

]
= 1, (n,m) ∈ ET (17g)

Rank

[
Unm Ψnm

Ψnm Wmm

]
= 1, (n,m) ∈ ER (17h)

Uφφ′

nm = A−1
nmEφWnnEφ′A−>nm , (n,m) ∈ ER, φ, φ′ ∈ Ω. (17i)

In (17), the nonconvex constraints are (17g), (17h),
and (17i). If the matrices in (17g), (17h), and (17i) are rank-1,
spectral decomposition renders voltages of problem (10).

Lemma 1. Suppose that graph (N , E) is radial with one slack
bus S = {S} and the point (s∗, r∗,W∗,U∗,Ψ∗) is an optimal
solution of (17). Then, the point (s∗, r∗,v∗,u∗), where v∗ and
u∗ are computed via Algorithm 1, is an optimal point of (13).

Proof: The proof is similar to [4, Lemma 1], but extended
to handle SVR branches. We omit it here to preserve space.

B. Convex relaxation

To derive a convex relaxation of (17), (17g) and (17h) can be
dropped. Constraint (17i) is more challenging to handle since
Anm depends linearly on the optimization vector r through
(4), but the inverse of Anm appears in (17i).

An equivalent but more amenable form of (17i) is developed
next, before the constraint can be relaxed to a convex one. Let
Wφφ′

nn be the entry of Wnn corresponding to phase pair (φ, φ′)
(cf. (14)). The next proposition gives an equivalent constraint
to (17i) that does not include the inverse of Anm.

Proposition 1. Constraint (17i) is equivalent to

Wφφ′

nn Eφφ′ = diag(rnm)DnmUφφ′

nmD>nmdiag(rnm)

+ diag(rnm)DnmUφφ′

nmF>nm

+ FnmUφφ′

nmD>nmdiag(rnm)

+ FnmUφφ′

nmF>nm, (n,m) ∈ ER, φ, φ′ ∈ Ω. (18)

Proof: Since Anm is invertible for all three types of SVR
in Table I [2], constraint (17i) can be written equivalently as

AnmUφφ′

nmA>nm = EφWnnEφ′ = Wφφ′

nn Eφφ′ . (19)

Introducing (4) in (19) yields (18).
Eq. (18) is nonconvex, as the product of variables rnm and

Unm enters an equality constraint. To convexify (18), we first
drop its off-diagonals (φ 6= φ′). We then focus on the diagonal
entries of (18), which have the form

αφ
′φ
nm(rφnm)2 + 2βφ

′φ
nmr

φ
nm + κφ

′φ
nm = 0, φ′ 6= φ ∈ Ω, (20a)

αφφnm(rφnm)2 + 2βφφnmr
φ
nm + κφφnm = Wφφ

nn , φ ∈ Ω (20b)

where αφ
′φ
nm , βφ

′φ
nm , and κφ

′φ
nm are defined as the φ-th element

on the diagonals of DnmUφ′φ′

nm D>nm, Re
[
DnmUφ′φ′

nm F>nm

]
,

and FnmUφ′φ′

nm F>nm, respectively. Notice that αφ
′φ
nm , βφ

′φ
nm , and

κφ
′φ
nm are linear functions of Uφ′φ′

nm . For convenience, matrices
DnmUφ′φ′

nm D>nm and DnmUφ′φ′

nm F>nm, and FnmUφ′φ′

nm F>nm for

a generic Uφ′φ′

nm =

[
U11
nm U12

nm U13
nm

U21
nm U22

nm U23
nm

U31
nm U32

nm U33
nm

]
are provided in Table II

for each SVR type. It will be notationally convenient to derive
the relaxations specifically according to the SVR type. To
this end, the next three sections describe how (20) is relaxed
depending on SVR type. In what follows, we partition ER as
ER = EY∪EC∪EO, where EY, EC, and EO respectively collect
wye, closed-delta, and open-delta SVR edges.

1) Wye SVRs: For wye SVRs, a linear substitute of (20a)
is provided next.

Proposition 2. For (n,m) ∈ EY, (20a) is equivalent to

αφ
′φ
nm = 0, φ′ 6= φ ∈ Ω. (21)

Proof: From Table II, αφ
′φ
nm = Uφφnm while the val-

ues of βφ
′φ

nm and κφ
′φ
nm which are the diagonals of matri-

ces DnmUφ′φ′

nm Fnm equate to zero. Then, (20a) reduces to
Uφφnm(rφnm)2 = 0. The latter equality is equivalent to (21) since
rφnm ∈ [rmin, rmax] where rmin > 0.

For wye SVRs, (20b) is linearly relaxed next.



TABLE II
SVR-RELATED MATRIX COMPUTATIONS

Matrices Wye Closed-delta Open-delta

DnmU
φ′φ′
nm D

>
nm


U11
nm U12

nm U13
nm

U21
nm U22

nm U23
nm

U31
nm U32

nm U33
nm





U11
nm+U22

nm U12
nm+U23

nm U13
nm+U21

nm

−2Re[U12
nm] −U22

nm−U
13
nm −U11

nm−U
23
nm

U21
nm+U32

nm U22
nm+U33

nm U31
nm+U23

nm

−U31
nm−U

22
nm −2Re[U23

nm] −U33
nm−U

21
nm

U31
nm+U12

nm U32
nm+U13

nm U33
nm+U11

nm

−U11
nm−U

32
nm −U12

nm−U
33
nm −2Re[U31

nm]





U11
nm+U22

nm U12
nm−U

22
nm U13

nm+U22
nm

−2Re[U12
nm] −U23

nm−U
12
nm

U21
nm−U

22
nm U22

nm U23
nm−U

22
nm

U31
nm+U22

nm U32
nm−U

22
nm U33

nm+U22
nm

−U21
nm−U

32
nm −2Re[U23

nm]



DnmU
φ′φ′
nm F

>
nm O


U12
nm−U

22
nm U13

nm−U
23
nm U11

nm−U
21
nm

U22
nm−U

32
nm U23

nm−U
33
nm U21

nm−U
31
nm

U32
nm−U

12
nm U33

nm−U
13
nm U32

nm−U
11
nm



U12
nm−U

22
nm 0U12

nm−U
22
nm

U22
nm 0 U22

nm

U32
nm−U

22
nm 0U32

nm−U
22
nm



FnmU
φ′φ′
nm F

>
nm O


U22
nm U23

nm U21
nm

U32
nm U33

nm U31
nm

U12
nm U13

nm U11
nm


U22

nm 0U22
nm

0 0 0

U22
nm 0U22

nm



Proposition 3. For (n,m) ∈ EY, (20b) implies

αφφnmr
2
min ≤Wφφ

nn ≤ αφφnmr2
max, φ ∈ Ω. (22)

Proof: From Table II, it holds that αφφnm = Uφφnm while
the values of βφφnm and κφφnm which are the diagonals of
matrices DnmUφφ

nmFnm equate to zero. Hence, (20b) reduces
to Uφφnm(rφnm)2 = Wφφ

nn . The latter equality implies (22) since
rφnm ∈ [rmin, rmax] where rmin > 0 and Uφφnm ≥ 0 (due to
positive semidefiniteness of Uφφ

nm).
2) Closed-delta SVRs: For closed-delta SVRs, (20a) is

linearly relaxed next.

Proposition 4. For (n,m) ∈ EC, (20a) implies

αφ
′φ
nmrmin + βφ

′φ
nm ≤ 0, φ′ 6= φ ∈ Ω (23a)

αφ
′φ
nmrmax + βφ

′φ
nm ≥ 0, φ′ 6= φ ∈ Ω (23b)

βφ
′φ

nmrmin + κφ
′φ
nm ≥ 0, φ′ 6= φ ∈ Ω (23c)

βφ
′φ

nmrmax + κφ
′φ
nm ≤ 0, φ′ 6= φ ∈ Ω. (23d)

Proof: We prove Proposition 4 only for φ′ = a and
φ = b. First, notice that since Uaa

nm is rank-1 and positive-
semidefinite, it holds that Uaa

nm = uanmuanm for some vector
uanm =

[
ua1
nm, u

a2
nm, u

a3
nm

]>
. Further, since Wnn is rank-1 and

positive semidefinite, it holds that Wnn = vnvn. Through
(17i), we next find that uanm = van

[
A−1
nm

]
•a, where

[
A−1
nm

]
•a

denotes the a-th column of A−1
nm. The latter equality and

Table I then aid in finding uanm:

u
a1
nm = v

a
n

[
A
−1
nm

]
1a

= v
a
n

rbcnmr
ca
nm

|Anm|
(24a)

u
a2
nm = v

a
n

[
A
−1
nm

]
2a

= v
a
n

(1− rbcnm)(1− rcanm)

|Anm|
(24b)

u
a3
nm = v

a
n

[
A
−1
nm

]
3a

= v
a
n

−rbcnm(1− rcanm)

|Anm|
. (24c)

Assume φ = b. Using (24) and Table II, compute the follow-
ing quantities by noting that when φ = b, then rφnm = rbcnm.

α
ab
nm = U

22
nm + U

33
nm − 2Re[U

32
nm] =

∣∣∣ua2
nm − u

a3
nm

∣∣∣2
⇒ α

ab
nm =

|van|
2

|Anm|2
(1− rcanm)

2 (24d)

β
ab
nm = Re[U

23
nm]− U33

nm = Re
[
(u
a2
nm − u

a3
nm)u

a3
nm

]
⇒ β

ab
nm = −

|van|
2

|Anm|2
r
bc
nm(1− rcanm)

2 (24e)

κ
ab
nm = U

33
nm = |ua3

nm|
2

=
|van|

2

|Anm|2
(r
bc
nm)

2
(1− rcanm)

2
. (24f)

It thus holds that

αabnmr
bc
nm + βabnm = 0. (25)

The above equality together with the fact that αabnm ≥ 0 imply
(23a) and (23b) for φ′ = a and φ = b. Equation (25) with
the fact that βabnm ≤ 0 imply (23c) and (23d), for φ′ = a and
φ = b. Other values of φ′ and φ are similarly proved.

For closed-delta SVRs, (20b) is linearly relaxed next.

Proposition 5. For (n,m) ∈ EC, (20b) implies

αφφnmrmin + βφφnm ≥ 0, φ ∈ Ω (26a)
αφφnm(rmin)2 + βφφnmrmin + κφφnm ≤Wφφ

nn , φ ∈ Ω (26b)
αφφnm(rmax)2 + βφφnmrmax + κφφnm ≥Wφφ

nn , φ ∈ Ω. (26c)

Proof: We prove Proposition 5 only for φ = a. Using (24)
and Table II, we compute the following quantities by noting
that when φ = a, then rφnm = rabnm.

α
aa
nm =

|van|
2

|Anm|2
(r
bc
nm + r

ca
nm − 1)

2 (27a)

β
aa
nm =

|van|
2

|Anm|2
(r
bc
nm + r

ca
nm − 1)(1− rbcnm)(1− rcanm) (27b)

κ
aa
nm =

|van|
2

|Anm|2
(1− rbcnm)

2
(1− rcanm)

2
. (27c)

Hence, it holds that

α
aa
nmr

ab
nm + β

aa
nm =

|van|
2

|Anm|
(r
bc
nm + r

ca
nm − 1) ·[

r
ab
nm(r

bc
nm + r

ca
nm − 1) + (1− rbcnm)(1− rcanm)

]
. (28)



In (28), the term in brackets is nonnegative due to the result
of Lemma 2. Therefore, since rbcnm and rcanm are greater than
1
2 , it then holds that

αaanmr
ab
nm + βaanm ≥ 0. (29)

Equation (29) implies (26a) for φ = a. Next, in order to prove
(26b) and (26c) we first bring to attention that in (27a) and
(27b), the values of αaanm and βaanm are not dependent on rabnm
and are non-negative. Hence, (29) implies that the derivative
of the following function is non-negative:

g(rabnm) := αaanm(rabnm)2 + βaanmr
ab
nm + κaanm −Wφφ

nn . (30)

It thus holds that g(rabnm) is a non-decreasing function of rabnm
in the interval [rmin, rmax], which implies (26b) and (26c).

Lemma 2. For real numbers rab, rbc, rca in the interval
[rmin, rmax] where rmax − (rmin)2 ≤ 1

3 , it hold that

rab(rbc + rca − 1) + (1− rbc)(1− rca) ≥ 0. (31)

Proof: Expanding (31) yields

rabrbc + rabrca + rbcrca + 1− rab − rbc − rca

≥ 3(rmin)2 + 1− 3rmax = 1− 3(rmax − (rmin)2) ≥ 0.

3) Open-delta SVRs: Due to similarity to the previous
section, the proofs are omitted here. The next proposition is
an equivalent form of (20a) when φ′ = a or φ′ = c.

Proposition 6. For (n,m) ∈ EO, φ′ ∈ {a, c} and φ ∈ {b, c},
(20a) is equivalent to

αφ
′φ
nm = 0, βφ

′φ
nm = 0, κφ

′φ
nm = 0, φ′ 6= φ ∈ Ω. (32)

For open-delta SVRs, (20a) for φ′ = b is relaxed next.

Proposition 7. For (n,m) ∈ EO, φ′ = b and φ ∈ {a, c}, (20a)
implies

αbφnmrmin + βbφnm ≤ 0, αbφnmrmax + βbφnm ≥ 0 (33a)
βbφnmrmin + κbφnm ≥ 0, βbφnmrmax + κbφnm ≤ 0. (33b)

For open-delta SVRs, (20b) is linearly relaxed next.

Proposition 8. For (n,m) ∈ EO, φ ∈ {a, c}, (20b) implies

αφφnmr
2
min ≤Wφφ

nn ≤ αφφnmr2
max, φ ∈ Ω (34a)

βφφnm = 0, κφφnm = 0, φ ∈ Ω, (34b)

In this proposition, for φ = b, we assume rmin = rmax = 1.

C. Semidefinite relaxation of OPF

The proposed semidefinite relaxation of OPF is

SOPF: minimize
s,W,U,Ψ

(9) (35)

subject to (10c), (16), (17b)–(17f)
(21), (22) (n,m) ∈ EY, (23), (26) (n,m) ∈ EC
(32), (33), (34) (n,m) ∈ EO.

D. Feasible solution

After solving (35), the effective turns ratios rφnm for φ ∈ Ω
can be recovered by solving (20b)—a quadratic equality in
rφnm. That a solution rφnm exists in [rmin, rmax] is proven next.

Proposition 9. If Unm and Wnn are feasible for (35), then
(20b) has a unique solution rφnm in the range [rmin, rmax].

Proof: Respectively for (n,m) ∈ EY and (n,m) ∈ EO,
propositions 3 and 8 imply that (20b) reduces to the form

g(rφnm) := αφφnm(rφnm)2 −Wφφ
nn = 0. (36)

Respectively for (n,m) ∈ EY and (n,m) ∈ EO, however,
(22) and (34a) imply that g(rmin) ≤ 0 and g(rmax) ≥ 0. The
intermediate value theorem is invoked to prove that one zero
crossing exists at a point rφnm ∈ [rmin, rmax]. Since rmin > 0,

the only valid solution to (36) is thus rφnm =

√
Wφφ
nn

αφφnm
.

For (n,m) ∈ EC, (20b) is of the form

gc(rφnm) := αφφnm(rφnm)2 + 2βφnmr
φ
nm + κφnm −Wφφ

nn = 0, (37)

Equations (26b) and (26c), however, imply that gc(rmin) ≤ 0
and gc(rmax) ≥ 0. The intermediate value theorem is then
invoked to prove that at least one solution rφnm ∈ [rmin, rmax]
exists. Equation (26a) further requires that αφφnmr

φ
nm+βφφnm ≥ 0

so that the only viable solution to (37) is

rφnm =
1

αφφnm

[
−βφφnm +

√
(βφφnm)2 − αφφnm(κφφnm −Wφφ

nn )

]
. (38)

After solving SOPF (35), feasible voltages are obtained by
re-solving SOPF (35) with r fixed to the one retrieved from
Proposition 9. In the next section, however, we assume that
the set of complex power injections per node n ∈ N+ is a
singleton and is fixed to the given load. Therefore, after solving
(35) for r, the procedure to obtain the corresponding voltages
reduces to solving the load-flow problem. Recent results
guarantee the uniqueness of voltage solutions in distribution
networks [11], ridding us from re-solving (35).

V. NUMERICAL TESTS

The standard IEEE 37-bus distribution feeder is adopted
from [12]. Power and voltage bases are respectively Sbase =
2500 kVA and Vbase = 4.8 kV line-to-line. Network loads
are assumed as constant-power wye. The total load amounts to
0.9828+j0.4804 pu comprising 0.3436+j0.2194 pu on phase
a, 0.2682 + j0.1444 pu on phase b, and 0.3709 + j0.1166 pu
on phase c. Series transformers are modeled as wye-g–wye-g.
The network includes a slack bus at the substation, which is
indexed to be node 1. We fix the voltage at the slack bus to
v1 = {1, 1 −120◦, 1 120◦}. The network contains an SVR
located on edge (2, 3).

Bounds on voltages and turns ratios are set to [vmin, vmax] =
[0.9, 1.1] pu and [rmin, rmax] = [0.9, 1.1]. All computations
are performed in MATLAB [13] and on a laptop computer
with 8.0 GB RAM and 2 GHz CPU processor. The SDP (35)
is solved by CVX [14]. MATLAB scripts for the ensuing tests



TABLE III
PERFORMANCE OF THE PROPOSED FORMULATION FOR OPTIMAL

TAP-SELECTION OF SVRS

SVR
∑
φ∈Ω

Re[sφ1
∗
] min v̂ max v̂

∑
φ∈Ω

Re[ŝφ1 ] Opt. gap

(pu) (pu) (pu) (pu) (%)

None —– 0.85 1.0000 1.0430 —–

Wye 1.0358 0.92 1.05 1.0363 0.0544

Cl.-delta 1.0319 0.92 1.08 1.0355 0.3435

Op.-delta 1.0336 0.90 1.08 1.0351 0.1416

are provided online at the following link: http://github.com/
hafezbazrafshan/MultiphaseVRs

For comparison purposes, using the Z-Bus method [11], a
base voltage profile where the SVR block is replaced by its
transmission line (equivalently, taps are set to 0) is computed
for the IEEE 37-bus. The minimum and maximum voltage
values as well as the power import thus obtained are listed in
row 1 of Table III, respectively in columns 3–5. Problem (35)
is then solved for a wye, closed-delta, and open-delta SVR
on edge (2, 3). Its optimal value, denoted by

∑
φ∈Ω Re[sφ1

∗
]

is reported in column 2 of Table III. By using the result of
Proposition 9, the effective ratios for wye, closed-delta, and
open-delta are respectively computed as r23 = {0.9, 0.9, 0.9},
r23 = {0.9313, 0.9125, 0.9125}, and r23 = {0.9062, 0.9062}.
It turns out that for all SVR types, the matrices of constraints
(17e) and (17f) are almost rank-2 at the optimal solution of
(35). The average ratio between the magnitude of the second
largest eigenvalue to that of the dominant eigenvalue for
matrices in (17e) is respectively 0.74, 0.73, and 0.61 for wye,
closed-delta, and open-delta SVRs. The same ratio for (17f)
is respectively 0.76, 0.73, and 0.56 for wye, closed-delta, and
open-delta SVRs. The average ratio between the magnitude of
the third largest eigenvalue to that of the dominant eigenvalue
for all matrices in (17e) and (17f) is below 0.08.

Since matrices in (17g) and (17f) are not rank-1, and the
formulation in (35) is a relaxation, the optimal value of (35) is
a lower bound of the OPF (10). It is important to see how good
this lower bound is. To this end, by fixing the SVR effective
ratios to the computed ones, the Z-Bus load-flow is solved to
obtain the nodal voltages using each SVR. The minimum and
maximum values of the computed voltages v̂, are respectively
reported in columns 3 and 4 of Table III. Since these values are
within [vmin, vmax], then the corresponding value of imported
power, given by

∑
φ∈Ω ŝ

φ
1 in column 5 of Table III, is an upper

bound to the optimal solution of the original OPF (10). Notice
that given v̂ and SVR ratios, the imported power per phase,
ŝφ1 , is easily calculated using (8). The corresponding optimality
gap is computed as 100×

∑
φ∈Ω Re

[
ŝφ1 − s

φ
1

]
/Re[sφ1 ] and is

reported in column 6 of Table III.The optimality gap for all
three cases is below 0.5%. The implication is that the solution
of the proposed relaxed OPF in (35) provides reasonable taps
for the SVRs. Voltage profiles and other network quantities
can be obtained by visiting the github page.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

A general OPF framework for multi-phase distribution net-
works is presented that explicitly accounts for tap selection
of various types of SVRs. Chordal SDP relaxation of power
flow equations are leveraged to handle non-SVR edges. Novel
linear relaxations are derived for the non-convex primary-to-
secondary voltage relationship of SVR edges. The proposed
problem is an SDP and can be solved efficiently. Preliminary
results on a small distribution network verify that the method
is successful at regulating nodal voltages while maintaining
the power import of a distribution network within 1% of its
optimal value. Despite these promising results, previous work
has shown that SDP relaxation of equivalent OPF problems
may or may not find the global solution of the problem [15].
Furthermore, the capability of modern SDP solvers in ob-
taining numerically accurate solutions of large-scale SDPs
is still limited. Detailed investigations on the robustness of
the proposed SDP formulation to various loading conditions
and its scaling to larger networks are thus required. Such
computational issues will be tackled in our future work.
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